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Abstract This paper presents the extension of some

finite elements with embedded strong discontinuities

to the fully transient range with the focus on dynamic

fracture. Cracks and shear bands are modeled in this

setting as discontinuities of the displacement field, the

so-called strong discontinuities, propagating through

the continuum. These discontinuities are embedded

into the finite elements through the proper enhance-

ment of the discrete strain field of the element. General

elements, like displacement or assumed strain based

elements, can be considered in this framework, cap-

turing sharply the kinematics of the discontinuity for

all these cases. The local character of the enhancement

(local in the sense of defined at the element level, inde-

pendently for each element) allows the static conden-

sation of the different local parameters considered in

the definition of the displacement jumps. All these fea-

tures lead to an efficient formulation for the model-

ing of fracture in solids, very easily incorporated in an

existing general finite element code due to its modu-

larity. We investigate in this paper the use of this finite

element formulation for the special challenges that the
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dynamic range leads to. Specifically, we consider the

modeling of failure mode transitions in ductile mate-

rials and crack branching in brittle solids. To illustrate

the performance of the proposed formulation, we pres-

ent a series of numerical simulations of these cases

with detailed comparisons with experimental and other

numerical results reported in the literature. We con-

clude that these finite element methods handle well

these dynamic problems, still maintaining the afore-

mentioned features of computational efficiency and

modularity.

Keywords Dynamic fracture · Finite elements ·
Embedded discontinuities · Failure mode transition ·
Crack branching

1 Introduction

The finite element modeling of fracture and failure has

been and continues to be an area of intensive research

for its importance in many practical applications. A

main challenge is the highly non-smooth character of

the solutions involved. For instance, we observe the

need to deal with discontinuous displacement fields

across evolving surfaces of discontinuity, the so-called

strong discontinuities, when dealing with propagat-

ing cracks. The difficulties increase considerably when

accounting for dynamic effects, as it is the focus of

this paper. Brittle/ductile failure mode transitions and
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120 F. Armero, C. Linder

crack branching are phenomena often observed in these

conditions.

Different approaches can be found in the literature

for the finite element modeling of propagating cracks,

shear bands and similar localized failures of solids. For

example, the use of cohesive elements across element

edges was developed in Needleman (1987), Tvergaard

(1990), Xu and Needleman (1994), Camacho and Ortiz

(1996), Ortiz and Pandolfi (1999), among others. The

dependence of these techniques on the alignment of

the mesh can be diminished with the consideration

of adaptive refinement techniques, as considered in

Ingraffea and Saouma (1985), Ortiz and Quigley

(1991), Marusich and Ortiz (1995), Bittencourt et al.

(1996), or Carter et al. (2000), to mention just a few.

The complexity of these approaches has motivated

the formulation of alternative techniques that do not

rely on special alignments of the underlying finite ele-

ment mesh. The discontinuity then has to be captured

in the interiors of the finite elements. Early approaches

include the work of Dvorkin et al. (1990) and the

general framework for finite elements with embed-

ded strong discontinuities presented in Simo et al.

(1993), Armero and Garikipati (1995, 1996), Oliver

(1996a,b), and Larsson et al. (1998), to just men-

tion some early publications. Other approaches not

sharing this element-based enhancement rely on nod-

ally-based enrichments, like the so-called extended

finite element method and its variations as presented

in Belytschko and Black (1999), Moës et al. (1999),

Dolbow et al. (2000), Wells and Sluys (2001), Wells

et al. (2002), or Hansbo and Hansbo (2004), among

others. See Oliver et al. (2006) for a comparative

study between the local element-based enhanced ele-

ments and nodally-enriched formulations, especially in

terms of the associated computational costs.

An attractive aspect of the original finite elements

with embedded strong discontinuities is the completely

local nature of the enhancements required to capture

the displacement jumps, local in the sense that they

are defined at the element level, independent for each

element. This feature arises from a global/local mul-

tiscale treatment of these discontinuous solutions as

developed in Armero (1999, 2001). In practice, this

important characteristic leads not only to a computa-

tionally very efficient approach (thanks to the local

static condensation of the local degrees of freedom

capturing the displacement jumps), but also to a tech-

nique that can be easily incorporated into an existing

finite element code due to its final modularity. This

framework is to be contrasted with the aforemen-

tioned extended finite element methods, where addi-

tional (global) nodal degrees of freedom, which change

as the discontinuity propagates, are introduced.

In this paper we consider specifically the finite

elements with embedded discontinuities presented

recently in Linder and Armero (2007) in the infini-

tesimal range, later extended to the finite deformation

range in Armero and Linder (2008). In contrast to the

original elements with piece-wise constant interpola-

tions of the displacement jumps along the discontinu-

ity and the elements with only linear normal jumps of

Manzoli and Shing (2006) in the context of regu-

larized discontinuities, the new elements consider a

linear interpolation of both the normal and tangen-

tial displacement jumps at the element level. In addi-

tion, any underlying finite element can be considered

in this framework, including basic displacement-based

elements and other formulations treated in general as

an assumed strain or B-bar approach. This richer inter-

polation is crucial to arrive to quadrilateral elements

that are able to model the discontinuities without the

so-called stress-locking, that is, the spurious trans-

fer of stresses through the discontinuity when mod-

eling a fully softened opening discontinuity. The local

enhancement of the element strains is actually obtained

with the direct incorporation of the separation mode

associated with a linearly opening discontinuity. This

approach is to be traced back to the finite elements

with embedded softening hinges developed for beams

and plates in Ehrlich and Armero (2005) and Armero

and Ehrlich (2006a,b). The more complex nature of

the kinematics of these structural systems, in terms

of deflections and rotations, required the consideration

of non-constant generalized displacement jumps.

The goal of this paper is to extend and evaluate the

use of the new finite elements for continuum plane

problems in the fully dynamic range, with dynamic

fracture being at the center of our motivation. The

consideration of dynamic effects in finite element for-

mulations with embedded discontinuities is rare; we can

only quote Huespe et al. (2006), but within the context

of regularized strong discontinuities. As shown in the

current paper, this extension is easily achieved after

observing that the local problem modeling the strong

discontinuity is not directly affected by the dynamic

effects. These effects are incorporated through the

global response of the solid, a task that can be easily
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Numerical simulation of dynamic fracture 121

accomplished again with standard finite element treat-

ments (e.g typical inertial terms based on a standard

globalmassmatrix). In thisway,wepreserve thecharac-

teristic featuresof theconsideredapproachnotedabove,

namely, its completely local nature leading to a com-

putationally very efficient formulation, easily incor-

porated in an existing finite element code due to its

modularity. The numerical results reported in this paper

show also the appropriateness of the approach in model-

ing different challenging situations in dynamic fracture,

namely, failure mode transitions and crack branching.

An outline of the rest of the paper is as follows.

Section 2 describes the standard mechanical initial

boundary value problem and its finite element approxi-

mation. This problem defines the aforementioned

(global) large scale, where we use standard finite ele-

ment methods. The strong discontinuities are intro-

duced in the small scales defined by the finite elements

as discussed in Sect. 3. To emphasize the overall struc-

ture of the considered formulation, we discuss briefly its

numerical implementation in Sect. 4, leaving the design

of the enhanced operators capturing a linearly opening

discontinuity in the Appendix. Section 5 presents the

results obtained with the proposed formulation for sev-

eral benchmark problems, including detailed compari-

sons with experimental tests and other numerical results

reported in the literature. Finally, Sect. 6 concludes with

abriefsummaryof themainfeaturesof thefiniteelement

methods considered in the paper and an outlook on our

current and future work in this area.

2 The mechanical initial boundary value problem

This section summarizes the standard mechanical ini-

tial boundary value problem. The continuum problem

is presented in Sect. 2.1 with its discrete approxima-

tion outlined in Sect. 2.2. The strong discontinuities

employed to model the failure of the solid will be intro-

duced in this framework in Sect. 3.

