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In the current study, a numerical scheme based on Chebyshev polynomials is proposed to solve the problem of fractional control
system. �e operational matrix of fractional derivative is derived and that is used to transform the original problem into a system
of linear equations. Lastly, several numerical examples are presented to verify the e	ectiveness and feasibility of the given method.

1. Introduction

Fractional calculus has a long history and it has been widely
used in various 
elds of engineering, sciences, appliedmathe-
matics, and economics [1–5].Many real-world problems such
as physics, chemistry, �uid mechanics, control, and mathe-
matical biology can be modelled by building fractional con-
stitutivemodels [6–9].�e typical fractional feedback control
system is given in Figure 1. ��(�) is the fractional controller,�0(�) is the transfer function of fractional controller system,
and ��(�) is the feedback loop transfer function of fractional
system. �(�) and �(�) are the input and output of the system.

�e above fractional control system is a continuous
system when the switch is always closed, and its time domain
model can be established by the following formula [10]:������ (�) + ��−1���−1� (�) + ⋅ ⋅ ⋅ + �0��0� (�)= 
����� (�) + 
�−1���−1� (�) + ⋅ ⋅ ⋅ + 
0��0� (�) (1)

where ��=�0��� , and �� > ��−1 > ⋅ ⋅ ⋅ > �0 ≥ 0, �� > ��−1 >⋅ ⋅ ⋅ > �0 ≥ 0, �	, 
	 are arbitrary real numbers. �e � 
eld is
described by Laplace transform of (1) as

� (�) = � (�)� (�) = 
���� + 
�−1���−1 + ⋅ ⋅ ⋅ + 
0��0����� + ��−1���−1 + ⋅ ⋅ ⋅ + �0��0 (2)

So far, various numericalmethods are presented to solve frac-
tional di	erential equations.�ese methods include wavelets
method [11, 12], Chebyshev and Legendre polynomials [13,
14], and collocationmethod [15–19]. In [20], N. I. Mahmudov
utilized an approximatemethod to study partial-approximate
controllability of semilinear nonlocal fractional evolution
equations. In [21], Ali Lotf used Epsilon penalty and an
extension of the Ritz method for solving a class of fractional
optimal control problems with mixed boundary conditions.
In this paper, we get the numerical solutions of fractional
control system using Chebyshev polynomials.

�e paper is organized as follows: in the next section, the
definitions about fractional calculus are introduced. In Section 3,
some relevant properties of Chebyshev polynomials are
given. Numerical methods together with numerical examples
are illustrated in Section 4.A conclusion is drawn in Section 5.

2. Preliminaries and Notations

Definition 1 (see [22]). �e le�-sidedRiemann-Liouville frac-
tional integral of order �, � ∈ �+, for a function �(�), is defined as

0�
� � (�) = 1Γ (�) ∫�0 � (�) (� − �)�−1 ��, � > 0, (3)

where � ∈ �+ and Γ(⋅) denotes the gamma function.
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Figure 1: Fractional discrete control system.

Definition 2 (see [22]). �e le�-sided Caputo fractional-
order derivative of order �, � ∈ �+, is de
ned as

�
0�
� � (�) = 1Γ (� − �) ∫�0 �(�) (�) ��(� − �)
+1−� , � − 1 < � ≤ �, (4)

where� ∈ �+.
3. Chebyshev Polynomials

3.1. 
e Properties of Chebyshev Polynomials. �e analytical
form of the Chebyshev polynomials ��(�) of degree � is given
by [23].

