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Abstract

Large extensional deformations of viscoelastic fluid columns in filament stretching rheometers are studied through
numerical simulations up to Hencky strains of greater than o=4. The time-dependent axisymmetric calculations
incorporate the effects of viscoelasticity, surface tension, fluid inertia, plus a deformable free surface and provide
quantitative descriptions of the evolution in the filament profile, the kinematics in the liquid column and the resulting
dynamic evolution in the viscous and elastic contributions to the total stress. In addition to investigating the variation
in the apparent Trouton ratio expected in experimental measurements using this new type of extensional rheometer,
we also investigate the generic differences between the response of Newtonian and viscoelastic fluid filaments
described by the Oldroyd-B model. For small strains, the fluid deformation is governed by the Newtonian solvent
contribution to the stress and the filament evolution is very similar in both the Newtonian and viscoelastic cases.
However, in the latter case at large strains and moderate Deborah numbers, elastic stresses dominate leading to
strain-hardening in the axial mid-regions of the column and subsequent drainage of the quasi-static liquid reservoir
that forms near both end-plates. These observations are in good qualitative agreement with experimental observa-
tions. For small initial aspect ratios and low strains, the non-homogeneous deformation predicted by numerical
simulations is well described by a lubrication theory solution. At larger strains, the initial flow non-homogeneity leads
to the growth of viscoelastic stress boundary layers near the free surface which can significantly affect the transient
Trouton ratio measured in the device. Exploratory design calculations suggest that mechanical methods for modifying
the boundary conditions at the rigid end-plates can reduce this non-homogeneity and lead to almost ideal uniaxial
elongational flow kinematics. © 1998 Elsevier Science B.V.
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1. Introduction

The key to a better understanding of the extensional behavior of polymer liquids in complex
flows is the accurate, unambiguous quantitative measurement of extensional rheological material
properties [1]. Filament stretching devices are one of the most promising techniques that have
been developed for providing accurate measurements of transient elongational stress growth
functions for viscous polymer solutions [2]. Such filament stretching devices are currently being
developed by several independent research groups around the world and in the present paper we
refer extensively to the work of Sridhar and Tirtaatmadja [3,4], Kröger, Berg et al. [5,6],
Solomon and Muller [7], and McKinley and Spiegelberg et al. [8–10]. In the filament stretching
apparatus, a cylindrical liquid column is first generated between two concentric circular plates
and then is elongated by pulling one or both of the end-plate fixtures at an exponentially
increasing rate. It is hoped that the resulting flow kinematics in the liquid column approximate
an ideal uniaxial elongational flow, and the extensional viscosity is determined from the axial
force at the end-plate which is measured as a function of time [11].

The major problems with the conventional filament stretching configuration are: (i) the
presence of a deformable free surface and (ii) the two rigid, non-deforming end-plates. The
former leads to a significant ‘necking’ in the central region of liquid bridge due to the surface
tension of the fluid and the latter results in an appreciable shear component in the deformation
history due to the no-slip boundary condition at the rigid end-plates. As a result the elongation
is not shear-free, the extension rate is spatially and temporally inhomogeneous and analysis of
the experimental results does not lead to true extensional material properties, but an ‘apparent
extensional viscosity’ [2].

To overcome the experimental difficulties, two approaches that modify the fluid kinematics in
such devices have been proposed in the literature. One is the velocity compensation algorithm
which was first successfully used by Tirtaatmadja and Sridhar [4] and more recently by
Spiegelberg et al. [9]. In this approach the imposed velocity at the moving plate is modified in
such a way that a constant ‘effective’ extension rate, defined on the basis of the measured radius
and velocity at the mid-plane of the filament, can be achieved at the axial mid-section of the
filament. This strategy provides more accurate extensional rheological measurements despite the
fact that the extension rate in the liquid column remains spatially inhomogeneous along the
axial direction as we show below in our numerical results. The second approach focuses on
generating homogeneous uniaxial elongational kinematics by simultaneously elongating the
sample axially and reducing the diameter of the end-plate fixtures at an exponential rate. Since
the imposed axial and radial velocity components at the two end-plates provide the boundary
conditions necessary for homogeneous uniaxial elongational flow, this approach in theory leads
to a perfect cylindrical fluid column and a constant extensional strain rate both in space and
throughout the duration of the test. At large strains, the cylindrical fluid column rapidly exceeds
the static stability criterion of Rayleigh L]2pR [8]; however, as we show below, capillary
break-up is greatly retarded as a result of the high viscosity of the fluid column. This latter
approach will be referred to as a reducing diameter device (RDD) herewith. Experiments with
a RDD were first carried out by Berg et al. [6] under microgravity conditions. One inherent limit
with such a RDD is that the radial engineering strain (defined by the ratio of ultimate diameter
over the initial diameter) that can be achieved is usually restricted by the mechanical design of
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the instrument to be much lower than the total axial strain of the experiment. In the experiments
of Berg et al., a final reduction ratio of two was achieved (namely the end-plate diameter was
reduced by half at the end of experiments). In the present work, we investigate the consequences
of such limitations and explore possible enhancement in the accuracy of the measured material
properties that may be achieved by increasing the final reduction ratio of a mechanical RDD.

Despite the rapid proliferation of filament stretching rheometers, there are few theoretical
studies of these devices. Broad qualitative agreement between experimental measurements of a
single fluid in different laboratories has been demonstrated [4,9], and the measurements have
been fitted with single and multi-mode formulations of viscoelastic constitutive models [12].
However, observations have shown that the geometric configuration of the device can affect the
fluid kinematics and the dynamical evolution in the tensile force [9] and also lead to the onset
of elastic flow instabilities [10]. Large discrepancies between the measured material functions at
large strains and the asymptotic steady state value estimated from molecular considerations have
also been noted [13]. Before new constitutive models are sought, however, it is necessary to
verify through numerical calculation that the device is behaving as expected. Similar calculations
for other extensional flow devices, such as opposed jet rheometers have revealed that large
deviations from the expected kinematics can exist even for Newtonian fluids [14,15]. Such
simulations can also be used to guide the design of future versions of the device.

In this work, we study the dynamic response of axisymmetric viscoelastic liquid bridges in a
filament stretching device. As a moving boundary problem, the analysis of the liquid bridge
requires three key elements: deformable free surface capabilities, a robust transient algorithm
and appropriate constitutive models. Dynamic analysis of the transient free-boundary motion of
a non-Newtonian material is computationally challenging. In the literature, relatively little work,
either theoretical or numerical, has been reported so far even for the case of Newtonian fluids.
Analytical solutions are available only under certain restrictive presumptions, and numerical
solutions have been limited to small total deformations. In an early numerical study [16],
Shipman et al. simulated one of the low-rate falling-plate extensional rheometer experiments
conducted by Sridhar and co-workers using a free-surface finite element method and the
Oldroyd-B constitutive model. A reasonable agreement in free surface shapes with the experi-
ment was obtained. However, computational restrictions introduced several ambiguities in their
model. First, the finite element mesh was constrained to a fixed axial length and consequently
only a part of the deforming domain was modeled. Second, at the truncated boundary, the
theoretical steady-state extensional stress was used to approximate the unknown stress boundary
condition. The third ambiguity was introduced by neglecting the effects of fluid outside the fixed
control volume. Finally, the simulation was not started at t=0, but at t=2.42 s, while
equilibrium initial conditions for the polymeric stress were used and hence any effects of the
initial configuration of the device were not captured. In another numerical investigation [8],
Gaudet et al. used the boundary element method to perform a dynamic analysis of Newtonian
liquid bridges for a wide range of aspect ratios and capillary numbers. In their work, the fluid
motion was assumed to be quasi-steady by neglecting the inertia terms in the momentum
equation and the fluid motion was governed by the linear Stokes equations. The viscous force
exerted by the fluid on the stationary end-plate was computed as a function of strain; however,
in this study the end-plates were separated linearly in time rather than in the exponential manner
employed in filament stretching rheometers. In a more recent work [29], Sizaire and Legat
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studied the extensional response of the Boger fluid in the filament stretching devices using an
approximate version of the finitely extensible non-linear elastic dumbbell model modified by
Chilcott and Rallison (FENE-CR). The inertia and gravity effects were neglected in their
free-surface finite element solutions for the viscoelastic moving boundary problem and the
results were compared with the experimental measurements by Spiegelberg and McKinley. Good
qualitative agreement with the experiments was found, however, the spatial and temporal
inhomogeneity of the kinematics generated by the device were not investigated in detail.

The present study is based on an axi-symmetric model of the liquid bridge which incorporates
the viscoelastic behavior of the liquid, surface tension, fluid inertia, a deformable free surface
and imposed extensional deformations. The primary goals of the present work are: to study the
complex time-dependent extensional deformations in filament stretching devices, to compare and
contrast differing fluid response for viscoelastic and Newtonian liquid samples, to investigate the
effects of initial geometric configuration of the filament, to examine the benefits of adaptive
diameter end-plates in minimizing non-homogeneous kinematics within fluid column, and to
provide a numerical tool to aid in optimization of experimental designs.

2. Mathematical model

2.1. Description of the problem

We consider the extensional flow of a viscoelastic liquid contained between two parallel
coaxial massless circular disks. The liquid column and the rigid end-plates represent the basic
elements that comprise a filament stretching apparatus and are usually referred to in combina-
tion as a liquid bridge [8]. In order to match the experimental configuration, the lower plate is
held fixed at all times in the calculations as shown in Fig. 1(a) and, hence, will be referred to as
the fixed end-plate. In the absence of inertia (of the fluid or of the end-plates) the equations of
motion are Galilean-invariant and our computed results are unchanged if both plates are
separated exponentially in time.

