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Abstract

The cellular detail of blood is an essential factor in its flow, especially in

vessels or devices with size comparable to that of its suspended cells. This

article motivates and reviews numerical simulation techniques that provide

a realistic description of cell-scale blood flow by explicitly representing its

coupled fluid and solid mechanics. Red blood cells are the principal focus

because of their importance and because of their remarkable deformabil-

ity, which presents particular simulation challenges. Such simulations must

couple discretizations of the large-deformation elasticity of the cells with the

viscous flow mechanics of the suspension. The Reynolds numbers are low,

so the effectively linear fluid mechanics is amenable to a wide range of sim-

ulation methods, although the constitutive models and geometric factors of

the coupled system introduce challenging nonlinearity. Particular emphasis

is given to the relative merits of several fundamentally different simulation

methods. The detailed description provided by such simulations is invaluable

for advancing our scientific understanding of blood flow, and their ultimate

impact will be in the design of biomedical tools and interventions.
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Lysis: the destructive
compromise of cell
integrity

1. BACKGROUND

Blood at physiologic conditions is a dense suspension of cells and other formed bodies, dominated

in terms of its dynamics by red blood cells, its most populous constituent. They make up over

approximately 40% of the systemic blood volume in humans and vastly outnumber the white

blood cells (about 1,000:1) and platelets (about 15:1). In most cases, they are the blood component

principally responsible for its rheology.

This review focuses on numerical simulation of the cell-scale flow mechanisms of blood, par-

ticular its flow in vessels or devices with size comparable to the cell dimension (∼8 µm). Blood

cell mechanics and microcirculatory hemorheology have been extensively reviewed (Chien 1987,

Cokelet 1980, Guido & Tomaiuolo 2009, Kamm 2002, Lipowsky 2005, Popel & Johnson 2005,

Secomb 2003), and blood is a specific example of particulate suspensions, which have also been

extensively reviewed (Cox & Mason 1972, Guazzelli & Morris 2012, Happel & Brenner 1965,

Leal 1980, Stickel & Powell 2005). The present article focuses on detailed cell-level numerical

simulation of blood. The mechanics are intricate and experimental diagnostics challenging, which

makes numerical simulation particularly attractive. Secomb et al. (2008) defined a spectrum of

microcirculation modeling approaches; my focus is on simulations that explicitly represent cells

in detail based on independently determined material model inputs.

There are several, now well-documented and thoroughly investigated, physiologic processes

that depend fundamentally on the cellular character of blood. Most famously, the mean flow in

small vessels becomes blunted and the effective viscosity drops to a minimum for vessel diameters

D ≈ 7 µm because of its cellular makeup (Fåhræus & Lindqvist 1931). Such behavior provides a

convenient validation target for simulations to reproduce, but the future utility of such simulations

is far broader. Some specific examples include gas transport (Popel 1989, Pozrikidis 2009); interac-

tions of red and white blood cells (Freund 2007, Schmid-Schönbein 2006); platelet transport (Zhao

et al. 2012), activation ( Jackson et al. 2009), and adhesion (Mody & King 2008), which lead to both

beneficial and harmful clotting; and the mechanical removal of aged (so-called senescent) cells by

the spleen (Deplaine et al. 2011, Freund 2013) (animations of several such configurations are pro-

vided in the Supplemental Appendix; follow the Supplemental Material link from the Annual

Reviews home page at http://www.annualreviews.org). Several pathologies are symptomatic and

even deadly in large part because of the mechanical changes wrought on the red blood cells, with

the global killer malaria and sickle-cell disease the two most-cited examples (Suresh 2006).

Perhaps the greatest need for the simulation of blood as a cellular suspension is in the design

of micrometer-scale devices to process it at the cell scale (Abkarian et al. 2008, Toner & Irimia

2005). Some recently reported devices are designed to separate blood plasma from small samples

(Homsy et al. 2012), identify and remove malaria-infected cells (Kim et al. 2012), supplant current

large-scale and expensive technology to perform complete blood counts (Han et al. 2012, Layton

et al. 2012), and perform label-free isolation of stiff red cells and white cells (Yang et al. 2012).

All such devices depend on the behavior of often densely packed flexible cells in high-strain-rate

flows and in configurations in which detailed experimental diagnostics remain challenging. The

deformability of the red blood cells in such a device can be particularly important, as the means

either of identifying the different cells for sorting or for avoiding excessive deformations leading

to lysis. Cell lysis and harmful platelet activation are impediments to the widespread use of blood

pumps (Deutsch et al. 2006), including artificial hearts (Dasi et al. 2009), the optimal design of

which is expected to similarly benefit from cell-scale simulation tools. Cancer tumor growth,

metastasis, and treatment with targeted agents often involve cell-scale fluid mechanics and would

therefore also benefit from better simulation tools (Koumoutsakos et al. 2013). We can similarly

anticipate their utility in the design of blood substitutes (Chang 2010).
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2. FLOW REGIME

Blood cells have dimension d � 10 µm and are usually suspended in plasma with viscosity μ =

1.2 Pa · s, so for physiologic flow at speeds �1 mm/s, Reynolds numbers are Re � 0.01. Thus flows

are viscosity dominated even in vessels 10 times the cell size. In larger vessels, inertia becomes

more significant, but homogeneous-fluid continuum models likewise become more applicable

and are generally more useful. Cell-scale effects are potentially important in small regions of even

high-Reynolds-number blood flows, but in such cases the local environment of a cell remains

predominantly viscous.

Even the slowest physiologic flows can be expected to significantly distort the flexible red blood

cells, making their distortion an essential feature of the mechanics. For velocity difference �U

across a cell of linear dimension d, a viscous deformation stress scale is

�flow =
μ�U

d
. (1)

This is resisted by elastic stresses in the cell, which are complex but should scale as

�cell =
Es δℓ

d 2
, (2)

where Es ≈ 5 µN/m is a membrane shear modulus (see Section 3.2) and δℓ/d is the strain, the

change in size relative to d. For �U = 1 mm/s, a high strain of δℓ/d = 0.24 is thus anticipated.

Figure 1a,b shows cells at rest in their nominal biconcave shapes and significantly distorted cells

in flow. Simulating the details of such distorted cells as they pack closely and flow in complex

geometries, such as the vessel network in Figure 1c, is the principal challenge of the cellular

simulation of blood.

White blood cells have an internal viscosity thousands of times that of blood (Hochmuth

et al. 1993, Kamm 2002, Marella & Udaykumar 2004) and thus do not deform nearly so much

as red blood cells under the same flow conditions. Platelets are similarly rigid, at least relative

to the red blood cells that transport them (Mody & King 2008, Zhao et al. 2012). Mechanical

or biochemical triggers can activate white blood cells (Schmid-Schönbein 2006) and platelets

(Mody & King 2008), which then display complex and biochemically coupled behavior. Their

subsequent mechanical interactions are fascinating and important but beyond the scope of this

review.

aaa b c

100 µm

Figure 1

(a) Red and white blood cells and platelets at rest (Wetzel & Schaefer 1982) and (b) red blood cells flowing in a microfluidic device
(Burns et al. 2012). (c) A mouse brain microvasculature scan showing its intricate geometry (Mayerich et al. 2011).
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Glycocalyx:
extracellular polymeric
material lining vessels
and red blood cells

Red blood cells are large enough that their thermal diffusion is typically negligible (Higgins

et al. 2009), although blood components like platelets or small particles, such as therapeutic

nanometer-scale magnetic particles, might have a more significant thermal transport under some

conditions (Freund & Shapiro 2012). Red blood cell membranes, however, have bending moduli

in the range of 5 to 50kBT, where kB is the Boltzmann constant and T is the temperature, so their

thermal fluctuations can be observed and even used to deduce material properties (Park et al.

2010). For a healthy cell at rest, instantaneous membrane deflections are �200 nm (Park et al.

2010) and therefore are not expected to significantly affect dynamics at the ∼10-µm cell scale,

except perhaps for particularly close interactions.

It is, in some cases, important to include molecular forces, which can be comparable to the

fluid mechanical forces on the cells. Indeed, red blood cell aggregation (Cokelet 1980, Popel &

Johnson 2005) and white blood cell (Krasik et al. 2008, Schmid-Schönbein 2006) and platelet

(Mody & King 2008) adhesion occur when molecular forces exceed flow forces. However, these

interactions are over �100−nm molecular scales, which are so much smaller than the cell scale

that they in principle can be represented independently of the flow solution. I therefore do not

discuss these effects in regards to simulation.

3. RED BLOOD CELL MECHANICS

3.1. Red Blood Cell Structure

Red blood cells, compared with other cells, are particularly simple in their structure (Figure 2).