2.1 The continuum problem

We consider a solid body represented by a fixed open

domain� ⊂ R
ndim for 1 ≤ ndim ≤ 3 under the standard

assumption of infinitesimal deformations described by

a displacement field u : � × [0, T ] → R
ndim in time

t ∈ [0, T ] ⊂ R+ for some time interval T > 0. The

solid’s material particles are labeled by their positions

x ∈ �, and the solid’s density is denoted by ρ(x, t). In

this context, we consider the associated infinitesimal

strain tensor ε : �×[0, T ] → R
ndim×ndim

sym (the space of

symmetric tensors) defined by

ε(u) = ∇s
u =

1

2

[
∇u + (∇u)T

]
(1)

for the standard gradient operator ∇ in x. Similarly, we

denote by

v(x, t) =
∂

∂t
u(x, t) (≡ u̇) (2)

and

a(x, t) =
∂

∂t
v(x, t) =

∂2

∂t2
u(x, t) (≡ ü) (3)

the associated velocity and acceleration fields. We

denote the stresses in the solid by σ : � × [0, T ] →
R

ndim×ndim

sym (a symmetric tensor under the usual argu-

ment of balance of angular momentum), given in terms

of the strains ε through a constitutive relation for the

material response as described in Sect. 3 below.

If the solid is subjected to a specific volumetric body

force b : � → R
ndim (per unit mass) and imposed

boundary tractions t̄ : ∂t� → R
ndim for some part of

the boundary ∂t� ⊂ ∂�, the balance of linear momen-

tum can be written in weak form as
∫

�

ρü · δu d� +
∫

�

σ : ∇s (δu) d�

=
∫

�

ρb · δu d� +
∫

∂t �

t̄ · δu dŴ (4)

for all admissible variations δu, that is, δu = 0 on

∂u� ⊂ ∂�, the part of the boundary where the displace-

ment field is imposed as u = ū for some given function

ū : ∂u� → R
ndim . We assume the standard conditions

of non-overlapping parts ∂u� and ∂t� in each compo-

nent of the displacements and traction, covering all the

boundary ∂� for a well-posed problem. The second-

order in time problem (4) in the displacement u(x, t)

is supplemented by initial conditions on the displace-

ment u(x, 0) = u0(x) and velocity v(x, 0) = v0(x) in

the dynamic range of interest here.

2.2 The finite element framework

The continuum problem summarized in the previous

section corresponds to the standard initial boundary

value problem in solid mechanics in the global set-

ting of the domain �, involving in particular standard
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122 F. Armero, C. Linder

regularity conditions for the different fields involved

(e.g. H1(�) functions for the displacements as in typ-

ical treatments). Additional considerations involving

the so-called strong discontinuities (discontinuities in

the displacement field) are to be accounted for loc-

ally, instead of globally, as discussed in the following

section. This standard character of the global problem

considered so far emphasizes our intention to employ

standard finite element methods at this level.

In this way, we proceed with standard considerations

and introduce a finite element approximation of the dis-

placement field

u(x, t) ≈ u
h(xh, t) =

nnode∑

A=1

N A(xh) dA(t) = Nd (5)

for x
h ∈ �h in terms of a standard set of shape functions

N A and a set of discrete (nodal) displacements dA(t),

usually associated to a set of nodes A = 1, . . . , nnode

of a finite element mesh �h = ∪nelem

e=1 �h
e covering the

domain � with nelem elements �h
e . The same finite ele-

ment interpolations are assumed to define the velocity

v
h(xh, t) and acceleration a

h(xh, t) in terms of nodal

velocities vA(t) and nodal accelerations aA(t), respec-

tively, for A = 1, . . . , nnode. We denote by d, v, and

a the corresponding global arrays, all three understood

as time functions, and the corresponding global array

N of (fixed in time) shape functions.

We have also denoted by x
h ∈ �h the position

coordinates in the discrete geometry, defined as usual

through the isoparametric concept by the same relation

(5) but in terms of the nodal coordinates xA, globally

assembled in the vector x.

To accommodate any finite element treatment of

the continuum problem at hand, we adopt a general

assumed strain formulation by which the strain field is

approximated as

ε(u(x, t)) ≈ εh(d) =
nnode∑

A=1

B̄
A
(xh)d A(t) = B̄d (6)

for x
h ∈ �h in terms of an assumed strain operator

B̄(xh) (Hughes 1987). Similarly, we write

∇s(δu) ≈ B̄ δd (7)

for the nodal displacement variations δd. Inserting

these relations into the governing Eq. (4) and fol-

lowing standard arguments in finite element analysis,

we arrive at the (global) discrete system of equations

R = fext −
nelem

A
e=1

⎛
⎜⎝
∫

�h
e

B̄
T
σ d�

⎞
⎟⎠− Ma = 0 (8)

where we have introduced the external force vector

fext =
∫

�h

NT ρb d� +
∫

∂t �h

NT t̄ dŴ (9)

the assembly operator A for the nelem element con-

tributions and the mass matrix

M =
nelem

A
e=1

Me for Me =
∫

�h
e

ρNT N d� (10)

or any alternative assumed expression like a lumped

mass, capturing the dynamic effects. We refer to e.g.

Hughes (1987) for complete details in all these consid-

erations.

To summarize the developments in this section, we

have considered the standard initial boundary value

problem describing the deformation of a solid in the

dynamic range and its standard finite element approx-

imation. Our purpose in elaborating on some of the

details is to emphasize the standard character of these

considerations, besides defining the notation to be used

in the following sections. We note again the goal to

incorporate the strong discontinuities characterizing

the failure of the solid without breaking this standard

structure of the problem at hand and its numerical

approximation.

3 The incorporation of the strong discontinuities

Two related issues remain to be addressed in the context

of the mechanical problem described in the previous

section. First, we have to introduce the constitutive rela-

tion defining the stress σ in terms of the strain ε and any

needed internal variables characterizing the response

of the material. The second issue, and main goal in

the developments of this paper, is the consideration of

discontinuities of the displacements (the strong discon-

tinuities) modeling the localized failure of the material

in the form of cracks and shear bands, for example,

in both the continuum and finite element frameworks

described above. In particular, a key aspect of this goal

is to sharply resolve the kinematics of these discontin-

uous solutions by local considerations associated to the
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small scales of the material response, maintaining the

structure of those global or large-scale frameworks.

These arguments lead naturally to the consideration

of a multi-scale treatment of the problem at hand, orig-

inally presented in Armero (1999, 2001) and briefly

summarized in Sect. 3.1. This point of view leads

naturally to the resolution of the strong discontinu-

ities through local enhancements of the finite elements

in the discrete framework as discussed in Sect. 3.2,

summarizing the developments of new finite elements

presented recently in Linder and Armero (2007) for the

static infinitesimal case and, in this way, extending their

use and evaluation to the dynamic range of interest in

the current paper.

3.1 The continuum local problem with strong

discontinuities

We identify the small scales of the material response at

a material point x ∈ � with a local neighborhood �x ⊂
� of x. In this context, we consider a strong discontinu-

ity characterized by a surface Ŵx ⊂ R
ndim−1 with unit

normal n. The appearance of this surface is detected

by a physical condition based on the bulk response of

the material in �x . In general, we consider the loss

of ellipticity condition in terms of the acoustic tensor

of the tangent response of the material in the bulk (see

Armero and Garikipati 1995, 1996), particularizing for

example to the standard maximum normal stress crite-

rion for brittle failures.

The kinematics of the deformation in this small scale

is assumed characterized by a local displacement field

uµ which can always be written as

uµ = u + ũ([[uµ]]) in �x (11)

in terms of the original global displacement field u in �

and an added part part ũ([[uµ]]) expressed as a function

of the displacement jumps [[uµ]] : Ŵx → R
ndim associ-

ated to the strong discontinuity. We refer to Fig. 1 for

an illustration of these considerations.

The small-scale displacements (11) define the local

strain

εµ = ε(u) + ε̃([[uµ]]) in �x\Ŵx (12)

for the large-scale strain ε(u) defined in (1) with an

additional contribution depending on the added field

[[uµ]]. Here we consider the bulk �x\Ŵx of the small-

scale neighborhood �x where the small-scale displace-

ment defines a regular strain field. We can think of the

Fig. 1 Illustration of the continuum framework of the local prob-

lem, where the global problem is defined in the body �, includ-

ing the applied loading and imposed boundary conditions, with

the strong discontinuity appearing in the small scales of a local

neighborhood �x of a material point x

discontinuous part defining a singular distribution on

the surface Ŵx (i.e. a Dirac delta function).

Important to the considerations here is that the regu-

lar strain field εµ in (12) characterizes the bulk response

of the material and defines the stress field σ through a

standard constitutive material model. For example, the

cases presented in Sect. 5 consider a J2-theory plas-

ticity model for a ductile material (steel) and a basic

linear elastic response for a brittle material (PMMA);

see Sect. 5 for complete details.