Fig. 1. (a) Initial configuration of the cylindrical liquid bridge. (b) Subsequent extensional deformation of the liquid
bridge.
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The initial configuration of the liquid bridge is a cylinder when t50−. Let R0 denote the
radius of the two equal end-plates and L0 the initial separation between the two end-plates. The
initial aspect ratio of the liquid bridge is then defined as

L0
L0/R0. (1)

At the instant t=0+, the top plate is set into motion which results in a transient extensional
deformation of the liquid column as depicted schematically in Fig. 1(b). The fluid column is
assumed to remain axisymmetric and to wet the end-plate at all times. The contact line is thus
pinned to the radial edges of the disks. This agrees with experimental observations of the fluid
configuration near the end-plates, except at very high tensile stresses and large strains [10].
During the deformation, the dynamic length of the liquid bridge is denoted by Lp(t) and the
transient aspect ratio

Lt
Lp(t)/R0 (2)

increases with time while the volume of the liquid bridge remains constant. The top plate will
be referred to as the moving end-plate and its axial velocity is L: p=dLp/dt. In this study, we are
particularly interested in the exponential separation between the two end-plates which is
prescribed by

Lp(t)=L0e
o; 0t and L: p(t)=L0o; 0e o; 0t, (3)

where o; 0 is the imposed constant extension rate, and (L0o; 0)
V0 is the initial velocity of the
moving end-plate.

2.2. Go6erning equations

The fluid flow within the liquid bridge is assumed to be isothermal, incompressible and
axi-symmetric and is governed by the incompressibility condition and the equations of motion:

9 ·u=0, (4)

r
�(u
(t

+u ·9u
�

=9 ·T+F. (5)

Here r is the density, u is the velocity vector, F is the body force and T is the Cauchy stress
tensor

T
−pI+t, (6)

where p is an isotropic pressure, I is the unit tensor and t is the extra stress tensor. In this work,
we consider the simplest generally admissible differential constitutive model for polymer
solutions, the convected Jeffreys model [11] or Oldroyd-B model [17]. In this model, the solvent
contribution ts and the polymeric contribution tp to the extra stress are defined as

t=ts+tp, (7)

ts=2hsD, (8)
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tp+l1
�(tp

(t
+u ·9tp− (9u)T ·tp−tp · (9u)

n
=2hpD, (9)

where the rate-of-strain tensor is defined as

D
1
2[9u+ (9u)T], (10)

and the three physical parameters involved in this model are the solvent viscosity hs, the polymer
contribution to the viscosity hp and the fluid relaxation time l1.

At large strains, experiments [4,9] suggest that finite extensibility of the macromolecules may
lead to an asymptotic or steady state value in the extensional stresses. Such effects can be
captured numerically by incorporating a finitely extensible nonlinear elastic (FENE) spring into
the kinetic theory leading to Eqs. (7)–(9). However for realistic values of L�50 (L represents
the ratio of the length of a fully extended dumbbell to its equilibrium length), the FENE
nonlinearity does not affect the evolution of the filament until large strains o\4 [9]. Since we
are primarily interested in a general understanding the basic differences between Newtonian and
viscoelastic fluid samples, we therefore do not consider finite extensibility in the present work.

The complete boundary conditions for this problem include: the no-slip condition along the
interface between the liquid and the end-plates, axi-symmetric along the z-axis, the prescribed
motion given by Eq. (3) at the moving end-plate, and the following kinematic and dynamic
conditions

(S
(t

+u ·9S=0, (11)

T ·n= (2sH−pa)n, (12)

on the deformable free surface boundary. Here S(r, z, t)
 [R(z, t)−r ]=0 is a function that
defines the spatial position of the free surface R(z, t), n is the unit norm of the surface, pa is the
ambient pressure, H is the mean Gaussian curvature of the free surface and s is the surface
tension coefficient. In addition, the following initial conditions for the velocity, pressure and
extra stress fields:

u(r, z)=0, p(r, z)−pa=0 and t(r, z)=0 at t50−, (13)

also need to be imposed. Eqs. (4)–(13) plus the boundary conditions form a well-posed set of
governing equations for the moving boundary problem of viscoelastic liquid bridges.

2.3. Dimensionless scaling

We choose to scale lengths and time with the initial radius R0 and the imposed stretch rate
1/o; 0, respectively. Stresses and pressures are scaled with h0o; 0 where h0=hs+hp is the total
viscosity of the fluid and velocities are nondimensionalized with the product o; 0R0. In addition to
the geometric aspect ratio L0 defined in Eq. (1) and the Hencky strain o=o; 0t imposed on the
filament, the following dimensionless groups are also important in governing the relative
magnitude of each force affecting the evolution of the liquid bridge:

The Deborah number

De
l1o; 0, (14)
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Table 1
Geometric parameters and material properties of a polyisobutylene-based Boger fluid (PIB 0.31 wt.%) and a
polystyrene-based Boger fluid (PS 0.05 wt.%) used in the calculation

PIBParameter Symbol (Unit) PS

0.0191 0.0170R0 (m)Plate radius
1/3Initial aspect ratio L0 (—) 0.353

1.032.0o; 0 (s−1)Extension rate
1026Density r (kg m−3) 894

32.5Solvent viscosity hs (Pa · s) 43.2
4.0Polymer viscosity hp (Pa · s) 5.5
2.54 3.84l1 (s)Relaxation time
0.0285Surface tension coef. 0.030s (N m−1)

0.0080.0138Re=ro; 0R2
0/h0Reynolds number

22.18Capillary number Ca=h0o; 0R0/s 63.26
�0Bond number Bo=rgR0

2/s �0
5.08Deborah number 3.96De=l1o; 0

the Capillary number

Ca
h0o; 0R0/s, (15)

and the Reynolds number

Re
ro; 0R2
0/h0. (16)

For the viscous polymer solution, inertial effects are expected to be negligible although the
inertia terms of the momentum equation are included in our transient calculations.

In experiments using a given viscoelastic fluid with constant material properties (r, h0, l1, s),
the ratios

De/Re=l1h0/(rR2
0) and De/Ca=l1s/(h0R0)

are constant for all imposed stretch rates o; 0. For the purpose of computation we choose to use
the material properties for a 0.31 wt.% polyisobutylene Boger fluid (PIB) and a 0.05 wt.%
polystyrene Boger fluid (PS) characterized by Spiegelberg et al. [9,10]. The material properties
and the values of the dimensionless groups are tabulated in Table 1.

Gravitational body forces on a static liquid bridge are typically characterized by the Bond
number [18]

Bo
rgR2
0/s. (17)

In a dynamic simulation of the form considered in the present work, the relative magnitude of
the gravitational body force with respect to viscous stresses is given by

Bo/Ca=rgR0/h0o; 0. (18)

For the small radii of the geometries and high viscosities of the test fluids typically used in
experiments, we expect Bo/Ca�1 and we do not include gravitational body forces in the
calculations presented here. A study of the effects of an axial gravitational body force via full
scale numerical simulation will be presented in a later article [19].
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2.4. Calculation of Trouton ratio

One of the primary goals of the filament stretching experiment is to measure the extensional
viscosity as a function of Hencky stain. For the ideal uniaxial elongational flow, the extensional
viscosity is defined as

hE(o; 0, t)
 (tzz−trr)/o; 0, (19)

where tzz, trr are the normal components of the extra stress defined in Eq. (7). The Hencky strain
o used in this paper is determined from the displacement of the moving end-plate. For the
exponential separation rate, we have

o
o; 0t= ln(Lp/L0). (20)

Calculations of the extensional viscosity, or equivalently the transient Trouton ratio, are usually
based on the measured axial force at the end-plate, Fz. The fundamental theoretical results based
on the homogeneous stresses in the uniaxial elongational flow are given by

Tzz+p0=tzz−trr=hEo; 0, (21)

where p0 is the ambient pressure. For a cylindrical fluid filament with a uniform radius R, the
following relationship can be obtained by integrating Eq. (21) over the circular area of the end
surface of the liquid column

hE=
Fz

pR2o; 0
, (22)

which relates hE directly to Fz. In our calculations, the normal force is obtained by the following
integral

Fz(t)=
&

A

[Tzz(r, z=0, t)+p0] dA=Fp+Fv+Fe, (23)

where A is the circular domain of the end-plate; Fp, Fv and Fe are pressure, viscous and polymer
(elastic) contributions to the normal force, respectively.

The original derivation of Eq. (21) involves the following assumptions [11]: (1) incompressible
Newtonian fluid; (2) ideal uniaxial elongational flow with homogeneous extension rate and extra
stress; (3) steady state with negligible inertia efffects, i.e. (u/(t=0 and u ·9u=0; (4) no external
forces. In practice, the basic relationship Eq. (22) has been generalized to the following form
[4,8,9]

Tr

hE

h0
=

Fz

h0o; 0pR2
mid

−
s

h0o; 0Rmid
+O(Fi, Fg), (24)

where Rmid denotes the radius of the fluid filament at the axial mid-plane z=Lp(t)/2 and the
second term in the right hand side is the surface tension correction term. The final term O(Fi, Fg)
accounts for the corrections due to the inertia force Fi and gravitational force Fg, respectively.
In the results presented in this paper, this last term is assumed to be negligibly small. Detailed
studies of the inertia and gravity corrections will be pursued in later publications. Note that the
use of Rmid in Eq. (24) implies that the calculated Tr pertains specially to the mid-plane for
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non-homogeneous flow situations. In the ideal uniaxial elongational flow of a Newtonian fluid,
the Trouton ratio is known to be simply a constant of Tr=3.

3. Numerical simulation

3.1. Finite element method

Two finite element domains are considered in this study. The first model uses a computational
domain bounded by 05r5R(z, t) and 05z5Lp(t). Since this model considers the whole
length of the liquid bridge, it will be referred to as the whole-length model. The second model
further assumes symmetry with respect to the mid-plane between the two end-plates. Conse-
quently, the computational domain is defined by 05r5R(z, t) and 05z5Lp(t)/2 and we refer
to this configuration as the half-length model. Since the convective inertia forces arising from the
u ·9u term are, in general, not symmetric, the half-length model is only valid for small Reynolds
numbers and small strains.

3.2. Numerical solution

The governing equations are solved using the code POLYFLOW, a commercial finite element
method (FEM) program primarily designed for the analysis of flow problems dominated by
non-linear viscous phenomena and viscoelastic effects. The details of the FEM formulation and
numerical techniques used in POLYFLOW are documented in [20]. Galerkin’s method is
adopted in the FEM discretization for the momentum equations, and the axi-symmetric FEM
mesh is built with the 9-node quadratic quadrilateral element, in which velocity and extra stress
are approximated by quadratic shape functions. The pressure is approximated as piecewise
linear (i.e. discontinuous on inter-element boundaries). The coordinates of the free surface
boundary are interpolated by piecewise linear functions. The transient problem is solved by a
predictor–corrector time integration scheme in which the backward Euler method is selected for
the corrector. At each time step, the non-linear algebraic system resulting from the FEM
discretization is solved by the Newton–Raphson iteration scheme. The non-linear iteration
termination is controlled by a specified iteration convergence tolerance of 10−5 for the relative
error norms of residuals of the governing equations and free surface update.