They are defined by a thin lipid bilayer membrane, coated with an ∼6-nm-thick glycocalyx (Linss

28 µm

Elastic spectrin network
Es ≈ 5 µN/m

Eb ≈ 0.2 nN·nm

Viscous plasma
µ ≈ 1.2 Pa·s

Viscous cytosol
µ ≈ 6 Pa·s

~Constant area lipid membrane
Ed ≈ 100 mN/m

80 nm

Outermost
surface structure

Cross section of
surface structure

~
8 

µm

a b

c

d

~
100 nm

<

Figure 2

Flowing blood in a model vessel (a) involves significant deformation of the individual cells (b). The viscous flow, both in the interior
cytosol and in the surrounding plasma (c), couples with the relatively weak shear and bending resistance of the membrane-associated
selectin cytoskeleton (d ), the relatively strong dilatation resistance of the lipid membrane (c), and the net viscous resistance of the
membrane (not labeled). Panels a and b are simulation results; panel c is an illustration by David S. Goodsell, Scripps Research Institute;
and panel d is a three-dimensional cryo-electron tomographic image of a native (unstretched) spectrin network (Nans et al. 2011).
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Cytoskeleton: the
structural components
of a cell; its skeleton

Cytoplasm: the
material within the cell
membrane

Cytosol: the liquid
content of a cell’s
cytoplasm

et al. 1991). From within, the lipid layer is buttressed by a network of spectrin filaments that

is seen to be anchored in an approximately triangular mesh when the cytoskeleton is expanded.

However, in its natural, unspread state, this underlying pattern is difficult to discern (Figure 2d ).

The combined thickness of these layers, based on atomic-force microscopy, is less than 100 nm

(Heinrich et al. 2001, Nans et al. 2011), which justifies a thin shell model for their mechanical

representation on the cell scale. Early in their development, red blood cells eject their nucleus and

other organelles, leaving their cytoplasm as an approximately homogeneous hemoglobin cytosol

(Figure 2c) with Newtonian viscosity about five times that of the plasma (Cokelet & Meiselman

1968).

3.2. Constitutive Modeling Challenge

It is thought that the lipid membrane provides a nearly incompressible envelope for the cytosol,

whereas the spectrin network provides the cell its elastic resistance to shear and bending defor-

mation (Mohandas & Evans 1994). However, given the underlying molecular complexity, there

should be no expectation that any particular constitutive model could accurately represent all

potential cell deformations. Adding to this challenge, membrane properties change significantly

with age (Bronkhorst et al. 1995, Linderkamp & Meiselman 1982), disease (Suresh 2006), and

temperature (Chien 1987). The membrane is also out of equilibrium at physiologic conditions, as

evidenced by its mechanical sensitivity to ATP concentration (Hochmuth & Waugh 1987, Park

et al. 2010, Yoon et al. 2008).

As with most complex materials, the best option seems to be models selected and calibrated for

particular circumstances. Ideally, the corresponding measurements should be designed to param-

eterize particular subcomponents of proposed models, but experimental challenges have limited

such an approach for red blood cells. Humphrey (2002) provided a clear discussion of these issues

for constitutive modeling of tissues. For red blood cells, calibration typically follows a scattered

approach, which in the end limits the fidelity of models and leaves considerable uncertainty re-

garding their range of applicability. Understanding these issues is important to anticipate the

reliability of simulations. I first summarize the experiments available to support these efforts.

3.3. Experimental Measurements of Red Blood Cell Properties

The membrane resistance is most easily discussed in terms of reported moduli for shear (Es),

bending (Eb), dilatation (Ed), and membrane viscosity (ηm), although these are not necessarily

constant, and the linear constitutive model they imply is almost certainly insufficient to provide a

complete description (e.g., Yoon et al. 2008). Still, it is a reasonable starting point and is probably

sufficient for many flow simulation objectives involving red blood cells. In reality, there is at

present little choice in taking this approach as only a few measurements provide sufficient data to

parameterize more refined models.

The earliest measurements designed to close specific constitutive models involve the aspiration

of cells into micrometer-scale pipettes (e.g., Evans & La Celle 1975). For shear resistance, these

measurements suggest Es in the range of 4 to 10 µN/m. Similar micropipette results have been

interpreted to deduce relatively weak bending moduli (Eb = 0.18 nN · nm; Evans 1983) and strong

dilatation moduli (Ed = 450 mN/m; Evans & Waugh 1977) that indicate stiff resistance to area

change. More recent measurements with optical tweezers (Dao et al. 2003), adhered magnetic bead

cytometry (Puig-de-Morales-Marinkovic et al. 2007), and microrheometry based on the thermal

fluctuations of cell shape (Park et al. 2010) do not significantly change these early estimates of

Es, although some suggest that the bending and dilatation moduli are significantly smaller (see

Supplemental Table 1 for experimentally deduced moduli). The complex microstructure and
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Figure 3

Simulated effective Newtonian-fluid Poiseuille-flow viscosity versus tube diameter (symbols) for hematocrit H c = 0.30 (red line). The
blue line is an empirical fit through a wide range of experimental data (Pries et al. 1992). Figure reprinted with permission from Zhao
et al. (2010).

the diverse regimes accessed by the different experiments might partly explain the apparent scatter

in the data reviewed here. This does not point necessarily to a deficiency of the experiments or

even the respective constitutive models. However, it does provide a clear indication that care must

be taken in applying any particular model much beyond its calibrated behavior.

Plastic deformations (Evans & Hochmuth 1976b), lysis, shear-induced tether formation

(Hochmuth et al. 1973), cell aging (Bronkhorst et al. 1995, Linderkamp & Meiselman 1982),

and disease (Suresh 2006) all require further model development and parameterization. For some

of these cases, only minimal data are available. New measurements, perhaps aided in part by inverse

simulation methods, will facilitate this development.

Most measurements involve an applied deformation of the cells, and it remains unclear which

measurement technique would best correspond to the deformation experienced by flowing cells

under physiologic conditions. The parameters selected by Pozrikidis (2005) based on the mi-

cropipette experiments reviewed by Skalak et al. (1989) have been used without additional calibra-

tion, for example, by Zhao et al. (2010) to reproduce reasonably well an effective viscosity curve

(Figure 3), but there should be no expectation that these parameters or the particular constitutive

model used is universal.

There is conflicting evidence concerning the importance of membrane versus cytosol viscosity

in providing dissipation, although both are undoubtedly important in particular cases. Dissipa-

tion in early micropipette studies was assumed to be dominated by membrane viscosity (Evans

& Hochmuth 1976a). However, the scaling arguments invoked to justify this were incomplete: A

length scale alone cannot formally indicate the relative importance of two unknown viscous dissipa-

tion mechanisms. Indeed, more recent thermal flicker experiments have suggested that membrane

viscosity is negligible (Park et al. 2010). It has been observed that the membrane-associated pro-

teins remodel in a pipette (Discher et al. 1994), which might lead to greater dissipation than is
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observed with mild contact-free optical-tweezer-induced deformation (Bronkhorst et al. 1995).

Membrane viscosity is often neglected for convenience in simulations (Freund & Orescanin 2011,

Pozrikidis 2005, Reasor et al. 2012, Yazdani & Bagchi 2011, Zhao et al. 2012), although not always

(Fedosov et al. 2010, 2012). Its challenge is revisited in Section 7.2.

3.4. Modeling Approaches

With no expectation that any practical constitutive model can accurately represent the full range

of conceivable red blood cell behaviors, particular simulation objectives in part will guide model

selection. We can anticipate that some phenomena of interest demand only accurate representation

for relatively small deformations, perhaps in rheological studies under ordinary shear rates (Doddi

& Bagchi 2009, MacMeccan et al. 2009, Pan et al. 2011, Zhao et al. 2012), whereas more detailed

models might be necessary to reproduce the more extreme distortions, for example, in spleenic slits

(Freund 2013) or small capillaries (Freund & Orescanin 2011, Pozrikidis 2005, Secomb et al. 1986).

There are two basic approaches for pursuing this: one more traditional, founded on continuum

mechanics, and another that explicitly represents the microstructure.

3.4.1. Continuum modeling. A continuum model has the advantage that it is compatible with a

vast set of available solution techniques, but as a fit of data, it also carries the risk that any particular

model is restricted to a narrow range of conditions similar to those used for its parameterization.

Elastic stresses depend on the deformed shape of the membrane x relative to a reference shape

X, which can be represented by the deformation gradient tensor

F =
∂x

∂X
. (3)

Solid-body components of this deformation R are removed via the polar decomposition theorem,

F = V · R, so the stresses can be determined from the strains V via the one-point left Cauchy-

Green tensor

B = F · FT = V2, (4)

which describes the strain in the deformed configuration. (Alternatively, the right Cauchy-Green

tensor references the undeformed configuration: C = FT · F.) At physiologic conditions, de-

formations are large enough that finite-deformation constitutive models built in this fashion

seem necessary. For an isotropic membrane, the stress depends only on the tensor invariants

of B : IB = λ2
1 + λ2

2 + λ3
3, II B = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, and III B = λ2

1λ
2
2λ

2
3, where λi are the principal

stretches, the eigenvalues of both B and C. An example of a general algebraic strain energy is

W =
∑

lmn

Almn(IB − 3)l (II B − 3)m(III B − 1)n, (5)

in which coefficients Almn are material properties and in general must be determined from experi-

mental data (Ogden 1997). The algebraic form of Equation 5 is a common starting point, although

many biomaterials are better fitted by exponential or other strain-energy functionals (Humphrey

2002). An isotropic model seems reasonable, assuming that the microscopic details of the spectrin

network are averaged sufficiently, although measurements do suggest some structural variation

(Nans et al. 2011).

