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At first it seemed to them that although 

they walked and stumbled until they were 

weary, they were oreeping forward like 

snails, and getting nowhere. Eaoh day the 

land looked muoh the same as it had the day 

before. About the feet of the mountains 

there was tumbled an ever wider land of 

bleak hills, and deep valleys filled with 

turbulent waters. Paths were few and 

winding, and led them aften only to the 

edge of some sheer fall , or down into 

treaoherous swamps. 

(J.R.R. Tolkien, The Lord of the Rings) 
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Abstract 

The finite element method is frequently used to simulate forming 

processes for the purpose of predicting the quality of the final 

product and the load on the tool. Until recently, the mathematica! 

model which underlies the simulation was based on either the Eulerian 

or the Lagrangian formulation. The consequences are that some 

simulations are arduous or even impossible . This is not the case if 

the Arbitrary-Eulerian- Lagrangian (AEL) formulation is used. In this 

thesis the theoretiçal background of this formulation is described. 

It is employed in some numerical simulations. 

The basis of the AEL formulation is the use of a reference coordinate 

system which is not associated with the material to be deformed 

(Lagrangian formulation) and has no fixed spatial position (Eulerian 

formulation). The relevant quantities are understood to be a function 

of the coordinates, defined in this reference system. The quantities 

are discussed and the mathematica! model is formulated using the 

principle of weighted residuals. 

To make the mathematica! model suitable for numerical analysis, it is 

discretised , both with respect to the progress of the process (the 

incremental method) and to the reference system (the element method). 

A special technique is used to determine material-associated 

quantities . 

The current position of the reference system, that is, the current 

position and geometry of the elements, is understood to be the result 

of the deformation of a fictitious material associated with the 

reference system. The load which causes this deformation and its 

kinematic boundary conditions are determined so as to satisfy certain 

requirements of the geometry of the elements and to provide the 

possibility to account for certain boundary conditions in a 

straightforward manner . The deformation of the realand the 

fictitious material is a simultaneous process . 

The discretised mathematica! model consis ts of a system of nonlinear 

algebraic equations. The unknown quantities are determined by an 
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iterative method. In that case a number of approximations for the 

final solution is determined by repeatedly solving a linearised 

version of the above system of equations . 

The AEL formulation is succesfully employed in the simulation of some 

axisymmetric forming processes . 
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Symbols and notatien 

* an upper-right index denotes the state in which the quantity is 

considered. 

* an asterix * denotes that the quantity is considered at a boundary 

point. 

* a cap denotes that the quantity is co-rotational. 

* an under-right index e denotes that the quantity is used to 

describe the state of one element . 

* an over-lined symbol is used for a quantity, describing the state 

of the fictitious material. 

* the number in brackets denotes the page where the symbol occurs for 

the first time . 

.. 
a 

11~11 

I I#. 11 

.. .. 
a.a 

.. 
a.#. 

~ * b 

#..IB 

#.:B 

#.IB 

tr(#.) 

vector 

secend-order tensor 

.. 
length of a 

norm of #. 

conjugate of #. 

inverse of #. 

co-rotational tensor 

deviatoric part of #. 

hydrastatic part of #. 

fourth-order tensor 

dot product of two veetors 

dot product of a vector and a secend-order tensor 

cross product of two veetors 

dyadic product of two veetors 

dot product of two secend-order tensors 

dubble dot product of two secend-order tensors 

tensor product of two secend-order tensors 

trace of #. 



det(~) 

a 

.. 
a 

T a 

.. 
c 

.. 
l 

D 

I) 

E 

E 

.. 
e 

.. 
E 

* 

0.6 

determinant of ~ 

scalar column (= column with scalars) 

vector column 

scalar matrix 

tensor matrix 

transposed column 

transposed matrix 

MRS vector basis [!!.4] 

tangent veetors [II.9] 

CRS vector basis [!!.18] 

tangent veetors [!!.20] 

reciprocal MRS vector basis [I I. 6] 

reciprocal tangent veetors [I I. 10] 

reciprocal CRS vector basis [!!.19] 

reciprocal tangent veetors [!!.21] 

logarithmic strain tensor [!!.17] 

elastic material tensor [!!.29] 

deformation rate tensor [II.S] 

volume-change factor [!!.13] 

surface-change factor [!!.15] 

MRS change [!!.7] 

CRS change [II .19] 

iterative MRS change [V. 2] 

iterative CRS change [V.2] 

Green-Lagrange strain tensor [!!.15] 

Young's modulus [V.S] 

effective plastic strain [V.S] 

Cartesian vector basis [VI.1] 

cilindrical vector basis [VI.1] 
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F deformation tensor [II.12] 

g, g * CRS coordinates [II.18, II.20] 

* G, G set CRS coordinates [!!.18, !!.20] 

G shear modulus [V.8] 

G material parameter [V.16] 

H set hi3tory parameters [!!.30] 

h hardening parameter [V . 11] 

I unit matrix [II.6] 

[ unit tensor [!!.6] 

* J, J Jacobian [II . 5, II.9] 

* J I J Jacobian [!! . 18, !! . 21] 

J1,J2,J3 invariantsof asecond-order tensor [A3 . 1] 

K bulk modulus [V.B] 

À lenght-change factor [II.14]; sealing factor [V.12] 

4" 
L elasto-plastic material tensor [1!.30] 

z lengthof an element side [VI.13] 

* m, m MRS coordinates [II.3, II.8] 

* M, M set MRS coordinates [II.3, II . 8] 

p material parameter [V.16] 

~ iterative elasto-plastic material tensor [V.16] 

« unit outward normal vector at MRS boundary point [I!. JO] 

~ 

V unit outward normal vector at CRS boundary point[II.21] 

n number of elements [III.5] 

V Poisson's ratio [V.8] 

~ 

p position vector [II.3] 

~ 

p boundary force vector [IV . 4] 
~ 

~ 

q, q body force vector [II.27, IV.4] 

R rotation tensor [II.15] 
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-+ -+ -+k 
Q, 

~e' 
r - nodal point force veetors [1V.5, 1V .5, V11.9] 

r, Ijl, z cilindrical coordinates [V1 . 1] 

aJ Cauchy stress tensor [11 . 25] 

0 
V 

yield stress [V . 8] 

"( state [!.1] 

I' rotation tensor [II . 16] 

-+ -+* 
t, t stress vector [11 . 25, 11 . 28] 

t n 
normal stress [II.25] 

t s shearing stress [11.25] 

1J stretch tensor [!1.14] 

-+ 
u velocity of a CRS point [11.19] 

V, dV volume [11.3, II.13] 

* * V I dV surface [11 . 9, 11.15] 

-+ 
V velocity of an MRS point [II.7] 

-+ 
w weighting function [!1.28] 

"' 
column with interpolation functions [111.6] 

.. -+* 
x, x mapping [11 . 3, II . 8] 

-+ -+* 
X I x mapping [1! . 18, II.20] 

-+ 
dx material line element [II.13] 

-+ 
àmx incremental MRS point displacement [III.4) 

.. 
à x g 

incremental CRS point displacement [III . J] 

-+ 
d x m iterative MRS point displacement [V . 2] 

d -+ 
gX iterative CRS point displacement [V . 2] 

x, y, z Cartesian coordinates [VI.1] 

11 rotation rate tensor [II.8] 

* 
V I V 
-m -m 

column operator [II.4, ·II . 9] 

* 
V I V 
-9 -9 

column operator [1!.18, II . 21] 

-+ -+* 
V, V gradient operator [II .7 , II.11] 
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The mathematieal model 

Necessary for the simulation of a metal forming process is the tor

mulation of a mathematica! model of it. Analysis of this model by 

means of a computer provides numerical data on the forming process. 

The state variable 

When formulating the mathematica! model, a state variable is used to 

identify discrete states of the forming process. The state variable, 

which is a scalar quantity denoted by T, is found to increase in 

value, when succeeding states of this process are considered . 

The referenee system 

A set of independent variables, coordinates within a reference 

s ys~em, is used to identify either points of the body undergoing the 

deformation ar points of space. Several reference systems can be 

used, all resulting in different formulations of the mathematica! 

model. The Eulerian and Lagrangian formulations are frequently used. 
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The Eulerian formuZation 

With the Eulerian formulation the reference system is fixed in space, 

as is shown in fiqure !.1 for two states- t 1 and t 2 - of the 

process. This space-associated reference system is called the Spatial 

Reference System (SRS). Every spatial point of the SRS is 

unaabiquously identified by an invariable set of independent SRS 

coordinates. 

rP2 ----

Fig. I.l 

SRS point P with SRS cooPdinates (r ,r ) 
pi p2 

The Lagrangian formuZation 

In the case of the Laqranqian formulation the reference system is 

attached to the body, as is shown in fiqure !.2. This material

associated reference system is called the Material Reference System 

(MRS). Every point of the MRS and thus every material point of the 

body is unaabiquously identified by an invariable set of independent 

MRS coordinates. 
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Fig. I. 2 

MRS point P with MRS coordinates (mpl'mp2) 

The finite element methad 

The merits and demerits of the foregoing formulations become clear 

when the finite element method is used to analyse the mathematica! 

model. Following this method the state of the forming process is 

described at a limited number of points of the used reference system, 

the nodal points. To determine the state at these points it is neces

sary to subdivide the reference system or part of it in a limited 

number of subregions, the finite element~. 

Using the Eulerian formulation the boundary of the body does not 

coincide everywhere with an element side, as can be perceived from 

figure I . 3a. This makes it rather arduous to take material

associated boundary conditions into account. Using the Lagrangian 

formulation, elements may distart excessively on account of the 

deformation of the body, as is shown in figure I.3b. This may cause 

numerical difficulties during the analysis of the model. By using the 

Arbitrary-Eulerian-Lagrangian (AEL) formulation the above-mentioned 

difficulties can be overcome. 
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t, '[2 

/"' -~ / 
/ 

V 
J / 

V 

V a V 
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~ ~ / 
V 

1\. 
I'--"' ""'- V -

Fig . . r. 3 

Element mesh, using the Euler>ian (a) and the Lagroangian (b) tormulation 

The Arobitroaroy-Euler>ian-Lagroangian tormulation 

The reference system tised in the AEL tormulation is not fixed in 

space nor attached to the body, as is shown in figure !.4. This non

associated ieference system is called the Computational Reference 

Systea (CRS). Every point of the CRS is unaabiguously identified by 

an invariable set of independent CRS coordinates . 

The fact that the position of the CRS points is not given, yet can 
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be freely determined provides much freedom in formulating the 

mathematica! model. The CRS can be f:i.xed in space, which leads to an 

Eulerian formulation, or can be attached to the body, thus leading to 

a Lagrangian formulation . The position of the CRS points can also be 

changed continuously and in a prescribed manner during the simulation 

of the forming process . The CRS point positions can also occur in the 

mathematica! model as unknown variables. In that case the model has 

to be extended by considering a so- called CRS determination process 

simultaneously with the forming process. 

Fig. I. 4 

CRS point P with CRS coordinates (gpl' gp2) 

In the mathematica! model of a forming process accordi ng to the AEL 

formulation, both the CRS and the MRS are used . The AEL formulation 

requires that there is an unambiguous conneetion between these two 

reference systems in every state . The freedom to choose the position 

of the CRS points is thus limited in the sense that each CRS point 

always coincides with one and only one , though not always the same 

MRS point and vice versa. This means that the boundary of the CRS 

always coincides with the boundary of the body to be deformed . Thus, 

when using the finite element method, all sorts of boundary 
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conditions can easily be taken into account. At the same time the 

nodal point positions can be prescribed or determined in a CRS 

deteraination process, in such a way that the dimension and the 

geometry of the elementsis appropriate (see figure !.5). 

r, ~ 

Fig. I. 5 

Element mesh, using the AEL fo~Zation 

The AEL fo~Zation in titerature 

The AEL formulation, tagether with the finite difference or the 

finite element method, is frequently employed to simulate processes 

in gasses and fluids and processes with fluid-structure interaction . 

- Hirt et al. (1972), Pracht (1974), Stein et al. (1976), Belytschko 

& Kennedy (1978), Donea (1978), Dwyer et al . (1980), Hughes et al. 

(1981), Kennedy & Belytschko (1981), Donea et al. (1982) -. Very re

cently the AEL formulation, tagether with the finite element method, 

has been used to simulate forming processes - Huetink (1982) -. As 

well in the Eulerian as in the Lagrangian formulation, so-called 

rezoning methods are used, where the nodal point positions are 

adjusted, if necessary, in a rather ad hoc manner - Gelten & De Jong 

(1981), Roll & Neitzert (1982) -
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II An AEL formulation for continuurn mechanics 

. 1 Introduetion 

.2 Geometrie and kinematic quantities 

.3 Stress tensors 

. 4 The equilibrium equation and the principle of weighted 

residuals 

.5 A constitutive equation for time independent elasto

plastic material behaviour 

II.1 Introduetion 

When employing the Arbitrary-Eulerian-Lagrangian (AEL) formulation to 

the simulation of roetal forming processes, two sets of independent 

variables are used: the coordinates in the Computational Reference 

System (CRS) and the coordinates in the Material Reference System 

(MRS), respectively, the so-called CRS and MRS coordinates. Various 

geometrie quantities can be defined at every point of these reference 

systems. Considering the change of these geometrie quantities during 

a state transition leads to the definition of various kinematic 

quantities . The kinematic quantities which refer to a point of the 

MRS describe the deformation of the material. In every state there is 

an unambiguous relation between the CRS and MRS coordinates. Sectien 

II.2 deals with the geometrie and kinematic quantities and the 

relation between CRS and MRS coordinates. 

The deformation provokes stresses in the material. The stress state 

in an MRS point is represented by means of a stress tensor. In sec

tien II . 3 two stress tensors are introduced. 

If inertia effects are neglected the internal stresses and the 

external loads must constitute an equilibrium state. This means that 
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at every MRS point the stress tensor and the external load vector 

have to satisfy an equilibrium equation. This equation is presented 

insection !!.4. Subsequently an integral formulation is introduced 

which is equivalent to the equilibrium equation and very suitable for 

determining an approximated solution. 

The stresses in the material and the deformation which causes them 

must satisfy a constitutive equation. In section !!.5 a constitutive 

equation for time independent, elasto-plastic material behaviour is 

presented. 
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II.2 Geometrie and kinematic quantities 

The MRS coordinates 

Geometrie quantities 

Kinematic quantities 

The boundary 

Geometrie quantities at the boundary 

Kinematic quantities at the boundary 

Deformation quantities 

Rigid body rotation and co-rotationaZ quantities 

The CRS coordinates 

Geometrie quantities 

Kinematic quantities 

The boundary 

Geometrie quantities at the boundary 

Kinematic quantities at the boundary 

The reZation between MRS and CRS coordinates 

The MRS coordinates 

Each partiele of a three-dimensional body can be identified unam

biguously by a set of three independent MRS coordinates m1, m2 and 

m
3

, which can be taken as elements of a column m. The columns m of 

all MRS points are the elements of an invariable set M. In state T 

the position vector p of MRS point m with respect to a fixed spatial 

point, the origin, is 

.. 
p 

.. 
x(m, T) (II .2.1) 

In state T the function ~. which is unique, continuous and 

sufficiently differentiable, can be considered as a mapping .. 
x : M .. V(t), where V(t) is thesetof end points of the position .. 
veetorspof the MRS points. A subset of V(T), containing the end 

points of the position veetors p = x(m,T), with mEM and m. is 
J 

constant for j f i, is called the mi-parametric curve in state T . 

The end point of every position vector p is situated on three 

different parametrie curves (see figure II.2.1). 
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l 

Fig. II. 2. 1 
-+ -+ 

Pos ition veetoP p x(~,T) and t he thPee paPametrie curves thPough 
MRS point ~ 

Geometrie quantities 

The tangent veetors to the three parametrie curves in every MRS point 

m, are mutually independent and constitute the local MRS vector basis 
~ 
b(m,t) which is considered to be always right-handed and is defined 

by 

b. 
1 

(i c {1, 2, 3}) (II.2.2) 

In shortened form this can be written as 

.. 
V x 
~m 

(11.2.3) 
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where V is a column operator which, in transposed form, is given by 
~m 

The basis veetors are shown in figure !!.2.2. 

Fig. II. 2.2 

, 
I 

fm 1 

->- ->- ->-
Basis veetors b

1
, b

2 
and b

3 
at MRS point ~ 

The Jacobian J(m,t) of the mapping 
.. 
x M .. V(t) .. .. .. 

product of the basis veetors b1, b2 and b3 

J 

(II.2 . 4) 

equals the triple 

(II. 2 . 5) 

On account of the properties of 

is never equal to zero. 

.. 
x M .. V(t), it is obvious that J 
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The reciprocal MRS vector basis is denoted by ~(m,t) and can be 

determined from the requirement 

I (II .2 .6) 

where I is the 3x3 unit matrix. It is easily shown that 

[ (II.2.7) 

where [ is the second-order unit tensor. From this relation it can be .. .. .. 
shown that c 1, c2 and c3 must satisfy 

1 b * b 
J 2 3 (II.2.8) 

The reciprocal basis veetors are shown in figure II . 2 . 3. 

Fig. II.2.3 
+ + + 

Reciprocal basis veetors c 1, c
2 

and c
3 

at MRS point~ 



IL 7 

Using the local reciprocal vector basis, the gradient operator can be 

expressed in the column operator ~m 

.. 
V 

-+T c V 
~ ~m 

Kinematic quantities 

,. .. 
v b.v 
~m 

(II.2.9) 

In every state and at every MRS point the quantity A is defined and 

given by A= a(m,t). The change of A at MRS point m duringa state 

transition àt is called the MRS change of A and denoted by àmA 

(II.2 . 10) 

The MRS derivative of A is denoted by A and defined by 

A (!!.2 . 11) 

The velocity ~ of an MRS point is defined as the MRS derivative of 

the position vector of that point 

.. .. 
v x(m , T) 

.. 
p (!!.2 . 12) 

Using (II . 2 . 3) and (II.2 . 9) it is easily shown that for the MRS 

derivate of b the following expression holds 

~ 
.. .. .. 
b . (V V) (I I. 2.13) 

With ~.bT find for 
... 

that I we c 

.. 
~- !v c 

.. c 
V) (!!.2.14) 

The tensor (V ~)c in the above expression can be decomposed into a 

symmetrie part D and a skew- symmetric part ~. so that 



D + !l 
-+T-+ 
b c [) 

I I. 8 

!l (II.2.15) 

For the tensors[) and !l, called the deformation and rotatien rate 

tensor, the next expressions hold 

1 (~T~ .. T-+ 1 .. 
~)c + .. .. 