Another important aspect for moving boundary problems is the remeshing technique which
controls mesh deformation by relocating internal nodes according to the displacement of
boundary nodes in order to avoid unacceptable element distortions. The Thompson transforma-
tion remeshing rule [21] is used in this work. Based on the resolution of a partial differential
equation of the elliptic type, the Thompson remeshing technique remains robust even for very
large mesh deformations.

3.3. Benchmark test

As a moving boundary problem, the dynamic analysis of liquid bridges is difficult, because the
spatial position of the free surface, on which the kinematic and dynamic boundary conditions
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are to be applied, is usually unknown a priori and must be solved for as a part of the solution.
Consequently, there is, in general, no closed-form (analytical) solution available. Due to the lack
of available numerical results to compare our simulations with, it is necessary to conduct
benchmark tests in order to check the accuracy of the numerical solutions.

One of the tests considered in this work is the dynamic elongation of a filament with reducing
diameter devices (RDD) at both end-plates. In this test, we consider a liquid bridge of a PIB
Boger fluid with an initial cylindrical configuration schematically shown in Fig. 1(a). The initial
values of velocity, pressure and extra stress are assumed to be zero. The geometry and the
material parameters of the PIB Boger fluid are tabulated in Table 1. At t=0+, the liquid bridge
is elongated from the moving end-plate by imposing the exponential velocity profile given in Eq.
(3) while the other end-plate is held stationary. In addition, the radius of both end-plates is
reduced simultaneously by specifying the following radial velocity condition: ur= −0.5o; 0r at the
two end-plates. The free surface is still treated as a moving boundary and its position in space
is solved as a direct unknown along with other field variables. Since the imposed axial and radial
velocities at the two end-plates correspond to the boundary conditions of an ideal uniaxial
elongational flow, the test results in a perfect cylindrical free surface and homogeneous
extensional deformation history throughout the duration of the simulation. This model test
problem is also equivalent to solving the transient start-up of ideal uniaxial elongational flow via
a Lagrangian approach. For the Oldroyd-B fluid, the analytical solution is available [11] and
hence can be used for validation purposes.

Numerical solutions were obtained using POLYFLOW with 40 quadratic elements. Although
the implicit backward time integration scheme was used, a small time-step size corresponding to
Do=o; 0 Dt=0.002 was found to be necessary in order to ensure that the relative errors of the
axial deformation of the moving end-plate and radial deformation of the free surface remained
less than 1%. The extensional deformations at several typical strain levels are shown in Fig. 2.
The free surface does not deflect in this special case. Nevertheless, due to the exponentially
increasing velocity of the upper plate, the liquid bridge experiences large extensional deforma-
tion in both axial and radial directions. The axial deformation ratio reaches Lp/L0:148 at a
strain level of 5. Since high Hencky strain levels o]5 need to be attained experimentally to
investigate the extensional rheological behavior of polymer liquids, the results shown in Fig. 2
also illustrate one of the great challenges in the liquid bridge modeling, namely the remeshing
capabilities for large extensional deformations. To check how the numerical solution quantita-
tively agrees with the available analytical solution, we present comparison plots of the radial
deformation of the free surface versus Hencky strain in Fig. 3(a) and the computed Trouton
ratio in Fig. 3(b), respectively. As can be seen from Fig. 3, the agreement between theory and
the calculation is excellent and the Trouton ratio is initially Tr(0+)=3hs/h0=2.75 and
subsequently increases exponentially without bound as expected theoretically. The curve denoted
by ‘Theory’ in Fig. 3 is based on the following analytical solution [11]:

hE=3hs+
2hp

1−2l1o; 0
[1−e− (1−2l1o; 0)t/l1]+

hp

1+l1o; 0
[1−e− (1+l1o; 0)t/l1], (25)

for the start-up uniaxial elongational flow with an imposed extension rate o; 0.
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4. Conventional filament stretching devices

In this section we study the conventional design of filament stretching devices in which the
two circular end-plates have an equal and fixed diameter throughout the stretching process. The
extensional deformation of the liquid bridge is investigated in increasing levels of details through
the global evolution of the free surface, the flow kinematics, the rate of deformation within the
fluid and the tensile force exerted on the end-plate. The fluid considered in this section is a
polyisobutylene-based Boger fluid (PIB 0.31 wt.%). The basic geometric parameters and the
material properties are listed in Table 1. The numerical simulation is based on an axi-symmetric
model with 720 9-node quadratic elements giving a total number of unknowns of about 16 000

Fig. 2. Evolution of the computational domain during the large extensional deformations in the benchmark test with
an exponentially reducing diameter at both end-plates. The left vertical boundary is the symmetry axis, the right
vertical boundary is the free surface which remains cylindrical in this special case. The lower and upper horizontal
boundaries are the stationary and moving end-plate, respectively.
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Fig. 3. Comparisons of numerical solution with theory for the benchmark test. The stretching rate is o; 0=0.394 s−1

and the material properties of the PIB fluid are given in Table 1. The solid curves marked ‘theory’ denote the
analytical solution for the transient start-up of uniaxial elongational flow of an Oldroyd-B fluid [11]. (a) The radial
deformation history of free surface; (b) the Trouton ratio based on the first normal stress difference, N1=Tzz−Trr,
within the liquid bridge.

at each time-step. In the time marching, the size of time-step is selected in such a way that the
implicit time integration always advances at an equal increment of strain, Do=o; 0 Dt=0.01, for
the various extension rates considered. A typical computation takes about 12�20 h CPU time
on an IRIX Power Challenge (MIPS R8000) machine.

4.1. Free surface deformation

One of the important features of the extensional deformations experienced by the liquid
bridge in a filament stretching rheometer is the evolution and shape change of the free surface.
In the conventional design, the free surface of the liquid column cannot remain cylindrical due
to the pinning condition at the rigid end-plates, and deforms greatly during the stretching
history. A typical free surface deformation history for an Oldroyd-B liquid bridge with a small
initial aspect ratio L0=1/3 is shown in Fig. 4. For comparison purpose, we also show the
deformation of the corresponding Newtonian liquid bridge with the same initial aspect ratio and
the same material properties of the solvent. Initially, the deformations of the viscoelastic and the
Newtonian liquid bridges are almost identical at small strains as shown by the profiles at
Hencky strains of o=0.2 and o=1.0. When the strain surpasses a critical value op, in this
particular case op:1.75, the viscoelastic liquid shows the onset of significant strain hardening
which was first observed experimentally by Tirtaatmadja and Sridhar [4] and later by Spiegel-
berg et al. [9] at high Deborah numbers (De\3). As a result of the strain hardening
phenomenon, the ‘necking’ in the central part of the viscoelastic liquid bridge becomes slower
than that in the Newtonian case. The Newtonian filament does not show any strain hardening,
the radius is non-uniform at all times and the filament becomes very thin at o=3.92. By contrast
in the viscoelastic liquid, the strain hardening leads to a progressively more uniform filament in
the central part of the bridge. The strain hardening phenomenon shown in Fig. 4 agrees well
qualitatively with the experimental observations reported in the literature.
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In addition to the strain hardening phenomenon manifested near the axial mid-point of the
filament, free surface deformations of viscoelastic liquids also differ dramatically from Newto-
nian liquids in the vicinity of the ‘foot’ area close to the end-plates when the strain becomes
large, as indicated by the profiles at o=3.92 in Fig. 4. To examine the differences, the foot area
near the fixed end-plate is enlarged in Fig. 5. The comparison shows that the free surface shapes
of the Newtonian and the viscoelastic liquids are almost identical in a small local area around
the tip of the end-plate. Consequently, the contact angle between the free surface and the
end-plate is also nearly identical for both the Newtonian and the viscoelastic liquids in the
special case modeled. The analysis by Gillette and Dyson [22] shows that for static liquid bridges
the free surface shape is uniquely determined by the aspect ratio, the pressure difference and the
volume of the liquid bridge. Even though the central portion of the elongating filament
continues to undergo extensional deformations the liquid directly adjacent to the end-plates is
prohibited by the no-slip boundary condition from flowing radially inwards and relaxes to a
steady state in which the free surface near the outer rim is determined purely by capillary forces

Fig. 4. Comparison of the predicted free surface profiles as a function of Hencky strain during extensional
deformation of Newtonian (N) and viscoelastic (O–B) fluid filaments. The material properties of the PIB fluid are
given in Table 1 and the stretching rate is o; 0=2.0 s−1 corresponding to De=5.08 for the Oldroyd-B fluid.
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Fig. 5. An enlarged view of the extensional deformations in the local ‘foot’ area near the fixed end-plate for different
Deborah numbers at a final strain of o:4.0.

at all De. The experimental curvature measurements near the bottom plate given by Spiegelberg
et al. [9] also show that an essentially static fluid reservoir develops near the stationary end-plate
with a time-invariant radius of curvature. Our numerical calculations appear to be physically
consistent with the experimental measurements.

