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Abstract. A new method to overcome some limitations in the simulation
of the propagation of waves originating from a point source through a
very long path in a turbulent medium is presented. Existing propagation
simulation algorithms suffer from either windowing or lack of resolution
when applied to long paths. If Cartesian coordinates are used, the limited
size of the numerical mesh eventually leads to windowing errors. Casting
the classical split-step Fourier algorithm in a spherically diverging coor-
dinate system allows one to get around this problem. In this way an
angular mesh matching the source and the propagation algorithm to the
problem geometry is used. But for long-path propagation, this spherical
divergent mesh causes a loss of resolution that can become a serious
problem in the evaluation of the field statistical moments. The method
discussed in this paper overcomes both the windowing effect associated
with Cartesian coordinates and the loss of resolution accompanying
spherical coordinates by using a spherical-coordinate algorithm and per-
forming repeated interpolations of the numerically propagated field be-
fore the mesh grows too large to sample the field accurately. Each time
an interpolation is done, the angular window is decreased to maintain the
matrix size. © 1999 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

The method of smooth perturbations or Rytov’s theory cor-

rectly describes the effects of atmospheric turbulence on
the propagation of electromagnetic waves when the fluctua-
tions of the logarithmic amplitude ~log amplitude! are
small.1 These fluctuations can be considered small when
the propagation paths are sufficiently short or the turbu-
lence is very weak. Asymptotic theories that can predict the
effects of very strong atmospheric turbulence have also
been developed and checked.2 Between these two limiting
cases lies the so-called strong-focusing peak region, for
which a reliable analytical theory does not exist. In this
turbulence range, numerical simulation is the best tool for
predicting how the index-of-refraction fluctuations will af-
fect the wave propagation.

The first simulations of the propagation of spherical
waves in three-dimensional random media used the central
part of a Gaussian beam source in a Cartesian grid for
simulating the point source.3 Applying the Fourier split-
step algorithm in such a Cartesian coordinate system lim-
ited its use to short paths, due to the windowing effect on
the field caused by the fixed numerical mesh. Casting the
classical split-step Fourier algorithm in a spherically di-
verging coordinate system can avoid the windowing prob-
lem, but when long-path propagation is simulated, errors in
the evaluation of the field statistical moments arise because
of the lack of resolution in the sampled field. To illustrate

the effect of insufficient resolution in the evaluation of field

moments, let us consider the following example. Assume a

4-km path along which a uniform, low enough turbulence

strength exists, producing a Rytov log-amplitude variance

sx
2
50.05. Define R f5(lLzt)

1/2, l being the radiation

wavelength, which we take as 1 mm, and Lzt the path

length. Let us apply the classical split-step Fourier propa-

gation algorithm with 20 propagation steps whilst keeping a

given number of sample points. If the spatial sampling pe-

riod Dx is taken as Dx5R f /50, the error in the computed

log-amplitude variance is around 10%; if Dx is taken in-

stead as Dx5R f /2, the computation error jumps to 50%.

In this paper we propose a new algorithm to overcome

the windowing and loss-of-resolution problems, making

good use of the spherical split-step Fourier algorithm and

performing repeated interpolations of the numerically

propagated field before the mesh grows too large to accu-

rately sample the field. When an interpolation is done, the

angular window is reduced to maintain the size of the ma-

trices. In Sec. 2 we describe the simulation algorithm pro-

posed for propagating spherical waves in three-dimensional

random media. In Sec. 3 some simulation results are com-

pared with the theoretical results available in the weak tur-

bulence range, and some propagation experiments found in

the literature are simulated to study the performance of the

simulation tool. Section 4 presents the conclusions.
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2 Description of the Simulation Algorithm

2.1 Treatment of the Propagation Equation

The numerical simulation of wave propagation in random
media starts with the parabolic or Fresnel approximation of
Maxwell’s wave equation.4 Considering a spherically di-

vergent coordinate system (r ,u ,f) defined by x5ru , y

5rf , where r is the propagation distance and u ,f!1, the

parabolic wave equation can be written as

1

r2
¹T

2E22 jk
]E

]r
12k2n1E50, ~1!

where k52p/l is the wave number, n1 is the deviation of

the index of refraction from its mean value n̄ , and ¹T
2

5]2/]u2
1]2/]f2.