Besides this bulk response, the full characterization

of the material behavior requires a constitutive descrip-

tion of the strong discontinuity Ŵx itself. This corre-

sponds to a cohesive law between the so-called driving

traction tŴ and the displacement jumps [[uµ]], allow-

ing the accommodation of general effects like damage,

plastic, poroplastic, etc. responses tŴ([[uµ]]) as needed

for the particular problem at hand.

The introduction of the local field [[uµ]] on Ŵx

requires the consideration of an additional equation

closing the formulation. This is accomplished by

defining the driving traction as the trace of the stress

field on Ŵx , a relation we refer as local equilibrium. In

weak form, we can write

∫

Ŵx

δ[[uµ]] · (σn − tŴ) dŴ = 0 (13)

for all variations δ[[uµ]] : Ŵx → R
ndim of the displace-

ment jumps. For the dynamic context of interest in this

paper, we can observe that implicit in this equation is

that no mass is associated to the discontinuity surface

Ŵx , as one would expect from physical considerations

of the problem at hand. The mass is associated with the

bulk of the material.
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124 F. Armero, C. Linder

Important to the considerations here is the local char-

acter of Eq. (13), holding in �x (actually Ŵx ⊂ �x ) and

not the global domain �. In fact, as shown in Armero

(2001), the problem thus defined allows to explicitly

solve for the local field [[uµ]] in terms of the large-scale

displacement u in the large-scale limit

hx : =
Ax

lŴx

→ 0 for Ax =
∫

�x

d� and

lŴx =
∫

Ŵx

dŴ (14)

that is, of vanishing small scales �x , the case of interest

here.

3.2 The discrete local problem with strong

discontinuities

The considerations presented in the previous section for

the introduction of the strong discontinuities through a

local neighborhood of the material points in the con-

tinuum fit exactly the framework of a finite element

method by identifying this neighborhood with a finite

element. Note in this respect the interest of considering

the large-scale limit, as expressed by the relation (14),

of vanishing finite elements in the limit of fine meshes.

The main goal is then to define the proper interpola-

tion of the added discontinuity fields and equations so

that an accurate and sharp resolution of their effects is

captured by the finite element.

The implementation used in the plane examples pre-

sented in Sect. 5 represents the discontinuity line by

piece-wise straight segments propagating through the

mesh. A particular element captures one of these seg-

ments, once the propagation condition alluded to above

is fulfilled by the state of stress in the element, defin-

ing in the process the orientation and location of the

segment Ŵh
e . We refer to Sect. 5 below for additional

details in each of the physical problems considered in

the numerical simulations presented in that section.

Our starting situation here is then a finite element

crossed by a discontinuity segment, which is defined

by a unit normal n and mid-point x
h
Ŵh

e
as sketched in

Fig. 2. In this setting we introduce the coordinate s

along Ŵh
e from x

h
Ŵh

e
and a general interpolation of the

displacement jumps

[[uµ]](s) ≈ [[uh
µ]](s) = D(s) ξ (15)

Fig. 2 Illustration of the discrete description of the local prob-

lem, where the global problem is defined by a mesh �h covering

the body �, and the applied external loading and imposed bound-

ary conditions. The strong discontinuity appears in the small

scales of a local neighborhood �h
e corresponding to a single

finite element in the discrete framework

for a set of local element parameters ξ and associated

jump interpolation functions D(s). For example, we are

interested in the piece-wise linear interpolation

[[uh
µ]](s) = ξ〈0n〉n + ξ〈0m〉m + sξ〈1n〉n + sξ〈1m〉m (16)

so

D(s) = [n m sn sm] (17)

in terms of a total of four local parameters ξ for the

normal and tangential components of the displacement

jumps. This interpolation improves on the earlier and

simpler piece-wise constant interpolation considering

only the constant part of (16), especially for quadri-

lateral elements; see Linder and Armero (2007) for

details. We emphasize again the local character of the

parameters ξ , local in the sense that they are defined

for each finite element independently of the rest once

the corresponding discontinuity segment is activated.

With these considerations at hand, we write the local

equilibrium Eq. (13) as

re
enh = −

∫

�h
e

GT
(e)σ d� −

∫

Ŵh
e

DT tŴ dŴ = 0 (18)

for �h
e ∈ Edisc, where Edisc denotes the set of ele-

ments �h
e with such an activated discontinuity segment.

The minus sign in the definition of the local residual

re
enh in (18) is just for convenience in the numerical

implementation, as presented in Sect. 4. The local char-

acter of equation (18), holding independently for each

element �h
e ∈ Edisc with its associated segment Ŵh

e ,

is a result again of the assumed piece-wise continu-

ous interpolation for the displacement jumps and it is

heavily exploited in an efficient numerical implemen-

tation of the final finite element method, as discussed

in Sect. 4 below.
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We have introduced the element operator G(e) in

Eq. (18). Comparing this equation with the original

Eq. (13), this operator must define the tractions on

Ŵh
e associated with the stresses σ in the element. This

choice in writing Eq. (18) is motivated by the defini-

tion of these stresses at the quadrature points used in

the evaluation of integrals like (8) in the bulk of the ele-

ment �h
e in a typical finite element formulation. Indeed,

the use of this operator implies that all integrals in the

discrete governing Eqs. (8) and (18) can be evaluated

by standard quadrature rules

∫

�h
e

(·) d� =
l�int∑

l=1

(·)l w�
l jl and

∫

Ŵh
e

(·) dŴ =
lŴint∑

l=1

(·)l wŴ
l lŴh

e
(19)

on the element �h
e and along the strong discontinu-

ity segment Ŵh
e . We have denoted by l�int and lŴint

the number of integration points and by w�
l and

wŴ
l the integration weights of the respective quadra-

tures, the latter normalized by the pointwise Jacobian

jl and the discontinuity length lŴh
e
, respectively. Hence,

as illustrated in Fig. 3 the operator G(e) can be thought

as a projection operator taking the stresses at the bulk

quadrature points to the associated traction along Ŵh
e

and, as discussed in the Appendix, it can be defined in

closed-form once the geometry of the crossing segment

Ŵh
e is determined for any given element �h

e .

The evaluation of the discrete Eqs. (8) and (18) is

completed with the use of the constitutive equations for

the bulk stresses σ and the driving traction tŴ . The latter

is given in terms of the displacement jumps (16) along

Fig. 3 Illustration of the equilibrium operator G(e) for a quad-

rilateral element. The stresses σ are defined at the quadrature

points in the bulk of the element �h
e whereas the driving traction

tŴ is naturally defined at the quadrature points associated to the

strong discontinuity Ŵh
e . The equilibrium operator G(e) recovers

the traction associated with the bulk stresses on the discontinuity

Ŵh
e

the discontinuity segment Ŵh
e . As discussed in the pre-

vious section, the stresses, on the other hand, are given

in terms of the small-scale strains (12) corresponding

to an additive enhancement of the large-scale strains.

Hence, in the finite element framework of interest here,

we consider

εh
µ = B̄d + G(c)ξ in �h

e \Ŵh
e (20)

for an enhanced strain operator G(c) different, in

general, to the previous equilibrium operator G(e). The

subscript “c” in this new operator stands for com-

patibility, since it refers to the strains. The linear-

ity of the enhanced strains (20) in the displacement

jump parameters ξ follows from the assumed infinites-

imal range of deformations (as the large-scale strains

B̄d).

We can observe that the enhanced operator G(c) must

capture the kinematics of a separating discontinuity

in the context defined by the discrete kinematics of

the underlying finite element. In particular, it must be

able to capture the separation mode depicted in Fig. 4

for the linear displacement jumps (16). The mode con-

sists of one side of the element across the discontinu-

ity segment Ŵh
e separating and infinitesimally rotating

while uniformly stretching in the tangential direction to

the discontinuity. No other strains must appear, hence

avoiding the appearance of spurious stresses trans-

ferring across the discontinuity, the so-called stress

locking. This observation leads naturally to a simple

procedure for the construction of the operator G(c) as

summarized in the Appendix. Remarkably, the final

Fig. 4 Illustration of the linear separation mode to be captured

with the finite elements with embedded discontinuities. It con-

sists of one side of the element separating and (infinitesimally)

rotating while stretching in the tangential direction to the discon-

tinuity segment Ŵh
e
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numerical formulation does not require the consider-

ation of a local discontinuous displacement field in the

element �h
e ∈ Edisc, as considered in (11) for the local

neighborhood �x in the continuum.