[) + c b) {(V (V v)) 
2 ~ ~ 2 

(II.2 . 16) 

1 (~T~ .. T-+ 1 .. .. c .. .. 
g) 

2 c b) 
2 

{(V v) - (V v)) (II.2.17) 

For the MRS derivative of the Jacobian J we find 

J J ~T-~ 
.. .. 

J(V .v) J tr(D) (II.2.18) 

The boundary 

An MRS point on the boundary of a three-dimensional body can be 

identified both by the MRs- coordinates m and a set of two independent 
* * * coordinates m1 and m2, taken as the elements of a column m . The 

* columns m of the MRS points on the boundary are the elements of a 
* set M . We assume that the boundary is always made up of the same MRS 

* points and therefore the set M is invariable. In state t the 
.. * position vector p of MRS point m is 

.. 
p .. * * x (m , t) (!!.2 . 19) 

-+* 
In this state, the function x , which is unique, continuous and 

sufficiently differentiable, can be considered as a mapping 
~· * * * x : M .. V (t), where V (t) is thesetof the end points of the 

position veetors p of .the MRS points on the boundary. A subset of 
* V (t), containing the end points of the position veetors 

~ ~· * t * * p =x (m ,t), with meM and m. is constant for j f i, is called 
* ~ J 

the mi-parametric curve in state t. The end point of every position 

vector P is situated on two different parametrie curves (see figure 

II . 2 . 4) . 
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Fig. II.2.4 
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Posi tion vector p = ;* (m * , T ) and the two parametrie curves t hrough 
. * -MRS boundary po-z-nt IE 

Geometrie quantities at the boundary 

* * The tangent veetors to the m
1

- and m2-parametric curves at an MRS 
.. * point are independent . They are understood to be the elements b1 and 

~* ~* 
b2 of a column b defined by 

* 

.... 
V x 
~m 

.. *T .. * ,.b*] 
b = [b 2 
~ 1 

(11. 2 . 20) 

where V is a column operator, which in transposed form is given by 
~m 

(11.2.21) 

* * ~* * * The Jacobian J (m ,t) of the mapping x : M .. V (t) is defined by 

* J (11.2 . 22) 
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On account of the properties of ~* * * * x M ~V (t), J will never be 

zero. 

... ~* 

is perpendicular to the boundary and is of The vector b1 * b2 
* length J In state T the unit vector, outward and normal to the 

* ~ * boundary at MRS point m is denoted by n(m ,t) and defined by 

.. * * jj* jj* * .. * 
~ bl 2 l b2 2 n = s 

~* * jj * 11 
s * s (11.2.23) 

11 b1 2 J 

where s is chosen in such a way (s = +1 or s = -1) that the vector n 
~* ~* .. 

is outward with respect to the body. The veetors b1, b
2 

and nare 

shown in figure 11.2.5. 

Fig. II.2.5 

' .. ,, 
'•. 

\ 

• ~ -7-* -+ 
Bas~s veetors b 1 and*b2, and the unit outward no~az vector n at 
MRS boundary powt 1!_1 

.. * .. * On the analogy of (11.2.6) the reciprocal veetors c
1 

and c
2 

at MRS 
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* point m can be determined from 

-.* -.*T -.*T ... -.* 
b . c I c [c1 c2] (II.2.24) 

and 

-.* .. ... .. 
c 1.n c 2 .n 0 (II.2.25) 

where I is the 2x2 unit matrix. It can be shown not only that the 

expression 

-.*T-.* .. .. 
b c [ - n n (II.2.26) 

-.* -.* 
satisfy must apply, but a lso that c1 and c2 must 

-.* .§__ ... .. -.* L-. ... 
c1 * b2 * n c2 * n * b1 

J J 
(II.2.27) 

-.* * The gradient operator V , used at MRS point m to describe variations 

of quantities at adjacent points on the boundary in state 1 , is 

defined by 

... 
V 

-.*T * 
c V 

~m 

.. .. .. 
{([- n n).VI 

Kinematie quantities at the boundary 

(II.2.28) 

Using (II.2.20), (II.2.28), (II.2.24) and (II.2 . 15), the next expres-
-.* 

sion for the MRS derivative of b can be derived to give 

With 

s* 

-.* 
c 

..0* 
c 

~* -+*-+* ... .. .. .. ... 
b . (V V ) b .{([ - n n) . (V V )) 

l* .. .. 
+ ll)cl b . {([ - n n) . ([) 

.. *T 
.b I we find for 

.... 
c 

-+* -+*-+* c c . (V V ) 
... * ... -+* c 
C .{(V V) .([ 

.. .. 
n n) I 

:J* 
c . { ([) + 11) • ( [ 

.. .. 
n n)J 

(II.2.29) 

(I I. 2 . 30) 
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* For the MRS derivative of the Jacobian J we find 

. * 
J 

* .. *T .0* 
J c .b * ~· -t* J (V .V ) 

Deformation quantities 

* J ([ 
.. .. 
n n) :D (II.2.31) 

The deformation of the material at a point with MRS coordinates m in 

state T compared to state T
0 

is described by means of the deformation 

tensor F(m,T). As is shown in figure II.2.6 this tensor maps 
.. 0 .. - ' .. 
b = b(m,T ), the vector basis in state T , in b 
- - - 0 0 

.. 
b(m,t), the 

vector basis at the same MRS point in state T 

(II.2 . 32) 

The deformation tensor is regular, in other words det(F) 1 0. 

Fig. II.2.6 

. . . 

;-. . . . . . . . · . . 

! 

........ 

.. .................... .. 

Vector basis at MRS point m in state T and state T 
0 
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The basis veetors b0 span a volume àV
0 = lb~.b~ * b~l and the basis 

veetors b span àV = lb 1.b2 * b31. It is easily shown that the next 

relation between the infinitesimal material volume elements dV and 

dV0 must apply 

dV = det(~) dV0 (!!.2 . 33) 

From this relation we can conclude that det(~) > 0. The determinant 

of ~ is called the volume-change factor ö 

ö det(~l (!!.2.34) 

Using 
-.T-. 
b c = [, ~ can be written as 

~ 
+T-.o [~oT(V ~l]c = (Vo~ 1 c b c 

~ ~m 
(!! . 2.35) 

-1 
the inverse of and ~ , ~. as 

~-1 boT~ -.T -.o c 
~c (V x l] 
~ ~m 

(_. -.o c V x ) (!!.2.36) 

It can easily be shown that, for the MRS derivative of~ and ~- 1 , the 

next expressions apply 

~ ~T~o = (Vo~ 1 c = (V ~)c.~ 

F-1 boT~=_ ~-1 .(V ~lc 

(!!.2.37) 

(I I. 2. 38) 

On account of (!! . 2.35) the relation between the two infinitesimal 

material line elements d~
0 

d~(m,t ) and d~ = d~(m,t) is 
~ 0 

-. -.o 
dx ~.dx (!!.2.39) 

With ~ 0 and ~ as the unit veetors in the direction of d~ 0 and d~, and 

ds0 and ds, the lengths of these line elements, we can write, for the 
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length-change · factor À 

À dL: 
ds 0 

lliill 
ds0 

(II.2.40) 

Using (!!.2.39) we find 

1 
IIIF. ~

0 
11 

.. 0 c .. 0 -
À = {n .IF .IF.n 12 (II.2.41) 

The above is illustrated in figure !!.2.7. 

r3 

lo 1 

'!I+ d '!I 

'!'-- '!I + d '!I 
dx-...... > I F ' 

ds
0

/ 
-o 

-dx - ~ / 
/ 

" 
/ 

/ ds 

'!I '!I 
/ 

Fig. II.2.7 

The infinitesimal material line elements: 
-+o -+ o -+ o o-+o -+ -+ -+ -+ 

dx = p(~+d~,T ) - p(~,T ) = ds n ; dx = p(~+d~,1) - p(~,1) ds n 

According to (II.2.41) the total deformation of the material at an 

MRS point m can be described by the so-called stretch tensor U, 



II .15 

defined by 

u u (11.2.42) 

On account of this definition of U, a tensor R can be defined in such 

a way that the following decomposition of F applies 

F = IR.U Rc.IR = [ det(IR) +1 (II.2.43) 

Because of the requirements which IR has to meet, we can conclude that 

IR de~cribes a rigid body rotation of the material at MRS point m. The 

above decomposition is called the polar decomposition of F and the 

tensor IR the rotation tensor in the polar decomposition of F. 

The Green-Lagrange strain tensor E is defined by 

~(Fc.F- [) (11.2.44) 

For the deformation rate tensor D and the rotation rate tensor ~ we 

can write 

D + ~ (II.2.45) 

The MRS derivative of the volume-change factor ~ can be expressed 

in I> as 

. -1 
~ tr(F.F ) ~ tr(D) (11.2.46) 

-o*o -o*o 
In state t 0 two independent veetors b1 a~~ b2 ~~

0
the .. ~~undary of a 

three dimensional body span a surface 6V I lb1 * b2 I I . The 
~* -+* 

t, b1 and b2 , span a surface 

factor is defined as 

corresponding veetors in state 
* ~* -+* 6V llb 1 * b211. The surface-change 

* ~ (II.2.47) 
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where dV* and dV*o are infinitesimal material surfaces. After some 
. * manipulations we arrive at the following expressions for 6 and its 

MRS derivative' Ö * 

(11.2.48) 

. * 
6 

-.o ·-1 -c -.o 
det(IF) [cV ~> IIIF-c . ~ 0 11 + n .f .lF.If .n ] (~!.2 . 49) 

IIIF - c-~
0

11 

Rigid body rotation and eo-rotational quantities 

Besides the rotation tensor R in the polar decomposition of IF there 

are many tensors r which meet the requirements 

det(T) +1 (II. 2. 50) 

and also describe a rotation of the material in state T compared to 

state T
0

. 1f we assume D = V, it is possible to introduce a rotation 

tensor, which unambiguously describes the rotation of a material line 

element d~ in state T compared to state T that is o' 

d~(m,T) l'(m,T) dx<m,T > 
- 0 

For the MRS derivative we obtain 

.:. 
dx(m, T) T(m,T) dx<m,T > 

- 0 

(1!.2.51) 

(1!.2.52) 

Using the deformation rate tensor D and the rotation rate tensor 0, 

we write generally 

.:. 
dx(m,'T) {D(m,T) + O(m,T)} 

In view of the assumption D V, this expression becomes 

.. 
dx(m,T) O(m,T) 

(1!.2.53) 

(II.2 . 54) 
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From (!!.2.51), (!!.2.52) and (!!.2.54) the following differential 

equation results 

U' tL I' (!!.2.55) 

with the initial conditions 

I' [ at (!!.2.56) 

On the analogy of the polar decomposition, Nagtegaal & Veldpaus 

[21] decompose the deformation tensor F to give 

f = I'.F (!!.2.57) 

where F is called the co-rotational deformation tensor which is 

invariant to the rotatien described by U'. The co-rotational defor

mation rate tensor is defined by 

(!!.2.58) 

If it is assumed that D is constant during the state transition 

it can be shown that 

must hold 

[) 
1 • 
--~ 

t-l 
0 

- 1- ln(IF) 
t-1: 

0 

I' = IR and that the next expression for D 

(!!.2.59) 

The tensor ~ is called the logarithmic strain tensor. 

The CRS coordinates 

Employing the Lagrangian formulation, the Material Reference System 

(MRS) is used, that is, every quantity is understood to be a function 

of the MRS coordinates m. The Computational Reference System (CRS), 

which can move independently of the material, is introduced into the 

AEL formulation in such a way that each MRS point coincides with only 

one CRS point and vice versa in every state. 
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Each CRS point can be identified unambiguously by a set of three 

independent CRS coordinates g1, g2 and g3, which can betaken as 

elements of a column g. The columns g of all CRS points are the 

elements of an invariable set G. In state T the position vector p of 

CRS point g is 

.. 
p (I!. 2 . 60) 

In state T the function x, which is unique, continuous and suf

ficiently differentiable, can be considered as a mapping 

x : G-+ V(t), where V(t) is the set of end points of the position 

veetorspof the CRS points in state T. A subset of V(r), containing 

the end points of the position veetors p = x(g,T), with ge G and 

gj is constant for f i, is called the gi-parametric curve in state 

t. The end point of every position vectorpis situated on three 

different parametrie curves. 

In the preceding part of this sectien we introduced various quan

tities as a function of the MRS coordinates. In the succeeding part 

we introduce similar quantities as a function of the CRS coordinates. 

Geome trie quantities 

The local CRS vector basis p(g,T) is chosen right-handed and defined 

by 

.. 
V X _g 

where V is a column operator, given by 
-g 

The Jacobian J(g,T) of the mapping 
.. 
x 

(11.2.61) 

(II.2 . 62) 

G -+ V(t) equals the triple 

product of the basis veetors p1, p2 and p3, so that 

J (II.2 . 63) 



From the properties of 

equal to zero. 

.. 
x 
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G .. V(T) it follows that J is never 

The reciprocal CRS vector basis ~(g,T) can be d~termined from 

.. ..T 
~-'1 I (II.2.64) 

It is easily shown that 

[ 

From this relation it follows that ~ 1 , ~ 2 and ~ 3 must satisfy 

1 .. .. 
J ~2 * ~3 

1 ... .. 
J ~ 1 * ~2 (II.2.66) 

Using the local reciprocal vector basis, the gradient operator can be 

expressed in the column operator V as 
~g 

.. ..T 
V 'I V 

- ~g 

Kinematic quantities 

V 
~g 

(II.2.67) 

In every state and at each CRS point the quantity A is defined and 

given by A= a(g,T). The change of A at CRS poibt g duringa state 

transition àT is called the CRS change of .A and is denoted by à A, 
g 

hence 

à A a(g,T+àT) a(g,T) g 

The 

The 

CRS derivative 

0 lim 
A àT .. Û 

velocity ~ 

0 .. .. 

à A 
_g_ 

àT 

of 

u x(g,T) 

0 

of A is denoted by A and defined by 

a CRS 

0 .. 

point is 

.. 
lim ~ p 

tn .. o àT 

defined by 

(II.2.68) 

(II.2.69) 

(II.2.70) 
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For the CRS derivatives of the vector basis, the reciprocal vector 

basis and the Jacobian, we find : 

0 

~ 

0 .. 
"Y 

0 

J 
-.T ~ 

J "Y . IJ 

The boundary 

(II .2. 71) 

(II.2.72) 

(II . 2 . 73) 

A CRS point on the boundary of a three dimensional body can be iden

tified both by the CRS coordinates g and a set of two independent 
* * coordinates g 1 and g2, wich can be taken as the elements of a column 

* * g . The columns g of the CRS points on the boundary are elements of 
* a set G . We assume that the boundary is always made up of the same 

* CRS points so that the set G is invariable . In state 1 the position 

vectorpof CRS point g*is 

.. 
p -.* * x (g ,, ) (II.2.74) 

. .... . . 
In this state, the funct~on x , wh~ch ~s unique, continuous and 

sufficiently differentiable, can be considered as a mapping 
.... * * * x : G .. V (l), where V (1) is thesetof the end points of the 

position veetorspof the CRS points on the boundary in state 1. A 
* subset of V (1), containing the end points of the position veetors 

... .... * * * * p =x (g ,,), with ge G and g. is constant for j I i, is called 
* - . J 

the gi-parametric curve in state 1. The end point of every position 

vector p is situated on two different parametrie curves. 

Geometrie quantities at the boundary 

* * * At every CRS point g , the tangent veetors to the g
1
- and g

2
-

parametric curves are independent. They are understood to be the 

~* ~· ~· elements p1 and p2 of a column ~ ., defined by 
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f 
* .. * fT [a~ a;1 V X 

~9 
(!!.2 . 75) 

* 
where the column operator V is given by 

~g 

v*T [~~] 
~g ag

1 
ag

2 

(!! . 2 . 76) 

* * ~* * * The Jacobian J (g ,T) of the mapping x : G .. V (T) is defined by 

/ = 11 a~ * a; 11 (!!.2 . 77) 

.. * The unit vector, outward and normalto the boundary; v(g ,T), can be 

defined by 

.. 
V * s 

-;:t* ~* 
p * p 1 2 

:t* * -+* 
* 111 p2 

s 
* 

* * where s is chosen in such a way (s 

~ is outward compared to the body. 

*2 s 

* +1 or s 

(!!.2 . 78) 

-1) that the vector 

~* ~* 
The reciprocal veetors 1 1 and 12 can be determined from 

a* .. *T .. *T -+* .. * 
·1 I 1 = [11 12] (!!.2.79) 

and 

-+* .. ..* .. 
11. V 12 . v 0 (!!.2.80) 

The expression 

fT1* .. .. 
[ - V V (!!.2.81) 

applies. The -+* and 
.. * 

satisfy veetors 11 12 must 

* * .. * .L 
a2 

.. .. * .L .. .. 
11 * V 12 V * p1 * * (!! . 2.82) 

) ) 
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... 
The gradient operator V at a CRS point g describes variations of 

quantities at adjacent points on the boundary in state T and is 

defined by 

... 
V 

.. •T * 
'Y V _g 

Kinematic quantities at the boundary 

-+* -t* 
The CRS derivatives of a I 'Y and are: 

~· -t* -t*-t* ... .. .. .. ... 
13 a . <v u 1 a . { ([ - V v). (V u 

~· -t* -t*-t* c ... .{(v ... 
Je. ([ 'Y 'Y • (V u ) - 'Y u 

o* 0 
-t* -t* • .. *Tp* 

J J 'Y (V .u ) 

) } 

-

The relation between MRS and CRS coordinates 

(II.2.B3) 

(II.2.84) 

.. .. 
V v)} (II.2.85) 

(II.2.86) 

In state T 1 MRS point m coincides with CRS point g. For the position 

vector p of these points we have 

.. 
p X(ID 1 T) x<g~T) (II.2.87) 

Since the functions ~ and x are unique 1 two unambiguous functions x 

and x exist~ so that 

m = x(p 1 T) g X (piT) (II.2.88) 

Bath functions are continuous and sufficiently differentiable. In 

state T the coinciding MRS and CRS points are related to each other 

by the expressions 

ID = X (X ( g 1 T ) 1 T ) g x<x<m1Tl1tl (II.2.89) 

In state t+àt CRS point g coincides with MRS point m+àm as is shown 

in figure II.2.8. 
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+ + 
X( g+ ~ g, T + ~T) = x(~,T + ~T) 

+ + 
x(g , T) = xÇ~,T) 

+ + 
x(~ + ~~ , T + ~T) = X(~ , T + ~T) 

r, 

Fig. II.2 . 8 

The position of MRS point m and CRS point g in state T and state T + ~T 

We can write ; · 

(11.2 . 90) 

Applying Taylor's theerem to expand the left- hand side , gi ves 

. .. T 
(V x ) 1 · t.m 
~ m (m,T+àT) • 

(11.2.91) 

2 where O(t.m ) represents a sum of terms which are at least quadratic 

in t.m . Using (11.2.3), (11.2.10), (11.2.68) and ~ (II.2 . 87) we get 

i)T (m, T+àT) 
.. .. 