Solving ~1! allows us to propagate an initial field from

the spherical cap r to an arbitrary cap r1Dr:

E~r1Dr ,u ,f !5expH 2 jF¹T
2

2k
S 1

r
2

1

r1Dr
D1DSnG J

3E~r ,u ,f !, ~2!

where DSn5k* r
r1Drn1 dr8 can be interpreted as the phase

change introduced by the index-of-refraction inhomogene-
ity associated with the turbulence. The use of the symme-
trized split-step operator4 allows splitting the algorithm
with second-order accuracy. The propagation of the field

over a distance Dr is decomposed into a vacuum propaga-

tion over a distance Dr/2, an upgrading of the phase in

accordance with the random medium changes, and a second
vacuum propagation of the resulting field over a distance

Dr/2. After the first vacuum propagation introduced by the

split-step operator, the half steps of propagation can be
combined into single propagation steps, resulting in a sym-
metrical algorithm. A random-screen algorithm implements
the turbulence-induced random phase shift.

In Fig. 1, an outline of the spherical divergent coordinate
system algorithm is shown. First, as commented before, the
symmetry is introduced with a vacuum propagation from

r50 to r5Dr/2. Next the phase change due to the inte-

grated turbulence between r50 and r5Dr is applied. The

algorithm consecutively applies vacuum propagation steps

over a distance Dr and phase changes in accordance with

screens of thickness Dr , finishing with a vacuum propaga-

tion step over a distance Dr/2.

The homogeneous equation (n150)

]E

]r
52 j

¹T
2

2kr2
E ~3!

is solved in the Fourier-transform domain with the fast

Fourier transform ~FFT! algorithm. If Ẽ is the Fourier

transform of the field, then

]Ẽ

]r
5

j

2kr2 ~Ku
2
1Kf

2 !Ẽ , ~4!

where K5(Ku ,Kf) is the transformed angular variable.

Finally, the vacuum propagation is given by

Ẽ~r1Dr ,Ku ,Kf!5expF2

j

2k
~Ku

2
1Kf

2 !

3S 1

r1Dr
2

1

r
D G Ẽ~r ,Ku ,Kf!, ~5!

which will be used for propagating the field from each
phase screen to the next.

The field can be considered as a band-limited random
process, and we can use sampling theory to choose the
appropriate grid spacing in order to get a discrete represen-

tation of the field without loss of information.5 If Du
5Lu /(N21), Df5Lf /(N21) are the angular resolu-

tions used to sample the field, N3N is the number of

points in the numerical mesh, and Lu3Lf is the simulation

window angular dimension, then the Fourier transform of
the field computed through the fast Fourier transform ~FFT!
will show the angular frequencies Kmu5(2p/Lu)m , Knf

5(2p/Lf)n (m ,n51,...,N). The discrete Fourier trans-

form imposes on the fields a periodicity that must be con-
trolled in order to avoid aliasing.

The field in r1Dr is obtained by applying Eq. ~5! to the

sampled field and performing the inverse Fourier transform
with a FFT algorithm:

Ẽ~r1Dr ,Kmu ,Knf!5expF2

j

2k
~Kmu

2
1Knf

2 !

3S 1

r1Dr
2

1

r
D G Ẽ~r ,Kmu ,Knf!,

~6!

E~r1Dr ,pu ,qf !5IFFT$Ẽ~r1Dr ,Kmu ,Knf!%. ~7!

Fig. 1 Outline of the algorithm for a spherical divergent coordinate
system. First the symmetry is introduced with a vacuum propagation
from r50 to r5Dr/2. Next the phase change due to the integrated
turbulence between r50 and r5Dr is applied. The algorithm con-
secutively applies vacuum propagation steps over a distance Dr
and phase changes in accordance with screens of thickness Dr,
finishing with a vacuum propagation step over a distance Dr/2.
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2.2 Treatment of the Atmospheric Turbulence

The propagation of a wave through a continuous random
medium is the limiting case of propagation through a dis-
crete series of random phase screens separated by free
space. To properly approximate the continuous-medium
propagation using a finite number of screens, the phase
shift due to each screen must be small. Decomposing the
medium into several independent weak phase screens is
equivalent to the Markov approximation,1 usually used in
the analytical approaches to problems of this kind.

The passage of a wave E(r ,u ,f) through a thin screen

introducing a phase change DSn in r5rc can be expressed

as

E~rc
1 ,u ,f !5E~rc

2 ,u ,f ! exp~2 j DSn!. ~8!

The random medium defined by the thin screen between

r5rc2Dr/2 and r5rc1Dr/2 can be described using the

spatial spectrum of the index-of-refraction fluctuations,

Fn(r ,Ku ,Kf). The phase fluctuations are given by

DSn~rc ,u ,f !5kE
rc2Dr/2

rc1Dr/2

n1~r ,u ,f ! dr . ~9!