4 Numerical implementation

The previous section outlined the finite element for-

mulation with embedded strong discontinuities consid-

ered in this work. With the purpose of emphasizing the

efficiency of the formulation and the simplicity of its

implementation in a standard finite element code, we

discuss in this section its numerical implementation for

the case of interest here, namely, the fully transient case.

The discussion focuses on the solution of the result-

ing nonlinear enhanced finite element equations. As

discussed in the previous section, these equations are

constructed once the strong discontinuity is propagated

through the element. The first step in this propagation

is the activation of the discontinuity segment in a given

element through a physical criterion on the stresses at

the element, as discussed in Sect. 5 for the different

numerical examples presented in that section, defining

in the process the orientation of the local segment. A

successful activation is obtained by the actual propa-

gation from neighboring elements, with the final posi-

tion of the segment defined by that orientation and the

imposition of the continuity of the path; see Sect. 5.2.2

for variations of this strategy to capture crack branch-

ing. All these arguments define an algorithm fully geo-

metrical in nature, carried out after the convergence of

a given time step in the incremental/iterative solution

procedure discussed next, and for as many elements

where an active discontinuity has been detected.

4.1 The dynamic discrete governing equations

and their linearization

The finite element equations discussed in the previous

sections, in particular the residual Eqs. (8) and (18), still

need to be discretized in time. We consider a typical

time-stepping strategy for a sequence of time intervals

[0, T ] =
⋃

n[tn, tn+1] with �t = tn+1 − tn , not nec-

essarily constant. The numerical simulations presented

in Sect. 5 consider in particular a classical Newmark

scheme with the residual equations imposed at the end

of the time step tn+1 as

R(dn+1, ξn+1)

= fextn+1 −
nelem

A
e=1

⎛
⎝∫

�h
e

B̄
T
σ n+1 d�

⎞
⎠− Man+1

re
enh(dn+1e , ξn+1e

) = −
∫

�h
e

GT
(e)σ n+1 d�

−
∫

Ŵh
e

DT tŴn+1 dŴ for �h
e ∈ Ediscn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

together with the dynamic update equations

dn+1 = dn + �t vn + (�t)2

2
[(1 − 2β)an

+2βan+1

]

vn+1 = vn + �t
[
(1 − γ )an + γ an+1

]

⎫
⎪⎬
⎪⎭

(22)

in terms of the algorithmic parameters β and γ , for

the nodal displacements, velocities and accelerations

(·)n+1 ≈ (·)(tn+1) at the end of the time increment

tn+1 in terms of their corresponding values (·)n at tn .

See Hughes (1987), among many others, for complete

details. We have denoted by σ n+1 = σ (dn+1e , ξn+1e
)

and tŴn+1 = tŴ(ξn+1e
) for the nodal displacements

dn+1e and enhanced parameters ξn+1e
, the latter in the

elements in Ediscn with an active strong discontinuity.

As noted above, the propagation of the discontinuity is

carried out at the end of the time step, hence keeping

the set of elements Edisc fixed at tn during the solution

of the governing equations in a given time step.

We consider a Newton–Raphson scheme for the

solution of the nonlinear algebraic system of Eqs.

(21–22). In this setting, these equations are line-

arized about the last known equilibrium position

{dk
n+1, ξ

k
n+1}. Linearization of the residuals R and re

enh

with respect to their dependent variables dk and ξ k

results in the stiffness matrix contributions Kek

dd , Kek

dξ ,

Kek

ξd , and Kek

ξξ , respectively. The system of linearized

equations can then be written as

nelem

A
e=1

[
K̃

ek

dd�dk+1
n+1e

+ Kek

dξ�ξ k+1
n+1e

]
=

nelem

A
e=1

Rek

Kek

ξd�dk+1
n+1e

+ Kek

ξξ�ξ k+1
n+1e

= rek

enh

for �h
e ∈ Ediscn

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(23)

for the increments of the element arrays �dn+1e and

�ξn+1e
with the global increments

dk+1
n+1 = dk

n+1 + �dk+1
n+1 (24)

and the local (element) updates

ξ k+1
n+1e

= ξ k
n+1e

+ �ξ k+1
n+1e

for �h
e ∈ Ediscn (25)

123



Numerical simulation of dynamic fracture 127

with an iteration index k.

The different arrays in (23) are evaluated at the last

iteration values {dk
n+1, ξ

k
n+1} using expressions (21) for

the residuals, with the tangent stiffness matrices given

as

Ke
dd =

∫

�h
e

B̄
T
C B̄ d� (26)

Ke
dξ =

∫

�h
e

B̄
T
C G(c) d� (27)

Ke
ξd =

∫

�h
e

GT
(e)C B̄ d� (28)

and

Ke
ξξ =

∫

�h
e

GT
(e)C G(c) d� +

∫

Ŵh
e

DT
CŴ D dŴ (29)

where we have used the material tangents C and CŴ

defined by the linearization of the bulk and localized

(cohesive law) constitutive relations

�σ = C �εh
µ and �tŴ = CŴ �

(
[[uh

µ]]
)

(30)

in �h
e and along Ŵh

e , respectively. We also used the

notation

K̃
ek

dd = Kek

dd +
1

β (�t)2
Me (31)

in (23), accounting for the acceleration and mass term

in (21)1.

4.2 Static condensation

One of the main features of the proposed finite ele-

ment framework of strong discontinuities is the ability

to statically condense out the local element parameters

on the element level, leaving the focus again on the

solution of the global problem in terms of the global

displacement field d. Given the second equation in (23),

the increments of the enhanced parameter can be com-

puted in terms of the small-scale residual rek

enh and the

displacement increments �dk+1
e as

�ξ k+1
n+1e

=
(

Kek

ξξ

)−1 [
rek

enh − Kek

ξd�dk+1
n+1e

]
(32)

locally for the elements �h
e ∈ Ediscn . Insertion of (32)

into the first equation in (23) results in the final stati-

cally condensed system

Kk
∗�dk+1

n+1 = Rk
∗ (33)

for the effective residual R∗ = A
nelem

e=1 Re
∗ and effective

stiffness matrix K∗ = A
nelem

e=1 Ke
∗ defined by the element

contributions

Re
∗ = Re − Ke

dξ Ke−1

ξξ re
enh and

Ke
∗ = Ke

dd − Ke
dξ Ke−1

ξξ Ke
ξd (34)

only for the elements �h
e ∈ Ediscn .

The final system of equations (33) involves the nodal

displacements only, as desired. We note that, as outlined

in the Appendix, the compatibility operator G(c) in (27)

and (29) is designed to capture the strain modes associ-

ated to an opening discontinuity correctly, whereas the

equilibrium operator G(e) in (28) and (29) is designed to

assure equilibrium along the discontinuity, as discussed

in the Appendix. In general we have G(c) �= G(e), a situ-

ation that makes the final effective matrix K∗ non-sym-

metric but the final formulation able to capture sharply

the strong discontinuities.

Remark 1 During the static condensation and in partic-

ular in (32), the inversion of the matrix Ke
ξξ is required.

This matrix, given in (29), is a small matrix consisting

of up to 4×4 entries when all the modes ξ〈0n〉, ξ〈0m〉, ξ〈1n〉,

and ξ〈1m〉 are active in the particular finite elements with

linear jumps considered in this paper. Its invertibility

depends crucially on the definition of the compatibility

and equilibrium operators G(c) and G(e). For the spe-

cial case of a fully softened discontinuity, meaning that

CŴ = 0 in (29), and one single node separating for a

quadrilateral element a special stabilization treatment

is suggested in Linder and Armero (2007) to assure its

invertibility.

5 Representative numerical simulations

We apply next the finite element formulation outlined

above to several problems in dynamic fracture. We con-

sider in particular two benchmark problems, namely,

the failure mode transition in ductile materials under

impact of Sect. 5.1 and crack branching in brittle mate-

rials of Sect. 5.2.

5.1 Failure mode transition in ductile materials

Numerous experiments indicate that both propagating

shear bands and cracks appear in metals subjected to

dynamic loading, with transitions between these failure
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Fig. 5 Failure mode transition in ductile materials: a projec-

tile traveling at the velocity v0 impacts the specimen. Subse-

quently, a shear band starts propagating from the tip of the

pre-existing notch almost horizontally. For high impact velocities

the shear band propagates through the whole specimen, whereas

for low impact velocities the shear band arrests within the spec-

imen resulting in a failure mode transition from ductile to brittle

modes as the loading rate changes. Similar transitions

are also observed in materials of a completely differ-

ent nature, like in polycarbonate (Ravi-Chandar 1995).