A neo-Hookean strain energy W = A100(IB − 3) is the simplest finite-deformation model, but

its single parameter A100 cannot represent both the weak resistance to shear and the strong, but

finite resistance to areal deformation of a red blood cell membrane. Skalak et al. (1973) recrafted
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the invariants as formulated on a two-dimensional manifold to distinguish these effects:

I1 = λ2
1 + λ2

2 − 2 and I2 = λ2
1λ

2
2 − 1, (6)

which are tensor invariants of a corresponding two-dimensional system or, equivalently, IB − 3

and III B − 1 for λ3 = 1. The strain energy he postulated,

W =
A1

4

(

1

2
I 2
1 + I1 − I2

)

+
A2

8
I 2
2 , (7)

has the property that in the linear limit, A2 contributes only to dilatational resistance, which facil-

itates calibration. Full expressions for the derivatives of W that provide the stresses are available

from various sources (Barthès-Biesel & Rallison 1981, Humphrey 2002, Pozrikidis 2005, Skalak

et al. 1973). The Skalak model is widely used for cellular blood flow simulation, but it can be

expected to be accurate only when data are available for determining its coefficients, and its range

of utility once parameterized is difficult to anticipate. For a single red blood cell suspended in

a sheared flow, Pozrikidis (2005) noted only minor differences between Equation 7 and a neo-

Hookean model modified to strongly resist areal deformations.

This approach can be easily extended to include more material parameters, either by retaining

more terms in Equation 5 or by assuming alternative W forms. Using both volume (λ1λ2λ3 = 1)

and membrane (λ1λ2 = 1) incompressibility constraints, Mills et al. (2004) added a second term

to the neo-Hookean model W = A100 (IB − 3) + A300 (IB − 3)3 to better match optical-tweezer

data. However, it remains unclear what flow conditions warrant such a modification. The utility

of refining constitutive models depends on simulation needs, which are difficult to anticipate.

Simulations of cellular flow mechanics under physiologic conditions do not seem at present to

be limited by insufficient constitutive model accuracy or generality, although more extreme flow

conditions are likely to test their limits. Refined continuum models will be most successful if they

are developed in conjunction with experiments that isolate particular effects.

3.4.2. Discrete microstructure modeling. A complementary approach is to explicitly include

microstructural detail in the model, with the expectation that this more fundamental design will

make it accurate away from calibration points. Such a description, founded in molecular details,

is also a starting point for coupling with the biochemistry of disease processes (Suresh 2006).

For red blood cells, this approach builds on the paradigm established by Boal et al. (1992). The

spectrin network (Figure 2d ) is modeled by chains of beads augmented with steric and membrane-

fluid forces that prevent their collapse. With this approach, Li et al. (2005) constructed a model that

represents all 105 spectrin links in a typical cell, which reproduces observed macroscopic elastic

resistance, although not necessarily as well as a third-order hyperelastic model. Representation

of an entire cell this way, however, is probably unnecessary for most objectives. This has led

to a series of coarse-graining efforts (Discher et al. 1998) that have reproduced, for example,

both the aspiration length versus pressure behavior observed by Waugh & Evans (1979) and the

microstructural remodeling observed by Discher et al. (1994).

Further coarse graining can increase utility, especially for cases in which larger numbers of cells

need to be represented. Based on the Discher et al. (1998) model, Pivkin & Karniadakis (2008)

identified a transform that preserves linear shear and bending resistance as spectrin-link lengths are

increased, thereby reducing the number of degrees of freedom that demand explicit representation.

The computational cost can be reduced tremendously by this approach, facilitating the simulation

of large numbers of cells. This method is robust, even for obviously under-resolved surface shapes,

and the only obvious restriction seems to be the fidelity of the geometric representation of the

cell shapes (Fedosov et al. 2010).
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Mathematical limits can be used to develop continuum models from discrete models, which is

done in the hope of grounding their parameters in more fundamental microstructural properties

rather than fitting to limited experimental data. At its simplest, this approach can predict linear

moduli (Boal et al. 1992), although analysis can provide more complex models still grounded in

microstructural mechanics. For example, the virial theorem has been used by Dao et al. (2006) to

build a worm-like chain coarse-grained model (e.g., Discher et al. 1998) into explicit expressions

for key parameters, such as the shear viscosity. A more formal approach, with the same objectives,

was pursued by Hartmann (2010), employing theories that guarantee the stability of the resulting

continuum model. They developed a strain-energy expression directly, without a priori assuming

any particular mathematical form.

There does not yet appear to be an example for which a microstructural model has provided

requisite fidelity or generality when a continuum model has somehow failed. We can, however,

anticipate such a description becoming more valuable as phenomena such as flow-mediated lysis

(e.g., Abkarian et al. 2008) are investigated in greater detail. Interestingly, Reasor et al. (2012)

suggested that a coarse-grained microstructural model can also be more efficient.

4. SIMULATION CHALLENGES

Even for the simplest constitutive model, a system of flowing and interacting blood cells presents

several simulation challenges. Perhaps most obvious are the large deformations of red blood cells

that must be resolved. Fortunately, the linear resolving capabilities of numerical schemes can be

assessed through a priori analysis of the methods and a posterior examination of solution spectra,

although this is rarely reported for cells. The resolution of nonlinear systems is more difficult

to assess. Simulations of flow turbulence, for which nonlinearity also leads to a range of scales,

often seem to be more critically evaluated in this regard. The nonlinearity of even the simplest

membrane constitutive models is far more complex than that of the Navier-Stokes equations, but

likewise generates a challenging range of scales to resolve. Mesh-refinement studies are generally

good practice and are probably essential in many cases.

Another challenge is the near incompressibility of the membrane, which introduces a numer-

ical stiffness and thus a significant time-step restriction for explicit time integration. If the fast

compressional timescales of the membrane are irrelevant to a particular application, which is

usually the case (although perhaps not for cell lysis), then implicit time advancement can damp

spurious fast modes without negative consequences. Such methods are challenging but have been

implemented for blood cells (Dimitrakopoulos 2007) and similarly complex vesicles (Veerapaneni

et al. 2011). A simpler but somewhat ad hoc approach is to select a dilation modulus that nearly

preserves the area (Pozrikidis 2005) but is not so time-step restrictive as a physically realistic mod-

ulus. This is then a model parameter, which should be verified to not affect results of interest.

A third option is to model near incompressibility with an incompressibility constraint, enforced

via a Lagrange multiplier, serving the same role as pressure in incompressible flow. Although

this approach avoids the time-step restriction, it does introduce a global system to be solved on

each cell surface (Veerapaneni et al. 2011). The relative merits of these approaches will generally

depend on other features of the overall algorithm and the application needs.

The cell volume also should be fixed, although it will generally drift owing to numerical errors.

However, as a well-resolved low-order moment of the cell shape, volume drift is generally small.

Volume errors as low as 0.5% for significant deformation have been reported in simulations with

modest resolution (Zhao et al. 2010). It is thus easily corrected by moving the membrane in its

local normal direction, which might seem ad hoc but is tantamount to a numerically enforced

variational constraint (Freund 2007).
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Another challenge is the close interactions between cells. In some species, red blood cells can

transiently form aggregates, which necessitates the modeling of molecular forces (Popel & Johnson

2005), but even in conditions for which aggregates do not form, cells will come close to each other

and vessel walls. For ideally smooth surfaces, lubrication mechanisms in the thin layers of plasma

that separate them would preclude contact, and we generally anticipate high-numerical-resolution

requirements to resolve these. The reality of interacting cells is of course much more complex.

Their glycocalyx coating (Section 3.1), thermal fluctuations of the membrane (Section 2), and

macromolecules (e.g., fibrinogen) in blood plasma (Figure 2c) potentially all affect dynamics near

contact. Representing molecular forces associated with these features is probably necessary to

faithfully represent close interactions in detail, and it is unclear if there are sufficient cell-surface

physiologic data to do this precisely in all cases.

In some cases, computational efficiency can be particularly important. The flow of multicell

systems can be chaotic, demanding long run times to converge statistics of interest. Similarly,

the microvasculature and many engineered devices have fundamentally complex geometry (e.g.,

Figure 1c). As for any type of simulation, representing this adds cost and can present additional

challenges.

A general solver for cellular blood flow needs to address all these challenges, and most problems

of interest involve at least some of them. Fortunately, there are several of methods available for

both the fluid and solid mechanics, each with certain benefits and drawbacks. Given the range of

applications involving blood flow, it is unlikely that any approach will be universally superior. The

following section summarizes options for representing the solid mechanics of the cell membrane

and addresses its resolution needs. That is followed by a detailed discussion of options for coupling

with a flow solver.