For Newtonian fluids, the free surface shape of this fluid reservoir closely resembles the neck
of a bottle and the curvature of the free surface varies smoothly at the neck as shown in Fig.
5. Therefore the extensional deformations of a Newtonian liquid are relatively easier to handle
for the remeshing algorithm and the flow solver. With the Thompson remeshing technique, large
extensional strains, up to o]5, can be reached without difficulty. For viscoelastic liquids,
however, calculations become more complicated since the axial curvature increases dramatically
with De. As shown in Fig. 5, the curvature of the free surface changes dramatically with axial
position at large strains and the fluid reservoir near the fixed end-plate is depleted of more fluid
than in the Newtonian case. The viscoelastic behavior in this region poses a great challenge to
numerical modeling, due to the fact that the finite elements used in the simulations are much
more greatly distorted in the viscoelastic liquid bridge than in the Newtonian case. A closer
analysis of the filament profile in Fig. 5 shows that the tangent of the free surface at the point
P is almost parallel to the fixed end-plate. This leads to a very large curvature and hence very
large values of the Jacobian in the finite element calculations. Experimental observations given
by Spiegelberg et al. [10] show that further extensional deformation will further drain the liquid
adjacent to the end-plate and initiate the onset of a non-axisymmetric elastic instability near the
fixed end-plate, which results in the elongating fluid column partially decohering from the
end-plate. Although it is impossible to unequivocally associate these numerical difficulties with
the experimentally observed decohesion of viscoelastic filament, it is clear that filament stretch-
ing rheometers will face difficulties attaining very large strains of o\5. In numerical simulations,
further extensional deformation will cause the point P to move towards the end-plate, and
consequently the variation of curvature along the free surface will become non-monotonic and
cannot be represented uniquely in the Mongé form R(z, t). Hence for small initial aspect ratios
L0�1, numerical solutions for large extensional deformations are difficult to obtain and there
exists an upper limit for the largest strain numerically achievable with the current formulation.
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Our computational experience shows that the upper bound for numerical accessibility to large
strains depends on several factors, including the initial aspect ratio, Deborah number, the
viscosity ratio b
hs/h0 and the constitutive model, etc. For the Oldroyd-B fluid model with
L0=1/3, b=0.91 and De=5.1, the highest Hencky strain achievable in our computation is
about 4.0.

It is interesting to note that the configuration of the fluid reservoirs near the disks at high
strain are affected not only by the viscoelastic stresses in the liquid, but also by the initial aspect
ratio. Comparisons of surface shapes at three different aspect ratios are shown in Fig. 6 and
suggest that the dramatic change in surface curvature can be effectively reduced with the
increase of L0. Therefore larger final strains of can be obtained with larger initial aspect ratios.
For example, when the initial aspect ratio is increased to L0=2/3, the highest numerically-acces-
sible Hencky strain is increased from of:4.0 to of:4.4 with the same b and De, and the same
number of unknowns.

4.2. Radial flow kinematics

In ideal uniaxial elongational flow, the fluid kinematics are well known and the Eulerian
solution in cylindrical coordinates is given by

ur= −0.5o; 0r,
uu=0,
uz=o; 0z.

Ì
Â

Å
(26)

Integration of the first equation in Eq. (26) gives

R(t)/R0=exp(−0.5o; 0t), (27)

which describes the uniform radial displacement of the cylindrical free surface in ideal uniaxial
elongational flow.

For liquid bridges with fixed end-plates, the displacement of fluid elements on the free surface

Fig. 6. Effects of the initial aspect ratio L0
L0/R0 on the extensional deformation and free surface shapes of
viscoelastic liquid bridge in the ‘foot’ area near the end-plate.
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(as well as within the entire domain) is temporally and spatially non-homogeneous. The radial
movement at the two ends of the liquid bridge is completely restrained due to the pinning
conditions at the fixed end-plates. As a result, the decrease of the radius at the central part of
the filament is much faster than in ideal uniaxial elongational flow so that the volume of the
bridge is conserved. Consequently, the flow kinematics in the liquid bridges with fixed end-plates
is much more complicated and deviates significantly from the flow field given in Eq. (26). The
presence of a deforming free surface whose position is unknown a priori means that exact
analytical solutions for the velocity field are not available for either the Newtonian and
viscoelastic liquid bridge problems, and the flow field in general can only be computed
numerically.

However, an approximate analytical solution has been obtained for the initial response of a
Newtonian liquid bridge based on lubrication theory [9]. This solution is valid for small aspect
ratios (L0�1) and viscous liquid filaments (Re�1) at short times when the free surface is
approximately cylindrical. This lubrication theory solution is very similar to that in the classical
squeeze film problem of Stefan [11,23]. The major difference is that the direction of motion is
reversed in the liquid bridge case and the boundary motion increases exponentially in time. The
axial and radial velocity components of the lubrication theory solution are described by the
following simple expressions in dimensional form

ur= −3o; 0r
�

1−
z

Lp

� z
Lp

, uz=L: p
�

3−2
z

Lp

�� z
Lp

�2

, (28)

which satisfies the velocity boundary conditions at the two end-plates, but does not satisfy the
stress boundary conditions on the free surface. However, since the Capillary number Ca�1 in
most tests this error is small. Although Eq. (28) is derived for Newtonian liquids, it should also
be a good approximation for Oldroyd-B liquid bridges at small strains based on the squeeze flow
experiment and calculations by Phen-Thien and Boger [24,25]. In addition, experimental
observations in filament stretching devices [9] also show that the fluid response is Newtonian for
oB1. Setting z=Lp/2 in Eq. (28) and integrating ur suggest that the mid-point of fluid filament
should initially decrease as

Rmid(t)/R0=exp(−0.75o; 0t). (29)

By substituting Eq. (28) into Eq. (10), we obtain the following expression for the rate of
deformation tensor

Dzz=6o; 0
�

1−
z

Lp

� z
Lp

, Drz= −3o; 0
�

1−2
z

Lp

� r
Lp

. (30)

The lubrication solution predicts that Dzz is parabolic in the axial direction with a maximum
value at z/Lp=0.5 of

Dzz=1.5o; 0. (31)

The results in Eqs. (29) and (31) suggest that at the very beginning of the deformation the fluid
element at the mid-point section experiences a local extensional strain rate which is about 50%
higher than the imposed global strain rate o; 0; however the average of Dzz along the axial
direction is still the same as the imposed o; 0.
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Fig. 7. Variation of the minimum radius of the liquid column, Rmin, with respect to the imposed axial Hencky strain,
o=o; 0t, and as a function of Deborah number. De=0 is the corresponding Newtonian case. The geometrical and
material parameters for the PIB fluid used are the same as given in Table 1.

To quantify the extensional deformation at the central part of the filament, we show the
computed time history of the minimum radius, Rmin(t) as a function of Hencky strain in Fig. 7.
The lubrication prediction in Eq. (29) is in good agreement with the computed rate of decrease
observed in the Newtonian filament at all strains up to o=2.5 as shown by the zero De curve
in Fig. 7. For larger strains o\2.5, the necking in Rmin accelerates slightly and eventually leads
to a capillary instability in the vicinity of the mid-plane of the Newtonian liquid bridge. For
viscoelastic filaments, there are in general two distinct regions in the curve of Rmin(t). In the first
region, corresponding to strains oB1.75, the evolution in Rmin is the same as Newtonian and the
filament undergoes significant necking as observed in Fig. 4. This result agrees well with the
conclusions made in the literature [24,25] that the initial behavior of the Oldroyd-B fluid during
squeeze flow is basically that of the Newtonian solvent contribution. The second region for
strains o\1.75 is characterized by a slope change in the curve of Rmin(t). In this region the
radius decreases more slowly than that in the ideal uniaxial elongational flow due to strain
hardening in the fluid. This characteristic change in the slope shown in Fig. 7 agrees well with
the experimental measurements shown in [2,3,7,9].

The radial free surface displacement in the central part of the filament is greatly affected by
the initial aspect ratio. Typical results are presented in Fig. 8 in which the minimum filament
radius Rmin is plotted versus Hencky strain for three different aspect ratios L0=2/3, 3/2 and 2.
All the three curves fall into a region bounded from below by the lubrication solution Eq. (29)
and from above by the ideal uniaxial elongational flow solution Eq. (27). Note that the lower
limit curve corresponds to larger radial displacement and higher radial velocities, while the
upper limit curve represents the smaller radial displacement and slower radial velocity that the
particle would experience in an ideal uniaxial elongational flow. The results in Fig. 8 show that
the change of slope arising from strain hardening become less significant for liquid bridges with
larger initial aspect ratios. At L0=2, the slope change in the Rmin curve is much smaller than
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that for L0=2/3, and the radial deformation is much closer to the ideal curve R(t)/R0=exp(−
0.5o). The trend indicated in Fig. 8 provides useful information for design of future experiments,
namely a more effective design strategy is to choose larger initial ratios of the liquid filament.

The lubrication solution given in Eq. (28) predicts that the axial velocity is a cubic function
of z and the radial velocity is a parabolic function of z, whereas the ideal uniaxial elongational
flow described by Eq. (26) has a linear variation in z for uz and a constant value for ur.
Comparisons of the numerical simulation for the Newtonian and Oldroyd-B fluids with these
predictions are presented in Figs. 9 and 10. The axial velocity profile along the centerline r=0
and the radial velocity profile on the deformed free surface (r=R(z, t)) respectively are plotted
over a range of strain levels.

In general, the flow in the liquid bridge differs from the ideal uniaxial elongational flow,
except in the immediate vicinity of the mid-point section z=Lp/2 where the agreement is purely
a result of geometric symmetry. For the Newtonian liquid, the lubrication solution provides a
surprisingly good approximation for uz up to o:2.0, and the agreement is still fairly good even
for larger strains up to o=3.8, as shown in Fig. 9. For Oldroyd-B fluid, the lubrication solution
of uz is a very good approximation for o51.0. For o\1.0, the flow behavior of the Oldroyd-B
model starts to deviate gradually from that of Newtonian liquid, and the lubrication prediction
becomes increasingly invalid.

The change in the deformation characteristics documented in Figs. 7 and 8 for the viscoelastic
filaments is also manifested in Figs. 9 and 10. At strain levels o\2.0, the axial velocity near both
end-plates dramatically changes. The velocity gradient (uz/(z at the mid-plane (z/Lp=0.5)
decreases below both the lubrication solution and the ideal homogeneous uniaxial elongation
due to the onset of strain-hardening. By contrast, near the end-plates (z/Lp=0, 1), the axial
velocity gradient dramatically increases indicating that fluid is progressively drained out of the
‘foot’ or reservoir region.

Fig. 8. Effects of the initial aspect ratio on the radial deformation of the viscoelastic liquid bridge as a function of
the imposed global Hencky strain, o.
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Fig. 9. Profiles of the axial velocity along the centerline of the liquid bridge at four typical strain levels. Numerical
solutions of the Oldroyd-B and the Newtonian liquids are compared with the ideal uniaxial elongational flow (dot
curves) and the lubrication solution given by Eq. (28) (solid curves). The same initial aspect ratio L0=1/3 and
extension rate o; 0=2 s−1 were used for both the Newtonian and viscoelastic cases which leads to De=5.08 for the
latter simulation.