These failure mode transitions define challenging prob-

lems to analyze.

Here we are interested in the particular experimen-

tal results presented in Zhou et al. (1996a), where

a single notched steel specimen is subjected to the

impact of a projectile in the direction of the notch; see

Fig. 5 for a representation of the problem to study. This

single-notched configuration was also considered in

Mason et al. (1994) as a variation of the double-notched

plates tested in Kalthoff (1988, 2000) and Kalthoff and

Winkler (1987). The tests considered a C-300 high

strength maraging steel and show a brittle-ductile fail-

ure mode transition. A shear band starts propagating

from the tip of the notch in the direction parallel to

the notch but curving down as it propagates. For low

impact velocities, the shear band is observed to arrest

and develop a brittle crack at an angle. This is not

observed for impact velocities higher than a certain crit-

ical value, with the shear band propagating throughout

the specimen. We refer to the experimental results pre-

sented in Figs. 7 and 8, taken from Zhou et al. (1996a).

These observations present a perfect problem for

the validation of numerical methods and, hence, there

exists a large number of contributions in the literature

considering the numerical simulation of this prob-

lem. We can quote Gao and Klein (1999), Falk et al.

(2001), Duarte et al. (2001), Klein et al. (2001), Li

et al. (2002), Belytschko et al. (2003), Areias and

Belytschko (2006), Song et al. (2006), Huespe et al.

(2006), Medyanik et al. (2007), Remmers et al. (2008),

or Rabczuk and Samaniego (2008), besides the ear-

lier references Needleman and Tvergaard (1994a,b),

Belytschko and Tabbara (1996), and Zhou et al.

(1996b). The challenge is to accurately capture the

experimentally observed failure mode transition from

ductile to brittle failure as the impact velocity reduces,

as well as the critical value of the impact velocity where

this transition occurs.

5.1.1 Problem setup

The particular configuration of the problem of inter-

est is illustrated in Fig. 5. The specimen has dimen-

sions 101.6 mm × 203.2 mm with a pre-existing notch

spanning half the width with thickness 0.3 mm. The

numerical simulations presented in Zhou et al. (1996b)

are performed with finite elements accounting for full

thermo-mechanical coupling in the field equations and

an elasto-viscoplastic solid at finite strains. In order to

simplify the presentation, the temperature and viscosity

dependence is not considered in this paper. The spec-

imen is modeled with a von Mises plasticity material

model in terms of a Young’s modulus of E = 200 GPa,

a Poisson ratio of ν = 0.3, an uniaxial yield stress of

σ0 = 2 GPa, and a density of ρ = 7,830 kg/m3. Plane

strain conditions are assumed.

A shear band starts and propagates from the notch

tip when the stresses in the bulk reach the propagation

condition

‖s‖ =
1

√
2
|σ1 − σ2| (35)

for the two in-plane principal stresses and the Euclid-

ean norm ‖s‖ of the deviatoric stress s. As shown

in Armero and Garikipati (1995), this condition

corresponds to the loss of ellipticity of the underly-

ing material model. Similarly, this analysis indicates

the propagation of the shear band at 45◦ with the maxi-

mum normal stress direction, choosing the actual direc-

tion that corresponds to a given family of slip lines

of the two possible such directions; see Armero and

Garikipati (1996) for complete details.

123



Numerical simulation of dynamic fracture 129

Fig. 6 Failure mode transition in ductile materials: finite ele-

ment discretization consisting of 3,225 Q1/P0 finite elements.

The mesh is refined in the region below the initial crack where

the projectile impacts the specimen. The impact is modeled by

prescribed velocities along the impact zone based on the diagram

shown on the right

After activation, the shear band response is mod-

eled by a localized plastic model with an exponential

softening law in the tangential direction in the form

tŴm =
[[uh

µm
]]∣∣[[uh

µm
]]
∣∣ · max{0, τmax · exp(−bm

∣∣∣[[uh
µm

]]
∣∣∣)}

(36)

with a stress threshold τmax = σ0/
√

3 and an exponent

of bm = 1.0×10−2 mm−1. Normal opening [[uh
µn

]] is

also allowed, being modeled by the cohesive model

tŴn = max{0, σmax · exp(−bn[[uh
µn

]])} (37)

with a tensile strength value σmax = 3σ0 to account for

the effect of high triaxiality at the tip of the shear band

(Li et al. 2002) and a similar exponential softening law.

The softening exponent bn = 3.0×102 mm−1 corre-

sponds to a fracture energy of G f = 20 kJ/m2, a value

of the order typically associated to a C-300 maraging

steel (Belytschko et al. 2003). A damage response is

assumed in unloading/reloading, with a linear relation

to zero traction.

The finite element discretization of the specimen is

shown in Fig. 6, where 3,225 Q1/P0 finite elements are

used to account for the locking effects in von Mises

plasticity models in the bulk. The Q1/P0 mixed inter-

polation is easily introduced with the corresponding

B̄ operator with (average) constant volumetric compo-

nent; see e.g. Hughes (1987). The finite element mesh

is refined in the region where the projectile impacts

the specimen and where the shear band location is

expected based on the experimental results in Zhou

et al. (1996a). The impact of the projectile occurs right

below the notch and is modeled by a prescribed veloc-

ity on the nodes of the specimen along the impact zone

according to the diagram on the right of Fig. 6. After a

small rise time of t0 = 0.5 µs a constant velocity v0 is

applied until the projectile is supposed to detach from

the specimen at td = 47 µs. In the numerical simula-

tion the pre-existing notch is modeled with a thickness

of 2 mm instead of the experimental value of 0.3 mm

to prevent the notch faces to exhibit contact during the

numerical simulation.

5.1.2 Numerical results

In this configuration, the authors in Zhou et al. (1996a)

report a critical velocity for the failure mode transition

of vcrit = 29 m/s. For a lower impact velocity v0 < vcrit

the shear band arrests and kinks at an angle, whereas the

shear band propagates throughout the whole specimen

for a higher value v0 > vcrit.

Figures 7 and 8 include the computed paths of the

discontinuity for the velocities v0 = 25 m/s < vcrit

and v0 = 30 m/s > vcrit, respectively. For com-

parison, we have also included a copy of the exper-

imental results reported in Zhou et al. (1996a) for

these very same velocities. An overall good agreement

between the computed and the experimental results can

be observed in both cases. In particular, the numer-

ical simulations capture the observed failure mode

transition and for the experimentally measured critical

velocity.

For a closer and undistorted comparison, we present

in Fig. 9 the final computed path superposed with the

experimentally observed path for each impact veloc-

ity. The brittle fracture at an angle that occurs for the

low velocity of v0 = 25 m/s can be clearly observed,

although the crack appears later than observed in the

experiments. The curvature of the shear band can be

seen to be well captured in the simulations for both

velocities.

Further details of these solutions can be found in

Fig. 10, where we have included plots depicting the

evolution of the shear band length in time for the two

considered velocities, for both the computed solutions

and the experiments reported in Zhou et al. (1996a).

The overall rates of growth, the slopes in these plots,
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Fig. 7 Failure mode

transition in ductile

materials: solution for the

impact velocity

v0 = 25 m/s. a Computed

path and b experimentally

observed path as reported in

Zhou et al. (1996a) at

different times

(a)

14 µs 32 µs 37 µs

55 µs 90 µs 100 µs

(b)

14 µs 32 µs 37 µs

55 µs 90 µs 140 µs

can be seen to be in good agreement, except perhaps

for the final stages of the shear band propagation for

the higher velocity v0 = 30 m/s where a faster rate

of growth can be observed. The numerical simulations

also overestimate the final total length of the shear band

when compared with the experimentally observed val-

ues. One reason for this may lie in the fact that the

experimental results only report the horizontal crack

lengths.

We also note that the shear band length is plotted

versus the time starting from the initiation of the shear

band propagation. The time from initiation is chosen

since it differs by approximately 8 µs when compar-

ing the numerical and experimental results. The initia-

tion starts later in the experiments, a situation that can

be attributed to the fact that the measurements do not

report the propagation of extremely fine shear bands.

On the other hand the numerical simulation reports the

shear band propagation whenever the corresponding

slip exceeds machine precision.