0(t.m2 J t.m à x - à x + g m 
(!1.2.92) 

Si nee ~ . i)T I we can write 

.. .. 
à ~) 0(àm2 J àm c . (à x - + 

~ _g m 
(!1.2.93) 
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In state T the value of the quantity A can be determined by employing 

either or both of the functions a or a, so that 

A a(m,tl a(g,Tl 

The CRS change of A during the state transition àT is 

à A a(g,t+àtl - a(g,Tl 
g a(m+àm,t+àtl - a(m,tl 

(!!.2 . 94) 

(II.2.95l 

Expanding the first term of the right-hand side of the above expres

sion by means of Taylor's theorem, we find 

a(m+àm,t+àtl a(m,t+àtl + (V alTI àm + O(àm2l (II . 2 . 96l 
.m (m,t+àtl • 

This results in the expression for àgA given below, 

à A a(rn,t+àtl - a(m,tl + (V alTI àm + O(àm2l 
g .m (m,t+àtl • 

Substitution of (II . 2.93l gives 

à A 
g 

(II.2.97l 

(II.2.98l 

If the state transition is small, we may assume that the last term in 

(II.2.98l can be neglected and that 

(V All ~(V All 
(m,T+àtl (m,Tl 

(!!.2 . 99) 

This leads to the following relationship between the CRS _change à A 
g 

and the MRS change àmA 

à A g (!!.2.100) 
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11.3 Stress tensors 

The Cauchy s t ress tensor 

The co-rotat ionaZ Cauchy stress tensor 

The Cauchy s t ress tensor 

-+ -+ 
The stress vector t at MRS point p 

-+ 
x(m,l) on a plane passing 

through that point, is assigned to the unit vector ~. normal and 

outward to that plane at point p, by a transformation o(m,l) . This 

transformation can be shown to be linear- Lai et al.(1978) - and is 

called the Cauchy stress tensor. We can write 

-+ 
t 

-+ 
a~ . n (!1.3 . 1) 

-+ 
In figure 11 . 3 . 1 the stress vector on a plane S through pointpis 

shown . The normal stress at p on the same plane is given by 

t 
n 

-+ -+ 
n . t 

-+ -+ 
n . o.n 

The magnitude of the shearing stress at p on the plane is 

The co-rotationa Z Cauchy s tress tensor 

. 

(!1.3.2) 

(Il . 3 . 3) 

Following the introduetion of co-rotational kinematic quantities in 

section II.2, the co-rotational Cauchy stress tensor G(m,l) is 

defined by 

(1!.3.4) 

Using I' ~.1' we find for the MRS derivative of G 

(1!.3 . 5) 
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The sum of tensors in parenthesis is called the Jaumann derivative of 

the Cauchy stress tensor, and is widely used in elasto-plastic 

analysis. 

p 

Fig. II.J.l 

The stress vector on a pZane S through point t 
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11.4 The equilibrium equation and the principle of weighted 

residuals 

The equi l ibrium equatian: di ffer en t i a l f arm 

The equilibrium equatian: i ntegra l f arm 

The equilibrium equation: differential f arm 

Assuming that inertia effects are negligible, it follows from the 

momenturn and mass conservation laws that in every state and at each 

material point the next equilibrium equation must be satisfied 

-+ -+ 
(V . u). + q 

-+ VxeV(r) (II. 4.1) 

The vector q represents the body force per unit volume in state t. 

From the moment of momentum conservation law it follows that the 

Cauchy stress tensor is symmetrie, hence 

c 
ID = 1D 

-+ 
V x'" V(t) (!!.4. 2) 

Since each material point and thus each MRS point always coincides 

with one single, yet not necessarily the same, CRS point, equations 

(11.4.1) and (11.4.2) have to be satisfied at each CRS point in every 

state t. Simultaneously the stress distribution and the deformation 

have to satisfy the constitutive equation, the strain-displacement 
* * relationship, the kinematic boundary conditions at V cV and the 

* * * .. r 
dynamic boundary conditions at V \V , where V is the coincident 

P r 
boundary of CRS and MRS. Since, generally speaking, an exact solution 

of the above equations cannot be found, we shall try to determine an 

approximated solution. Equations (11 . 4 . 1) and (11.4.2) are not very 

suitable for this purpose and thus an integral formulation is 

introduced. 
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The equiZibPium equation: i n t egraZ farm 

According to the principle of weighted residuals, the equilibrium 

equation (11.4.1) is equivalent to the requirement that the integral 

equation given below is satisfied in every state T for every al -.. 
lowable weighting function w(g,t) 

I ~.[(v.~> + q) dV 
V(t) 

0 (11.4.3) 

The weighting functions ~ have to meet certain requirements, which 

will be the case, if these functions are piecewise continuous (see 

Zienkiewicz (1977)). 

After choosing special weighting functions ~. equation (11.4 . 3) can 

be used to determine approximated solutions for the equilibrium 

equation. To relax the requirements as regards ;, the term ~.(9.~) 

in (11.4.3) is integrated by parts. This requires the weighting 

function to be piecewise differentiable. Applying Gauss' law and 

using 
... .. 
t = n . ~, we arrive at 

I (v ~lc:~ dV 
V(t) 

I ~ . q dV + 
V(t) 

• 

I 
• V (t) 

..... 
w.t • dV (II .4 . 4) 

Since the integrals over V(t) and V (t) are extremely difficult to 
• evaluate, the integrations are carried out over the sets G and G 

• With dV = J dG, dV 

becomes 

.. T-+ 
I (V W) 1 ' ~ J dG 
G ~g ~ 

where 
• and J 

• • 
J dG and the above equation 

~ ~ ~ ~* * * 
I w.q J dG + 1. w.t J dG (1!.4 . 5) 
G G 

is the Jacobian of the-mapping x : G .. V(t) 
-t* * * .the Jacobian of the mapping x : G .. V (t). 



I!. 29 

II.S A constitutive equation for time independent elasto-plastic 

material behaviour 

A constitutive equation f or e l as t ic material behaviour 

Elasto-plastic materia l behaviour 

The yield condition 

The decomposition of t he def ormation rat é t ensor 

The MRS derivative of the his t ory parameters 

A cons t i tuti ve equation fo r time independent e las t o-plas t ic 

mat erial behaviour 

A consti tuti ve equation for elastic mat erial behaviour 

If the material behaviour at an MRS point is purely elastic , the MRS 

derivative of the co-rotational Cauchy stress tensor and deformation 

rate tensor must satisfy the next constitutive equation 

(II.5.1) 

In 9eneral the fourth-order elastic material tensor 4ê is a function 

of the stretch tensor U, compared to the stress-free state, and a set 

H, containin9 history parameters, which do not chan9e durin9 purely 

elastic deformation (for detailed discussion of 4ê see for instanee 

Hutchinson (1978) and Nagtegaal & De Jong (1980)) . In this report we 
4. 

assume, as is usually done, that r is constant at an MRS point . This 

tensor is invertible and, owing to the symmetry of i, left
. 4. 

symmetrical. On account of the symmetry of D, ~ may be chosen ri9ht-

symmetrical. 

Elasto-plastic mat erial behaviour 

It is assumed that, if the material behaviour at an MRS point is 

elasto-plastic, the MRS derivative of the co-rotational Cauchy stress 

tensor and the co-rotational deformation rate tensor are related by a 
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constitutive equation similar to (11.5.1) 

4 .. 
L:D (II . 5.2) 

4. 
To determine the fourth-order tensor L, the first thing to do is to 

introduce a yield condition. After this the deformation rate tensor D 

is written as the sum of a tensor De, representing theelastic 

deformation, and a tensor DP, representing the plastic deformation. 

The next step is to write DP as a tunetion of D. For this purpose an 

associated flow rule is assumed and assumptions are made concerning 

the MRS derivative of the history parameters. Because of the symmetry 

of i and D the tensor 4i is left-symmetrical and may be chosen right

symmetrical. 

The yield condition 

It is assumed that for plastic defórmation to occur at a material 

point with MRS coordinates m, it is necessary that a scalar tunetion 

of the co-rotational Cauchy stress tensor i(m) has reached a certain 

limit value. This value depends on the deformation history of the 

material at MRS point m, which is characterised by a set of history 

parameters H, which change during plastic deformation only. Hence, 

plastic deformation can occur only if the yield condition given below 

is satisfied 

f(i,Hl 0 (II.5.3) 

The value of f(i,H) will never exceed zero, so that, during plastic 

deformation the consistency equation 

f 0 (II.5.4) 

must be satisfied. The symbol * denotes a multiplication if H is a 

scalar, a dot product if H is a vector and a double dot product if H 

is a second-erder tensor. We will now discuss D and H. 
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The deeomposition of t he def oTmation rate t ensor 

Following Nagtegaal & De Jong (1980) the deforrnation rate tensor D is 

written as the sum of a tensor De representing the elastic defor 

mation, and a tensor ~p representing the plastic deforrnation. Tensor 

De is defined by the following expression 

(II . 5 .5) 

The tensor oP is defined by 

(II . 5. 6) 

Combination of (!! . 5.5) and (!!.5.6) gives 

(II . 5. 7) 

It is assumed that the material behaviour during elasto-plastic 

deforrnation obeys an associated flow rule , that is 

ID• P = N af 
~ om (II . 5 . 8) 

If the "length" of ~ is denoted by 13 and its "direction" by the 

normalized tensor ~. we get 

(!!.5 . 9) 

Substitution in (!! . 5.7) results in 

4. . 4. 
G: :ID - Ç 11::~ (!! . 5.10) 

The MRS derivat ive of the history paramet er s 

It is assumed that the MRS derivative of the history parameters H is 

a function of the co- rotational plastic deforrnation rate t ens or DP, 



1!. 32 

so that 

k(~ 111) (II.5 . 11) 

The function k is such that 

H k(~ 111) ~ k(n) (II . 5 . 12) 

A constitutive equation for time independent elasto- plastic material 

behaviour 

Applying ~ = P n the consistency equation (11.5.4) becomes 

(II . 5 . 13) 

Substituting (11.5.10) and (11.5.12) in (11.5.13) results in 

4. • 4. 3f 
p n : ~:D - p ~ 111: ~:111 + ~ aH*k(n) = 0 

For ~ we can solve 

4 .• 
n : ~:D 

4. 1 3f 
111 : ~ : n - ~ aH*k(n) 

(II . 5 . 14) 

(II.5.15) 

Substituting in (11 . 5 . 9) results in the relation between DP and D 
given below 

4. 
n n : ~ 

4. 1 3f 
n : ~ : n - ~ aH*k(n) 

:D (II.5.16) 

Substi tution of (11 . 5 . 16) in (11 . 5 . 7) finally results in the 

constitutive equation 

4. 4. 

( 4 C. _ ---:----"~ .... • .. o_.n~ ·'-::"G:'---] 
4. 13f ;[) 

n: ~ : n - ~ aH*k(111) 

4 •• 
IL:D (II.5.17) 
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III Discretisation 

. 1 Introduetion 

. 2 The incremental method 

.3 The finite el~ment method 

.4 Calculation of material-associated quantities 

III.1 Introduetion 

In order to determine the MRS change of the co-rotational Cauchy 

stress tensor during a state transition, the constitutive equation 

(II.5.17) has to be integrated. If, during the state transition AT, 

the co-rotational deformation rate tensor D is not a known, explicit 

function of the state parameter T, integration can not be carried 

out. In that case an incremental method is employed, according to 

which the state transition is effected in a number of steps, the 

increments. The chosen. size of an increment must allow the assumption 

that D is constant during that increment. Starting from a known state 

T
0

, the beginning of an increment, the change of all relevant quan

tities should be determined in such a way that the weighted residual 

equation (II . 4 . 5) is satisfied for every allowable weighting 

function, in state Te' the end of the increment. The change of a 

quantity + during an increment is called the incremental change of + 

and is denoted by A+, where A+ = +(Te) - +(T
0

) = +e - +0
. This 

incremental method, which in fact is a discretisation of a state 

transition, will be discussed in section III . 2. In literature the 

method is also referred to as the incremental method of weighted 

residuals. 

Though it is usually impossible to satisfy (II . 4.5) in state 1 for 
e 

every allowable weighting function, this equati on can be satisfied 

for every weighting function in a confined class. In this way an 

approximated solution for the equilibrium equation in state Te is 
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obtained. To handle integration over geometrical complex volumes and 

boundaries and to obtain a good approximated solution, despite the 

fact that a simple weighting function is used , the finite element 

method is employed . According to this method the CRS is subdivided 

into subregions of rather simple geometry: the elements . In every 

element the weighting function and the incremental change of some 

relevant quantities are interpolated between the values of these 

quantities at a limited number of CRS points belonging to this 

element, the element nodal points . Known and simple functions of the 

CRS coordinates g are used for the interpolation. The finite element 

method is discussed in section III.3. 

To determine whether the accuracy of the approximated salution is 

good enough and, if this is the case, to carry out the next incremen

tal calculation, certain material -associated quantities must have a 

known value at various CRS points. Because the CRS is not material

associated, it is impossible to calculate these values directly. A 

special method which is discussed in section III . 4 has to be used . 
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III.2 The incremental method 

Starting from the known state T
0

, the beginning of the increment, the 

incremental changes of the reciprocal vector basis ~' the Cauchy 
* ~ 

stress tensor m, the boundary load t , the Jacobians J of the mapping 
~ * ~* * * x : G ~ V and J of the mapping x : G ~ V have to be determined 

in such a way that in state Te' the end of the increment, the 

equation 

~ T~ 
I (V w) "1: u J dG 
G ~g ~ 

~ ~ ~ ~· * * I w.q J dG+ I* w.t J dG (!!!.2.1) 
G G 

is satisfied for every allowable weighting function w. In addition to 

the above weighted residual equation, the constitutive equation, the 

strain-displacement relations and the kinematic and dynamic boundary 

conditions have also to be satisfied . 

We assume the body force per unit volume, q, to have a known value at 

every point. The .quantities in (III.2.1) whose value is not known at 
~ .... * 

every CRS point in state T , are -y·, m, t , J and J . Each of these e ~ 

quantities can be written as a function of the incremental 

displacements of either the CRS points àr the MRS points. In view of 

(II.2.72), (II.2.73) and (II.2.86) we can write : 

~ ~o ~ ~o ~o ~ T~o 

"1 "1 + à "1 "1 "1 • <v à x> "1 
g~ ~ ~g g ~ 

(III.2.2) 

0 
àg] 

0 o~oT . <v à x> J = J + J + J "1 
~ ~g g (III.2.3) 

* *o * *o *o~*oT * ~ . 
J J + à gJ J + J "1 . <v à x> 

~g g (!!!.2.4) 

Further we can write 

( III. 2. 5) 

Since the Cauchy stress tensor is a material-associated quantity, the 

CRS change àgm is expressed in the MRS change àmm in accordance with 



expression (!!.2.98) 

l:J. Gl g 

III .4 

(III.2 . 6) 

where ~(l:J.m 2 ) represents a sum of terms which are at least quadratic 

in 

(!!!.2.7) 

this being the change of the MRS coordinates of the CRS point g 

during the state transition l:J.T. We now assume the increment to be 

taken so small that ~(l:J.m 2 ) in (!!!.2 . 6) can be neglected and (V 111) 

determined in state T . Thus we find for 111 that 
0 

(III.2.B) 

applies. After integrating the constitutive equation (!!.5.17), l:J. 111 
m 

can be expressed in Amx, formally: Ama = f(Amx), which results in 

0 
f(Am~) 

.. .. .. .. 
Gl = Gl + + A X· (V G!) - Amx. (V G!) g (III.2.9) 

-+* 
write For t we can 

-+* t*o -+* t*o + * .. .. 
t + A t f (Agx' Amx) g (!!!.2.10) 

f 
. . -+* .. .. 

where we also use a ormal relat1onsh1p between A t , A x and A x, g g m 
which will not be discussed further. Substitution of (!!!.2.2-4) , 

(III.2.9) and (III.2.10) in (III.2.1) leads to an expression in the .. .. 
unknown incremental changes Agx' Amx. 
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111 . 3 The finite element methad 

Discretisation of the CRS 

InterpoZation of various quantities 

AssembZy of the eZements 

Di scretisation of the CRS 

Employing the finite element method the CRS is subdivided into 

elements. In every state, element e (e e 11,2 , ... ,n)) consistsof the 

same CRS points, which can therefore be identified by local CRS 

coordinates ~· defined per element. The set of local CRS coordinates 

of all CRS points of element e is called Ge. The CRS points of that 

element, pertaining to the boundary of the CRS, constitute the set 
* Ge. The int'egrals in ( 1II. 2. 1) are written as a summation of 

integrals evaluated for the individual elements 

n .. T .. 
[ I (V w ) 1 : v J dG 

e=1 G ~g e ~e e e 
e 

n 
r I ~ .q J dG 

e=1 G e e e 
e 

(III.3 . 1) 

According to (III.2 . 2-4), .. * ( II I. 2 . 9) and ( II I. 2 . 10) , ! e, Je, Je, CD e 
.. * and te can be expressed in the incremental displacements 

.. 
llgxe and .. 

llmxe . 

InterpoZation of various quantities 

The .second step in applying the finite element method is the inter

polation of various quantities in every element . To interpolate a 

quantity + is to write + as a linear combination of a number of known 

functions of the local CRS coordinates, the interpolation functions. 

The parameters in this linear combination are the values of + i n a 
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limited number of CRS points, the element nodal;points. The inter

polation functions have to meet certain requirements as is discussed 

by Zienkiewicz (1977). 