5. MEMBRANE DISCRETIZATION

5.1. Issues and Options

In the absence of significant inertia (see Section 2), the membrane is simply advected:

d�x

dt
= �u(�f (�x)). (8)

The list of surface points �x represents the cell surface as a structured mesh, an unstructured

mesh, or the collocation points of underlying basis functions. These positions are time integrated

according to Equation 8 by an appropriate algorithm. The flow solver provides their corresponding

velocities �u, which depend on the tractions �f exerted by the cells upon the fluid. These tractions

in turn depend on the deformation of the cells as embodied in �x. Thus the principal chore of the

membrane discretization is to evaluate the constitutive model that determines �f (�x). For simplicity,

I neglect membrane viscosity in this discussion but revisit it again in Section 7.2.

Finite elements, with their geometric flexibility and provable properties based on Galerkin

projections, are a common choice to discretize the solid mechanics of the membrane (Doddi

& Bagchi 2009, MacMeccan et al. 2009). The sphere-like geometry of the cells also facilitates

spectral description with spherical harmonics, which offers excellent resolution and convergence

(Veerapaneni et al. 2011, Zhao et al. 2010, Zick & Homsy 1982). Spectral-element methods, which

are finite-element methods crafted with orthogonal basis functions, offer both convergence and

geometric flexibility (Dimitrakopoulos 2007, Muldowney & Higdon 1995) and have been used

for detailed simulations of individual blood cells (Dodson & Dimitrakopoulos 2012). Particle

representations of the cell membranes, typically based on cell microstructure (Fedosov et al. 2012,
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Dealiasing: a
numerical procedure
for removing aliasing
error

Aliasing: the spurious
appearance at resolved
scales of the
unresolvable scales
created by nonlinearity

Pivkin & Karniadakis 2008; see Section 3.4.2), provide a unified fluid-solid algorithm with certain

advantages (see Section 6.5).

The accuracy of these different discretizations deserves comment. For the smooth cell shapes,

well-crafted finite-element methods converge with decreasing element size (h convergence), which

is usually quantified with the polynomial order of the element basis functions. Spectral elements

share this convergence but also have superalgebraic convergence with polynomial-order refine-

ment ( p convergence). Global spectral methods obtain this superalgebraic convergence as well.

However, the real utility of convergence depends on the accuracy goals of a simulation.

Very high accuracy might be required for some idealized problems, in which case faster conver-

gence can significantly reduce the cost. These might include establishing an extremely accurate

numerical solution that can be used in effect as an exact solution (e.g., Zick & Homsy 1982).

However, for blood cells, the uncertainty of the geometry and constitutive models in some cases

can obviate the utility of such accuracy. The convergence of a method (its order) is less relevant in

this case; accuracy for finite resolution is more important because it reflects how efficiently each

numerically represented degree of freedom is used. Mesh independence for important observ-

ables can be achieved without a converged pointwise solution, as is often the case in the simulation

of chaotic systems. Global spectral methods represent the underlying basis functions exactly, so

their resolution can be considered perfect: Every mesh point is used with full fidelity to represent

the cell shape. Despite their convergence characteristics, finite- and spectral-element methods do

not share this property as the low degree of interelement continuity reduces accuracy for short-

length-scale features. Specifically, derivatives are exact for represented modes with global spectral

methods but not for others.

Resolution can be quantified via the spectral properties of the discretization, comparing the

effective wave number implied by a numerical approximation of, for example, a derivative with

the exact wave number (Moin 2010). Effective wave numbers are exact for spectral methods, but

even spectral-element methods show significant deviations (Kwok et al. 2001). These notions are

central to the simulation of turbulence (Moin & Mahesh 1998), which at present has no hope of

convergence to a unique numerical solution. It is the resolution of spectral methods, rather than

their convergence, that enabled the first realistic simulations of turbulence.

Order and convergence of a method speak only to linear operations such as differentiation.

This is important, but it is not the only source of error. Nonlinearity can transfer energy to

scales that are not resolved, although this energy does not disappear as it should to be consistent

with the selected resolution. Instead, it is erroneously aliased to resolved scales. This degrades

the solution and, perhaps more importantly, also provides a feedback mechanism for possible

instability. Because a global spectral discretization provides an exact interpolation to finer meshes,

it facilitates a dealiasing procedure commonly used for turbulence (Canuto et al. 1987, Kravchenko

& Moin 1997). Evaluated on a finer mesh, the aliased energy can be explicitly filtered in a way that

is compatible with the user-selected resolution. In contrast to the incompressible Navier-Stokes

equations, dealiasing the nonlinear operations in the cell system is only approximate. Even so, it

provides stability without filtering or dissipation (Veerapaneni et al. 2011, Zhao et al. 2010), either

of which would degrade the solution fidelity. Thus resolution can be selected based on accuracy

rather than stability criteria. Simply carrying more mesh points (or basis functions) is another way

to accomplish the same objectives, but at greater cost, especially when one considers the time-step

restriction for explicit time advancement. Numerical dissipation or filters sacrifice resolution to

counter aliasing errors and stabilize methods.

An elastic shell discretization imposes a time-step restriction for explicit time integration

of Equation 8. The details depend of course on the specific formulation, although some gen-

eral conclusions are possible. The spectral radius based on the elasticity would suggest that
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Figure 4

A demonstration of resolution needs showing the refinement of maximum spherical harmonic degree N for a single red blood cell in a
diameter D = 7.05-µm tube. (a) The convergence of effective viscosity μeff , tank-treading rate (Freund & Orescanin 2011), and radial
axis offset. (b) Deformation spectra En =

∑n
m=1(a2

nm + b2
nm), where anm and bnm are coefficients of the spherical harmonic expansion (see

Freund & Orescanin 2011). (c–l ) Visualizations for resolutions as labeled.

Hematocrit: the
volume fraction of
blood cells

�tmax ∼ �x2/Ed ,s for the dilatational or shear resistance and �tmax ∼ �x4/Eb for the bend-

ing resistance, although the viscosity of the coupled flow will counter this. For red blood cells,

empirical results for a particular boundary integral scheme show (Zhao et al. 2010)

�t < min

(

2.5�x1.2

Ed

,
0.19�x3.2

Eb

)

. (9)

In this case, for an Ed selected to preserve the area within a few percent, it was found that the Ed

component dictated the time-step restriction for practical resolutions.

5.2. Resolution Needs: A Specific Example

Figure 4 shows a demonstration of the resolution needs for a single red blood cell flowing in a

streamwise-periodic tube of diameter D = 2.5ao = 7.05 µm, where ao is the radius of a sphere

matching the cell volume. The tube length is L = 4.3ao = 12.2 µm, so the mean volume fraction

of red blood cells (the hematocrit) is H c = 0.2, a number typical for microcirculatory flows. The

mean flow velocity is U = 2.68 mm/s for a pseudoshear rate U/D = 380 s−1, which is relatively

high physiologically. The cell was initialized off center as a sphere and ended up flowing steadily
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off the tube axis, as has been observed in experiments (Abkarian et al. 2008). Common values of

Es, Ed , and Eb are used (Pozrikidis 2005), with μcytosol = 5μplasma and without membrane viscosity.

A spherical reference configuration was selected to remove a small unsteadiness associated with

the membrane tank-treading motion for a biconcave reference configuration.

The spherical harmonic basis functions used here are particularly useful for assessing resolution

needs. Dealiasing afforded by this description allows us to consider maximum polynomial order

N spanning from obviously under-resolved N = 4 up to N = 98. Each coordinate direction has

N2 degrees of freedom for the cell shape �x. Cases with N ≤ 16 used degrees through M = 48

for nonlinear operations and quadratures; cases with N = 24 to 48 used M = 2N; the case N =

64 used M = 128; and the case with N = 98 used M = 100. In all cases, the cylindrical wall was

discretized with a regular triangular mesh of 9,696 elements.

Figure 4a shows the convergence with increasing N of the effective viscosity μeff , a tank-

treading rate 	 (Freund & Orescanin 2011), and the radial centroid location of the cell. Even the

poorly resolved N = 4 case provides a reasonable measure of the effective viscosity, reflecting the

general shape insensitivity of Stokes flow. A similar insensitivity was seen by Pan et al. (2011) for

an extremely coarse-grained representation using a dissipative particle dynamics (DPD) model

(see Section 6.5). Other observables require higher resolution. The tank-treading metric 	 has

∼50% errors for the lowest resolution. The sensitivity of 	 to resolution can be anticipated from

the visualizations in Figure 4c–l, which suggest that N � 12 is needed to remove obvious low-

resolution artifacts. Deformation spectra (Figure 4b) show that En is well represented through five

decades of decay for N = 12, which provides a resolution guideline. This figure also shows that

even in the obviously under-resolved cases, the low-order basis functions still provide a reasonable

model for those in the highly resolved cases. For N � 16, all the spectra lay atop one another.