Despite these differences, we conclude that an

overall good agreement is observed. We note again the

capture of the failure mode transition for the exact value

of the critical velocity triggering it, with both the brit-

tle and ductile responses of the material resolved by

the new finite elements with embedded discontinuities

developed in this work.

5.2 Crack branching in brittle materials

We consider next the problem of crack branching

in brittle materials. This challenging problem has

become a benchmark for the computational modeling
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Fig. 8 Failure mode

transition in ductile

materials: solution for the

impact velocity

v0 = 30 m/s. a Computed

path and b experimentally

observed path as reported in

Zhou et al. (1996a) at

different times

(a)

14 µs 39 µs 43 µs

47 µs 51 µs 60 µs

(b)

14 µs 39 µs 43 µs

47 µs 51 µs 64 µs

of dynamic fracture. We refer among others to Dally

(1979), Ravi-Chandar and Knauss (1984a,b), Knauss

and Ravi-Chandar (1985), Ramulu and Kobayashi

(1985), Fineberg et al. (1991), Satoh (1996), Sharon

and Fineberg (1996, 1999), Fineberg and Marder

(1999), and references therein, for a discussion of some

experimental observations. Numerical simulations of

the problem have been reported in Falk et al. (2001),

Klein et al. (2001), Belytschko et al. (2003), Zhou

and Molinari (2004), Zhou et al. (2005), Huespe et al.

(2006), Song et al. (2006), Duarte et al. (2007), Karedla

and Reddy (2007), Remmers et al. (2008), Zhang et al.

(2007), Zi et al. (2007), to mention just a few references

employing a variety of different numerical approaches.

Here we present complete comparisons with the numer-

ical results reported in Xu and Needleman (1994) and

Falk et al. (2001), given the ability of complete details

of the problems setup.

5.2.1 Problem setup

We consider a center cracked rectangular block in plane

strain with dimensions of 6 mm × 3 mm and an initial

central crack of length 0.6 mm as illustrated in Fig. 11.

The loading is applied at the top and bottom faces at

y = ±1.5 mm based on the diagram given on the right

of that figure. The applied velocity v increases linearly

from 0 at time t = 0, at which the specimen is stress

free and at rest, to v0 at time t = 0.1 µs and remains

constant thereafter. Different values for this imposed

velocity v0 are considered during the numerical simu-

lations below.
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Fig. 9 Failure mode

transition in ductile

materials: Comparison of

the shear band location for

different impact velocities

observed in experiments

(Zhou et al. 1996a)

(solid line) with the results

obtained in this work

(dashed line). The result for

v0 = 25 m/s is shown on the

le f t , whereas the result for

v0 = 30 m/s is shown on the

right

v0 25 m/ s v0 30 m/ s

-10.0 50.8

-20.0

10.0

-10.0 50.8

-20.0

10.0

Fig. 10 Failure mode

transition in ductile

materials: shear band length

versus time for different

impact velocities observed

in experiments (Zhou et al.

1996a) and this work. The

result for v0 = 25 m/s is

shown on the le f t , whereas

the result for v0 = 30 m/s is

shown on the right

v0 = 25 m/ s v0 = 30 m/ s
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The brittle material corresponds to polymethylmeth-

acrylate (PMMA), which we model with a linear elastic

material until reaching a maximum normal stress σmax.

A discontinuity is then activated in the direction orthog-

onal to that maximum principal stress. We assume the

linear cohesive laws

tŴn = max{0, σmax + Sn [[uh
µn

]]} (38)

and

tŴm =
[[uh

µm
]]∣∣[[uh

µm
]]
∣∣ · max{0, τmax + Sm

∣∣∣[[uh
µm

]]
∣∣∣} (39)

between the opening displacements [[uh
µn

]] and [[uh
µm

]]
in normal and tangential directions to the correspond-

ing traction components in those directions tŴn and tŴm ,

respectively, along the discontinuities during loading.

We consider again a linear damage response in unload-

ing/reloading.

The assumed material parameters for the elastic

response of the bulk are E = 3.24 GPa for the

Young’s modulus, ν = 0.35 for the Poisson ratio, and

ρ = 1,190 kg/m3 for the density. These values result

in the wave speeds

cd =

√
E(1 − ν)

ρ(1 + ν)(1 − 2ν)
= 2,090 m/s (40)

cs =

√
E

2ρ(1 + ν)
= 1,004 m/s (41)

cR = cs

0.862 + 1.14ν

1 + ν
= 938 m/s (42)

for the dilational, shear, and Rayleigh, respectively

(Freund 1998). For the localized cohesive laws, we con-

sider the values σmax = τmax = E/25 = 129.6 MPa

and a linear softening modulus of Sn = Sm =
−24 GPa/ mm. These values correspond to a fracture

energy of G f = 0.35 kJ/m2, as it is characteristic of

PMMA (Sharon and Fineberg 1999).

We consider a finite element discretization consist-

ing of 40 × 41 standard displacement-based bilinear

quadrilaterals for the half specimen x ≥ 0 due to the

symmetry in the geometry and the loading. To take

into account the pre-existing central crack the elements

with centroids (xc, yc) at yc = 0 and xc < 0.3 mm are

approximated with the traction separation laws along
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Fig. 11 Crack branching in

brittle materials: geometry

of the center cracked block

(le f t) together with the

loading history in terms of

the applied velocity v at the

top and the bottom faces of

the block (right). The crack

is expected to propagate

horizontally towards the

le f t and right edges of the

block. After a certain

extension crack branching is

expected

Fig. 12 Crack branching in

brittle materials: crack

length (le f t) and

normalized crack tip

velocities (right) versus

time for applied velocities

of v0 = 3, 5, 7, 10, 15 m/s

without branching allowed
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the strong discontinuity (38) and (39) with vanishing

tractions tŴn and tŴm in the normal and tangential direc-

tions, that is, tŴn = tŴm = 0 in the elements capturing

the pre-existing strong discontinuity along 0 ≤ x ≤
0.3 mm.

5.2.2 Crack tip velocity as branching criterion

When performing the numerical simulations for differ-

ent velocities v0 with the proposed finite elements and

the discretization outlined above, the initial crack tip

at x = 0.3 mm propagates horizontally until it fully

crosses the whole specimen and reaches the right edge

at x = 3 mm. When plotting the crack tip veloci-

ties for applied velocities of v0 = 3, 5, 7, 10, 15 m/s

in Fig. 12 one can observe that some measured

crack tip velocities surpass the Rayleigh wave speed,

but we obtain this theoretical limit for this problem

(Freund 1998) in most cases. No branching is allowed

in these runs. However, experiments (Ravi-Chandar

and Knauss 1984a,b; Knauss and Ravi-Chandar 1985;

Sharon and Fineberg 1996, 1999) and analytical

investigations (Yoffe 1951; Eshelby 1970; Gao 1993,

1996) predict that after exceeding a certain critical

ratio vcrit/cR<1, the crack tends to branch rather than

continuing its motion in a straight path, reducing its

speed. Interestingly, the analytical studies tend to over-

estimate this critical ratio when compared with the

experimental observations (Ravi-Chandar and Knauss

1984b; Knauss and Ravi-Chandar 1985; Gao 1993,

1996; Fineberg and Marder 1999).

In order to capture the branching, the crack tip veloc-

ity is employed as a branching criterion in this work.

That means that branching is initiated when the crack

tip velocity reaches a critical velocity vcrit. The actual

triggering of the branching is obtained by stopping the

main crack and initiating cracks at the center of the

edges of the adjacent top and bottom elements instead

with respect to the previous main branch.

In the actual numerical implementation, based on

a front propagating through the connectivity graph

of the mesh (the front corresponding to a finite ele-

ment candidate for the advancement of a discontinu-

ity), branching reduces to the start of two new fronts.
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Fig. 13 Crack branching in

brittle materials: illustration

of the crack path for an

applied velocity of

v0 = 3 m/s. Results

obtained in Falk et al.

(2001) are shown on the

le f t whereas results

obtained in this work at time

t = 8.7 µs are shown on the

right

Fig. 14 Crack branching in

brittle materials: crack

length (le f t) and

normalized crack tip

velocities (right) versus

time for an applied velocity

of v0 = 3 m/s. A

comparison with the results

in Falk et al. (2001) is

illustrated
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It is up to the evaluation of the state of stress in

those front elements to actually propagate the discon-

tinuity in a particular direction, thus propagating the

front. In fact, the propagation of fronts is carried out

for as many elements where the propagation condi-

tion is satisfied (i.e. maximum normal stress reach-

ing the material’s tensile strength in this particular

problem). If the propagating front encounters an ele-

ment with an existing active discontinuity, the prop-

agating front stops, as one can envisage occurring in

the actual setting of a crack encountering another open

crack.