The interpolation of the position vector of CRS point q of element e 

reads as 

(ÜI.3.2) 

Here, ~(g) is a column containing the known interpolation functions 

and ~eCtl a column containing the position veetors of the element 

nodal points. The interpolation of the incremental CRS point 

displacement follows directly from (III.3.2) 

(III.3.3) 

where à x is a column containing the incremental nodal point 
q~e 

displacements. The incremental MRS point displacement is also 

interpolated. In this interpolation, the interpolation functions and 

the element nodal points used are identical with those used when .. 
interpolating àgxe' thus 

.. 
à x (g) 

m e ~ 
(III.3.4) 

.. 
where column à x contains the incremental displacements of the MRS 

m~e 

points that coincide with the element nodal points in state T . 
0 

The interpolation of à i (g) implies the introduetion of an m e ~ . 
approximation. Finally, the weighting function ~ is interpolated 

e 

.. 
w (g) 

e ~ 

T -. 
Ijl (g) w 
~ ~ ~e 

(III.3.5) 

.. 
where ~e is a column containing the values of the weighting function 

in the element nodal points. 
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AssembZy of the eZements 

Af ter substitution of (III.3 . 5) in (III.3.1) we find 

n n .. -+T T T-+ -+T I Ijl dG [ w I (V "' ) '( .IJ J dG [ w qeJe 
e=1 ~e G ~9~ ~e e e e=1 ~e G ~ 

e e 

n -+T -+* * * 
+ [ w I*+ te Je dG 

e=1 ~e G ~ 

e 

With introduetion of the vector columns 
.. 

and the ~1e 

.. .. .. 

.1 (à x , à x ) 
~ e 9~e m~e 

(III.3.6) becomes 

I 
G 

e 

n -+T .. .. .. 
[ w .m

1 
(à x ,à x ) 

e= 1 ~e ~ e 9~e m~e 

and 

n -+T .. .. .. 
[ w • r 1 (à x , à x l 

e=1 ~e ~ e g~e m~e 

.. 
:1e 

After assemblin9 the elements in the usual way we find 

-+T -+ -+ -+ 
w .m

1 
(à x,à x) 

~ ~ 9~ m~ 

-+T ... ... -+ 
w .r

1
(à x,à x) 

~ ~ 9~ m~ 

(III. 3. 6) 

accordin9 to 

(III.3.7) 

(III.3 . Bl 

(III. 3. 9) 

(III . 3.10) 

The columns in the above expression contain the values of the various 

quantities in all the nodal points of the element mesh. The elements 

of a column containin9 the element nodal point values, denoted by ~ , 
~e 

constitute a subset of the elements of the correspondin9 column w 
containin9 all the nodal point values. The requirement that (III.2 . 1) 

is satisfied for all wei9htin9 functions, interpolated in every 

element accordin9 to (III.3.5), implies that (III.3.10) has to be 

satisfied for all possible nodal point values of w, thus for every 

possible column ~- It is easily seen therefore that the incremental .. .. 
displacements à x and à x have to satisfy the set of vector equations 

9~ m~ 

.. .. .. 
r

1
(à x,à x) 

~ 9~ m~ 
(III.3.11) 
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111.4 Calculation of material-associated quantities 

The necessary use of a special methad 

The follower points 

Interpolation of material-associated quantities 

The necessary use of a special methad 

The solution process used to solve the set of vector equations 

(III.3 . 11) will be discussed in chapter V. In this process a number 

of approximated solutions for (III.3.11l are determined. To establish 

the accuracy of an approximated solution, the extent to which this 

solution really satisfies the set of equations must be determined . 

This set as described in sectien III.J results from the assembly of 

terms evaluated per element. To evaluate each of these terms, one has 

to integrate over the element domain. This integration is done 

numerically: the value of the integrand is calculated at the in

tegration points of the element, after which a weighted summatien of 

these values is carried out. Some of these integrands are a function 

of material-associated quantities, such as the Cauchy stress tensor 

and its gradient. Since the integration points are CRS points, which 

usually do not follow the material, it is not possible to determine 

the value of this material-associated quantities directly. 

The f ollower points 

In determining the value of material-associated quantities at the 

integration points of the elements, we make use of what are called 

follower points . These are MRS points, pertaining to a subset of M. 

This subset is defined at the beginning of each increment and does 

notchange during that increment . In figure III.4.1a the element mesh 

is shownat the beginning of an increment . The follower points are 

defined as the vertices of the subregions into which each element is 

subdivided. Such a subregion is called a cell . In figure III . 4.1b the 

element .mesh instatel of the same increment is shown. The follower 

points in that state are also shown. As both the deformation history 
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and the location of every follower point are known, the value of the 

material-associated quantities at that point can be calculated. 

Fig. III. 4. la 

Part of an eZement mesh with foZZower points ( • ) and ceZZs (' :: ~) 

in state T , the beginning of an increment 
0 

Fig. III. 4. 1b 

Part of an eZement mesh with foZZower points (• ) and ceZZs (~ : J) 
in state T 



III. fo 

I nteP,Do~atio n of materia~-ass o c iate d quanti ties 

After calculating the values of the material-associated quantities at 

the follower points, the values at the integration points of the 

elements have to be determined . This is done by interpolation between 

the values at the follower points of every cell in which one or more 

integration points are situated . An integration point within a cell 

is shown in figure III.4.2 . 

0 ... 
·o 

............... 
0 

* : 

* 

.... .... ..... 

Fig . III .4. 2 

Part of an e ~ e m e nt mesh wi t h f o Uowero points ( •), ce Us (~:.-:;) and 
i ntegroat ion points ( * ) in s tate T 

The value of the Cauchy stress tensor and the history parameters are 

determined at the nodal points as well, likewise by interpolation in 

the cells which contain these points. Then the gradient of the Cauchy 

stress tensor at every integration point is determined by inter

polation between the values at the nodal points of the element in 

which the integration point is situated. The information at the nodal 

points is used also to determine the stresses and history parameters 

at the new follower points at the beginning of the next increment . 
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IV The CRS determination process 

.1 Introduetion 

.2 The CRS determination process as a deformation process 

IV . 1 Introduetion 

For every nodal point there is one vector equation in the set 

(III.3.11) . The equation fora nodal point contains the incremental 

displacement veetors à x and à x, which can both be unknown. The g m 
number of unknowns in the set of equations may be up to twice the 

number of equations which consequently cannot be solved . Specifying 

the nodal point displacements and the boundary conditions must lead 

toa solvable set of equations . The nodal point displacements must be 

such that there is always a unique relationship between CRS and MRS. 

Apart from this they may be chosen freely . 

The freedom in specifying the nodal point displacements enables 

certain requirements concerning element shape and element size to be 

met. The shape affects the accuracy of the numerical integrations 

carried out over the element. A good shape can be indicated for every 

type of element. The element size affects the error which is possibly 
0 • • .. 

1ntroduced by 1nterpolat1ng àmx. If the number of elements and their 

interconnection is constant, the optimum size of an element is not 

known à priori, but depends on the condition of the material, 

coinciding with the element in that state . The requirements as to 

element shape may be incompatible with those affecting element size. 

In that case a campromise between the requirements must be sought. 

One known procedure used to specify the nodal point displacements is 

the rezoning method (see Gelten ~De Jong (1981)). In the first step, 

the rezoning, the free nodal point positions are determined at the 

beginning of the increment to reduce the average deviation of the 

optimum shape and siz·e of elements to a minimum, this average being 

taken over all elements. The new nodal point positions can be 
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determined automatically by means of a mesh generator - for instanee 

Triquamesh (Schoofs et al . (1979)) -. In the second, the deformation 

step, thesetof vector equations (III.3.11) is solved, with à x 
g~ 

chosen equal to à ; ,thus employing a Lagrangian formulation. The 
• m~ 

total incremental nodal point displacements are the summation of the 

displacements during both the rezoning and the deformation steps. 

Another procedure is presented in this thesis and used to specify the 

nodal point positions . By this method the nodal point displacements 

are understood to be the result of the deformation of a fictitious 

material to which the CRS is associated and which progresses simul

taneously with the deformation of the real material with which the 

MRS is associated. Todetermine this deformation, each element is 

considered individually together with the fictitious material with 

which it is associated . In the current state 1, the stresses in this 

material are determined compared toa state 'f' in which the material 

is stress-free and both shape and size of the element are optimal. 

The load needed to effect the deformation from state 'f to state 1 is 

determined so as to meet the requirement that the equilibrium 

equation has to be satisfied in state 1, at every point of the 

fictitious material. After assembling the elements, the total load on 

the fictitious material is replaced by equivalent nodal forces. 

Subsequently these forces are relaxed, after which the deformation of 
. ., 

the fictitious material is effected by the internal stresses "and the 

forces resulting from the coupling between CRS and MRS . Following the 

procedure described in the preceding chapters, a set of vector 

equations in the incremental nodal point displacements can be 

formulated . This set is simultaneous with the set (III.3.11) because 

of the relationship between CRS and MRS. Solving these simultaneous 

sets gives à x and à~- The nodal point displacements, viz. the 
· g~ m~ 

deformation of the fictitious material, will be so as to minimize the 

average deviation of the optimum element shape and size. When the 

above method is used, the number of elements and their intercon

neetion does not change. This restrietion is not essential, yet makes 

the method easier to describe and apply . In the next section the CRS 

determination process is described . Symbols of quantities, which 

refer to the fictitious material, are overlined . 
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IV.2 The CRS determination process as a deformation process 

The fictitious material 

The optimum geometry of an element 

The element nodal farces 

Rela:ration of the nodal f arces 

The fictitious material 

The CRS is assumed to be associated with a fictitious material. To 

describe the deformation of and the stresses in this material we use 

the same quantities as in section II.2. The material behaviour is 

assumed to be isotropie and elastic. On the analogy of (!!.5 . 1) we 

can write 

~ 4~ .=. 
"' = C:D 

.:. 

(IV. 2 .1) 

where "' and D are the co-rotational Cauchy stress tensor and defor-

mation rate tensor respectively. The fourth-order elastic material 
4.:. 

tensor ~ is assumed to be constant. 

The optimum geometry of an element 

In every known state T we can indicate the optimum shape and size of 

every element . This is described in detail in chapter V for one 

particular element. In the state Tf' each element is successively 

isolated from the element mesh and has the optimum shape and size. 

The fictitious material associated with the element under con

sideration is stress-free (see figure IV.2.1). The deformation 

tensor, which maps state Tf into state t, is denoted as Ff. 

Without any restrictions to generality we may assume the co

rotational deformation rate tensor to be constant during this state 

transition. Then, on the analogy of (II.2.59), we can write 

(IV.2.2) 
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D 

Fi g. IV. 2.1 

Part of an e lement mesh in state T and t he optimum geome try of one 
iso lat ed element in state T f 

~f -f . 
where ~ is the logarithmic and E the Green-Lagrange strain tensor, 

both considered with respect to the stat~ lf. Integrating (IV.2.1) 

results in the co-rotational Cauchy stress tensor at a point of the 

fictitious material in state T 

(IV . 2 . 3) 

If Rf is the rotation tensor in the polar decomposition of Ff, the 

Cauchy stress tensor becomes 

(IV.2.4) 

The e lement nodal farces 

For the fictitious material associated with one isolated element, the 

d~formation from state 1f to state 1 can be effected by means of a 
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.. .. 
volume load q and a boundary load p, as is shown in figure IV.2.2a. 

These loads must be so as to satis[y in state TI the equilibrium .. 
equation 

.. -f + 3 at every internal point of the element. The (V.GJ ) q "' 

equation 
-f .. 

p = 111 .v must be satisfied at every point of the element 

boundary. Assembling the thus loaded isolated elements produces the 

body of fictitious material with which the CRS is associated. It is 

obvious that this body has the same geometry as the body considered 

in the forming process. It is loaded with volume loads and surface 

loads as can be seen in figure IV.2.2b. These loads are replaced by 

equivalent nodal forces, denoted by p, resulting in the situation 

shown in figure IV.2.2c. These forces are determined per element and 

those element nodal forces are denoted by Q . Using the method of 
~e . 

weighted residuals described insection II.4, and interpolating the 

relevant quantities in each element as described in section III.3, it 

is easily shown that the element nodal forces in state T are given by 

expression 

.. 
~e 

j.· .. 
~~., ,· 

~ .: ; 

--f. ....... L ..... -···::'1: .. ····:.< .. ·{ 
, . . .... 
! / tij;].:' "' 

·+--.. ,! ..... - \ : ··:···--·" I q -
: : ...- .........-

! ,;: .. ···:- I w .·. 
,; .... "'"',. ,/ : 

,•. ,' I 

..... ......... _ .... -~ 

... 
~· .. 

: : ... -.~': __ ......... 
J ....... · 

·: 

Fig. IV. 2. 2a 
+ + 

Volume laad q and boundary laad p on the fictitious material 
associated with one isolated element 

(IV. 2. 5) 
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Fig. IV. 2. 2b 

Volume and surface loads on the fictitious material associated 
with the element mesh 

Fig. IV. 2. 2c 

Nodal foPces on the fictitious material in state 1 
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Relaxation of the nodal f arces 

Deformation of the fictitious material from state T to state Te' the 

end of the increment, is effected by relaxin9 the nodal forces ~. In 

state Te' the stresses resultin9 from this deformation, must satisfy 

the equilibrium equation (V . Ü) = 0 at every point of the material. 

In addition, the CRS boundary conditions must be satisfied. Usin9 the 

method of wei9hted residuals and interpolatin9 the relevant 

quantities in each element, results in the inte9ral equation 9iven 

below, which is equivalent to the equilibrium equation and has to be 

satisfied for every allowable wei9htin9 tunetion 

n 
r .. T 

w 
e=1 ~e 

T T.. -
I (V~ ) ~ .u J dG G ~9~ ~e e e 

e 

(IV.2 . 6) 

.. 
The nodal forces : 2 result from the couplin9 between CRS and MRS and 

have a non-zero value only in those points where 

Accordin9 to (III . 2.2) and (III.2.3), ~ and J 
~e e 

tunetion of the incremental displacements à x . 
9 e 

stress tensor can also be written as a tunetion 

.. .. 
d

9
x = dmx applies. 

are written as a 

Formally, the Cauchy .. 
of à x : 

- .. 
~e = f(à

9
xe>· The incremental 

9 e 
displacement à

9
xe is interpolated 

within each element accordin9 .. 
column ~ 2 e by 

relation (IV.2.6) becomes 

n .. T .. .. 
r w .m

2 
(à x > 

e=1 ~e ~ e 9 ~ e 

to (III . 3.3) . Definin9 the vector 

(IV.2 . 7) 

; . 

(IV . 2.8) 

Assemblin9 the elements in the usual way 9ives 

.. T .. .. 
w .m2Cà x> 
~ ~ 9~ 

(IV.2 . 9) 
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The requirement that (IV .2.6) is satisfied for all weighting 

functions, interpolated in every element according to (III.3 . 5) , 

implies that (IV.2 . 9) has to be satisfied for all possible nodal 

point values of ;, thus for every possible column ;. The incremental 

nodal point displacements à x have thus to satisfy the set of vector g, 
equations 

(IV.2. 10) 
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V The solution process 

.1 Introduetion 

.2 The iterative method 

.3 Specification of the material behaviour 

.4 Calculation of the stresses 

.5 An iterative constitutive equation for time independent 

elasto-plastic material behaviour 

V.1 Introduetion 

. The incremental nodal point displacements, à x, and the incremental 
q~ .. 

displacement of the material in the nodal points, à x, must be deter-
m~ 

mined in order to satisfy the followinq simultaneous sets of non-

linear vector equations pertaininq to the forming and CRS deter

mination processes, respectively: 

.. .. .. 
m1Cà x,à x) 
~ g~ m~ 

(V. 1. 1al 

.. .. 
m2Cà xl 
~ g~ 

(V.1.1b) 

Additional coupling of these sets is caused by certain requirements 

which the CRS and MRS displacements have to meet, including the 

requirement that the CRS and MRS boundaries must always coincide. The 

kinematic and dynamic boundary conditions must also be satisfied. It 

is not possible to solve (V.1.1) directly because of the non

linearity of the equations. The solution procedure described in this 

chapter, is known as th.e iterative method. 

When the iterative method is used, a number of approximated solutions 

for (V.1.1) is determined. The approximation for the exact value of 

an incremental change àa, determined in iteration step i (i 2. 0), is 
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i denoted by àcr . The difference from the exact salution is denoted by 

dcr. Thus, for a CRS or an MRS change we write 

à cr g 

à cr 
m 

(V .1.2a) 

(V.1.2b) 

An approximation for dcr can be determined in iteration step i+1 . If 

dcr is sufficiently small, the incremental change àcr is considered to 

be accurate enough and the iteration process is stopped. The 

differences d cr and d cr are called the iterative CRS and MRS changes. 
g -. m -. 

In particular dgx and dmx are called the iterative displacement of a 

CRS and an MRS point, respectively. 

To determine the approximated incremental nodal point displacements 
-.i+1 -.i+1 . 

à x and à x we start from the 1ncremental form of (!!! . 3.6) and 
g~ m~ 

(IV.2.6). Expressionsof the form (V.1 . 2a) are substituted for the 

incremental change of the reciprocal vector basis 1 , the Cauchy 
* ::e 

stress tensor ~e and the Jacobians Je and Je . For ~e we write 

CJJ e (V. 1. 3) 

where ;fi is determined after iteration step i according to (IV .2.4). 

After these substitutions the two expressions are linearised with 

respect to the iterative changes d ( ), as will be discussed in 
g 

section V.2 . Further processing of the linearised expressions demands 

the specification of the material behaviour of continuurn and CRS, 

which is done insection V.J . The calculation of the stresses after 

iteration step i+1 is necessary to decide whether the approximated 

salution is accurate enough and, if necessary, to praeeed with the 

salution process . The calculation method is discussed in section V.4. .. -
The differences d l , d ~ , 

g~e g e 
linearised expressions, are 

* d J and d J , which occur in the 
g e CJ e 

expressed in d x . The CRS change d ~ 
g e g e 

can be replaced by an expression which contains the MRS change dm•e· 

This quantity can be expressed in the iterative MRS displacement d ~ m e 
using the iterative constitutive equation which is formulated in 

section V. 5. 
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V. 2 The iterative method 

The forming proce$s 

The CRS de termination process 

Two simuZtaneous Zinear vector equations 

The f orming process 

After writing equation (III.3.6) in discretised form the incremental 

changes are replaced by expresslons of the form (V.1.2a). 