6. FLOW SIMULATION METHODS

6.1. Overview

There are myriad methods for discretizing the flow equations. Eulerian finite-difference and finite-

volume methods, the traditional workhorses of computational fluid dynamics, are complemented

by the semi-Lagrangian lattice Boltzmann method, which has some advantageous properties for

incorporating the cells. The low Reynolds numbers also enable dissipative particle schemes. If

inertia is to be completely neglected (Section 2), then the linearity of the flow equations and the

availability of Green’s functions can be used in boundary integral discretization. Regardless of

the method selected, integrating the flow solver with the solid mechanics discretization requires

special attention, as it risks the introduction of significant error and potential instability. However,

in the inertia-free limit, especially if membrane viscosity is neglected, the combined dynamics in

Equation 8 can be broken into a series of one-way coupled steps, �x → �f → �u → ∂t�x, which

simplifies the formulation. This section reviews various methods for computing velocities �u given �f .

6.2. Boundary Integral Methods

The mathematical foundation of Odqvist (1930), as summarized and extended by Ladyzhenskaya

(1969), was crafted into an integral-based numerical method by Youngren & Acrivos (1975), the

generalization of which by Rallison & Acrivos (1978) for finite-viscosity drops is particularly rele-

vant for cells. The overall formulation, emphasizing numerical applications, has been summarized

in detail by Kim & Karrila (1991) and Pozrikidis (1992). The linear viscous flow equations, with
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imposed mean flow velocity U∞ and μcytosol = λμplasma, are equivalent to

u j (x) =
2

1 + λ
U ∞

j −
1

8πμ(λ + 1)

∫

fi (y)Gi j (y, x)d S(y)

+
1

8π

1 − λ

1 + λ

∫ PV

ui (y)T i j k(y, x)nk(y)d S(y),

(10)

where for ri = xi − yi , the Green’s functions

Gi j =
δi j

r
+

rir j

r3
and T i j k = −6

rir j rk

r5
(11)

yield velocity u and stress σ solutions

ui =
1

8πμ
Gi j g j and σi j =

1

8π
T i j kgk (12)

of the viscous flow equations for a singular source

−∇ p + μ∇2u = gδ(x − y) ∇ · u = 0. (13)

Quadrature of Equation 10 with Np discrete points leads to a linear system

�u =
2

1 + λ
U∞ +

1

1 + λ
A�f +

1 − λ

1 + λ
B�u, (14)

where A and B are N p × N p matrices. Given �f , the solution �u is required by Equation 8.

A benefit of this approach is that only surfaces are discretized (Figure 5a), so the possibly

narrow space between cells does not need to be resolved. The integrands of Equation 10 do

become sharper as cells become close, but this requires only surface refinement. This method also

avoids errors associated with interpolating velocities to the cell surfaces from a flow-solution mesh

as is required in some formulations (see Section 6.3). A disadvantage is that it is strictly limited to

linear viscous flow. It is also somewhat cumbersome compared to standard flow solvers in terms

of specifying boundary conditions. It can require auxiliary algorithms, for example, to enforce a

constant velocity condition.

In crafting the quadratures, care must be taken regarding the singular kernels (Figure 5b).

L’Hôpital’s rule is sufficient for some terms, but others are usually handled by subtracting out a

local function with the same singular behavior, leaving only a smooth function to be integrated

over the cell surface. This singular term is then evaluated independently with sufficient accuracy

and added back in. In two dimensions, this can be done analytically; however, it seems that in

three dimensions, it requires quadrature on a local fine mesh (Muldowney & Higdon 1995, Zhao

et al. 2010). Veerapaneni et al. (2011) provided a thorough discussion of these issues.

Treating the singular points in this way can constitute a significant fraction of the overall com-

putational expense; however, the same machinery can also increase accuracy for close interactions,

when the integrands display nearly singular behavior (Figure 5c). This imbues the method with

a secondary property, the value of which does not seem to be widely recognized: Close interac-

tions between cells can be accurately represented. A direct approach would require increasing the

resolution of the entire surface mesh. This nearly singular formulation instead takes advantage of

the relative smoothness of the cell shape compared to the integrand.

The details of the development of Equation 14 from Equation 10 depend on the various choices

of the discretization, including the singular-point treatment. In most cases, however, Equation

14 is not formed explicitly to avoid costly dense-matrix operations. Even in the uniform-viscosity

case, where λ = 1, the costly O(N 2
p ) dense matrix–vector multiplication A�f would outweigh the

benefits of this approach for even modest-sized systems. When λ 	= 1 (Equation 14), the dense-

matrix solution for �u is even more expensive. Fortunately, there are ways to solve Equation 14
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Boundary integral methods

Discretize cell surfaces; Re = 0

Near contacts challenge

the resolution of �xed mesh

solvers; adaptive mesh

re�nement is an attractive

approach to resolve these

Immersed boundary methods

employ membrane forces 

distributed to the local mesh 

g

Dissipative particle dynamics

can provide a uni�ed 

microstructure-inspired

solid-�uid Lagrangian

description

a

Integrands are sharper than 

cell shapes; singular integrands

require special treatment

b

Nearly singular formulations

facilitate accurate evaluation

for thin lubrication layers

c Lattice Boltzmann methods

are constructed from kinetic

rules that represent interfaces

and have been coupled with

lubrication models for

close interactions

f

e

Immersed interface methods

enforce membrane  jump conditions

built into discrete operators

d

h

Figure 5

Various aspects of available schemes for solving the dynamics of the cell membranes, represented here as red curves or surfaces.

accurately with O(N p ) or O(N p log N p ) operations. Matrices A and B in Equation 14 are dense

because of the slow spatial decay of the Green’s functions (Equation 11). The two most widely

used methods utilize the Green’s function structure for fast approximate evaluation of the matrix-

vector operations in Equation 14. Within an iterative scheme, this also facilitates fast solution for

�u. Particle-mesh and multipole methods are discussed in the following two subsections.

6.2.1. Particle-mesh methods. This approach starts with a decomposition of the Green’s

functions into short-range singular and smooth parts, such that Gi j = Gsr
i j + Gsm

i j , which was

first applied to the Stokes Green’s function by Hashimoto (1959). Both Gsr and T sr have a
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Gaussian decay, so unlike the full G and T, these can be accurately truncated to form sparse O(N)

matrix–vector products: Asr�f and B s r �u. The smoothness of the remaining long-range interactions

in Asm = A − Asr and Bsm = B − Bsr facilitates a Fourier description that decays rapidly in

wave-number space. It can also be interpolated to a mesh and evaluated with fast Fourier trans-

forms (FFTs), reducing the expense to O(N p log N p ). These are known as particle-mesh-Ewald

(PME) (Darden et al. 1993) or particle-particle-particle-mesh (P3M) (Hockney & Eastwood

1988) methods. In their formulation, there are many opportunities to reduce overall error by

canceling those of different suboperations. This approach seems to have been first applied to

Stokes flow systems by Higdon and coworkers (Guckel 1997, Metsi 2000). It has been used in fast

Stokesian dynamics (Sierou & Brady 2001) and was developed into its apparent state-of-the-art

form for more general suspensions by Saintillan et al. (2005). It was first used for blood cells in

two and three dimensions by Freund (2007) and Zhao et al. (2010), respectively.

In addition to being O(N p log N p ) (assuming as usual that an FFT is used), these PME/P3M

methods have a small operation-count coefficient, making them a common choice for accurate

evaluation of modest-sized N-body sums. A notable disadvantage is that the nonlocality of the

FFT hinders implementation and efficient scaling on parallel computers. Also, because these

algorithms involve balancing the errors of so many subcomponents, selection of the numerical

discretization parameters (e.g., the short-range cutoff, the FFT-mesh size, the splitting parameters

of the Green’s functions, and the B-spline interpolation order) can be significantly more involved

than standard flow solvers (Hockney & Eastwood 1988). Periodic boundary conditions are most

natural for FFTs, but there are straightforward ways at a modest additional cost to implement

free-space boundary conditions (Freund 2002, Hockney & Eastwood 1988, Pollock & Glosli

1996).

6.2.2. Fast multipole methods. A second approach to fast evaluation of the matrix-vector prod-

ucts in Equation 14 employs multipole expansions of the Green’s functions, extending the method

first developed by Greengard & Rokhlin (1987). These expansions provide means of grouping

long-range interactions, with expansion coefficients that can be developed hierarchically in a way

that leads most directly to an O(N p log N p ) algorithm. Additional expansions can yield O(N p ).

This approach appears to have been first formulated for Stokes flow by Greengard & Rokhlin

(1987), developed and used by Sangania & Mo (1996) for particles and by Zinchenko & Davis

(2000) for deformable drops, and applied to massive blood cell simulations by Rahimian et al.

(2010), seemingly just to demonstrate its parallel scaling. It has also recently been used in two

dimensions for a vesicle model of red blood cells by Selmi et al. (2011).