The crack tip velocity is easily evaluated from

the progress of the discontinuity path, and the contigu-

ous elements are simply given by the mesh connectivity.

We use critical ratios of vcrit/cR=0.7–0.8 in the numer-

ical simulations reported below in our goal to compare

the current formulation with the published numerical

results of Xu and Needleman (1994) and Falk et al.

(2001). These values are relatively high for the exper-

imental observations of branching in PMMA (Sharon

and Fineberg 1996, 1999; Fineberg and Marder 1999)

for the considered problem. We refer to Linder and

Armero (2009) for a study of the influence of the criti-

cal ratio vcrit/cR in the numerical simulations.

5.2.3 Numerical results

We consider impact velocities of v0 = 3, 5, 15 m/s.

Figures 13, 14, 15, 16, 17 and 18 show the crack paths

together with the corresponding computed evolutions

in time of the crack length and the crack tip velocity

for these different impact velocities.

More specifically, Figs. 13 and 14 show the results

obtained for the impact velocity v0 = 3 m/s. Figure 13

compares the crack path obtained in the current work

with the path obtained in Falk et al. (2001). We can

observe a good agreement in the location of the crack

branching. Also, a similar behavior is observed after

the branching occurs. The crack tip velocity reaches

80% of the Rayleigh wave speed at t = 6.2 µs at

a crack length of about 0.825 mm (without counting
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Fig. 15 Crack branching in

brittle materials: illustration

of the crack path for an

applied velocity of

v0 = 5 m/s. Results

obtained in Xu and

Needleman (1994) are

shown on the le f t whereas

results obtained in this work

at time t = 6.5 µs are

shown on the right

Fig. 16 Crack branching in

brittle materials: crack

length (le f t) and

normalized crack tip

velocities (right) versus

time from initial crack

initiation, which occurs at a

total time of t = 2.77 µs in

the current work, for an

applied velocity of

v0 = 5 m/s. A comparison

with the results in Xu and

Needleman (1994) is

illustrated for the crack tip

velocity
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the pre-existing crack length of 0.3 mm) in the current

work. The numbering 1–5 in Figs. 13 and 14 allows for

a comparison of the different stages monitored during

the crack branching process. Looking at the branch-

ing pattern one can identify two main crack branches

originating from the single branch at point 1. The criti-

cal velocity vcrit is again reached at points 2–4, with

the program activating two branches but one of the

branches can be seen not to propagate. Only at the end

of the simulation, at point 5, crack branching is again

detected and the two activated branches propagate.

Figure 14 compares the evolutions in time of the

crack length and crack tip velocity obtained in this

work, with and without branching, with the results

reported in Falk et al. (2001). When branching is

suppressed the crack tip velocity increases up to the

Rayleigh wave speed and remains almost constant with

the crack horizontally propagating towards the right

end of the specimen. Looking at the crack tip veloci-

ties with branching, one can observe a faster increase

in the results of the current work when compared to the

results in Falk et al. (2001). On the other hand the over-

all behavior is very similar, that is, without branching

the Rayleigh wave speed is approached with the crack

tip velocity remaining almost constant in that case,

whereas with branching the crack tip velocity slows

down significantly after branching.

Similar results are obtained for the imposed velocity

of v0 = 5 m/s, as depicted in Figs. 15 and 16. In Fig. 15

we compare the computed crack path in this work with

the crack path reported in Xu and Needleman (1994).

This reference uses cohesive elements across the

pre-existing element edges of the mesh to model the

opening of the crack.

We can observe again a good agreement of the loca-

tion of the initial crack branching. The crack tip velocity

reaches the critical velocity at total time t = 3.56 µs

(i.e. t = 0.79 µs after the initiation of the first crack

branch) at a crack length of 0.675 mm (again without

counting the pre-existing crack length of 0.3 mm). We

also observe a similar response after branching even

though the branching angle we obtain in this work
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Fig. 17 Crack branching in

brittle materials: illustration

of the crack path for an

applied velocity of

v0 = 15 m/s. Results

obtained in Xu and

Needleman (1994) are

shown on the le f t whereas

results obtained in this work

at time t = 3.2 µs are

shown on the right

Fig. 18 Crack branching in

brittle materials: crack

length (le f t) and

normalized crack tip

velocities (right) versus

time for an applied velocity

of v0 = 15 m/s
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is smaller. Figure 16 compares crack tip velocities of

the current work with and without branching with the

results provided in Xu and Needleman (1994). A good

agreement is obtained for the evolution in time of the

crack tip velocity. We consider again the time starting

from the initiation of the crack.

We follow the same steps in Figs. 17 and 18 for the

imposed velocity of v0 = 15 m/s, including the crack

path obtained in Xu and Needleman (1994). In this case,

the crack tip velocity reaches the critical velocity at the

total time t = 1.18µs and at a crack length of 0.375 mm

(again without counting the pre-existing crack length

of 0.3 mm). The location of the crack branching agrees

very well with the results reported in this reference,

whereas the branching angle is steeper in the current

work. Figure 18 shows the crack lengths and crack tip

velocities without and with branching we have obtained

with the finite elements developed in this work; no data

of crack tip velocity for v0 = 15 m/s is provided in Xu

and Needleman (1994).

Note that the results of the crack lengths and crack

tip velocities in Figs. 14, 16, and 18 are always reported

for the very top branches of the branching crack. Sym-

metry applies about the horizontal middle line, as

confirmed by the computed crack paths. The overall

branching angles obtained for the different velocities of

v0 = 3, 5, 15 m/s are ∼21◦, 22◦, 28◦ off the horizontal

axis, respectively. We conclude that bigger branching

angles appear for higher applied velocities v0, in good

agreement with experimental observations.

To illustrate the influence of the mesh size on the

solution, we consider again the first case of this prob-

lem, namely, an imposed opening velocity of v0 =
3 m/s, but with a finer mesh consisting of 50 × 51 ele-

ments. Figures 19 and 20 depict the solutions obtained

for this case. In particular, this last figure shows the

computed pattern of the branching, a pattern to be com-

pared with the solution on the right side of Fig. 13.

Figure 19 carries this comparison in more detail by

showing the evolution in time of the crack length and
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Fig. 19 Crack branching in

brittle materials: crack

length (le f t) and

normalized crack tip

velocities (right) versus

time for an applied velocity

of v0 = 3 m/s. Comparison

for two meshes with

different level of

discretization. The meshes

and branching patterns are

shown in Figs. 13 (right)

and 20 for the coarse and

fine meshes, respectively
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Fig. 20 Crack branching in brittle materials: illustration of the

crack path for an applied velocity of v0 = 3 m/s. Results obtained

for a fine mesh to check the sensitivity of the results on the mesh

size. This solution is to be compared with the one shown on the

right of Fig. 13 for the original coarser mesh

relative crack tip velocity for both the new mesh and the

original coarser mesh, as reported in Fig. 14. We have

also included the solutions obtained with no branching

allowed, recovering again the theoretical limit of the

Rayleigh speed for this problem.

Overall we can observe a good agreement between

the solutions obtained with the two different meshes

(compare, for example, the branching angles), with

some differences in the details, as one would expect

in the simulations of these difficult problems. We can

observe, for instance, that the different branches appear

slightly earlier in time for the finer mesh. We note that

the considered finite element formulation is fully objec-

tive with respect to mesh size (that is, it does not exhibit

the pathological mesh dependence typical of continuum

elements due to the incorrect resolution of the localized

dissipativemechanismassociatedwithfracture)as illus-

trated in detail in Linder and Armero (2007).

6 Concluding remarks

We have presented in this paper the extension of finite

elements with embedded strong discontinuities to the

dynamic range for the study and simulation of dynamic

fracture. The numerical results presented here show

that this formulation is able to capture well different

aspects characteristic of these problems. In particular,

we have shown that brittle/ductile failure mode tran-

sitions and crack branching can be captured well with

these elements.