Linearisation with respect to the iterative changes dg( results in 

n 
[ ~T 

e=1 ~e 

* n .. T dg Je i n .. T .. * d J *i * .. .-.9.:..e. [ w I Ijl qe Je dG - [ w I* Ijl t Je dG 
~e i ~e e *i e=1 G Je e=1 G Je e e 

n .. T i n .. T .. * *i * .. 
[ w I Ijl qe)e dG + [ w I* Ijl te Je dG 

e=1 ~e G e=1 ~e G e e 

n .. T (V ljlT)T~i.GJiJi [ w I dG (V. 2.1) 
e=1 ~e G ~g~ ~e e e 

e 

It follows from the CRS derivatives of the reciprocal vector basis 1 
* and the Jacobians J and J presented insection II.2 - relations 

(!! . 2 . 72), <;r.2.73) and (!!.2 . 86) - that the iterative changes d
9
!e• 

d
9

Je and d
9

Je can be written as 

.. .. i .. T .. i 
d9!e !e · <~9dgxel !e (V .2.2) 

d i .. iT . (V d X ) (V.2.3) 9Je Je!e ~9 9 e 

* *i .. *iT * .. d 9Je Je !e . (V d X ) (V . 2.4) 
~g g e 
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Thus, the iterative CRS changes of the geometrical quantities 1 , J * ~ e e 
and Je are expressed in the iterative CRS point displacement d i . 

g e 
The iterative CRS change of the Cauchy stress tensor, d u , can be g e 
expressed in the iterative MRS change dmae and the iterative 
. ~ ~ 

d1splacements dgxe and dmxe. On the analogy of (II . 2 . 100) we can 

write 

d G g e (V.2.5) 

In section V.5 a linear relationship between d a and d x is derived m e m e 
which, together with (V.2.5) allows us to write d a as a linear g e 
tunetion of d i and d x only. This iterative constitutive equation 

g e m e · 
and the expressions (V.2 . 2-4) are substituted in (V.2 . 1). 

Interpolation of d x and d x by analogy with (III.3.3) and · g e m e 
(III.3 . 4), results in the contracted equation 

n 
[ 

e=1 
+ 

n ~T i ~ 
[ w .B .d X 

e=1 ~ e -e g~e 
(V.2.6) 

In appendix 1 the tensor matrices~e and ~e are given inteqrally. On 

assembling the elements in the usual way this equation becomes 

(V.2.7) 

According to the principle of weighted residuals this equation has to 

be satisfied for every ~ . Hence the iterative displacements d x and 
~ . m~ 

d X have to satisfy the following set of linear vector equations 
9~ 

/Ai.d ~x i ~ + ~ . d x 
m~ g~ 

The CRS de termi nation process 

(V . 2 . 8) 

Writinq (IV . 2 . 6) in discretised form, substitutinq expressions of the 

form (V . 1.2a) for the incremental changes, (V . 1. 3) for Ge and 
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linearising with respect to the iterative changes d ( ) 1 gÏves 
g 

n 
[ ~T 

e=1 ~e 

-+T -+ n -+T 
+ !' ·:2 - [ w 

- - e=1 ~e 
(V . 2 . 9) 

The iterative changes d ~ and d J can be expressed in d x I accor-
g~e g e g e 

ding to (V . 2.2) and (V . 2.3). Moreover 1 d; can be written as a 
g e 

.linear expression in dgXe · Substitution of all this in (V.2.9) and 

intepolation of d x 1 results in the contracted equation g e 

n -+T i .. 
[ w .V .d X 

e=1 ~ e -e g ~e 

n 
-+T Ri 

[ ~e· ~2e 
e=1 

(V . 2 . 10) 

In appendix 1 the tensor matrix ~e is written integrally. Assembling 

the elements in the usual way results in 

-+T i -+ 
w .V .d X 

g~ 

(V. 2 . 11) 

According to the principle of weighted residuals this equation has to 

be satisfied for every ~~ which implies that the iterative nodal .. ~ 
point displacements d x have to satisfy the following set of l i near 

g~ 

vector equations 

i .. 
V .d X - . g~ 

Two aimu ~taneo us ~in e ar vector equations 

(V. 2 .12) 

The iterative displacements dm~ and dg~ have to satisfy the following 

simultaneous vector equations 

i .. i .. -+i 
(V. 2 .13a) A. .d x + IB .d X ~1 m~ - g~ 

i .. -+i 
(V . 2. 13b) V .d X ~2 g ~ 
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The eZastic materiaZ tensor 

It is assumed that the elastic material behaviour of both the real 

material of the body and the fictitious material with which the CRS 

is associated, is isotropie and that the elastic material parameters 
4. 4~ 

remain constant. The fourth-order elastic material tensors ~ and ~. 

belonging to the real and the fictive materi~l respectively, are 

defined by: 

(V . 3.5a) 

(V.3 . 5b) 

Here K and K are bulk moduli and G and G shear moduli. E being 

Young's modulus and v Poisson's ratio, K and G are defined by 

K 
E 

3(1-2v) G 
_E __ 

2( 1+v) 

The eZasto- pZastic materiaZ tensor 

(V. 3 .6) 

To describe the elasto-plastic material behaviour of the continuum, 

the Von Mises yield condition with isotropie hardening is used. 

According to this yield condition plastic deformation at a material 

point can occur only on satisfaction of equation 

0 (V.3.7 ) 

The tensor ~d is the deviatoric part of the co-rotational Cauchy 

stress tensor and ov is the current yield stress, which is the one 

and only history parameter . It i s assumed that ov is a function of 

the effective plastic strain EP with respec t to a reference state 1
0 

where ov o~ and EP= ÈP0
. In state T , ÈP is defined by 

(V . 3.8 ) 
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According to (V.J.?) the associated flow rule reads as 

·p af .d [) = a. a~~ = a. 11 (V . 3.9) 

Using the definition of the effective strain rate ~P, it is easily 

shown that a. can be written as 

a. = (V . 3 . 10) 

According to (V.3.4) and the definition ~ a.P we find for ~ k(n) 

~ k(n) (V . 3. 11) 

Using (V.3.10) and the hardening parameter h we arrive at 

1 
ji k(n) 

Employing (V.3.5) and 

4. 
n: ll::n 

(V. 3. 12) 

áid 
n = p it is easily shown that the relations 

(V. 3. 13) 

(V. 3 . 14) 

hold. Substituting (V.3.12), (V.3.13) and (V . 3 . 14) in (V.3 . 3) finally 

gives 

4. 
[, 

4. .....3.L_ 
~ - h 

1 + JG 
(V. 3. 15) 
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V.4 Calcula tion of the stresses 

The a o -r otationa~ Cauahy stress t ensor 

The effeati ve p~a s tia s t rain 

The mean n o rma~ methad wit h r ad i a~ return 

The i mp ~ i ai t rad ia~ return method 

The ao -r otationa~ Cauahy s tress t ensor 

The change of the co-rotational Cauchy stress tensor at an MRS point 

m during the state transition àT : T ~ T, can be determined by 
0 

integrating the constitutive equation (V . 3.2) 

T 4" • 
I IL :D dT (V. 4 . 1) 

To 

If Dis assumed to be constant during the state transition àT, we can 

use relation (!!.2 . 59) and write 

_1_ T 4" 
à a J IL dT ( 

T-T (V . 4.2) 
0 T 

0 

Here ( is the logarithmic strain tensor defined by 

( 
1 
:zln([ + 21E) (V.4 . 3) 

where IE is the Green-Lagrange strain tensor at point m witQ respect 

to the state T . 
0 

The effeative p~asti a strain 

The fourth-order tensor 4i is a tunetion of the current yield stress 

av , which is assumed to be a tunetion of the effective plastic strain 

ÈP . Using the Von Mises yi eld condition the consist ency relation 

(II. 5. 4) reads as 

.,_ 



2 
- 3 0 0 

V V 
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0 (V .4.4) 

With ov ov(Èp) the next expression for ~p is easily derived 

iP .d :d .d 
!........:...!. -.L..:..i_ (V . 4 . 5) 
2 2 
3 0 h 3 ov h 

V 

where h 
dËP 

relation we find 

is the hardening parameter. Using the constitutive 

~p 

The change in 

lil : T 
0 

.. T 

T 
AËP I 

T 
0 

.d ID. ' : 

effective plastic strain during 

(V . 4 . 6) 

the state transition 

can be determined by integrating (V.4.6) and yields 

IÎ!d : ~ _j__ T .d 
dT Gl dT a: (V .4 . 7) 

IL T-T I IL (1 + 3Gl 0 v 0 T (1 + 3Gl 0 v 0 

The stress tensor in state T can be determined by simultaneously 

integrating (V . 4.2) and (V.4.7) . Several methods are known for car

rying out this integration- for instance, see Krieg & Krieg (1977)-. 

Using the Van Mises yield condition with isotropie hardening , the so

called mean normal methad is found to be very effici ent and accurate . 

The mean normal method with radial return 

With the mean norma l methad a stress tensor me is determined, this 

being the stress tensor if the material would show purely elastic 

behaviour during the state transition At : T
0 

.. t 

(V .4.8) 
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If f(~ ,o0
) i 0, this tensor is equal to the co-rotational Cauchy 

e v 
stress tensor in state t . If f(ie,o~) > 0, two scalars (À 1 ,À2) are 

determined from 

0 

and a stress tensor im is defined by 

i 
m 

(V.4.9) 

(V .4 .10) 

According to (V.4.7) the effective plasticstrain is estimated as 

d • 
(1-À)i : G: 

(V .4 .11) 

If the hardening parameter h is unknown, tp cannot be calculated from 

the above expression. In that case an iterative procedure is 

followed . In the first step the hardening parameter h is chosen zero 

and in every following step it is calculated from 

h (V . 4 . 12) 

Finally , when the iterative calculation of tp and h has been carried 

out, the co-rotational Cauchy stress tensor û in state t is given by 

(V . 4 . 13) 

This stress tensor, tagether with the yield stress in state t, which 

is determined as a function of tP, will generally not satis fy t he 

yield condition (V . 3.7). According toBrekelmans (1981) the yield 

condition will be satisfied only if the material behaviour is per-

f tl 1 t . (h 0) 1"f . do d ~d · "1 11 h ec y pas 1c = or ~ an ~ are s1m1 ar . In a ot er 

cases the stress tensor i is adjusted, using the so-called explicit 

radial return method. 



V. 13 

When the co-rotational Cauchy stress tensor m in state T is deter

mined, the deviatoric part of this tensor is multiplied by a scalar a 

given by 

(V. 4. 14) 

The tensor a id and the yield stress o satisfy the yield condition 
V 

in state T. Since the stress tensor is adjusted afterwards, thi s 

adjustment procedure is called the explicit radial return method . 

The i mplicit radial return methad 

An implicit radial return methad can also be employed. In that case 

the fourth-order elasto-plastic material tensor is assumed to be 

constant during the state transition àT 

the expression 

t
0 

~ T, which results in 

(V . 4. 15) 

for i in state T . By means of (V.3.15) it is easily shown that the 

deviatoric part of i is given by 

.d 
G! 

d .d ..,G e~·d.:.d .• d 
• o + 2G a: - ~ w a: 11 1L 2 : 

1 + JG ov 

If the scalar K and the tensor m are defined by n 

K = [ 1 + 
JG id:(d -1 

- - h- 2 ] 
1 + JG ov 

expression (V . 4 . 16) for êd results in 

.d 
G! K i n 

(V. 4 . 16) 

(V . 4 . 17) 

(V. 4 . 18) 
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The scalar K is determined so as to make id satisfy the yield con

dition in state t. Substitution of (V.4 . 18) in the yield condition 

results in 

(V.4 . 19) 

where Ëp is determined according to the mean-normal method, described 

before . The following expression can be derived for the co-rotational 

Cauchy stress tensor in state t 

1 0 • 
K in + 3 tr(e ) I + K tr(~) [ (V.4.20) 

which, tagether with a v' satisfies the yield condition. Starting from 

the above expression for Îl, an iterative constitutive relation 

between d Îl and m 
.. 

d x m will be derived in the next section. 
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v.s An iterative cons titutive equ.ation f or time independent 

elas to-plastic material behaviour 

The iterative constitutive equation for the material 

The i terative constitutive equation for the CRS 

The i t erative constitutive equati on f or t he material 

The relation between the iterative MRS change of the Cauchy stress 
. . .. 

tensor, dmm' and the iterative MRS po1nt d1splacement, dmx' has been 

presented by Nagtegaal & Veldpaus (21]. The derivation of this 

iterative constitutive equation is incorporated in this thesis as 

appendix 2. In the derivation presented here, it was necessary t o 

assume the Green-Lagrange strain tensor with respect to the beginning 

of the increment, to be very small, i.e . I IEl I << 1. If this as

sumption is not correct, the convergence rate of the iteration 

· process will be affected, the final solution, however, will not. In 

appendix 2 some results of appendix 3, dealing with functions of a 

tensor, are used. 

The derivation of the constitutive equation starts from the relation 

between the Cauchy stress tensor m and the co-rotational Cauchy 

stress tensor i , reading 

11 = R.i.IRc (V . 5 . 1) 

Here IR is the rotatien tensor in the polar decomposition of the 

deformation tensor IF. Employing the iterative solutio.n procedure, 

(V.5.1) becomes 

.,i + d m 
m 

and linearisation yields 

d m 
m 

(V.5.2) 

(V .5 . 3) 
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Closer examinatien of dm~ and dmm results in 

where the tensor dm~ is defined by 

d ~ 
m 

(V . 5.4) 

(V . 5 . 5) 

For the fourth -order elasto-plastic material tensor ~i the expres -

si on 

i i CD CD 
...1LlL 

i2 ) 
0 

n 

i holds, where K is the bulk modulus . The tensor CDn is defined 
i analogous to (V.4.18) and on by 

i i I 

CD : CD 
n n 

while the quantities G and ~ are given by 

i hioi 0 

G G ...::1.. 
~ 1 

i 
-

~ i 0 3G( 1 + n 3G) 0 v 

(V.5.6) 

(V.5.7) 

(V.5.8) 

where G is the shear modulus, o~ the current yield stress and hi the 

current hardening parameter . 
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The iterative constitutive equation for the CRS 

The iterative constitutive equation for the fictitious material 

associated with the C~S is analogous to (V.5.4) and reads as 

d !I 
1 - d Hel _;i + -i 1 - d IÜC)C -(d li - CD ·z(dgiH g 2 g g g 

4- 1 - d HC) + G:: 2 (dgiH + g (V.5.9) 

d lii d f.(fi)- 1 d ~T~i (V d -.)T-.i 
g g g~ ~ ~g gx ! (V. 5. 10) 

(V . 5 . 11) 

Here, K and G are the bulk and shear modulus of the fictitious 

material. 
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VI Axisymmetric forming processes 

.1 Introduetion 

.2 An axisymmetric element 

.3 A plain-strain element 

.4 Aspects of the CRS determination process 

VI.1 Introduetion 

In the preceding chapters the theoretica! aspects of the simulation 

of metal forming processes are presented. This chapter deals with the 

application of this theory to axisymmetric forming processes, which 

occur frequently in practice. 

To facilitate elaboration of various mathematica! expressions, two 

spatial reference systems are introduced : the Cartesian and the 

cylindrical reference system. Using the Cartesian reference system, 

every point in space is identified by a set of three mutually in

dependent Cartesian coordinates x, y and z . The vector basis at a 

point is denoted by ~ and defined by 

~T = [~ 
~ x 

~ ~ ] 
y z (VI. 1. 1) 

This vector basis is orthonormal, i . e . ~T - ~ = ! · Using the 

cylindrical reference system, every spatial point is identified by a 

set of three mutually independent cylindrical coordinates r, ~ and z. 

The vector basis at a point is denoted by ; and defined by 

.. 
E 
~ 

1 ] z 

This vector basis is orthonormal as well: ;T_; 

systems are shown in figure VI . 1 . 1 . 

(VI .1.2) 

I. Both reference 
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z 

x 

Fig. VI.l.l 

The Cartesian and cylindrical reference systems 

The following relationship exists between the Cartesian and 

cylindrical coordinates and vector bases: 

x = r cos lP y i: sin q> z = z 

... 
-sin 0 

.. 
e cos (j) (j) E x r 

.. 
sin 0 

.. 
e (j) cos (j) E 

y (j) 

.. 
e 0 0 

.. 
E z z 

y 

(VI .1. 3) 

(VI.1.4) 
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Every CRS point is identified unambiguously by a set of CRS coor

dinates g. Moreover, every CRS point can be identified by means of 

the Cartesian and cylindrical coordinates of that point in a state t. 

In section VI.2 an axisymmetric element is presented which is used 

for the simulation of the forming process . Various relevant 

quantities at a point of this element are considered. Veetors and 

tensors are written in components with respect to the cylindrical 

basis at that point. For a vector ~ we write 

.. 
a 

T .. 
a E 

..T 
E a 

where column a contains the cylindrical components of ~. 

(VI.1.5) 

The state in which the geometry of an element is optimal, is called 

tf. In this state, the fictitious material associated with the 

element is stress-free . In state t, the Cauchy stress tensor at a 

point of the element, the value of which depends on the deformation 

of the fictitious material at this point with respect to state tf' is 

a measure for the deviation from the optimum geometry of the element. 

Rigid body movement of the fictitious material must not affect these 

stresses. For this reason the axisymmetric element is not appropriate 

for simulating the CRS determination process . The fictitious material 

is considered to be associated with a plain-strain element which is 

introduced in section 

sidered 

written 

point . 

.. 
a 

at a point of 

in components .. 
For a vector a 

T .. 
a e 

.. T 
e a 

VI.3. Various relevant quantities are con-

this element. Veetors and tensors are being 

with respect to the Cartesian basis at that 

we write 

(VI.1 . 6) 

where column a contains the Cartesian components of ~ . 

Some detailed aspects of the CRS determination process are discussed 

insection VI . 4. 
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VI.2 An axisymmetric element 

The axisymmetric element, used to siaulate the forming process, is 

shown in figure VI.2.1. 

z 

x 

Fig. VI. 2.1 

The axisymmetrio element 

The cross~section is a quadrilateral with straight sides . For the 

local CRS coordinates we find 

y 

(VI.2.1) 

Each 

that 

local coordinate lies within the interval [-1,1]. It is assumed 

~ = v for every ~ with 0 < ~ i 2v. 
3g2 

None of the relevant quantities in an axisymmetric forming process is 

a function of the ~- or g2-coordinates. Thus attention can be fixed 

on one cross- section of the element, e.g. with ~ = 0. The bilinear 
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interpolation functions used, are merely a function of the local CRS 

coordinates g1 and g3. The four vertices of the quadrilateral cross

sectien are the nodal points used for the interpolation. The four 

interpolation functions are contained in the column ~: 

~ ~1 1 4( 1-g1 )( 1-g3) (VI.2.2) 

1112 1 4 ( 1+g1 )( 1-g3) 

"'3 1 4( 1+g1) ( 1+g3) 

"'4 1 4( 1-g1 )( 1+g3) 

A scalar quantity a at a point of the element is interpolated as 

follows 

1 
a 

2 a 
3 

a 
4 

a 

(VI.2.3) 

where column a contains the values of a at the element nodal points. 