Fast multipole methods are elegant but are not as commonly used for problems of current

practical size. Despite the O(N) scaling, the coefficient is very large, ∼103 p4 in the original formu-

lation (Greengard 1988), where p is the order of the multipole expansion. It has been suggested

that electrostatics problems with even huge numbers of points will be more efficiently handled

with PME/P3M schemes (Pollock & Glosli 1996). However, different expansions and better adap-

tivity have reduced operation counts significantly to 150p + 5p2 or 47p3/2 + 2p2 +40p1/2 (Cheng

et al. 1999). It seems that about 1,800 floating point operations per singularity are required for

10−4 relative errors in electrostatic systems (Cheng et al. 1999), and it is expected that the Stokes

singularities will follow approximately this same scaling (Tornberg & Greengard 2008).

An attractive feature of fast multipole methods is that long-range interactions are grouped,

so unlike FFT-based methods, parallel implementation can be made efficient with judicious data

management. Because empty regions demand no computational effort, these methods are also

naturally adaptive. In contrast to PME/P3M, the natural formulation is free space, but periodic

conditions are possible (Greengard & Rokhlin 1987, Lambert et al. 1996).
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6.3. Mesh-Based Methods

The most common approach of computational fluid dynamics is the discretization of the Eulerian

flow equations on a mesh that fills the flow region. With this approach, it is straightforward to

develop methods that scale linearly (or close to linearly) with the problem size. It is also easy

to include finite inertia, which does not seem possible with boundary integrals. However, other

challenges are introduced. Foremost of these are the complex and changing cell shapes, which at

present remain beyond the capabilities of efficient dynamic mesh motion algorithms. The degree

of deformation and changing relative positions of the cells would necessitate substantial and fre-

quent mesh regeneration, which is computationally expensive. To avoid the meshing challenge,

the flow equations are typically solved on a fixed mesh that does not conform to the cell shapes.

This provides the accuracy and speed of fixed-mesh algorithms, although it requires additional for-

mulations to couple the fluid flow with its moving elastic boundaries. The requisite interpolations

introduce additional approximations, although errors do not seem prohibitive. The insensitivity

of Stokes flow to fine geometric details is probably helpful in maintaining accuracy despite the

nonconforming meshes.

A particular challenge for a fixed mesh is representing close hydrodynamic interactions between

cells, whether this is modeled as true solid-body contact, near contact with lubrication layers,

steric repulsion, or some other molecular interaction. Uniform meshes that are sufficiently fine

for accurate computation of the flow in spaces between cells would lead to huge numbers of

overall mesh points. Forces that arise in the lubrication limit are strongly sensitive to fluid gap

width, which might demand particularly accurate representation in some cases. It is intriguing that

velocity profiles are quadratic in the lubrication limit, so derivatives in principle can be exactly

computed with second-order methods, although it is unclear if any of the present schemes have

benefited from this.

For rigid particles, lubrication forces are particularly strong and in some cases can be regarded as

pairwise interactions, which is the foundation of the Stokesian dynamics description of suspension

hydrodynamics (Brady & Bossis 1988). In the rigid-particle limit, these lubrication layers can

dominate interactions (Nunan & Keller 1984). They can also introduce long timescales (Melrose

& Ball 1995). Corrections for fixed-mesh schemes that approximate lubrication forces have been

developed based on a leading-order singularity of the resistance matrix for simple particles (Nguyen

& Ladd 2002) or an approximation of that based on the local curvature (Ding & Aidun 2003).

Both are reasonable regularizations, facilitated for rigid particles by the fact that these forces

dominate close interactions, although a full analysis for flexible membranes is probably warranted.

The requisite fidelity for representing lubrication forces in flowing blood has not been thoroughly

studied and is probably dependent on the application. Given the high deformabilty of cells, we

can speculate that increasing lubrication pressures will more easily deform the cells than squeeze

out the thin lubrication layers.

Both finite-difference and lattice-Boltzmann discretizations have been used successfully with

nonconforming meshes (see the sidebar, Stokesian Dynamics). These are discussed in the following

subsections.

6.3.1. Finite-difference methods. There is a wealth of finite-difference methods for solving

the flow equations in a meshed volume, although most have been designed for moderate or high

Reynolds numbers, so application to cellular blood flow warrants some consideration. A general

discretization of the incompressible flow equations,

∂u

∂t
+ u · ∇u = −∇ p +

1

Re
∇2u ∇ · u = 0, (15)
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STOKESIAN DYNAMICS

Stokesian dynamics provides a numerical description of suspension hydrodynamics (Brady & Bossis 1988, Durlofsky

et al. 1987). The goal, which is shared by cell simulations, is to relate forces on particles �f to their velocities �u. The

linearity of the Stokes limit guarantees the existence of a mobility matrix M such that �u = M�f or, alternatively,

a resistance matrix, R = M−1, such that �f = R�u. The success of this method depends on the inclusion of both

long-range and lubrication interactions in M. Building the long-range M f from pairwise interactions provides a

fairly accurate approximation, and these are readily available in mobility form for simple shapes such as spheres.

The inverse R f thus represents many-body, long-range interactions. To this are added lubrication interactions

Rl , which are effectively pairwise with analytic lubrication-limit resistance forms available. With R = R f + Rl ,

the full system can be inverted to provide particle motion via M. Although the same long-range and lubrication

interactions are involved in the cell system, the utility of this approach relies on the availability of accurate analytical

formulas, which exist for simple shapes like spheres but not for the general shapes of cells. However, because it

is grounded in analytically tractable limits, the Stokesian dynamics description can illuminate the mechanisms in

blood. Furthermore, applying some of the same principles could facilitate the acceleration of numerical methods

or provide a framework for the multiscale modeling of cellular systems.

from time level n to n + 1 can be written as
[

A G

D 0

] [

un+1

p

]

=

[

rn

0

]

explicit r.h.s.

+

[

bu

b p

]

boundary cond.

, (16)

where p enforces incompressibility, D and G are discrete divergence and gradient operators, and

A and rn depend on the time-advancement algorithm. For time-implicit viscous terms and time-

explicit convective terms, A = I/δt + L/Re , with L representing the stress divergence operator.

Fractional-step methods (Chang et al. 2002, Kim & Moin 1985), which have been so widely used

for flow simulations, are based on an exact rearrangement of Equation 16,
[

A 0

D −DA−1G

][

I A−1G

0 I

][

un+1

q

]

=

[

rn

0

]

explicit r.h.s.

+

[

bu

b p

]

boundary cond.

, (17)

which is often solved in a three-step approach assuming A−1 ≈ Iδt:

Aw = rn + bu (solve for intermediate velocity w), (18)

DGp = Dw (solve for pressure with b p ), (19)

un+1 = w − Gp (project out compression). (20)

For Re → 0, rn is negligible, and Equation 20 guarantees discrete incompressibility Dun+1 = 0,

but solving in this limit can introduce a significant splitting error into the momentum balance

because A−1 	≈ Iδt. Fractional-step approaches have been used for Re = 0.01 (Doddi & Bagchi

2009, Yazdani & Bagchi 2011), but the consequences of this splitting error do not seem to have

been investigated. An exact splitting, based on a discrete curl operator and a corresponding discrete

stream function, would seem to eliminate this (Chang et al. 2002).

To include cells, one must represent the force exerted on the fluid by the cell membrane.

Immersed boundary methods distribute this singular force to nearby points using a discrete analog
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of the Dirac δ-function (Mittal & Iaccarino 2005) (Figure 5e). Because there are not boundary

layers in the viscous flow limit, this smearing procedure is relatively benign. However, faithful

representation of close interactions is now also limited by the length scale of this distributed force.

Sharper interfaces can be represented by immersed interface methods (LeVeque & Li 2003),

which modify the discrete operators to include interface jump conditions (Figure 5f ). This is

intricate even for rigid objects (Xu 2008). For the viscosity discontinuity of red blood cells, there is

no local representation of these jump conditions, although a nonlocal condition can be formulated

as a boundary integral (Biros et al. 2003), or the jump conditions can be incorporated as an unknown

into an overall iterative solver (Li et al. 2007). The sharp representation afforded by this method is

attractive, but it does not appear that immersed interface methods have yet been used for flowing

blood cells. Although relatively sharp, they would not, however, entirely solve the problem of

close approach, as it remains unclear how cell interactions of less than a mesh spacing could be

represented. It might be possible to include lubrication models along with the jump conditions in

modifying the discrete operators.

Adaptive mesh refinement, which would cluster points adjacent to the membranes (e.g.,

Vigmostad et al. 2010), could alleviate this, but it also does not seem to have been applied to

cellular blood flow. However, we can anticipate future efforts in this direction (Figure 5g).

6.3.2. Lattice-Boltzmann methods. Similar to finite-difference methods, lattice-Boltzmann

methods use a fixed volume-filling mesh (Figure 5d ). However, they are founded on a description

that yields the mechanics of the Navier-Stokes equation in a statistical limit (Aidun & Clausen

2010, Higuera & Jiménez 1989). The resulting scheme is simple to implement even in complex

geometries, localized in a manner compatible with efficient implementation on modern parallel

computers, and requires a small operation count. Galilean invariance is only approximate, although

this does not seem to be restrictive. In their basic form, these methods are second-order accurate

and share a similar dispersion error with low-order finite-difference schemes (Xu & Sagaut 2011).