The actual finite elements considered in the simu-

lations are new quadrilateral finite elements developed

in this framework incorporating a linear separating dis-

continuity. The extension of these finite elements, orig-

inally developed and tested in the quasi-static case, to

the general dynamic range has been accomplished very

easily through the incorporation of the inertial effects in

the mechanical initial boundary value problem of the

global problem, not affecting the local modeling and

approximation of the strong discontinuity. This obser-

vation outlines again the appropriateness of the consid-

ered multi-scale framework for the treatment of strong

discontinuities in solids by which these solutions are

treated in a global/local framework. Due to this, the

other big advantages of this framework are fully main-

tained in the dynamic range considered here, namely,

the high computational efficiency of the final formula-

tion (with a local elimination of any additional degrees

of freedom capturing the discontinuities) and the sim-

plicity of its incorporation in an existing and general

finite element code (involving local considerations at

the element level).

Our current and future work in this area is focused

on further extensions of the finite element formulations

considered here. In particular, we are exploring the for-

mulation of finite elements that treat crack branching
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in their interiors. Crucial to the success of these

formulations is the approach followed in the design

of the enhanced strain fields capturing the effect of

the discontinuity based, as illustrated in this paper,

on the incorporation of the correct discrete strains in

the element rather than on the incorporation of com-

plex local interpolation of a discontinuous displace-

ment field. Preliminary results of these considerations

can already be found in Linder and Armero (2009).

Additional extensions under further study include the

consideration of finite deformation effects and other

effects significant to the problems presented here.
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Appendix

1 Closed form expression of the equilibrium operator

G(e)

As discussed in Sect. 3.2, the equilibrium operator G(e)

can be understood as a projection operator taking the

stresses in the bulk of the element �h
e (in fact, the quad-

rature points in the bulk) to the corresponding tractions

on the discontinuity segment Ŵh
e . Comparing the local

equilibrium Eq. (13) with its discrete counterpart (18),

we must have
∫

�h
e

G
〈k〉T

(e) σ d� = −
∫

Ŵh
e

sk σn dŴ + lŴh
e

o(h
p+1
e )

(43)

for a rate of accuracy p ≥ 0, with k = 0, 1, . . . , q ≤ p

corresponding to the polynomial degree assumed for

the interpolation of the displacement jump along Ŵh
e

[e.g. q = 1 for the linear interpolation (16)]. Here we

have introduced the notation he = A�h
e
/ lŴh

e
following

the original definitions (14) for element �h
e .

For the case of interest here q = 1 (linears), we write

G(e) =
[
G

〈0n〉
(e) G

〈0m〉
(e) G

〈1n〉
(e) G

〈1m〉
(e)

]
(44)

with the individual contributions given by

G
〈kn〉
(e) = −

1

he

g〈k〉
e (x, y) (n ⊗ n) and

(45)

G
〈km〉
(e) = −

1

he

g〈k〉
e (x, y) (n ⊗ m)s

for k = 0, 1, with the functions g
〈k〉
e (x, y) defined in a

local Cartesian system {x, y} of the element. As argued

originally in Armero and Ehrlich (2006b) in the context

of plate elements, these functions can be constructed

with polynomials. In this way, we write

g〈k〉
e (x, y) = a

〈k〉
(0,0)

+ a
〈k〉
(1,0)

x + a
〈k〉
(0,1)

y (46)

with⎡
⎢⎢⎣

a
〈k〉
(0,0)

a
〈k〉
(1,0)

a
〈k〉
(0,1)

⎤
⎥⎥⎦ =

⎛
⎜⎝

1

A�h
e

∫

�h
e

⎡
⎣

1 x y

x x2 xy

y xy y2

⎤
⎦ d�

⎞
⎟⎠

−1

⎛
⎜⎝

1

lŴh
e

∫

Ŵh
e

⎡
⎣

sk

sk x

sk y

⎤
⎦ dŴ

⎞
⎟⎠ (47)

again for the linear case q = 1. It is important to note

that all these terms are completely defined once the dis-

continuity element is propagated through element �h
e ,

so these coefficients only need to be computed once.

Note also that the integrals in (46) are evaluated using

the quadrature rules (19).

2 Closed form expression of the enhanced strain oper-

ator G(c)

The enhanced operator G(c) defining the small scale

strains (20) must capture the effects of the strong dis-

continuity in the bulk of the element. In particular, and

as argued in Sect. 3.2, this operator must be such that

the linear separation mode depicted in Fig. 4 is captured

for any opening ξ . This assures, in particular, that no

additional strains (and so stresses) appear in this open-

ing mode, that is, avoiding stress-locking.

Denoting the two parts of the element separated by a

discontinuity Ŵh
e by �h

e
+

and �h
e
−

the separation mode

in Fig 4 is characterized by the nodal displacements

dA,mode(ξ) =

⎧
⎨
⎩

ξ〈0n〉n + ξ〈0m〉m for A ∈ �h
e
+

+L(ξ 〈1〉)x̄A

0 otherwise

(48)

for x̄A = xA − xŴ , and the interpolation matrix

L(ξ 〈1〉) = ξ〈1n〉(n ⊗ m)a + ξ〈1m〉(m ⊗ m) (49)
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corresponding to the constant and linear parts of the

jumps as considered in (16). The interpolation matrix

L(ξ 〈1〉) corresponds to an infinitesimal rotation of

the separating part (note that (·)a denotes the skew-

symmetric part) as well as a stretching in tangential

direction to Ŵh
e . The nodal displacements (48) must

come with the small-scale strain

εh
µmode

= ξ〈1m〉(m ⊗ m) HŴh
e
(xh) (50)

for the Heaviside jump function HŴh
e
(xh) (= 1 for

x
h ∈ �h

e

+
, vanishing otherwise), corresponding to the

stretching of �h
e

+
in the tangential direction m.

Inserting relations (48–50) in (20) and imposing that

the final relation is satisfied by any enhanced param-

eters ξ results in the sought enhanced operator G(c),

which can be written as

G(c) =
[
G

〈0n〉
(c) G

〈0m〉
(c) G

〈1n〉
(c) G

〈1m〉
(c)

]
(51)

with

G
〈0n〉
(c) = −

∑

A∈�h
e
+

B̄
A

n and

G
〈0m〉
(c) = −

∑

A∈�h
e
+

B̄
A

m (52)

for the constant jump contributions, and with

G
〈1n〉
(c) = −

∑

A∈�h
e
+

B̄
A
(n ⊗ m)a

x̄A (53)

and

G
〈1m〉
(c) = (m ⊗ m)HŴh

e
−
∑

A∈�h
e
+

B̄
A
(m ⊗ m)x̄A (54)

for the linear jump contributions. We note the pres-

ence of the assumed strain operator B̄, for whatever

the underlying finite element is. We refer to Linder and

Armero (2007) for complete details on these enhanced

operators for strong discontinuities, and to Armero and

Linder (2008) for the extension of these considerations

to the finite deformation case.

Remark 2 As noted in the end of Sect. 3.2 above, the

approach followed here does not require the consid-

eration of a discontinuous small-scale displacement

u
h
µ(xh). However, such a local displacement distribu-

tion can be obtained by integration of the enhanced

strains (εh
µ = ∇s

(
u

h
µ

)
) defined by the operators

(52–54) for the case B̄ = B (that is, for a standard

displacement element). Indeed, after some involved

calculations, we can write

u
h
µ = u

h + MŴξ in �h
e (55)

for the large-scale displacements u
h = Nd (with shape

functions N A(xh)) and operator

MŴ =
[
M

〈0n〉
Ŵ M

〈0m〉
Ŵ M

〈1n〉
Ŵ M

〈1m〉
Ŵ

]
(56)

given by the functions

M
〈0n〉
Ŵ (xh) =

⎛
⎝HŴh

e
(xh) −

∑

A∈�h
e
+

N A(xh)

⎞
⎠n

M
〈0m〉
Ŵ (xh) =

⎛
⎝HŴh

e
(xh) −

∑

A∈�h
e
+

N A(xh)

⎞
⎠m

M
〈1n〉
Ŵ (xh) =

⎛
⎝HŴh

e
(xh)s −

∑

A∈�h
e
+

N A(xh) s A

⎞
⎠ n

+

⎛
⎝HŴh

e
(xh)r −

∑

A∈�h
e
+

N A(xh) r A

⎞
⎠m

M
〈1m〉
Ŵ (xh) =

⎛
⎝HŴh

e
(xh)s −

∑

A∈�h
e
+

N A(xh) s A

⎞
⎠m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(57)

in terms of the two local coordinates r = x̄ ·n, s = x̄ ·m
and the corresponding nodal quantities r A = x̄A · n,

s A = x̄A · m of node A in directions n and m of the

strong discontinuity, respectively.
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