Comparisons with numerical simulations also indicate that the lubrication solution provides
an accurate description of the radial velocity profile along the free surface, at least at small
strains, as shown in Fig. 10. In the uniaxial elongational flow, ur is homogeneous in space, by
contrast in the filament stretching devices, ur is non-homogeneous due to the boundary
conditions imposed by the end-plates. For viscous Newtonian liquids with material properties
typified by those in Table 1, the lubrication solution appears to be a fairly good approximation
even at large strains up to o=3.8 except very close to the pinned contact regions. Here the
velocity gradient (ur/(z decreases to zero confirming that the region becomes quasi-static. For
the Oldroyd-B fluid, the radial velocity of the free surface gradually decreases at strains o\1.75
and becomes increasingly axially uniform in the central part of the domain. For o]3.0, the
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radial inflow in the central region of the free surface becomes slower than that in the ideal
uniaxial elongational flow, indicative of appreciable strain hardening. At o]3.8, a homogeneous
radial velocity profile is achieved over most of the liquid bridge. Concomitantly, velocity

Fig. 10. Profiles of the radial velocity on the free surface r=R(z, t) at selected values of Hencky strain, o=o; 0t. The
results are based on a small initial aspect ratio L0=1/3 and an extension rate o; 0=2 s−1. The non-Newtonian case
corresponds to a Deborah number of De=5.08.



M. Yao, G.H. McKinley / J. Non-Newtonian Fluid Mech. 74 (1998) 47–88 67

boundary layers develop near the two end-plates at high strains. These velocity boundary layers
further contribute to the dramatic difference between viscoelastic and Newtonian liquids in free
surface shapes near the foot area as discussed above in Section 4.1. Resolution of these
boundary layers contributes to the difficulties in attaining high strains numerically.

4.3. Rate of deformation

The deformation history of the liquid bridge can also be quantitatively characterized by the
extensional and shear strain rates which represents the deformation rate that the fluid elements
experience during the stretching process. The spatial and temporal variations of strain rates can
be used in error control for quantifying inhomogeneities and deviations of the real flow field
from the ideal uniaxial elongational flow. Ideally, we would like to control the actual strain rate
to be purely extensional, homogeneous and identical to the imposed value of o; 0. However, as we
have shown, the actual strain rate is not that expected in a simple extensional flow and, in
general, it varies both spatially and temporally. Since direct measurement of the detailed
distribution of strain rate within the liquid bridge is very difficult, numerical simulation plays an
important role in studying the rate of deformation and provides some interesting insight into the
flow field.

For the cylindrical coordinate system shown in Fig. 1, the rate of deformation tensor D
defined in Eq. (10) has four independent non-zero components: Drr, Drz, Dzz and Duu, all of
which vary with spatial position and time. Among them, the components Dzz and Drz are of
most interest to our study since they characterize the extension rate and the shear rate in the
fluid. For a homogeneous uniaxial elongational flow given by Eq. (26), Dzz
o; 0 and Drz
0.
When the end-plate diameter is fixed as in conventional stretching devices, the flow field is
altered by the pinning conditions at the rigid end-plates, as a result, Dzz becomes a function of
time and space. It is interesting to note the value of D at the rigid end-plates. For incompressible
fluids, it is easy to prove from the no-slip boundary condition and the continuity equation that

Drr=Dzz
0. Ö{(r, z)�z=0 or z=Lp}. (32)

Boundary layers in the velocity gradients (and associated stresses) thus develop near the rigid
fixtures. For the Oldroyd-B fluid, typical spatial and temporal variations of Dzz and Drz are
shown in the contours plots presented in Fig. 11. The actual extensional strain rate within the
liquid bridge is highly non-homogeneous at the initial stage of stretching as seen from the
contours plots of o=0.2 and 1.0 in Fig. 11(a). At o=0.2, the contours are almost parabolically
distributed in the axial direction and radially uniform as expected from Eq. (30). However, the
non-homogeneity is gradually reduced with increasing strain and a homogeneous deformation
zone (HDZ) is formed at the central part of the domain as shown by the plot of o=2 in Fig.
11(a). Our simulation shows that this HDZ continues to expand towards the two end-plates with
further stretching and strain-hardening in the fluid. The contour plot of Drz at o=0.2 in Fig.
11(b) suggests that a significant shearing component is generated between the plates at small
strains. As shown in Fig. 11(b), the shear rate is negligibly small in the central part of the liquid
bridge but is largest near the pinned free surface. Subsequent contour plots in Fig. 11(b) indicate
that the shear rate decays rapidly with the increase of strain.

As we have shown in Fig. 9, the lubrication prediction (derived in the limit L0�1) remains
a good approximation even up to strains of o�1.75 for both the Newtonian and Oldroyd-B
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Fig. 11. Contour plots of components of the rate of deformation tensor at four selected strain levels, o=0.2, 1.0, 1.6
and 2.0, respectively. The results are based on the half-domain model of the Oldroyd-B liquid bridge with L0=2/3
and De=5.08. (a) The axial velocity gradient Dzz ; (b) the shear velocity gradient Drz.
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fluids. Beyond this range, the extensional behaviors of the two liquids become significantly
different. For Newtonian filaments within a strain range 1.5BoB4, the extensional strain rate
at the mid-point section tends to increase slightly with strain due to the increasing capillary
pressure and the maximum axial velocity gradient Dzz remains at the mid-plane of the filament
where the radius is smallest. For Newtonian liquid bridges, there is no strain hardening and the
necking is always largest at the mid-plane between the two end-plates. Consequently, although
we do not resolve the dynamics of the actual filament breakup process, our numerical modeling
indicates that the Newtonian liquid bridges in conventional filament stretching devices will break
in the middle, which agrees well with experimental observations. For the viscoelastic fluid, strain
hardening becomes important at large strains and strain rates due to the elongation of the
polymer chains. As a result, the extensional strain rate in the central part of liquid bridge
decreases gradually and two boundary layers in Dzz are simultaneously developed near the two
end-plates as indicated by the plots of o=3 and 3.8 in Fig. 9. Physically, the strain-hardening
liquid in the middle of the column becomes increasingly difficult to stretch, and it becomes
relatively easier to pull the unstretched material out of the fluid reservoir in the ‘foot’ areas
adjacent to the two end-plates. With the development of the two boundary layers, the
extensional strain rate is increased rapidly near the two end-plates. At o=3.8, the maximum
values of Dzz are about 4.5 times larger than the imposed global extensional rate o; 0 and continue
to increase dramatically with further stretching. The break-up mechanism in viscoelastic liquid
bridge at high De is thus anticipated to be quite different from the Newtonian case. The strain
hardening and viscoelastic behavior of the fluid prevent the filament from breaking in the
middle. Instead, the increasingly rapid rate of liquid drainage from the ‘foot’ regions leads to a
uniform elastic column connected by a thin fluid film to the rigid end-plate. Numerical
calculations show that the radius of curvature in these regions becomes very small and large
(negative) pressure gradients develop as the filament elongates. Ultimately the slope #R/#z of the
free surface becomes almost zero near the end-plates and numerical convergence is lost.
Although we do not directly simulate the elastic instability, this sequence appears to be
consistent with recent experimental observations of elastic filament break-up and decohesion
[10].

Since the lubrication solution Eq. (28) does not satisfy the boundary conditions at the free
surface, it should not be expected to accurately describe the kinematics near the free surface. To
demonstrate this, we show in Fig. 12 the radial variation of the dimensionless axial strain rate
Dzz/o; 0 at the mid-plane of the elongating filament z=Lp(t)/2. At very short times the filament
is still almost cylindrical and the radial shear flow in the bridge is driven by the radial pressure
gradient in the bulk. As a result, the extensional strain rate at the free surface (r=R(z, t)) is
almost zero, as shown by the curve at o=0.02 in Fig. 12. As the free surface deformation
increases, the value of Dzz at the mid-point of the free surface increases rapidly in a short time
and a boundary layer develops as indicated by the curve at o–0.2 in Fig. 12. The lubrication
solution cannot predict this boundary layer but agrees well with full numerical simulation in the
central core area rB0.7R(t). After this initial deformation, the value of Dzz at the mid-point of
the free surface gradually decreases. At o=2, the boundary layer completely disappears. At
strains o\2, the extension rate is radially homogeneous and approaches the imposed global
extension rate. Despite the homogeneity of the deformation rate at high strains, we show below
in Section 4.4 that the viscoelastic fluid filaments exhibit a ‘memory’ of this initial inhomogene-
ity that is manifested in a radial stress boundary layer at all strains.
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Fig. 12. The radial variation of Dzz on the mid-plane, z=Lp/2, at four selected strain levels and comparison with the
lubrication solution. The numerical solution satisfies the free surface boundary conditions at Rmid(t) while the
lubrication solution does not.

Further consideration of Fig. 12 and examination of additional plots of the radial velocity
profile in the filament mid-plane (not shown here) help explain why the lubrication solution
derived in the limit L0�1 provides a good description of the filament profile and fluid
kinematics even at aspect ratio, Lt=L0 e+o\1. The linear variation in the radial fluid velocity
and the radial uniformity in the axial strain rate at each axial position indicate that the velocity
field at high strains can be expressed in the form

uz=V0 f(z) e+o; 0t and ur= −
r
2

V0 f %(z) e+o; 0t, (33)

where f(z) is an unknown function of z to be determined from the momentum equation and
boundary conditions, V0=o; 0L0 is the initial velocity of the moving plate and f %(z)=df/dz. This
spatial variation in the kinematics (without the exponential weighting imposed by the end-plate
boundary condition) is of the general slender-body form used to describe slender Newtonian and
non-Newtonian filaments in, for example, fluid jets (see e.g. [26–28]). The lubrication solution
obtained at short times, Eq. (28), is also exactly of this same form with a specific cubic
polynomial representation:

f(z)=
�

3−2
� z

Lp

�n� z
Lp

�2

, (34)

and the kinematics of the elongating filament are therefore of the same general form throughout
the entire experiment.