A vector ~ is interpolated as 

If 

to 

.. T .. 
a Ijl a 

the nodal point 

the cylindrical 

.. 
veetors a are 

vector basis, 

.. T T .. [ljl1 "'2 "'3 ljl4) a Ijl a E = a 

a 

a 

a 

(VI.2.4) 

written into components with respect 

we can write 

1 1 1 .. 
a a E (VI.2.5) r lil z r 

2 2 2 .. 
a a E r lil z lil 

3 3 3 .. 
a a e: r lil z z 

4 4 4 a a r lil z 
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According tó (!! . 2 . 61) the CRS vector basis ~at CRS point q of the 

element is defined by 

~ 
.. .. VT [_a _ __Q_ _i_ J (VI.2.6) V X V p 

~q ~q ~q ag1 ag2 agJ 

.. 
Here p is the position ,vector of point g. In components with respect 

to the Cartesian vector basis 
.. 
e in q we can write 

.. T .. 
[x z] 

.. 
p P e y e x (VI.2. 7) 

.. 
e y 

.. 
e z 

and hence 

~ 
T .. .. Qx_ Qy_ 2..L (V p )e ~ e ~x ~9~ ~ -x~ ag1 ag1 ag1 

(VI.2 . 8) 

a x Qy_ 2..L 
ag2 ag2 ag2 

.Q.L Qy_ 2..L 
agJ agJ ag3 

With (VI.1.3), (VI.1.4) and (VI.2 . 1), ~ can be written in components 
.:; 

with respect to the cylindrical basis t in g as 

~ 
.. 2.L 2..L = f3 E ~c ag1 

0 
ag1 

(VI.2.9) 
-c~ 

0 11r 0 

ar 0 az 
agJ agJ 
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Interpolating the cylindrical coordinates r and z according to 

(VI.2.3), the matrix ~c becomes 

ilij? 

.!!c 
-~- r 
ilg1 ~ 

0 (VI. 2. 10) 

0 T 
11\jl r 0 

(llj,T 
- r 
ilg3 ~ 

0 

The Jacobian J of the mapping 
.. 
x G -+ V(t) is defined by 

(VI. 2 . 11) 

If the basis veetors pi (i= 1,2,3) are written in components with 

respect to the cylindrical basis ~. it is easily shown that 

The redprocal 

-+ -+T 
ll-'f I 

It both p and 

results in 

-+ -+T T 
I! E.E 'f 
-c~ ~ - c 

vector basis 
.. 

can be determined from 'f 

.. 
are written components with respect to 'f ~n 

I 

Because of the orthonormality of ~ we find for 'f 
-C 

-T 
!c = ~c 

(VI.2. 12) 

(VI. 2. 13) 

.. 
this EI 

~ 

(VI. 2. 14) 

(VI. 2. 15) 
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According to (!!.2.67) the gradient operator is defined by 

.. .. T V "Y V ' , g 
(VI.2.16) 

Using '+T -+T T this becomes "Y = E :!c ' 

.. -+T -yTV V E 

' -c,g (VI.2.17) 

It is easily shown that the expression 

.. 
V (VI.2.18) 

holds for V. The cylindrical vector basis ; is not independent of the 

~- or g2-coordinate : 

-+T 
0 0 0 V E ,c, (VI.2 . 19) 

1 .. 1 .. 
0 -E --E 

I ~ I I 

0 0 0 

and , using (VI. 2. 18) 

-+T 
0 0 0 V E ,g, (VI. 2. 20) 

.. .. 
0 l!E - l!E 

~ I 

0 0 0 

For the gradient and the divergence of a vector ~ the following 

expressions hold - the quantity in brackets ( ) is affected by v 
,g 

(VI. 2 . 21) 
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.. .. 
VT'Y (a) -+T T -+T 

V.a + E .'( V (E )a 
~g-e ~ -C~g ~ 

T -+T T -+T 
Ijl V 'Y a(ljl) + E .'( V (E )a 

~g-e -:- ~ -C~g ~ 
(VI.2 . 22) 

For the gradient of a tensor ~ we can write 

(VI.2 . 23) 

At MRS point m the deformation of the material in state 1 as compared 

with 1
0

, is described by means of the deformation tensor F . If the 

position vector of m in state 1 is denoted by ~. F can be written as 

F 
-+T-+o 
b c (VI.2 . 24) 

In components with respect to the cylindrical basis in m this bécomes 

F 
-+T T o-+ ~TF .. 
E b C E E 
~ -c-c~ 

(VI.2.25) 

with 

b .k_ 
0 

Q.L 
-C am1 am1 

(VI.2 . 26) 

0 11r 0 

ar 
0 2.L 

am3 am3 
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VI . J A plain-strain element 

A plain-strain element is used to simulate the CRS determination 

process, and is shown in figure VI.3.1. 

z 

x 

Fig . VI . 3 . 1 

The pZai n- strain e l ement 

With every axisymmetric element a plain-strain element having the 

same cross-section for ~ = 0 is associated. The local CRS 

coordinates are such that 

(VI . 3 . 1) 

Each local coordinate lies within the interval [-1,1]. Moreover, 

has an arbitrary but equal value a for all y . 

In the plain-strain CRS determination process none of the relevant 

quantities is a function of the y- or g2-coordinates. The inter

polation functions and nodal points used to interpolate these quan

tities are the same as those presented in section VI . 2 for the 

axisymmetric element. For a vector ~ we write 
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.. T T .. [ljl1 ljl2 ljl3 ljl4] 1 1 1 .. 
(VI.3o2) a 111 a e a a a e x y z x 

2 a2 2 .. 
a a e x y z y 

3 3 3 .. 
a a a e x y z z 

4 4 4 a a a x y z 

Insection VI 02 we found for the components of the vector basis jl at 

CRS point g: 

p = jl ; 
~x 

fuL .Q.y_ QL 
~ -x~ élg1 élg1 élg1 

(VI. 3 o 3) 

fuL .Q.y_ QL 
élg2 élg2 élg2 

k_ .Q.y_ QL 
élg3 élg3 élg3 

On account of (VI. 3 0 1) the matrix P becomes 
-X 

~x 
k_ 

0 
QL 

élg1 élg1 
(VI.3o4) 

0 Cl 0 

k_ 
0 

QL 
élg3 élg3 

Interpolation of the Cartesian components x and y according to 

(VI.2.3) results in 

élljlT él$T 

!x 
~x 

élg 1 ~ 
0 _.,_ z 

élg 1 ~ 
(VI.3 o5) 

0 Cl 0 

él$T élljlT 
-~-x 0 - z 
élg3 ~ élg3 ~ 



For the Jacobian J of the mapping 
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.. 
x G .. V(t), we find 

J = det(~x) (VI.3.6) 

and for the components of the reciprocal vector basis i 

.. .. 
l l e 

-X· 

The gradient operator can be written as 

.. 
V 

.. T T 
e l V 
• -X.g 

.. T 
e v •• x 

(VI.3.7) 

(VI. 3. 8) 

Unlike the cylindrical vector basis ;, the Cartesian vector basis~ 

is the same at every spatial point, hence 

V ~T 0 
.g. 

(VI. 3. 9) 

For the gradient and the divergence of a vector ~ the following 

expressions hold - the quantity in brackets is affected by V - : 
.g 

.. .. 
V a (VI. 3. 10) 

.. .. 
V.a (VI.3.11) 

At CRS point g the deformation tensor F describes the deformation of 

the fictitious material in state T with respect to state 'f· If the 

position vector of g in state T is denoted by ~. we can write the 

following for F 

(VI.3.12) 

In components with respect to the Cartesian basis in g this becomes 

.. T T f .. 
e P l e • - x-x. 

..T- .. 
e F e (VI. 3 . 13) 
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If the cross-section of the element in state Tf is a square with 
. fl 1 • fb s1des o ength & 1 the matr1x 1 · ecomes 

-X 

f 2 
0 0 ::!x z (VI. 3 . 14 l 

0 
I 

0 
Cl 

0 0 f 
z 

and, thus , the matrix F is 

F 
2 ox 

0 
2 OX 

ï og
1 

ï og
3 

(VI. 3. 15 l 

0 0 

2 oz 
0 

2 oz 
ï og

1 
ï og3 
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VI.4 Aspects of the CRS determination process 

The optimum element geometry 

The coupZing between CRS and MRS 

The optimum e lement geometry 

The axisymmetric element used to simulate the forming process is 

presented in section VI.2. The shape of its cross-section may affect 

the accuracy of the numerical integrations and the error, possibly 

introduced by the interpolation of the MRS displacement à x . We m e 
assume the accuracy of the numerical integration to be maximal and 

the error caused by interpolation to be minimal if the cross-section 

is a square . This shape is called the optimum shape. 

Both the size and the shape of the cross-section may affect the 

interpolation error. In view of the size the error can be assumed to 

be minima!, if the area of the cross-section is a given function of 

the stress gradient within and in the neighbourhood of the element. 

Various ideas have been published in literature as to the optimum 

size of elements (see Turcke & McNeice (1974), Melosh & Marcal 

(1977), Chiou & Wang (1979), Babuska & Rheinboldt (1979, 1980), Dwyer 

et al. (1980), Zienkiewicz et al. (1981, (29]) and Bathe & Sussman 

(1983)). In the CRS determination process discussed in this thesis 

the optimum size of elements is not considered . 

The length in y-direction of the plain-strain element in state Tf is 
.. f 

so chosen that the reciprocal vector basis 1 at every CRS point is 

(VI. 4. 1) 

In the current state T the deformation tensor at CRS point g, which 

describes the deformation of the fictitious material at that point 

compared to state Tf' is denoted by ~f (see figure VI.4 . 1) . 



z 

Fig. VI. 4.1 

"( ' f 
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The deformation of an element from state Tf to state T 

On account of (VI.3.12) and using (VI.4.1) we can write 

-f ;tT .. f 
IF = I' "'f 

x 

(VI. 4. 2) 

The Green-Lagrange strain tensor in g in state T compared to state Tf 

becomes 

-1 { ( 2.....) 2 .. T .... T .. e ~-~ e - [) 
2 lf 

(VI. 4. 3) 

Using Ëf, the Cauchy stress tensor ;f in g can be determined as given 

in (IV.2.3) and (IV.2.4). 

The coupZing between CRS and MRS 

During the simultaneous simulation of the forming process and the CRS 

determination process, there must always be an unambiguous relation

ship between CRS· and MRS. This implies that the boundaries of both 

reference systems must always coincide.· Hence, following (V.2.14), 
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if the iterative changes d ( ) are assumed to be infinitesimal, the 
• . . ~ -+ 1 . 1terat1ve d1splacements d x and d x at every boundary noda po1nt 

g m 
must satisfy 

-+ 
V 

-+ 
n (VI.4.4) 

The unit outward normal vector ; is defined as shown in figure 

VI. 4. 2. 

Fig. VI.4.2 

The definition of the unit outwaPd nonmal veetoP at boundapY points 

As discussed in section II.4 the external load on the material 
-+ -+* 

consists of a volume load q and a boundary load t . After 

discretising the CRS, these loads must be transferred to consistent 

nodal farces and thus the material is loaded by concentrated farces. 

Nodal point positions are chosen so as to account for these farces in 
-+ -+* 

a straightforward manner. If q, t or one or more concentrated farces 

are material-associated, the CRS must not move with respect to the 

MRS at the nodal points where the (consistent) nodal farces are 

applied. The iterative displacements at these nodal points must 

satisfy 

(VI.4.5) 

For a boundary point the above requirement is stronger than (VI.4,4) 
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VII Simulation of axisymmetric forming processes 

. 1 Introduetion 

. 2 A simulation program 

. 3 Results of some simulations 

VII.1 Introduetion 

A computer program is developed to test the method described in the 

preceding chapters . With this program numerical simulation of axi

symmetric forming processes can be carried out, using either the 

Lagrangian or the AEL formulation. It is also possible to employ the 

rezoning technique . The program is written in Burroughs Extended 

Algol and implemented on the Burroughs B7700 computer of the 

Eindhoven University of Technology. Some program items concerning the 

simulation according to the AEL formulation are discussed in section 

VII.2. Results of some simulations are presented in section VII.3. 
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VII.2 A simulation program 

For the simulation of a forming process according to the AEL tor

mulation the following sequence of instructions is carried out by the 

program. 

1: define initial model; 

while increments-to-calculate do 

begin 

2 : define new increment; 

while no-convergence do 

begin 

3 : 

4: 

5 : 

6: 

7 : 

8: 

9: 

10: 

11 : 

12 : 

13: 

calculate CRS nodal point forces ; 

make system of equations; 

introduce kinematic boundary conditions and coupling 

conditions for CRS and MRS; 

calculate iterative CRS and MRS displacements at nodal 

points; 

adjust CRS nodal point displacements; 

calculate material-associated quantities at follower 

points; 

update geometry and location; 

update material-associated data at follower points; 

transfer material-associated data from follower points to 

integration and nodal points; 

calculate residual nodal point forces ; 

check convergence; 

end; 

end. 

These instructions will be discussed shortly. 

1: Data on geometry, connectivity, kinematic and dynamic boundary 

conditions and material behaviour are input data for the 

program. It is possible to interrupt the simulation and restart 

with the same or partly changed boundary conditions. In that 

case, the data on the deformation history must also be available 

as input data. 
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2: At the beginning of every increment the follower points are 

redefined, to be the MRS points, coinciding with the nodal 

points and the mid-points of element sides and elements . 

Defining the follower points determines the cells as well. For 

every nodal and integration point are stipulated the cell in 

which it is situated and its local MRS coordinates within this 

cell . Material-associated data at the nodal points are 

transferred to the new follower points by interpolation . 

3 : The nodal forces arising out of the deviation of optimum element 

shape, are determined according to the method described in 

chapter IV and section V. 4 . 

4 : The iterative CRS and MRS displacements d x and d ~ must satisfy g, m, 
the systems of linearised equations (V . 2 . 13) 

I 
d ~ m, 

d .. 
g~ 

= (VII.2.1) 

If the material is (nearly) incompressible, as is the case in 

some elasto-plastic forming processes, the axisymmetric element 

used, may behave much too stiffly, as is described by Nagtegaal 

et al . (1974) and Nagtegaal & De Jong (1981). To prevent this 

"locking", reduced numerical integration is employed for those 

termsin (VII . 2 . 1), which characterize the hydrastatic material 

behaviour. 

5: At a nodal point the two components of d x and d ~are either g m 
suppressed, prescribed (nonzero) or unknown . At a boundary point 

we want to satisfy the coupling condition (V .2 . 14), that is 

where -+i 
V 

(VII.2 . 2) 

-+i 0 0 

n ~s the un~t outward normal vector at that point. 

At some points the coupling condition (VI.4.5) has to be 

satisfied, that is 



.. 
d x g 
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d ~ m 
(VII. 2. 3) 

Satisfying (VII.2.2) or (VII.2.3) means coupling one or both 

components of d x and d ~- The coupled components are denoted by 
g m 

an index c, the free but unknown components are denoted by an 

index Ü (ford x) and u (ford~). After dealing with the sup-
g m 

pressed and prescribed components in the usual way, the system 

of equations (VII .2 .1) can be written as follows 

A A B - B d x ~1u 
(VII.2.4) 

-u u -uc -u u -uc m.u 
A A B - B d x ~1c -CU -cc -CU -cc m.c 
0 0 V-- V- d 

g~Ü 
R -

-UU -UC .2u 
0 0 V - V d 

g~c ~2c -CU -CC 

Taking d x = d x into account and deleting the equations with g.c m.c 
the unknown right-hand vector R

2 
leaves us with 

- c 

[

A A 
-UU -UC 
A A 
-cu -cc 
0 

+ B 
-UC 

+ B 
-cc 

v-ue 

B -1 [d x 1 -uu m.u 
B - d x -cu m.c 
v-- d x-uu g.u [ 

;1u1 
.1c 
R -
.2u 

(VII.2.5) 

6: The iterative displacement components d x , d x and d x- are m.u m.c g.u 
solved from (VII.2.5). 

7: If the CRS and MRS boundaries coincide at the beginning of an 

iterative calculation, they will still approximately 

coincide after the iterative calculation, if (VII.2.2) is 

satisfied and if the iterative displacements d x and d ~ are 
g m 

infinitesimal. Since these displacements are finite the 

boundaries will move apart, as is shown in figure VII.2.1 for 

one nodal point. 

To ensure that the CRS and MRS boundaries coincide as closely as 

possible at the end of the iterative calculation, the itPrative 

boundary riodal point displacements d x are adjusted: This is 
g 

done in such a way that every boundary nodal point will finally 
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be situated on the circular are through the MRS points which, at 

the beginning of the iterative calculation, coincide with thc 

boundary point and the two adjacent boundary points, as shown in 

figure VII. 2. 2. 

V 

Fig. VII. 2. 1 

Difference between iterative MRS and CRS displacements at a nodal 
point 

adjustment 

Fig. VII. 2. 2 

AdJustment of the iterative CRS displacement at boundary nodal point 2 
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B: The material-associated quantities are determined at the fol

lower points. After calculating the iterative change of the 

deformation tensor F, according to 

d F 
m 

(VII.2.6) 

the iterative change of the Green-Lagrange strain tensor is 

calculated in accordance with 

d IE m 
(VII . 2 . 7) 

The Cauchy stress tensor and the current yield stress are deter

mined according to the procedure described in section V.4 . The 

hardening parameter is constant in value, as the hardening is 

supposed to be linear. 

9: Calculating the new position of the nodal points is very 

straightforward. For every follower point it is determined in 

which element this point is situated and what its local CRS 

coordinates are within this element. The same applies, for every 

nodal point, to the cell in which this point is situated and 

what its local MRS coordinates are within this cell . 

Although the iterative boundary nodal point displacements are 

adjusted , the CRS and MRS bouridaries will not coincide exactly 

as is shown in figure VII . 2.3 . This deviation is unavoidable and 

in most cases very slight . However, follower points may fall 

outside the element mesh. This must be corrected for two 

reasons, the first being that one or m.ore cells will not then be 

defined . Second, material-associated data must not be lost to 

the new .element mesh. For every follower point, situated outside 

the element mesh, a new follower point is defined as shown in 

figure VII.2.4 . 