Given the recent thorough review of these methods (Aidun & Clausen 2010), I only summarize

some basic considerations. The lattice-Boltzmann method has reproduced key features of blood

rheology (MacMeccan et al. 2009, Reasor et al. 2012) and facilitated the qualitative investigation

of cellular interactions (Sun & Munn 2008).

One consideration, of potential importance for cellular blood flow, is that the Re → 0 limit

is challenging. The statistical description of the flow equations is intertwined with a microscopic

viscous relaxation timescale, with the result that the computational expense increases as 1/Re for

Re → 0. However, it is possible to achieve Re < 1 and thus study flow in viscously dominated

regimes (Reasor et al. 2012). Care is needed to avoid spurious finite-inertia effects, just as the

complete absence of inertia must be recognized in interpreting boundary integral results, but this

is not a fundamental limitation.

The most direct kinetic bounce-back method for coupling the moving boundary of the cells

to the regular mesh yields a first-order approximation. Means of improving the accuracy, via

interpolation or extrapolation or by adjusting the collision operators of the underlying statistical

description, can improve accuracy at the cost of simplicity (Aidun & Clausen 2010).

6.4. Hybrid Integral-Mesh Methods

Kumar & Graham (2012a) have developed a hybrid method that shares features of both boundary

integral and mesh-based methods. In essence, a boundary integral equation is employed for a

short-range component of the interaction between two singular points on cell boundaries, using a
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free-space Green’s function that is functionally equivalent to the short-range portion of the

PME/P3M Green’s function. However, the FFT solution is replaced with a mesh-based Stokes

flow solution, which includes the smoothed components of the singular forces and any wall bound-

ary conditions. The combined scheme has the benefits of boundary integrals for close interactions

coupled with the wall geometry flexibility and boundary condition convenience of mesh-based

schemes.

This overall approach fits within the broad scope of P3M methods, which includes non-FFT

solutions for the smooth part of the decomposition (Hockney & Eastwood 1988). In general,

this does not realize the same error cancellation afforded by the FFT discretization, although the

advantage of the explicit representation of complex geometric boundary will potentially outweigh

this drawback. Kumar & Graham (2012a) implemented it with a Fourier-Chebyshev flow solver,

which provides an accurate baseline and demonstrated their method for several confined-flow

geometries. There is perhaps an opportunity for further improvement via optimization of the

implied P3M influence function to account for the errors in the mesh solution (Hockney &

Eastwood 1988).

6.5. Stochastic Particle Methods

Stochastic particle methods are often based on a dissipative particle dynamics (DPD) method first

proposed by Hoogerbrugge & Koelman (1992), in which the system is modeled mesoscopically by

particles, motivated by its underlying molecular makeup but each representing large groupings of

actual molecules (Figure 5h). Each of these superparticles is simple, without any internal degrees

of freedom. They interact via pair potentials designed to represent the material of interest. The

chemical character of interactions is heuristically represented by a deterministic interaction

FC
i j (ri j ). This is complemented by dissipative F D

i j (ri j , ui j ) and random F R
i j (ri j ) forces, which

together maintain a target temperature for the system (Koumoutsakos 2005). This is similar to

Brownian dynamics, often used to simulate the long-timescale behavior of polymers, but it includes

a detailed balance between particles and thus also can provide a numerical solution of the flow

equations.

Unlike continuum-based formulations, the unified discretization of DPD methods naturally

couples flow with microscopic structural models. Detailed and coarse-grained spring-based mod-

els of red blood cell mechanics have been implemented (Fedosov et al. 2010, 2012, Pivkin &

Karniadakis 2008), which have reproduced experimental results. A particular advantage is that

membrane viscosity is automatically included, whereas it is challenging to include in most other

methods (see Section 7.2). Given the low degree of particle-to-particle continuity, such methods

would require larger numbers of particles to accurately represent sharp cell features such as in

Figure 4, but it is also clear that such resolution is not necessary for many objectives. DPD will

potentially be advantageous if thermal fluctuations are important, although it is currently un-

clear if it has sufficient resolution to represent hydrodynamics on the same ∼200-nm scale of the

membrane thermal fluctuations.

Noguchi & Gompper (2005) used a related multiparticle collision dynamics model (Gompper

et al. 2008) to simulate blood cells. This is similar to DPD, with the key difference that virtual col-

lisions take place according to a schedule with fixed �t rather than dynamically. This introduces an

additional model parameter but avoids fast timescales associated with the implicit compressibility

of DPD. Although there is low fidelity for representing hydrodynamic details, these methods can

also be used to study the interesting phenomenology of blood cells. For example, Noguchi &

Gompper (2005) show a switch from axisymmetric to nonaxisymmetric behavior for a red blood

cell flowing down a narrow tube.
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7. ADDITIONAL CHALLENGES

7.1. Stiff or Rigid Particles

The sections above focus on the simulation of red blood cells, particularly on the key challenge of

including their high deformabilty. However, rigid particles can provide a model for white blood

cells (Krasik et al. 2008), platelets (Mody & King 2008, Zhao et al. 2012), and suspended particles

such as magnetic beads (Freund & Shapiro 2012). A rigid model presents an additional challenge.

Including rigid-body motion in boundary integral methods (Equation 10) leads to a singular

system. This can be resolved by projecting the six rigid-body velocity eigenvectors out of the linear

system in Equation 14, treating them analytically, and then reintroducing them (Kim & Karrila

1991, Pozrikidis 1992). Although tedious, this is compatible with typical algorithms and is fairly

easy to test. This same procedure can also accelerate convergence when vesicles contain a high-

or low-viscosity fluid, which renders the system nearly singular (Pozrikidis 2001).

For mesh-based solution, rigid particles introduce, in effect, an infinitely fast timescale across

the particle dimension, which can restrict the permissible time step. An implicit time advancement

seems necessary for particle motions, at least for particles that extend over several mesh cells

(Ladd & Verberg 2001).

7.2. Viscoelastic Membranes

As discussed in Section 3.3, the red blood cell membrane is expected to be viscous, and models

for this have existed for some time (Evans & Hochmuth 1976a). However, in most simulations,

membrane viscosity is neglected. This is in part because the formulation for viscous flow on a

time-evolving manifold is intricate, even for a simple Kelvin-Voigt model, which assumes viscous

and elastic stresses to be additive (Secomb & Skalak 1982). Recent efforts to recraft traditional

formulations (Aris 1962) to facilitate simulation (Arroyo & DeSimone 2009) do not substantially

simplify it. However, beyond the additional complexity, the real challenge is that viscoelasticity

precipitates the reformulation of the governing equations. It requires that an implicit dependence

on �u be added to Equation 8, yielding

d�x

dt
= �u(�f (�x, �u)). (21)

A linear implicit system for �u already exists in boundary integral formulations (Equation 14), but

viscoelasticity is nonlinear owing to geometric factors. Fortunately, viscoelasticity does not seem

necessary to reproduce some basic phenomenology of blood flow, such as its effective viscosity in

narrow tubes (Figure 3), although the bounds of its importance are unclear, as discussed in the

context of experimental observations in Section 3.3. Stochastic particle methods (see Section 6.5)

include a viscosity much more readily (Fedosov et al. 2010, Noguchi & Gompper 2005) than other

formulations, which is one of their key advantages. For these, linear viscosity coefficients can be

deduced from the collision model parameters, but a general continuum model for viscous effects

has not been formulated. That said, for red blood cells, it is currently unclear if there are sufficient

data available to support a more detailed viscosity model.

8. SUMMARY AND OUTLOOK

Above I motivate the cell-scale simulation of flowing blood, summarize its challenges, and present

an array of simulation methods that can and have been integrated to meet these challenges. As

part of this, experimental data are reviewed to provide a sense of their availability for constitutive

modeling and validation. A goal was to emphasize the respective benefits and drawbacks of different
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models and numerical methods. I hope this was done in a balanced way, with sufficient emphasis on

this important point: The best numerical methods, their needed resolution, and the constitutive

models employed will depend on the details and goals of their application.

Sorting out the simulation and modeling needs for different objectives is a near-term goal for

work in this area. Some applications will benefit from high convergence order or high resolution,

whereas for others, the speed afforded by nominally lower accuracy and coarse graining will be

relatively advantageous. For any given objective, the best means are still being worked out for

flow-structure coupling, selecting complex and uncertain constitutive models, the near incom-

pressibility of membranes, the mix of relatively rigid and flexible particles, and close interactions

and contacts. More detailed experimental data will aid this, especially if they are acquired specif-

ically for flow situations; the uncertainty regarding the applicability of deformations imposed

artificially by pipettes, beads, or other means will remain a concern for some time. Microfluidic

devices designed to simultaneously create complex flow interactions and measure the resulting

cell response with quantitative diagnostics will be invaluable in identifying needs.