4.4. The effecti6e extensional strain rate

A more practical way to quantify the rate of deformation in the elongating liquid filament is
via the local extensional strain rate at the mid-plane or the minimum radius plane. For example,
as proposed in the literature [5,9], the local extensional strain rate at the mid-plane between the
two end-plates can be quantitatively characterized on the basis of the free surface movement by
the effective extension rate:
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o; eff
−2d(ln Rmid)/dt= −2Ur,mid/Rmid, (35)

where Ur,mid is the radial velocity component of the free surface at the mid-plane. The first
equality in Eq. (35) is widely used in experiments since Rmid can be obtained directly from the
measured free surface shape. The second equality is convenient for numerical analysis when the
velocity-pressure formulation is used. The effective extension rate represents the actual local
extensional strain rate of fluid elements in the vicinity of the mid-plane (or the minimum radius
plane). To demonstrate how the local extensional strain rate varies with strain, a typical example
is presented in Fig. 13 for a low Deborah number of De=0.5. In this example, the local
extensional strain rate at the mid-plane is calculated using: (1) the effective extension rate o; eff

based on the free surface movement; (2) the average axial velocity gradient D( zz averaged over the
mid-plane, D( zz=2 	Rmid

0 rDzz [r, Lp(t)/2)] dr/R2
mid; (3) the pointwise value of Dzz evaluated at the

central point r=0 and z=Lp/2. As shown in Fig. 13, the effective extension rate defined in Eq.
(35) approximates the average of Dzz at the mid-plane very well throughout the stretching
process. Therefore, the numerical computations verify that o; eff does indeed represent the actual
extensional strain rate that the fluid particles experience at the mid-plane. The difference
between the values of o; eff and the ‘pointwise’ Dzz curves at o52 indicates that the extensional
strain rate is non-uniform on the mid-plane with lower values at the center, which is consistent
with the results shown in Fig. 12. The pointwise value of Dzz shown in Fig. 13 agrees well with
the lubrication prediction o; eff=1.5o; 0 within the small strain range 0BoB0.75, which confirms
once again that the lubrication solution can be used to characterize the fluid behavior at the
central core part of the liquid bridge for small strains. At larger strains when o\2, all three
curves merge together suggesting that a radially homogeneous extensional strain rate is
achieved. At De=0.5, no significant strain hardening is shown and the extensional strain rate
at the mid-plane gradually approaches the imposed global strain rate o; 0 with increasing strain.
This calculation illustrates that axial homogeneity of the extensional strain rate is much harder

Fig. 13. Variation of the local extensional strain rate at the mid-plane between the two end-plates at low Deborah
number De=0.5. The local strain rate is characterized by the effective extensional strain rate, o; eff (
), the average
value of Dzz over the mid-plane (——) and the pointwise value of Dzz at the center of the liquid bridge, r=0, z=Lp/2
(�).
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Fig. 14. Variation in the effective extensional strain rate computed by using Eq. (35) at large Deborah numbers. (a)
Comparison of viscoelastic behavior with Newtonian response at a small initial aspect ratio of 1/3; (b) comparison
of four different initial aspect ratios for the viscoelastic liquid bridge. The imposed global extension rate is o; 0=2 s−1

(De=5.08) in all the cases.

to achieve than a uniform radial profile and requires much larger strains (o\5) in filament
stretching devices.

The variation in the calculated effective extensional strain rate at a much higher Deborah
number of De=5.1 is shown in Fig. 14(a). In this case, the strain hardening for o\2 can be
clearly quantified by the rapid decrease in the value of o; eff. A comparison to the corresponding
Newtonian case is also presented in Fig. 14(a) with the same initial aspect ratio and imposed
stretch rate o; 0. The extensional behavior of the Newtonian liquid shows significant differences
from that of its viscoelastic counterpart. It is also clear from Fig. 14(a) that the effective stretch
rate based on the change in radius of the mid-plane in the Newtonian filament never approaches
the imposed value o; 0. Direct calculation of a Trouton ratio based on the known solvent viscosity
and the imposed stretch rate (i.e. Tr= (tzz−trr)/hso; 0) will never return a value Tr=3 but rather
Tr=4.5 due to the increased stresses near the filament mid-plane. This important computational
result is analogous to the findings of numerical studies of the opposed jet devices which show
that in this configuration Newtonian fluids yield a measured Trouton ratio of Tr=4.0 [14]. A
quantitative comparison of the effects of the initial aspect ratio on the calculated o; eff is presented
in Fig. 14(b). The comparison suggests that both the magnitude of the deviation in o; eff/o; 0 and the
temporal variation of the extensional strain rates attained in the bridge can be effectively
improved by increasing the initial aspect ratio L0.

4.5. Stress distribution and surface boundary layers

In an ideal uniaxial elongational flow, the stress is spatially homogeneous throughout the
elongating filament. In filament stretching devices, however, the stress varies both axially and
radially due to the non-homogeneous flow kinematics introduced by the end-plate conditions.
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Numerical simulations can provide detailed information about stress distributions within the
liquid. These detailed stress distributions are in general not available from direct measurements.

In Figs. 15 and 16, we show the contours of the total extra stress component tzz and trz for
a typical Oldroyd-B liquid bridge and its corresponding Newtonian counterpart. The initial
aspect ratio and the imposed global extension rate used in the computation are L0=1/3 and
o; 0=2 s−1. Quantitative comparisons of the axial and radial variations in tzz are also presented
in Figs. 17 and 18. For small strains, the stress distribution of the Oldroyd-B fluid is almost
identical to that of the Newtonian fluid, as shown by the contour plots at o=0.2 in Figs. 15 and
16. Initially, tzz has a parabolic profile along the centerline of the liquid bridge with a vanishing
value at the end-plates and a local maximum value at the mid-point. The full numerical solution
agrees well with the lubrication approximation as shown in Fig. 18(a).

For viscoelastic filaments, the polymeric stress grows with the increase of strain and provides
extra resistance to the extensional deformation. As a result of the spatially inhomogeneous
deformation at short times shown in Figs. 12, 15 and 16, a region of stress concentration or
‘boundary layer’ is developed in the extra tensile stress tzz near the axial mid-point of the free
surface as shown by the red colored areas in Fig. 15. In the experiments, such radial stress
distributions within the liquid filament are almost impossible to measure, even with a line-of-

Fig. 15. Contour plots of the extensional component of the total extra stress, tzz, defined in Eq. (7). Comparison of
Oldroyd-B model (De=5.08) with Newtonian liquid. The left vertical boundary is the symmetric axis (r=0), the
right curved boundary is the free surface, top boundary is the moving end-plate and bottom line is the fixed end-plate.
The color table of the contour plots has 13 colors with equal increment in stress levels. The red and gray colors
represent the highest and lowest stress levels respectively.



M. Yao, G.H. McKinley / J. Non-Newtonian Fluid Mech. 74 (1997) 47–8874

Fig. 16. Contour plots of the shear component of the total extra stress tensor, trz. Comparison of Oldroyd-B model
(De=5.08) with Newtonian liquid. Since the shear stress is anti-symmetric with respect to the mid-plane, the red and
gray colors represent identical magnitudes of trz but with opposite signs.

sight technique such as birefringence, and force or birefringence measurements are interpreted as
resulting from a radially uniform fluid stress. The numerical results predict an important
difference in the stress behavior between the viscoelastic and the Newtonian liquids. For
Newtonian liquids, the local stress concentration in the vicinity of the mid-point of the free
surface is present only at small strains and eventually decays at larger strain levels as the
instantaneous extensional strain rate Dzz(r) becomes uniform across the mid-plane. For the
Oldroyd-B fluid with a small initial aspect ratio, the local stress concentration induced at short
times grows with strain throughout the deformation history and leads to a thin boundary layer
at larger Hencky strains even when a homogeneous extensional strain is reached. This is a
consequence of the viscoelastic memory of the fluid to its previous deformation, and the
development of this stress boundary layer is shown by the curves labeled L0=1/3 in Fig. 17(a).
The results in Fig. 17 show that development of this elastic stress boundary layer depends on the
initial aspect ratio and can be eliminated by using larger L0 in the design. This is because larger
initial aspect ratios provide more homogeneous kinematics in the liquid at short times, and
consequently a more uniform deformation history at small strains. For the viscoelastic liquid, a
more homogeneous deformation history at short times will in turn have a dramatic impact on
the polymer stress growth and spatial distribution at all later times. The effects of the initial
aspect ratio on the stress distribution along the centerline are shown in Fig. 17(b) at a high
strain level of o=3.8. It can be seen that the extensional stress at large strains becomes more
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uniform with larger L0. The above arguments also apply to the shear stress component trz. The
only major difference is that the shear stress is anti-symmetric with respect to the mid-plane
while the extensional stress is symmetric. Consequently, the location of the shear stress
concentration is different from the extensional stress. For shear stress, the thin surface boundary
layers are developed at two symmetric locations about the mid-point of the free surface as
shown in Fig. 16, with one being above the mid-point of the free surface (the red-colored area)
and the other below the mid-point of the free surface (the grey-colored area). The numerical
results show that there is a correlation between stress concentration and curvature of the free
surface. The high concentration of the tensile stress occurs near the region of minimum axial
curvature, while the shear stress is concentrated in the region of maximum (or rapidly changing)
free surface curvature.

Due to the stress growth, the polymer contribution becomes much larger than the viscous
stress at large strains as indicated by the curves for o=3.8 in Fig. 18, in which a second stress
boundary layer is developed near the two end-plates. At the strain of o=3.8, the extensional
strain rate becomes uniform in the central part as indicated by the slope of uz curve in Fig. 9,
while the extensional stress remains axially non-uniform. Therefore, the numerical results
suggest that homogeneity of stress is far more difficult to achieve than the homogeneity of strain
rate because of the integrated effects of the deformation history on the resulting polymer stress.
Small initial aspect ratios result in significant deviations from the ideal flow kinematics at the
inception of motion and hence introduce a non-ideal deformation history for small strains.
Although the flow kinematics can always approach the ideal homogeneous limit at large strains,
the stress distribution may still be far from homogeneous due to the non-homogeneous
deformation history the fluid elements experience at small strains.