10: The material-associated data at the new follower points are 

calculated by interpolation between the data at points ~ 1 and 

~z· 



VII. 7 

Fig . VII. 2. J 

Deviation of the CRS and MRS boundaries 

Fig. VII . 2. 4 

I 
I 

--
. ~ ~-

'.!1, 

Definition of a new fo llower point 

' ' ' ' 

' ' ' ' ' · 
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11: Some material-associated quantities must be determined at the 

integration points. This is necessary for the calculation of the 

residual nodal point farces and, if a new iterative calculation 

has to be carried out, for the calculation of the left-hand 

matrix in (VII.2.1) . All the material-associated quantities must 

be determined at the nodal points as well. At the beginning of 

the ensuing increment these data are transferred to the new 

follower points. The Cauchy stress tensor m at the nodal points 

is used in every iterative calculation to determine 
.. 

(V m) at 

the integration points . Material-associated data at an 

integration or nodal point are determined by linear 

interpolation between these data at those follower points, which 

are the vertices of the cell in which the integration or nodal 

point is situated (see figure VII.2.5). 

Fig. VII . 2. 5 

I • 
I : 

' I ' 

!'- -J F 
_ __ _ /- --- 4 

I 

I 
I 

I 
-' -i 

I --
I 

I 

Ca lculat ion of mat erial- associated da t a at nodal poin t N and 
i ntegPat ion point I by l i neaP i ntePpolati on between data at 
followeP points F

1
, F

2
, F

3 
and F

4 

12: The residual nodal point farces are determined per element, 

following 
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Ri .. i ... •i • 
J Ijl qeJe dG + r. Ijl t eJe dG 

~1e G G 
e e 

J ( ljJT)T .. i i i dG - V "Y . GJ J 
G ~9~ ~e e e 

(VII.2.8) 

e 

.. ... 
Volume loads q and surface loads t are taken into account by 

.. k 
concentrated nodal point forces r which are applied aftcr 

assembling the elements. The total residual nodal force vector 

then becomes 

(VII.2 . 9) 

When the iterative calculation is terminated, the equivalent 

nodal force vector ~ 1 , defined by 

.. 
~1 

n 
[ f 

e=1 G 
e 

T T .. 
(V Ijl ) "Y . GJ J dG 
~9~ ~e e e (VII.2 . 10) 

is taken into account in the first iteration step of the next 

increment, by adding it to the new external nodal force vector. 

13 : The accuracy of the current approximated solution for the 

incremental MRS displacement 

accuracy is a norm of d ~ or 
m ~ 

à ~. is checked . A 
m~ 

~ 1 . If the "exact'' 

measure for this 

salution for ll ~ 
m~ 

is obtained, these norms are both zero. The approximation is 

considered to be accurate enough if one of these norms is 

smaller than an associated limit value. In that case the 

iteration process is converged and a new incremental calcul ation 

can be started. 
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If the Lagrangian formulation is used in the numerical simulation, 

the iterative nodal point displacements have to satisfy th~ system of 

linearised equations given below, resulting from (VII . 2 . 1) with 

d ~ = d ~. that is 
g~ m~ 

i i ~ 
(IA +!! ).dm~ 

.. i 
~1 (VII. 2. 11) 

The integration points act as follower points. The program steps 2, 

3, 7, 10 and 11 are dropped completely, whereas others are carried 

out partly . 

If the rezoning technique is employed in the simulation, the 

iterative displacements d x and d i are calculated in two steps . 
9~ m~ • 

First .the iterative nodal point displacements d x are determined so 
9~ 

as to satisfy the system of linearised equations 

("VII . 2 . 12) 

obtained from (VII . 2.1) with di= 0. After defining the new element 
m~ 

mesh resulting from these iterative nodal point displacements, 

material-associated data are transferred from follower points to 

integration points by interpolation as already described. 

In the secend step the simulation is continued using the new element 

mesh and the Lagrangian formu~ation . The nodal point displacements 

d ~are determined so as to sà,tis fy (VII.2.11) . The total iterative 
m~ , 

nodal point displacements are 

(VII.2 . 13) 

The material-associated quantitles are determined at the follower 

points. Finally these data are transferred to integration and nodal 

points in the usual way. 
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VII.3 Results of some simulations 

The first process which is analysed, clearly shows the possibilities 

of the AEL formulation . We consider the circular disk, shown in 

figure VII . 3.1. In five equal incremental steps the radial 

displacement of the outer edge is prescribed. The ultimate radial 

strain is 25\. The dashed area is considered in the simulation . 

Fig. VII . 3. 1 

CiPculaP disk: geometPy and material paPametePs 

E = 2.1 • 10
5 

N /mm2 

V = 0.3 
h = 10

4 
N/mm2 

o ~ = 250 N/mm
2 

E = 100 N/mm2 

îi = 0.45 
measures in mm 

If the material behaviour is elasto-plastic the analytica! solution 

for the stress components is given by 

0 rr 0 
qup 

0 = 0 zz 

o 2Eh 1 
ov + E + 2h(1 - v) . l~ln(1 + 2Err) -

(VII.3 . 1) 
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The use of the Lagrangian tormulation leads to the result shown in 

figure VII.3 . 2a. Using the AEL tormulation leads to the result which 

is shown in figure VII . 3 .2b. 

a 

Fig. VII.3. 2 

lli:J 
frf1 F1 
!Hl t I 
I! I I l I 
I I I I I I 
I I I I I I. 

b 

Element mesh i n vaPious states of t he defo~ation process, using the 
Lagrangian (a) and the AEL (b) formulation 

As we can see all elements have the same geometry in the final state 

if the AEL tormulation is used. Using the rezoning technique also 

leads to the result shown in figure VII . 3 .2b . In all cases and every 

increment, convergence was reached after the same number of iterative 
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calculations and then the stresses had the exact values given by 

(VII . 3 . 1) .· The ratio of the total process time was (in seconds) 

Lagrangian rezoning AEL 137 195 207 (VII. 3. 2) 

The use of the AEL tormulation provides the possibility to suppress 

or prescribe nodal point displacements or nodal point forces in a 

straightforward manner, while at the same time the material 

displacement at these points is an unknown quantity, which can be 

determined. In figure VII . 3 . 3 the undeformed (dotted) and the 

deformed state of the circular disk is shown both when the Lagrangian 

tormulation (a) and the AEL tormulation (b) is used . Using the AEL 

tormulation the following conditions are chosen 

0 

.. 
d x 

m 

r- ... ,.. • .. , ..... -.-- .. ··.- ... • ., 

Hl+t·tt:··--t! I 
a 

Fig. VII. 3. 3 

at points 1-9 (VII . 3.3a) 

at all other points (VII . 3 . 3b) 

r- ., .. - -,. ... ··- ... .._ .... - .. • 
t I I t t f 

: ' ' : 
3 

2 

b 

Element mesh in undefoY'ITied and defoY'ITied state, using t he Lagrangian (a) 
and the AEL (b) formuZation 

The following simulation is carried out merely to show the pos

sibility o.f optimizing element geometries, even if all nodal points 

are situated on a curved boundary. We consider the body and initial 

element mesh, shown in figure VII.3.4. 
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Fig. VII.3.4 

Initial element mesh 

100 

measures in mm 

100 

If there is no prescribed material displacement the CRS determination 

process leads to the element mesh shown in figure VII.3 .5. 

Fig. VII. 3. 5 

Element mesh after CRS 
de termination process with no 
prescribed material disp lace
ment 
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A consequence of this rather sweeping change of the element mesh is 

that the new geometry of the body is very much different from the 

initia! geometry . Although this is almast certainly not allowable in 

a real simulation, this example clearly shows the possibility of mesh 

adaptation by the CRS determination process. If radial displacements 

of the points A and B are prescribed, we have a simultaneous forming 

and CRS determination process . The displacement is prescribed in 50 

equal increments . The deformed state after 50 increments is shown in 

figure VII . 3.6a . The same configuration, following from a Lagrangian 

formulation, is shown in figure VII.3.6b . 

lt>;--, ---L __ _j 

I 

Fig . VII. 3. 6a 

AEL fo mru Zation 

Fig . VII . 3. 6b 

Lagrangian f omruZation 

A 
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The deformation of a thick-walled cylinder under internal pressure 

represents a more realistic forming process . In the incremental 

simulation the pressure is realized by prescrihing proper nodal 

forces at nodal points on the cylinder inner edge. The section of the 

cylinder to be analysedis shown in figure VII.3.7 . Also the load 

history is shown . 

I F -
- V V 

!-2--.r---;]1 
I F 
I r- 2 - -1::.~-----'1::. 

' 

~ I 
I 

8 

6 

4 

2 

0 

0 2 4 6 8 10 12 
Fig. VII. J. 7 

14 16 

E = 1000 N/mm
2 

V = 0.3 

h = 3 N/mm2 

o~ = 1 N/mm
2 

E = 100 N/mm2 

ïi = 0.45 

measures in mm 

18 

iocrement 

Thick-walled cylinder under internal pressure : geometry of analysed 
section, material parameters and laad history 
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To prevent "locking•, reduced integration is employed. The simulation 

is carried out using a Lagrangian tormulation and an element mesh 

with 5 elements, which are equally sized in the initia! state . 

Because the radial displacement is a nonlinear function of the 

radius, the elements will not remain of equal size during the defor

mation process, as can be seen from figure VII . J.Ba. However, if the 

AEL formulation is used, all elements have the same geometry, as is 

shown in figure VII . J . Bb. The t otal prescribed internal radial force 

in the shown deformed state is 7 .1 N. 

a 

b 

t--r • 

Fig . VII. 3. 8 

r··•r• ... ,. .. . ..,---r· .. ., 
4 ~ t I I I 
0 0 0 
0 0 

• 0 • 

• ...... L .... 1 .... .! ..... .' .. ~ .. .: 

r - -.--, · --. -- -~"""'""''"' 

0 

• • I I 
0 

: : ; : : : 
.... ........... L .... ~-- - "' - -.1 

Element mesh in undefor'ITied and de f or'ITied state , using the Lagrangian (a) 
and the AEL (b) for'ITIUlation 

Figure VII . 3.9 shows the internal pressure as a function of the inner 

radius, which is almost the same for both of the above mentioned 

simulations . It is found that the simulation with the AEL formulation 

leads to the same result as the Lagrangian simulation us ing 10 

elements , while the Lagrangian simulat i on, usi ng 5 element s, differ s 

slightly from this. 
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0 0.5 1.0 1.5 2.0 2.5 -

(mm) 

Fig . VII. 3. 9 

Internar pressure as a funetion of the inner radius 

The simulation of the coining process clearly shows the merits of the 

AEL formulation when prescrihing certain boundary conditions. Figure 

VII.3.10 shows the geometry, the initial elementmeshand the 

material parameters of the body to be deformed. All contact areas are 

assumed to be frictionless. The tool is rigid and its displacement is 

prescribed, as shown in the figure, to give a maximum height 

reduction of 25\. 

Using the Lagrangian formulation the contact area between tool and 

specimen will not be constant during the simulation. This is because 

the prescribed tool displacement is taken into account by prescrihing 

the displacement of nodal points which are material points having 

also a displacement in r-direction. The use of the AEL formulation 

provides the possibility to suppress the displacement in r-direction 

of those nodal points which are situated under the tool . The 

following conditions are satisfied. 
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0 for 0 i r 0 i 9 

(VII.3 . 4) 

for 9 < r 0 i 18 

The deformed geometry is shown in figure VII . 3.11a. The same 

simulation is carried out with more nodal point displacements 

suppressed in r-direction , according to the conditions 

0 for 0 i r 0 i 13.5 

(VII. 3. 5) 

d ~ m for 13 . 5 < r 0 i 18 

The deformed geometry is shown in figure VII.3 . 11b. The stress 

component azz in the contact area between tool and specimen for both 

the conditions (VII . 3 . 4) and (VII.3 . 5) is shown in figure VII . 3. 12. 

It is obvious that the simulation according to (VII . 3 . 5) leads toa 

more realistic deformation and that the tool-specimen stress is 

smoother. 

Fig. VII. 3. 10 
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Deformed geometry and element mesh after 25% height r edu~tion 
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VIII Concluding remarks 

If the finite element method and the Lagrangian tormulation is used 

to simulate forming processes, the elements are associated with the 

material. Large local deformations may cause excessively distorted 

elements which may give rize to numerical difficulties . To prevent 

this problem a number of ad hoc solutions is known, such as the 

rezoning technique, where, if necessary, the simulation is 

interrupted and restarted with a new element mesh . 

This thesis describes the results of research on the application of 

the Arbitrary-Eulerian-Lagrangian (AELJ tormulation for the 

simulation of forming processes. Using this tormulation the element 

mesh is not associated with the material to be deformed . However, it 

is necessary that there is an unambiguous relationship between the 

points of elementmeshand material. The theoretica! background of 

the AEL tormulation is presented and some new conceptions are 

introduced. In the mathematica! formulations a vector-tensor notation 

is used. 

The flexibility, provided by the AEL tormulation concerning the 

choice of the element mesh, can be used to optimize the shape of 

individual elements. The optimization described in this thesis is a 

continuous and automatic process. The position and geometry of the 

elements result from the deformation of a fictitious, isotropic, 

elastic material - Young's modulus Ë, Poisson's ratio ~ -, which is 

associated with the element mesh. 

The methad is applied to the simulation of axisymmetric forming 

processes. Theelastic material behaviour is isotropie and linear, 

while isotropie hardening is assumed in the elasto-plastic range. 

The automatic optimization of the element shape leads to good results 

for the simulation of the considered forming processes. It appears 

that the Young's modulus E does not affect the optimization, whereas 

this is less apparent if a higher value of ~ (0 i~ < 0.5) is chosen . 

The AEL tormulation is very appropriate not only to generate a 

suitable element mesh but also to take certain boundary conditions 

into account. 
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As the element mesh is not associated with the material to be 

deformed, materi~l-associated quantities are calculated at follower 

points, being material points, which are redefined several times 

during the simulation. Subsequently the material-associated data are 

transferred to the integration points by interpolation. This provokes 

inaccuracies, which disturb the nodal point equilibrium, causing the 

convergence rate of the iterative procedure to decrease. 

Because of thc fact that, besides the forming process, the 

deformation of the fictitious material is considered and because of 

the necessary use of follower points, a relatively large amount of 

data in the analysis occurs. Moreover, the computer time needed for 

an analysis is rather long. This is partly caused by the low 

efficiency of the program, which aspect did not receive to much 

attention. 

Resuming we can concludc that the use of the AEL formulation and the 

finite element method to simulate forming processes is very 

advantageous for automatically optimizing element shape and 

accounting for certain boundary conditions. The merits of the 

formuiation will increase if further investigation is done concerning 

the possibilities of the presented method. 

It is possible to adapt the element size to, for instance, the stress 

gradient within and in the neighbourhood of an element. For a real 

optimization of the element mesh it will generally be also necessary 

to adapt the number of elements . Further research on automatic 

optimization of element size and number of elements is required. 

Combining the AEL formulation with the use of gap-elements offers the 

possibility to simulate processes where contact phenomena occur, even 

if the contact surfaces show large relative displacements. Further 

theoretica! investigation of the contact phenomena and the coupling 

between the boundaries of the element mesh and the material is 

necessary. 

It is recommendable to explore possibilities to adapt the presented 

method in such a way that the convergence rate of the iterative 
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procedure increases. Also, attention must be given to improve the 

efficiency of the program. 
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Appendix 1: The iterative weighted residual equation for forming 

process and CRS determination process 

The contribution of one element to the left- and right-hand side of 

(V.2.1), the discretised iterative weighted residual equation for the 

forming process, is - dropping the indices i and e 

.. ~ 
I ~ q J dG 
G ~ J 

* 
.. T .. * d J * * - w I* ~ t _se_ 

J dG (A 1. 1a) 
* G J 

.. T .. .. T .. * * * .. T T T .. 
w I ~ q J dG + w I* ~ t J dG - w I (V lil l -y.ar J dG 

G ~ G G ~g~ ~ 

(A 1. 1b) 

.. * The iterative changes dg!' d J and d J can be written as g g 

.. .. .. T .. 
dg! -y.(v d xl 'Y - ~ ~g g ~ 

(A1.2) 

(A 1. 3) 

* .. *T * .. 
J'Y . (vdxl 

~ ~g g 
(A1. 4) 

On the analogy of (11.2.100), we can write for dgar 

.. .. .. T 
dar+ (d x- d x).-y (V ar) m g m ~ ~g 

(A 1. 5) 

Using the fact that the fourth-order material tensor ~ is right

symmetrical, the iterative constitutive equation (V.5.4) becomes 

.. T .. 
(V d X) c 
~m m ~ 

(A1.6) 

(A1. 7) 

Substituting (A1 . 2- 7) in (A1.1) results in the following compact 

expressions for the left- and right-hand side, respectively : 
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A + B R1 (A1. 8) 

For A, B and R
1 

we can write 

A = A1 + A2 + A3 + A4 + A5 + A6 (A1 . 9a) 

B = B1 + B2 + B3 + B4 + B5 (A1.9b) 

R1 = R11 + R12 + R13 (A1.9c) 

The individual terms are given by 

1 
I 

... ... c ... 
d ~)c . IIJ)J dG (A1.10a) A1 2 (V w) : {(V 

G 
m 

A2 
1 

I <v wJc, {(v d ~) . liJ) J dG (A1 . 10b) - 2 
G m 

1 
I 

... ... c ... .. 
A3 2 (V w) :{liJ . (V dmx)}J dG (A1.10c) 

G 

1 
I <v 

.. c .. .. c 
dG (A1.10d) A4 - 2 w) :{liJ . (V dmx) l J 

G 

I <v ... c ~ ... 
dm~) J dG (A1.10e) A5 w) : : (V 

G 

- I 
... ... c ... ... 

ID))J dG (A1.10f) A6 (V w) : {dmx . (V 
G 

- I 
.. 

w)c: {(v .. c 
B1 (V d

9
xl . liJ} J dG (A1 . 10g) 

G 

I <v 
... c ... ... 

m)}J dG (A1.10h) B2 w) : ld
9
x.(v 

G 

I 
.. 