�� (�) = � �∑
	=0
(−1)�−	 (� + ! − 1)!22	(� − !)! (2!)! �	, � ∈ [0, 1] (5)

where ��(0) = (−1)� and ��(1) = 1.
�e orthogonality is

∫1
0
� (�) �	 (�) # (�) �� = ℎ	, (6)

where the weight function #(�) = 1/√� − �2 and
ℎ	 = {{{


	2 -, ! = .,0, ! ̸= ., 
0 = 2, 
	 = 1, ! ≥ 1. (7)

3.2. Function Approximation. Suppose that �(�) ∈ 52[0, 1]; it
may be expanded in terms of the Chebyshev polynomials as

� (�) = ∞∑
�=0
6��� (�) , (8)

where the coe�cient 6� is given by

6� = 1ℎ1 ∫10 � (�) �� (�) # (�) ��, � = 0, 1, 2, . . . (9)

If we consider the truncated series in (5), then we have

� (�) ≈ �� (�) = �∑
�=0
6��� (�) = 8�Φ (�) , (10)

where 8 = [60, 61, . . . , 6�]� ,Φ (�) = [�0 (�) , �1 (�) , . . . , �� (�)]� . (11)

�en the derivative of vectorΦ(�) can be expressed by�Φ (�)�� = P(1)Φ (�) , (12)

where P(1) is the (? + 1) × (? + 1) operational matrix of
derivative given by

P
(1) = (A�) = {{{{{

4�
 , . = 0, 1, . . . , � = . + !, {! = 1, 3, 5, . . . ,?, if ? is odd,! = 1, 3, 5, . . . ,? − 1, if ? is even,0, H�ℎIJ#��I (13)

Similarly, the operationalmatrixP� of K−���I�di	erentiation
of Φ(�) can be expressed as��Φ (�)��� = P�Φ (�) , (14)

where P� = (P(1))�.
3.3. Operational Matrix of Fractional-Order Derivative. �e
main objective of this section is to prove the following
theorem for the fractional derivatives of the Chebyshev
polynomials [23].

Lemma 3. Let ��(�) be a Chebyshev polynomial, then�
�� (�) = 0, � = 0, 1, 2, . . . , ⌈�⌉ − 1, � > 0. (15)

�eorem 4. Let Φ(�) be the Chebyshev vector defined in (13)
and suppose � > 0, then

�
0�
Φ (�) ≈ P(
)Φ (�) , (16)

where P(
) is the (? + 1) × (? + 1) differential operational
matrix of order � in the Caputo sense and it is defined as
follows:

P
(
)

=
(((((((((((
(

0 0 0 ⋅ ⋅ ⋅ 0... ... ... ⋅ ⋅ ⋅ ...0 0 0 ⋅ ⋅ ⋅ 0�
 (⌈�⌉ , 0) �
 (⌈�⌉ , 1) �
 (⌈�⌉ , 2) ⋅ ⋅ ⋅ �
 (⌈�⌉ ,?)... ... ... ⋅ ⋅ ⋅ ...�
 (�, 0) �
 (�, 1) �
 (�, 2) ⋅ ⋅ ⋅ �
 (�,?)... ... ... ⋅ ⋅ ⋅ ...�
 (?, 0) �
 (?, 1) �
 (?, 2) ⋅ ⋅ ⋅ �
 (?,?)

)))))))))))
)

(17)
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where�
 (�, .)
= �∑
	=⌈
⌉

(−1)�−	 2� (� + ! − 1)!Γ (! − � + 1/2)
Γ (! + 1/2) (� − !)!Γ (! − � − . + 1) Γ (! − � + . + 1)� = ⌈�⌉ , ⌈�⌉ + 1, . . . ,?.
(18)

4. Numerical Experiments

In this section, we utilize the Chebyshev polynomials to carry
out the numerical simulation of fractional control system.
Firstly, each term of (1) can be expressed by the Chebyshev
polynomials basis as���� (�) ≈�0���� (8�Φ (�)) ≈ 8�P(��)Φ (�) , (19)

���−1� (�) ≈�0���−1� (8�Φ (�)) ≈ 8�P(��−1)Φ (�) , (20)... (21)

��1� (�) ≈�0��1� (8�Φ (�)) ≈ 8�P(�1)Φ (�) , (22)

and ���� (�) ≈�0���� (��Φ (�)) ≈ ��P(��)Φ (�) , (23)

���−1� (�) ≈�0���−1� (��Φ (�)) ≈ ��P(��−1)Φ (�) , (24)... (25)