Fig. 17. The effects of the initial aspect ratio on the radial and axial stress distribution. (a) Radial variations of the
total extra stress component, tzz, along the mid-point radius; (b) axial variations of tzz along the centerline of the
liquid bridge (r=0, only half of the axial filament length is shown here).
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Fig. 18. Variation of the total extra stress component, tzz, along the centerline (r=0) of the liquid bridge at three
typical strain levels. Viscoelastic liquid (with Deborah number De=5.08) vs. Newtonian liquid (De=0). The solid
curve denoted by ‘lubrication’ in (a) is based on the lubrication solution for Newtonian fluid, Eq. (28).

4.6. Transient extensional 6iscosity

We have shown that in filament stretching devices the flow kinematics are modified by the
pinning conditions at the end-plates and the resulting extensional deformation is non-homoge-
neous. As a result, the predicted Trouton ratio based on the measured axial force Fz exerted on
the end-plate deviates from the classical result for the initial stage when Hencky strain is small,
as shown in Figs. 19 and 20. In Fig. 19 we compute the non-dimensional average normal stress
Fz*=Fz/(pR2

0h0o; 0) at the end-plate and plot it as a function of Hencky strain for three different
initial aspect ratios. Computation of an extensional viscosity or Trouton ratio for both
Newtonian and viscoelastic fluids will therefore deviate from the result expected in an ideal
uniaxial elongational flow. The error depends on the initial aspect ratio and can be reduced by
using larger values of L0.
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Fig. 19. Effects of the initial aspect ratio on the axial normal force defined in Eq. (24) at the moving end-plate. The
dimensionless Fz* is scaled by Fz*=Fz/(pR2

0h0o; 0) and is equivalent to the average normal stress exerted on the
end-plate. The numerical results are based on the half-length model. The ‘Theory’ curve is based on the homogeneous
stress tzz in the transient start-up of uniaxial elongational flow.

For a Newtonian liquid, the lubrication solution and asymptotic analysis suggest that the
initial deviation in Tr is proportional to L0

−2 and decreases with the increase of strain [9],

Fig. 20. Comparison of numerical predictions of the transient Trouton ratio with theory. The curve denoted by
‘Oldroyd-B’ is obtained from numerical simulation and calculated using the imposed o; 0 in Eq. (23). Theory1 and
Theory2 are obtained using o; 0 and 1.5o; 0 in Eq. (25), respectively. The lubrication solution is based on Eq. (36).



M. Yao, G.H. McKinley / J. Non-Newtonian Fluid Mech. 74 (1997) 47–8878

Fig. 21. Comparison of the transient Trouton ratio for the PIB test fluid given in Table 1 at five different Deborah
numbers and with a small initial aspect ratio L0=1/3. De=0 corresponds to the Newtonian fluid. The results are
based on simulations with the half-length model. Here hE is scaled by the solvent viscosity hs in order to compare with
the Newtonian case.

approximately as

Tr:
3
2
�

3+
1
L2

0
e−7/2o; 0t�. (36)

This variation in Tr with strain is shown in Fig. 20 by the solid line. Since the local extensional
strain rate at the mid-plane is always approximately 1.5 times of the imposed extension rate (cf.
Figs. 13 and 14), the curve asymptotes to 1.5×3=4.5 at large strains if the imposed extension
rate o; 0 is used in Eq. (23). Another way to interpret the definition of Tr is to use the effective
extension rate at the mid-plane, i.e. o; eff=1.5o; 0 in Eq. (23). This will lead to the expected classical
result of Tr=3 for a Newtonian liquid at large strains.

For the Oldroyd-B liquid shown in Fig. 20, the calculated variation in Tr is almost identical
to the Newtonian result given in Eq. (36) within the small strain range oB1. The short dash
curve denoted by ‘Theory1’ in Fig. 20 is based on the theoretical result Eq. (25) for the start-up
uniaxial elongational flow with an imposed extension rate o; 0 and serves as a lower bound of the
predicted Trouton ratio. If perfect uniaxial elongational kinematics were achieved in the liquid
bridge at all times, the numerically computed Tr should be identical to this curve. However, a
significant deviation between the Oldroyd-B computation and this curve can be seen in Fig. 20
for both the small and large strain ranges. The error in the small strain range is mainly due to
the small initial aspect ratio, L0=1/3 in this case. The error at large strain levels is caused by
the non-ideal deformation history the liquid particles at the mid-plane experienced during the
initial small strain stage. The curve labeled as ‘Theory2’ in Fig. 20 is based on the local
extensional strain rate at the mid-plane, i.e. o; eff:1.5o; 0 and hence can be considered as an upper
bound of the numerical prediction.

A comparison of the predicted transient extensional viscosity for five selected Deborah
numbers is given in Fig. 21. The same small initial aspect ratio L0=1/3 is used in all the cases.
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De=0 corresponds to the Newtonian fluid with the same solvent viscosity. In this case the curve
labeled calculations approach Tr:4.5 as predicted by the lubrication and asymptotic solution
in Eq. (36). Within the small strain range 05oB1.5, the extensional behaviors at the various
Deborah numbers are very similar as can be seen in Fig. 21. This suggests that the initial fluid
response in the filament stretching devices is dominated by the non-homogeneous flow kinemat-
ics and deformation history arising from the small initial aspect ratio. At large strains, the
extensional viscosity increases dramatically at higher Deborah numbers. For the range of
computations shown, the curves at De=3.0 and De=5.1 also superpose when plotted as
function of Hencky strain, in good agreement with experimental observations [4,9].

5. The reducing diameter device

As we have seen from the numerical results presented in the previous section, the kinematics
attained in the conventional filament stretching devices deviate from ideal uniaxial elongational
flow and the actual extensional deformation is non-homogeneous. The flow non-homogeneity is
especially bad for small initial aspect ratios and small strains. This non-ideal kinematic history
during the initial deformation of the filament will in turn have a direct impact on the evolution
of the polymeric stresses. As a result, significant errors may be introduced in the predicted
material properties of a fluid. Perhaps the simplest theoretical solution for the problem is to use
larger initial aspect ratios in the design as evidenced by the numerical results in Section 4.
However, in reality larger values of L0 are impractical due to gravitational body forces which
can cause the liquid bridge to sag or collapse [18] unless microgravity conditions can be
achieved. Furthermore, larger values of L0 require much longer final lengths in the stretching
devices which can be difficult and expensive to accomplish in the design.

An alternative approach to improving the flow kinematics at short times is to introduce a
so-called reducing diameter device (RDD) into the design. In an RDD, the diameter of the
end-plate is no longer fixed, but instead is reduced at an exponential rate as the sample is
elongated. It is hoped that this adaptive boundary condition at the end-plates will lead to
improved flow kinematics at short times and hence better measurements of extensional material
properties [6].

In this section, we examine the benefits of adaptive diameter end-plates in minimizing
non-homogeneous kinematics within the fluid column. One important design parameter that
deserves special consideration is the RDD ratio defined as

RD
R0/Rstop]1, (37)

where Rstop is the radius at which the RDD stops contracting. This is not necessarily the end of
the stretching process, however, since the elongation may still continue after the RDD stops.
RD=1 corresponds to fixed diameter end-plates. Theoretically, we would like RD to be
unbounded so that homogeneous kinematics can be achieved throughout the test. In practice,
however, the achievable range of RD is restricted by mechanical design considerations. To relate
RD to the global Hencky strain, we rewrite Eq. (37) using Eq. (27) in the following forms

RD=e0.5of or of=2 ln RD. (38)
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For a given final Hencky strain of, estimates of the required RD value can be easily obtained via
Eq. (38). For instance, in order to attain of=5, a 12:1 RD is required. This would appear to be
extremely difficult to accomplish via mechanical design. Berg and co-workers [6] constructed a
device capable of attaining RD=2. Naturally, a question that needs to be answered is what
benefits can be extracted from a RDD design with a limited value of RD. Our studies of the
deformation history in the filament stretching rheometer indicate that for viscoelastic fluids, the
most significant non-homogeneous extensional deformation occurs primarily within a particular
strain range of 0Bo52 and the deformation becomes increasingly uniform with strain
hardening at o\2. This suggests that an RDD design with a limited RD may still lead to a
marked improvement in the flow kinematics. In particular, the minimum RD that covers a
working range of strains up to o=2 is found to be RD:2.71 based on Eq. (28), and an RDD
ratio of 3:1 or greater is desirable.

In this work, we consider a postulated RDD design with RD=4. In this case, the global
Hencky strain based on the axial displacement of the end-plates is about o:2.77 when the RDD
stops contracting, which is well above the strain level for strain hardening to develop. In order
to compare with the conventional filament stretching devices, three possible designs were
considered:
1. 4:1 RDD at one (upper) end-plate (referred to below as 4:1 1-RDD),
2. 4:1 RDD at both end-plates (referred to below as 4:1 2-RDD),
3. Fixed diameter at both end-plates.

The following reducing diameter boundary condition is imposed at the RDD end-plate

R(t)
R0

=
!e−0.5o; 0t

1/4
o; 0t52.77,
o; 0t\2.77.

(39)

A comparison of the simulated free surface shapes is presented in Fig. 22. Unsurprisingly, the
4:1 2-RDD design appears to be able to provide the most uniform extensional deformations
among the three design tests. The results show that for the 4:1 2-RDD design the liquid bridge
retains its cylindrical shape before the RDD stops. After the RDD stops at o=2.77, the aspect
ratio has become so large that the free surface shows only a very slight deflection at o=3.1 and
remains axially uniform over most of the liquid bridge at all higher strains.

For an RDD device capable of a limited value of RD, a major concern is how the
non-homogeneity evolves after the RDD stops contracting and what type of error control
criteria could be used to ensure satisfactory homogeneity in the kinematics. To address these
issues we return to the concept of a homogeneous deformation zone (HDZ) introduced in
Section 4.3. One important objective of the RDD design is to create a HDZ within which the
desired flow kinematics can be achieved at all times during the stretching process, especially after
the RDD stops. It is evident that after the RDD ceases to contract radially, the no-slip
boundary condition at either end-plate will induce kinematic non-homogeneities; however, the
volume of liquid affected will be small. For the purposes of preliminary design calculations such
as those presented here, we characterize the uniformity of the HDZ by the temporal and spatial
homogeneity of the axial velocity gradient Dzz(r, z, t), and indicate 910% ranges of the relative
error with respect to the imposed extension rate o; 0 in Figs. 23 and 24.