In the longer term, methods for large-scale simulations will have to adapt to changing com-

puter platforms. It is anticipated that systems will tend toward greater concurrency and greater

heterogeneity, and this will affect algorithm choices. For example, methods that use boundary

integrals with FFT-based fast solvers will not scale well, and in these cases, alternatives such as

multipole methods or hybrid integral-mesh methods will likely be preferable.

The absolute simulation cost is important and underlies some of the statements made in this re-

view, but I avoid general conclusions in this regard because they are challenging to make precisely.

It is easy to state that the simulation with N = 16 in Figure 4 took 10 s per �t = 30-µs time step

running on two cores of a 2.4-GHz Intel Xeon workstation and that the 90-cell case visualized in

Figure 5 with this same cell resolution and 51,000 wall elements took 200 s per time step on eight

cores of the same system, but such statements are of only moderate value. They do not speak to

the fidelity achieved for the quantity of interest, do not take into account any serial and parallel

code optimizations, and certainly do not assess important but vague factors such as developer and

user time. For purposes of this review, general efficiency and accuracy statements are made, but

these are not presented on a specific per–floating point operation or similar computational cost

basis. All schemes reviewed have satisfied a sufficiency condition in this regard: They have been,

or at least could have been, used for fluid mechanics studies of multicell systems using present-day

computational resources.

For simulating blood cell fluid mechanics, increasing the physical realism of the models will

remain a challenge. Whatever the modeling approach, there will be a need to improve models

for the flow-coupled effects of red blood cell aging, lysis, fatigue, disease, ATP metabolism, ag-

gregation, interactions with metastatic cancer cells, and so on. Similarly, a fuller description of

the physical environment of blood cells will broaden the potential impact of such simulations in

biology and biomedicine. For example, better modeling of the endothelial glycocalyx will facilitate

a physically realistic representation of small vessels (Weinbaum et al. 2007). Some of these circum-

stances might benefit from the application of inverse approaches for calibrating models and for

quantifying their inherent uncertainty. Better physical models, perhaps developed in conjunction

with simulation, and better numerical implementations are probably more important—and more

challenging—than the brute-force representation of larger systems of cells, as continuum models

perform well for systems significantly larger than the cell scale.

We can also anticipate ample opportunities for improved models of the collective system in ways

that are either illuminating regarding the core mechanisms or beneficial for advancing simulation

capabilities. These are likely to be scale-bridging models spanning between relatively large vessels,

mid-sized red blood cells, and small platelets or suspended particles or macromolecules. Transport
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models, such as the stochastic margination model of Kumar & Graham (2012b), could be coupled

with the more detailed models considered in this review to broaden their applicability to larger

systems and longer times. Likewise, the short length scales and timescales of binding kinetics, as

an example, might be amenable to a Stokesian dynamics description within a more detailed blood

cell simulation, which could also provide instantaneous mobilities of the binding components.

Although the simulation techniques and core fluid mechanics are built on rigorous foundations,

the simulation of cellular blood should be recognized as applied fluid mechanics. The long-term

impact of such simulations will depend on their utility in understanding blood flow and in the

design of devices that handle it. Maintaining a focus on biological questions and biomedical needs

will be important.

SUMMARY POINTS

1. The cellular detail of blood is an essential feature of its flow mechanics in small configu-

rations. Simulations can reveal phenomena, quantify it, and potentially aid in the design

of devices to process blood on the cellular level.

2. Cell-scale blood flow is fundamentally viscous although also significantly nonlinear be-

cause of the geometric nonlinearity of the cells and their constitutive models.

3. Sufficient experimental data are available to parameterize both continuum and mi-

crostructure constitutive models for red blood cells.

4. Key simulation challenges are (a) the flexibility of red blood cells, (b) the coupling of

the flow dynamics with the elastic deformations of the cells, (c) the interaction of the

cells at close distances, (d ) the dilatational stiffness of the cell membrane, and (e) the

computational expense of solving complex (often chaotic) systems for long times.

5. The linear fluid mechanics allows a boundary integral description, which is particularly

advantageous because it (a) can resolve close interactions and (b) provides direct fluid-

structure coupling without additional discrete approximations.

6. Mesh-based methods can draw on the vast set of tools available in computational fluid

dynamics. Of these, lattice-Boltzmann methods are particularly (a) simple to imple-

ment, (b) relatively flexible for efficiently representing complex geometries, and (c) easily

implemented in parallel.

7. Stochastic particle dynamics methods (a) provide a unified framework for coupling fluid

and solid mechanics; (b) fundamentally include thermal fluctuations; and (c) naturally

include membrane viscosity, which is challenging in many formulations.

8. Different applications will benefit from the advantages of different methods. No single

method is expected to be universally advantageous.

FUTURE ISSUES

1. Most constitutive models are based on configurations that do not necessarily provide

deformations corresponding to the needs of flow simulation. Codesigned experiments

and simulations will focus effort on the fluid mechanical impact of constitutive models

and best guide their refinement for predicting flow phenomena with higher accuracy in

more extreme flow conditions.
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2. The long-term impact of such simulations depends on their utility in blood biophysics

and particularly on the design of interventions and biomedical devices that involve cell-

scale blood flow.

3. Effective viscosity and similar measurements provide useful baselines but are insensitive

to model and numerical errors owing to the general diffusive character of Stokes flow.

More detailed applications will need experimental data that are more sensitive to cell

properties.

4. Adaptive mesh refinement techniques could significantly increase the efficiency of mesh-

based methods, especially flows with close interactions between cells.

5. Multiscale modeling, perhaps informed by detailed simulations of the kind reviewed

above, will broaden the range of space and timescales that can be studied.
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Higuera FJ, Jiménez J. 1989. Boltzmann approach to lattice gas simulations. Euophys. Lett. 9:663–68

Hochmuth RM, Mohandas N, Blackshear PL Jr. 1973. Measurement of the elastic modulus for red cell

membrane using a fluid mechanical technique. Biophys. J. 13:747–62

Hochmuth RM, Ting-Beall HP, Beaty BB, Needham D, Tran-Son-Tay R. 1993. Viscosity of passive human

neutrophils undergoing small deformations. Biophys. J. 54:1596–601

Hochmuth RM, Waugh RE. 1987. Erythrocyte membrane elasticity and viscosity. Annu. Rev. Physiol. 49:209–

19

Hockney RW, Eastwood JW. 1988. Computer Simulation Using Particles. Bristol: Inst. Phys.

Homsy A, van der Wal PD, Doll W, Schaller R, Korsatko S, et al. 2012. Development and validation of a low

cost blood filtration element separating plasma from undiluted whole blood. Biomicrofluidics 6:012804

Hoogerbrugge PJ, Koelman JMVA. 1992. Simulating microscopic hydrodynamic phenomena with dissipative

particle dynamics. Europhys. Lett. 19:155–60

Humphrey JD. 2002. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer

Jackson SP, Nesbitt WS, Westein E. 2009. Dynamics of platelet thrombus formation. J. Thromb. Haemost.

7:17–20

Kamm RD. 2002. Cellular fluid mechanics. Annu. Rev. Fluid Mech. 34:211–32

Kim J, Massoudi M, Antaki JF, Gandini A. 2012. Removal of malaria-infected red blood cells using magnetic

cell separators: a computational study. Appl. Math. Comput. 218:6841–50

Kim J, Moin P. 1985. Application of a fractional-step method to incompressible Navier-Stokes equations.

J. Comput. Phys. 59:308–23

Kim S, Karrila SJ. 1991. Microhydrodynamics: Principles and Selected Applications. Boston: Butterworth-

Heinemann

Koumoutsakos P. 2005. Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37:457–87

Koumoutsakos P, Pivkin I, Milde F. 2013. The fluid mechanics of cancer and its therapy. Annu. Rev. Fluid

Mech. 45:325–55

Krasik EF, Caputo KE, Hammer DA. 2008. Adhesive dynamics simulation of neutrophil arrest with stochastic

activation. Biophys. J. 95:1716–28

Kravchenko AG, Moin P. 1997. On the effect of numerical errors in large eddy simulations of turbulent flows.

J. Comput. Phys. 131:310–22

Kumar A, Graham MD. 2012a. Accelerated boundary integral method for multiphase flow in non-periodic

geometries. J. Comput. Phys. 231:6682–713

92 Freund

Changes may still occur before final publication online and in print

A
n
n
u
. 
R

ev
. 
F

lu
id

 M
ec

h
. 
2
0
1
4
.4

6
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
Il

li
n
o
is

 -
 U

rb
an

a 
C

h
am

p
ai

g
n
 o

n
 0

9
/0

2
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



FL46CH04-Freund ARI 27 July 2013 11:21

Kumar A, Graham MD. 2012b. Mechanism of margination in confined flows of blood and other multicom-

ponent suspensions. Phys. Rev. Let. 109:108102
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