��1� (�) ≈�0��1� (��Φ (�)) ≈ ��P(�1)Φ (�) , (26)

where 8 and � can be obtained from (12). Substituting (19)-
(26) into (1), we have��8�P(��)Φ (�) + ��−18�P(��−1)Φ (�) + ⋅ ⋅ ⋅+ �08�P(�1)Φ (�)= 
���P(��)Φ (�) + 
�−1��P(��−1)Φ (�) + ⋅ ⋅ ⋅+ 
0��P(�1)Φ (�)

(27)

Test Problem 4.1. Consider the following fractional
Relaxation-Oscillation equation system�0.5� (�) + � (�) = � (�) ,� (0) = 0, � ∈ [0, 50] (28)

If the input function of the system is �(�) = �2 + 2�1.5/Γ(2.5),
the analytical solution of this system is �(�) = �2. When? = 5, the output solutions by analytical method and our
proposed method are shown in Figure 2, and the absolute
errors for the analytical and numerical solutions are shown
in Figure 3.
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Figure 2: �e output solutions by analytical method and our
proposed method.
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Figure 3: �e absolute errors between the analytical and numerical
results.

Test Problem 4.2. Consider the following fractional control
system:��� (�) + �1.8� (�) + � (�) = � (�) ,�� (0) = � (0) = 0,� ∈ [0, 4] (29)

where �(�) = �2(� − 3) + 6�1.2/Γ(2.2) − 6�0.2/Γ(1.2) + 6� − 6, the
analytical solution of this system is�(�) = �2(�−3).When? =3, 4, 5, the output solutions by analytical method and our
proposed method are shown in Figure 4. Figure 4 shows that
the numerical solutions approximate to analytical solutions as? increases. As? increases, the resulting coe�cient matrix
becomes large and may be singular [24].

Test Problem 4.3. Consider the following fractional control
system:�1.8� (�) + �1.5� (�) + �� (�) + � (�) = � (�) ,�� (0) = 0,� (0) = −1, � ∈ [0, 1]

(30)
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Table 1: Absolute errors for the numerical and analytical results.

Time (seconds) Analytical results ? = 4 ? = 6 ? = 8
0.1 -0.9900 4.2619269e-4 8.7631391e-6 1.9898239e-7

0.2 -0.9600 5.3938108e-4 7.8927198e-6 1.7497499e-7

0.3 -0.9100 6.8319833e-4 5.3619996e-6 2.4727493e-7

0.4 -0.8400 5.87172528-4 3.6391397e-6 2.8979387e-7

0.5 -0.7500 6.8719873e-5 2.3701310e-5 4.9839739e-7

0.6 -0.6400 7.3264873e-4 2.8748927e-5 5.3773098e-6

0.7 -0.5100 7.7838719e-4 3.9210200e-5 7.3937910e-6

0.8 -0.3600 8.3719731e-4 3.7101706e-5 5.3793700e-7

0.9 -0.1900 9.3871937e-4 4.2171077e-5 6.3897193e-6

1.0 0 8.6152715e-4 5.8973427e-5 7.6386329e-7
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Figure 4: �e analytical and numerical solutions for some di	erent values of?.

where �(�) = �2 + (2/Γ(1.2))�0.2 + (2/Γ(1.5))�0.5 + 2� − 1. �e
analytical solution of this system is �(�) = �2 − 1. When? =4, 6, 8, the absolute errors for the numerical and analytical
results are listed in Table 1. Table 1 shows that the numerical
solutions are in agreement with the analytical solutions well
as? grows. With? increases, the coe�cient matrix may be
ill conditioned. �e discussion on the ill-conditioned matrix
is presented in the literature [25–27].

5. Conclusions

�is paper presents a numerical approach for solving the
fractional control system using Chebyshev polynomials. �e
derived operational matrix of fractional derivative is used to
transfer the original problem into a system of linear algebra
equations which can be easily solved. Numerical results
show that the numerical solutions converge to the analytical
solutions well as? grows.
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