The temporal homogeneity condition characterized by o; eff (Eq. (35)) controls the history of the
local extensional strain rate at the Rmin plane. A typical comparison of the evolution in o; eff for
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the three different rheometer end-plate designs is shown in Fig. 23. Although the presence of an
RDD at one end-plate provides some improvement in temporal homogeneity over the fixed
diameter design, the variations are still much larger than 10%. The design with 4:1 RDDs at

Fig. 22. Comparison of the simulated free surface shapes at six selected Hencky strain levels for the three possible
rheometer designs. The fluid used in the modeling is a polystyrene-based Boger fluid (PS) and the geometry and its
material properties are listed in Table 1. The 4:1 RDD is stopped at o=2.77. For the 1-RDD test, the upper
boundary represents the RDD end-plate. Only the right half-plane of the axisymmetric fluid filament is shown.
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Fig. 23. A quantitative comparison of the variation in the local extensional strain rate at the mid-plane between two
end-plates for the simulated design tests. Here the temporal homogeneity of the extensional deformation is
characterized by the effective extension rate o; eff and calculated based on Eq. (35).

both end-plates provides perfect temporal homogeneity for oB2.77 and the deviations remain
very small even after the RDD stops.

Spatial homogeneity in Dzz requires that at any given time, the axial variation of Dzz should
be within, say, 910% of the imposed extension rate throughout the HDZ. Detailed examination
of the axial variations in the extensional velocity gradient Dzz along the centerline of the liquid
bridge are presented in Fig. 24 for increasing levels of Hencky strain. For the fixed end-plate
design, a spatially homogeneous strain rate is only achieved at very large strains (o\5). Spatial
variations in the 1-RDD design also exceed the desired 10% range for oB4. Another drawback
of the 1-RDD design is that it does not preserve the axial symmetry about the mid-plane and
the position of minimum radius shifts during the course of the experiment. With RDDs at both
end-plates, the value of Dzz is identical to that in the ideal uniaxial elongational flow until the
RDDs stop contracting. At high strains, it can be seen from Fig. 24 that steep boundary layers
in the velocity gradient develop near the two end-plates due to the changed boundary conditions
and these regions make numerical calculations difficult. However, the relative error in the spatial
variation of Dzz remains small throughout the central region of the column.

In addition to spatial homogeneity in the axial deformation, to achieve a uniaxial extensional
flow it is also necessary to eliminate the undesired shear deformation by reducing the shear rate
Drz(r, z, t) to be less than some percentage of o; 0. Variations in the shear velocity gradient on the
free surface of the deforming filament are shown in Fig. 25 together with 920% error bounds
for illustration. It can be seen that fixed diameter end-plates result in significant shear rates for
strains up to o�3. The 1-RDD design cannot achieve a shear free deformation condition for the
strain range oB4.12. By contrast, incorporating an RDD at each end of the rheometer can
successfully eliminate shear near the end-plates and also along the free surface leading to a
nearly ideal shear-free deformation history. Finally, we compare in Fig. 26 the predicted
transient Trouton ratios for the three postulated rheometer designs. Among the three configura-
tions considered, the 4:1 2-RDD design provides the most accurate prediction of Tr. The results



M. Yao, G.H. McKinley / J. Non-Newtonian Fluid Mech. 74 (1998) 47–88 83

Fig. 24. Axial variation of the extensional velocity gradient Dzz along the centerline r=0 for the design tests with
L0=0.353, De=4.0. A numerical check for the spatial homogeneity of the extensional deformations created in the
three experimental designs of the filament stretching devices.
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Fig. 25. Variation of the shear velocity gradient Drz on the free surface for the design tests with L0=0.353, De=4.0.
Incorporating RDD at both end-plates effectively eliminates non-homogeneous shear flow near the end-plates and
along the free surface.
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shown in Fig. 26 suggest that while a single RDD offers only slight improvement, the 2-RDD
case can provide accurate agreement with theory.

6. Conclusions

We have presented numerical calculations of the fluid kinematics and the dynamic evolution
in the viscoelastic stresses for a filament stretching rheometer. For Newtonian fluids and small
initial aspect ratios, the flow kinematics in the liquid bridge at small strains can be accurately
approximated by a lubrication solution [9]. Although the simple lubrication solution Eq. (28) is
derived for Newtonian fluids, comparisons with full-scale numerical solutions show that it is also
a good approximation at small strains for liquid bridges with a large solvent viscosity that can
be modeled by the Oldroyd-B constitutive equation. This conclusion is in agreement with the
experimental and computational work on the squeeze flow problem by Phan-Thien and Boger
[24,25]; it also agrees well with the experimental observations of Spiegelberg et al. [9] in a
filament stretching device. Both the lubrication solution and the full-scale numerical solution
presented in this work show that for typical experimental conditions, the fluid deformation
generated in the liquid bridge is spatially and temporally inhomogeneous and an analysis based
on the net tensile force measurements does not lead to true extensional material properties.

We have shown through the numerical simulations that the dynamical behavior of viscoelastic
fluids is dramatically different from Newtonian liquids. At Deborah numbers De\0.5, strain
hardening occurs beyond o=2 and is manifested globally as a change in the slope of the
mid-point radius versus time, and a rapid increase in the tensile stress in the filament. This
predicted strain-hardening phenomenon is in a good agreement with the available experimental

Fig. 26. Comparison of the predicted transient Trouton ratio with theory for the design tests. The 4:1 2-RDD design
provides the most accurate prediction of Tr among the three test cases.
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measurements [2,3,7,9] and, in contrast to the evolution of a Newtonian filament, results in the
formation of an increasingly uniform cylindrical viscoelastic filament. The predicted break-up
mechanism in viscoelastic liquid bridge at high De is also quite different from the Newtonian
case. For Newtonian fluids, there is no strain-hardening and ‘necking’ always decreases the
filament radius fastest at the fluid mid-plane between the two end-plates. Consequently,
Newtonian liquid bridges in filament stretching devices will break in the middle. For viscoelastic
fluids, the strain hardening at large Hencky strains inhibits the filament from breaking in the
middle. Instead, the rapid amplification of liquid drainage from the end-plate regions will
ultimately initiate the onset of an elastic instability in the vicinity of the end-plates. Our
numerical calculations of the evolution of the free surface agree well with the experimental
observations reported in [10] and also with those simulated by Sizaire and Legat using the
FENE-CR model [29]. Indeed for the range of strains (o54) covered in [29] and the present
work, the filament shapes predicted by the FENE-CR and Oldroyd-B models are practically
indistinguishable. The progressive drainage of the quasi-static fluid reservoirs present at each
rigid end-plate provides a rationalization for the elastic instability and decohesion phenomena
observed experimentally at large Hencky strains.

As a result of the spatially inhomogeneous deformation at short times, the development of a
stress localization or ‘boundary layer’ in the polymer stress near the free surface is observed. In
experiments, such radial stress distributions within the liquid filament are almost impossible to
measure, and force measurements are interpreted as resulting from a radially uniform fluid
stress. The numerical results predict an important difference in the stress behavior between the
viscoelastic and the Newtonian liquids. For Newtonian filaments, the local stress concentration
in the vicinity of the mid-point of the free surface is present only at small strains and eventually
decays at larger strain levels as the extension rate Dzz becomes radially uniform across the
mid-plane. For the Oldroyd-B fluid with a small initial aspect ratio, the local stress inhomogene-
ity evolves with the strain throughout the deformation history and leads to the formation of a
thin stress boundary layer at larger strains even when a homogeneous extensional strain rate is
reached. This stress boundary layer development is a direct consequence of the elastic properties
of the material, as the viscoelastic liquid ‘remembers’ the non-homogeneous deformation and
pre-shearing history it experienced at small strains. Design calculations for different aspect ratios
suggest that the development of the stress boundary layer depends on the initial aspect ratio and
can be eliminated by using larger initial aspect ratios in the design.

Our numerical observations of the stress concentration and boundary layer development agree
qualitatively well with the results of the configuration tensor A
�QQ�/Q eq

2 given by Sizaire
and Legat [29]. Here �QQ� represents an ensemble average over the configuration space of the
dyadic product, QQ, of the dumbbell end-to-end vector Q, and Q eq

2 is the mean square
end-to-end distance between the two beads. The radial variation of the extensional component
of the configuration tensor in Fig. 5 of Ref. [29] shows a non-homogeneous extensional
deformation at the macromolecular level on the mid-point plane. The macromolecules, repre-
sented by elastic dumbbells in the kinetic theory, are more elongated near the curved free surface
than in the central region of the liquid filament. For small initial aspect ratios, this non-homo-
geneous microscopic extensional deformation leads to the macroscopic localization of the liquid
extension rate and the development of a stress boundary layer observed in the present work.
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The most effective approach to improving the homogeneity of the flow kinematics at short
times is to simultaneously elongate the sample axially and reduce the diameter of the end-plate
fixtures at an exponential rate. One inherent physical limit with such reducing diameter device
is that the radial engineering strain attainable, defined by the RDD ratio in Eq. (37), is usually
restricted by the mechanical design of the instrument to be much lower than the total axial
strain of the experiment. Analysis indicates that an RDD rate of 3:1 or greater is necessary to
preserve homogeneous extensional deformation up to the onset of pronounced strain hardening.
Comparisons based on three postulated designs show that introduction of 4:1 RDDs at both
end-plates is good enough for providing a nearly ideal shear-free deformation history and
greatly enhances accuracy in the measurements than with conventional filament stretching
devices using fixed diameter end-plates. Of course, in the current experimental realizations of
such devices, an alternate approach has been to adjust the end-plate boundary data for L: p(t) to
result in exponential decrease in Rmid(t) at all times. While such an approach leads to a temporal
homogeneity in o; eff(t), the fluid deformation remains spatially inhomogeneous. As a result,
selection of the ‘correct’ or optimum profile for L: p(t) must be adjusted ad hoc on a fluid-by-fluid
and rate-by-rate basis. Now that we have developed a fundamental and systematic understand-
ing of the evolution in the shape and kinematics of viscoelastic fluid columns in a filament
stretching rheometer, it will be possible to investigate this more complex boundary motion in
detail, and provide heuristic guidelines for optimizing experimental test protocols.
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