W)C:CD .. .. 
B3 (V <v.d

9
xlJ dG (A1.10i) 

G 

B4 I w. ti <v.d xlJ 
G g 

dG (A1.10j) 

... -+* -+* .... * * Bs - I* w.t (V .d xlJ dG (A1.10k) 
G 

g 
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R11 f ;,q J dG 
G 

...... * * * 
R12 I. w.t J dG 

G 

- f 
.. .. c 

R13 (V w) :u J dG 
G 

Since all terms are linear, insteadof (A1.8) we can write 

or, with interpolation of ;, 

.. T .. ..T .. 
w .A.d x + w .B.d X 
~ - m~ ~ - 9'~ 

d ~ and d i, 
m 9' 

(A1.101) 

(A1.10m) 

(A1.10n) 

(A 1. 11) 

(A1. 12) 

The contribution of one element to the left- and right-hand side of 

(V.2.9), the discretised iterative weighted residual equation for the 

CRS determination process is 

.. T T T .. f .. - .. -f ~ 
w f (V ~ ) [d l·G + l·d G + l·~ ]J dG 

G ~9'~ 9'~ ~ 9' J 

.. T T T .. -f 
- w f (~9'! ) !·~ J dG 

G 

(A1.13a) 

(A1. 13b) 

Using the fact that the fourth-order aaterial tensor 4i is right

symmetrical, the iterative constitutive equation (V.5.9) becomes 

(A 1. 14) 

. .. T .. 
cv d xl l 
~9' 9' ~ 

(A1.15) 

Substituting (A1.2), (A1.3), (A1.14) and (A1.15) in (A1.13) results 

in the following compact expressions for the left- and right-hand 

side, respectively: 

V (A 1. 16) 
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For V we can write 

The individual terms are given by 

1 ~ ~ c ~ ~ c -2 J (V w) : {(V dgx) . GJ}) dG 
G 

1 ~ ~ c - ~ ~ 2 J (V w) : (a . (V dgxllJ dG 
G 

.... c - ... ... 
f (V w) :111 (V.dgx)J dG 
G 

- f <v ~lc : ; J dG 
G 

(A 1. 17) 

(A1.18a) 

(A1.18b) 

(A1.18c) 

(A1 . 18d) 

(A1.18e) 

(A1.18f) 

(A1.18g) 

(A1.18h) 

As all terms are linear in~ and dgx' insteadof (A1.16) we can write 

~ ~ 

or, with interpolation of w and d
9

x, 

~T ~ 
w .V.d x 
~ - g~ 

{A 1. 19) 

(A1.20) 



A2.1 

Appendix 2: An iterative constitutive equation for time-independent 

elasto-plastic material behaviour 

The derivation of the constitutive equation starts from the 

relationship between the Cauchy stress tensor ~ and the co-rotational 

Cauchy stress tensor i, that is 

Cl = IR.i .IRc (A2. 1) 

where IR is the rotation tensor in the polar decomposition of the 

deformation tensor F. It is easily shown that the linearised 

expression for the iterative MRS change of ~ is given by 

(A2 . 2) 

From the definition (II.2.44) of the Green-Lagrange strain tensor 

and the definition (II .2 .43) of the polar decomposition of the 

deformation tensor F, it follows that 

(A2.3) 

Using the Cayley-Hamilton theorea it is shown in appendix 3 that 

1 
([ + 2E)-Ï = c2E.E + c 1E + c0[ (A2.4) 

where the scalar quantities c0 , c1 and c2 will depend on the 

invariants of E. Now it is assumed that E is small coapared to the 

unit tensor l 

IIEII « 1 (A2.5) 

In that case we can write 

3 1 c 2 [ - 2 F .F (A2.6) 
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and thus for R 

IR 
3 1 c 2 1F- 2 f.f .f (A2 . 7) 

Some simple manipulation results in 

d IR IRic 
m ' 

1 (d lH d ..,c) 2 m - m111 (A2.8) 

In section V. 4 for i in state 1 the following expression has been 

derived 

i = K i + ! tr(GJ(T
0

)) [ + K tr(G:) [ 
n 3 

(A2.9) 

Hence 

d i d K . i + Kid G + K tr(dma:) [ GJ m m n m n (A2 . 10) 

From the · definition (V.4.19) of the scalar quantity K we find 

.a 

=~~ K = 
_x 

à i : i 
ê n n n 

n 

it follows after linearisation that 

d K 
m 

i 
a d a 
J. (~
~ i l. 
a a n v 

d à 
~) 

.l. 
a 

n 

(A2. 11) 

(A2 .12) 

Using (V·. 4 . 6) the MRS change of the current yiel d stress av is gi ven 

by 

a 
V 

:D (A2 . 13) 

and from this, for the first term on the right- hand side of (A2.12), 

we arrive at 



d 0 m v 

A2.3 

. :dm~ 

(1 + ~)Ó~ 
(A2. 14) 

For the second term on the right-hand side of (A2.12) we note that 

from the definition (V.4.17) of in' it follows that 

(A2. 15) 

and therefore the MRS change of in becomes 

d iJ 2G d ~d 
m n m (A2.16) 

With the definition (A2.11) of on and (A2.15) it is seen that 

3Gil .d 
0 ___n 

0 
;() 

n (A2.17) 
n 

From this we arrive at 

3GIÎi 
d ó ___n :d ~d 

m n .i m (A2.18) 
0 

n 

Substituting (A2.14) and (A2.18) in (A2.12) results in 

hiii i 3Gii 0 

:d ~d dllll< :d ~ ...Y.. ___n 

+ ~~-i2 
m .i .i2 m 

( 1 0 0 

JG 0 n n n 

(A2. 19) 



and, using 

d cÎI m 

A2.4 

(A2 .10) leaves US with 

hi.i.i i 
QJ GJ 0 

2G( 4[ n !l :d a: + 
_y 

ll~:yi2 
.i m 

(1 + 3G 0 n 
0 n 

+ K [ [:d «: 
m 

.i. i 
3 GJ GJ 

~d _n_n - 2 .i2 l: dm 
0 n 

Replacing d ~d by 
m 

1 
dm[ - 3 tr(dmG:)[, we finally arrive at 

d cÎI 
m 

where the fourth-order tensor 4Mi is defined by 

. . 
with the quantities G and P as 

i hiöi 0 . a G _y p 1 - n 
.~ 
0 3G( 1 n + 

.i. i 
GJ GJ 
.....n....n) 
.i2 
0 

n 

hi i 
3G 10v 

(A2.20) 

(A2. 21) 

(A2.22) 

(A2.23) 

The last term to be considered is the MRS change of the logarithmic 

strain tensor a:, defined by 

1 
2ln([ + 21E) (A2.24) 

In appendix 3 it is shown that 

(A2.25) 

Assuming I IIE 11 « 1 we find 

(A2.26) 
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(A2.27) 

d b ri ~ Ri l' f an , ecause "' ~ IIEII « 1, also 

(A2.2B) 

Substituting (A2 . 28) in (A2.21) we find 

(A2.29) 

Premultiplying by Ri and postmultiplying by Ric gives 

(A2.30) 

where ~i is defined by 

(A2. 31) 

Substituting (A2.B) and (A2.30) in (A2.2) finally results in the 

desired iterative constitutive equation 

(A2.32) 
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Appendix 3: Functions of a tensor 

Insome cases the value of the function f(A), where A is a second

order tensor, can be determined fairly easily by employinq the 

Cayley-Hamilton theorem 

(A3 . 1) 

Here, J 1, J 2 and J 3 are the invariantsof A, defined by 

J
1 

= tr(A) J
3 

det(A) (A3.2) 

Repeated use of (A3.1) results in 

(A3 . 3) 

where the coefficients an' pn and yn are qiven by 

ao 0 Po 0 Yo 

a1 0 p1 y1 0 

a2 p2 0 y2 0 

aJ J1 PJ -J2 YJ JJ 

-----------------------------
a an-1J1 - an-2J2 + an-JJJ n 
pn - an-1J2 + an-2J3 

Yn an-1J3 (A3 . 4) 

If A is symmetrical, we can determine the coefficients a0 , a 1 and a2 
in such a way that, for f(A), the expression 

applies. On account of its sy .. etry, A can be written as 

3 
A= [ 

i=1 

.. .. 
A.n.n. 
~ ~ ~ 

(A3.5) 

(A3.6) 
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where A. (i= 1,2,3) are the eigenvalues of~ and ~- the normalized 
1 1 

eigenveetors pertaining to them. For f(~) we can write 

f(~) 

3 
r 

i=1 
f(A. )~ - ~ . 

1 1 1 

3 
+ a0 r 

i=1 

.. .. 
n.n . 

1 1 

Writing out the summations, we have 

lao + a 1A1 
2 

+ a2A1 -
.. .. 

fiA 1 lln 1n1 + 

2 .. .. 
(ao + a

1
A

2 
+ a2A2 - f(A 2Jln2n2 + 

ta0 + a 1A3 + 2 
a2A3 

.. .. 
f(A 3)ln3n3 0 

(A3 . 7) 

(A3.8) 

Hence, a0 , a 1 and a2 must satisfy the next system of equations 

A1 A2 
1 ao fiA 1) r, (A3 . 9) 

A2 A2 
2 a, f(A 2 l r2 

A3 A2 
3 a2 f(A 3) r3 

De pending on the function f (JA) it may be possible to determine ao, 

and a2 
in such a way that (A3.9) is satisfied, even if two or more 

1 
eigenvalues of~ have the same value. If, for instance, f (JA) = JA -21 
simple, but rather wearisome calculations result in 

(A3 .10a) 

a, 
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(A3 . 10b) 

(A3. 10c) 

It is easily shown that 

(A3.11a) 

2a 1 + 4a2 (A3 . 11b) 

If ~ is not symmetrical or if a general valid solution for (A3.9) 

cannot be determined, the following metbod for calculating f(~) can 

be used, if f(~) is the sum of àn infinite, convergent series, that 

is, if 

f(~) 

.. 
[ 

n=O 

Using (A3.3) this results in 

(A3.12) 

(A3.13) 

where, on account of (A3.4) the coefficient5 b0 , b1 and b2 are given 

by 

ho so + [ 5nln 
n=3 

(A3. 14a) 

b1 51 + [ 5npn 
n=3 

(A3.14b) 

b2 52 + [ 5 a 
n=3 n n (A3.14c) 
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In practice we take into account a finite though sufficient number of 

termsof the summatien in (A3 . 14). 

If II2EII < 1 ' we · can write 

~ln([ + 2E) = IE - IE
2 + 1E3 - 2E4 + ~5 - ~6 + ... 3 5 3 

= E - IE
2 + ( _1 )n-1 

n-1 · 
r _2_ IEn 

n=3 n 

b IE 2 + 2 
b1E + bo[ (A3.15) 

where b0 , b1 and b2 are determined according to (A3 . 14), using 

0 1 . -1 5 
n 

n-1 
(-1)n-1 _2_ 

n 
(A3 . 16) 



Samenvatting 

De eindige elementen methode wordt veelvuldig toegepast voor de 

numerieke simulatie van omvormprocessen met het doel om 

voorspellingen te doen over de kwaliteit van het eindprodukt en de 

belasting op het gereedschap. Het wiskundig model dat aan de 

simulatie ten grondslag ligt, werd tot voor kort geformuleerd, 

gebruikmakend van ofwel de Euler ofwel de Lagrange 

beschrijvingswijze . De gevolgen hiervan zijn dat sommige numerieke 

simulaties moeizaam verlopen of zelfs onmogelijk zijn . Dit is niet 

het geval bij gebruik van de Arbitraire-Euler- Lagrange (AEL) 

beschrijvingswijze . In dit proefschrift wordt de theoretische 

achtergrond van deze beschrijvingswijze beschreven . Zij wordt 

toegepast bij enkele numerieke simulaties. 

Ten grondslag aan de AEL beschrijvingswijze ligt het gebruik van een 

referentiesysteem dat niet gekoppeld is aan de om te vormen materie 

(Lagrange beschrijvingswijze) en ook geen vaste ruimtelijke positie 

inneemt (Euler beschrijvingswijze). De relevante grootheden worden 

opgevat als functie van de coördinaten die in dit referentiesysteem 

gedefinieerd zijn . Deze grootheden worden besproken en het wiskundig 

model wordt geformuleerd, waarbij gebruik wordt gemaakt van de 

methode der gewogen residuen . 

Om het wiskundig model voor numerieke simulatie geschikt te maken, 

wordt het gediscretiseerd, zowel wat betreft het verloop van het 

proces (de incrementele methode) als wat betreft het referentiesys

teem (de elementen methode). Een speciale werkwijze wordt toegepast 

om materiegebonden grootheden te bepalen . 

De momentane positie van het referentiesysteem, m.a.w. de momentane 

positie en geometrie van de elementen, wordt opgevat als zijnde het 

resultaat van de vervorming van een fictief materiaal dat met het 

referentiesysteem verbonden wordt gedacht . De belasting die deze 

vervorming veroorzaakt en de bijbehorende kinematische randvoorwaar

den worden zodanig bepaald dat voldaan wordt aan bepaalde wensen met 

betrekking tot de geometrie van de elementen en zodanig dat 

bepaalde randvoorwaarden eenvoudig in rekening kunnen worden 



gebracht. De vervorming van reêel en fictief materiaal vindt 

gelijktijdig plaats. 

Het gediscretiseerd wiskundig model bestaat uit een stelsel niet

lineaire algebraische vergelijkingen. De onbekende grootheden worden 

bepaald volgens een iteratieve methode. Daarbij wordt een aantal 

benaderingen van de uiteindelijke oplossing bepaald door herhaald 

oplossen van de gelineariseerde versie van bovengenoemd stelsel . 

De AEL beschrijvingswijze is met succes toegepast voor de simulatie 

van enkele axi-symmetrische omvormprocessen. 



Nawoord 

Het in dit proefschrift beschreven onderzoek is van februari 1979 tot 

augustus 1983 uitgevoerd binnen de vakgroep Fundamentele Werktuigbouw

kunde (voorheen Technische Mechanica) van de Technische Hogeschool 

Eindhoven. 

De initiator van het onderzoek was Joop Nagtegaal, In de beginfase had 

ik in hem een enthousiast en deskundig begeleider. Toen Joop de TH 

verliet, werd zijn begeleidende taak overgenomen door Frans Veldpaus 

en Marcel Brekelmans. De vanzelfsprekendheid waarmee en de manier 

waarop dit gebeurde verdient bewondering. Het resultaat van de vele 

gesprekken die we samen gevoerd hebben is in het proefschrift aanwijs

baar aanwezig in de vorm van ideeën en formuleringen. Bij veel van deze 

besprekingen was de regulerende invloed van Jan Janssen van groot 

belang. 

Van groot nut is het afstudeerwerk van Martien Hulsen geweest. Hij 

paste de AEL beschrijvingswijze toe voor de simulatie van hyper

elastische vervormingsprocessen. 

Het proefschrift is getypt door Lia Neervoort en Els Scheepens. Vooral 

Els heeft bereidwillig vele uren doorgebracht achter de terminal van 

het tekstverwerkingsysteem om op zeer accurate wijze de vele 

wijzigingen in de tekst aan te brengen. Marcel Brekelmans heeft het 

uiteindelijke manuscript grondig bekeken, hetgeen nog een aantal 

verbeteringen tot gevolg had. 

Bovengenoemde personen wil ik hartelijk bedanken voor de bijdrage aan 

het onderzoek en de totstandkoming van het proefschrift en vooral ook 

voor de plezierige wijze waarop de samenwerking plaatsvond. 

Behalve de hierboven met name genoemde personen, wil ik alle leden van 

de vakgroep Fundamentele Werktuigbouwkunde bedanken voor de prettige 

contacten. Mede als gevolg hiervan heb ik binnen deze vakgroep een 

aantal jaren fijn gewerkt 

Eindhoven, augustus 1983 

Piet Schreurs 



STELLINGEN 

behorende bij het proefschrift 

NUMERICAL SIMULATION OF FORMING PROCESSES 

I. De in dit proefschrift beschreven Arbitraire-Euler-Lagrange 

formulering is een geschikt uitgangspunt om bij gebruik van de 

eindige elementen methode (automatisch) de elementverdeling te 

optimaliseren en om zowel materiegebonden als niet-materiegebonden 

randvoorwaarden eenvoudig in rekening te brengen . 

Hoofdstuk VII van dit proefschrift. 

2. Bij simulatie van omvormprocessen met behulp van de eindige elementen 

methode is optimaliseren van de elementverdeling in veel gevallen 

alleen goed mogelijk als het aantal elementen tijdens de simulatie 

kan worden veranderd. 

3. De in dit proefschrift beschreven methode voor de berekening van 

materiegebonden grootheden in een niet-materiegebonden element

verdeling leidt, in vergelijking met de gebruikelijke werkwijze 

bij de Lagrange formulering, in het algemeen tot een lagere 

convergentiesnelheid. 

Hoofdstuk VII van dit proefschrift. 

4. Voor de simulatie van vloeistofstromingsprocessen met behulp van 

de eindige elementen methode is de beschrijving van het proces in 

termen van stroomsnelheid en (eventueel) hydrostatische druk te 

prefereren boven de beschrijving in termen van stroomfunctie en 

wervelsterkte. 



5. Bij de beschrijving van de stroming van incompressibele vloei

stoffen in termen van stroomsnelheid en hydrostatische druk blijkt 

de Lagrange multiplicator, waarmee de incompressibiliteitseis 

meestal in rekening wordt gebracht, geÏdentificeerd te kunnen worden 

met de hydrostatische druk. Dit impliceert dat, als bij toepassing 

van de elementen methode de druk in een knooppunt wordt voorgeschreven, 

lokaal niet meer kan worden voldaan aan de continuiteitsvergelijking. 

Gresho P.M., Lee R.L., Sani R.L.: On the time-dependent salution 

of the incompressible Newton-Stakes equations in two and three 

dimensions. Recent advances in numerical methods in fluids 

(ed. C. Taylor and K. Morgan), Pineridge Press Ltd., Swansea, 

U.K., pp. 27-79, 1980. 

6. Roll en Neitzert negeren de mogelijkheid om de eindige elementen 

methode af te leiden met behulp van de methode der gewogen residuën. 

Roll K., Neitzert T.: On the application of different numerical 

methods to calculate cold forrning processes. Numerical methods 

in industrial forming processes, Swansea, U.K., juni 1982. 

7. Het begrip initiële rek is fysisch niet zinvol. Gebruik van dit 

begrip is verwarrend en moet vermeden worden. 

8. De uit militaire kringen voortkomende, ongegronde verdachtmakingen 

aan het adres van de vredesbeweging vormen de beste propaganda 

die deze beweging zich wensen kan. 

9. Het toenemend aanbod van voedingsmiddelen in voordeelverpakking zal 

de noodzakelijke gevarieerdheid in de voeding verminderen. 

10. Door automatisering gaat werk naar de knoppen. 

Eindhoven, 12 september 1983 Piet Schreurs 