The phase fluctuation spectrum FDSn
is related to the

power spectrum of the index of refraction fluctuations, Fn ,

through the expression5

FDSn
~Ku ,Kf!52pk2E

rc2Dr

rc1Dr

z22FnS Kz50,
Ku

r
,

Kf

r
D dz .

~10!

When Dr!rc and Dr@L0 (L0 being the outer scale of the

turbulence!, the expression ~10! can be approximated by

FDSn
~Ku ,Kf!5

2pk2 Dr Fn~Kr50,Ku /rc ,Kf /rc!

rc
2

. ~11!

The assumption that Dr@L0 is equivalent to considering

that there is no correlation between the turbulence in two
successive phase screens ~Markov approximation! and the
correlation function of the index-of-refraction fluctuations
has an impulsive dependence ~Dirac’s delta! on the propa-
gation direction r.6,7

The generation of phase screens, considering the statis-
tics defined by Eq. ~11!, is performed using Monte Carlo
techniques.8 After the generation of pairs of sets of pseu-

dorandom numbers A(Ku ,Kf)1 jB(Ku ,Kf) in the fre-

quency domain, with Gaussian distribution functions and
plane power spectra ~Gaussian white noise!, they are fil-

tered with the spectrum FDSn
of the phase fluctuations:

@A~Ku ,Kf!1 jB~Ku ,Kf!#@FDSn
~Ku ,Kf!#1/2. ~12!

Performing the inverse Fourier transform, two phase
screens are obtained. The numbers of their numerical
meshes are both autocorrelated with the desired statistics.
Given the relationship ~10! between the spectrum of the

phase fluctuations and the spectrum of the index-of-
refraction fluctuations, the final expression for the phase
screen will be

DSn~rc ,u ,f !5~2pk2 Dr !1/2 IFFTH @A~Ku ,Kf!

1 jB~Ku ,Kf!#FFn~Ku /rc ,Kf /rc!

rc
2 G

1/2

J .

~13!

Although more realistic formulations for the index-of-
refraction fluctuation spectrum have been described,9 a von
Kármán spectrum, given by10

Fn~K !50.033Cn
2~K2

1K0
2!211/6 exp~2K2/Km

2 !, ~14!

has been used in the simulations for computational conve-
nience. Moreover, as shown later, the simulation results
obtained with this spectrum and the published experimental

results are in fairly good agreement. In Eq. ~14! Cn
2 is the

structure constant of the index of refraction, K052p/L0 ,

Km55.92/l0 , and L0 and l0 are the outer and inner scales

of the turbulence, respectively.

2.3 Source Definition

A spherically divergent coordinate system allows us to ef-
ficiently approximate the spherical wave in a finite numeri-
cal mesh. We use a super-Gaussian beam to confine the
angular fields.11 In a spherical coordinate system a win-
dowed spherical wave can be represented by a quasiuni-
form intensity distribution given by

E~r ,u ,f !5expF2

1

2 S u2
1f2

W2 D
8

G , ~15!

which is equivalent to considering an uniformly illuminated

aperture with angular diameter 2W , with an apodization

effect at its edges for narrowing the spectrum and reducing
the aliasing.

2.4 Simulation of Long-Path Spherical Wave
Propagation

The simulation of the propagation of waves originating
from a point source using spherical divergent coordinate
systems avoids the characteristic windowing errors of
simulations in Cartesian coordinates. Using an angular
mesh adapts the source and the propagation algorithm to
the problem geometry. However, when long-path propaga-
tion is simulated, this angular mesh causes a continual loss
of spatial resolution that may produce severe errors in the
estimated statistical moments of the propagated fields.

In this paper we propose a new simulation algorithm for
circumventing this loss of resolution. The algorithm uses
the spherical-coordinate system discussed before, but it per-
forms repeated interpolations of the numerically propagated
field before the mesh grows too large to sample the field
accurately. Each time an interpolation is done, the angular
window is decreased to maintain the size of the matrices.
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This reduces the angular window, yet allows a sufficient
size to work with appropriate Fresnel numbers to simulate
the propagation until the next interpolation is performed. In
this way the algorithm maintains the desired spatial resolu-
tion at the receiver plane. The angular-resolution increase is
performed following the outline in Fig. 2.

The algorithm starts with the definition of the super-

Gaussian beam at z52 f 0 to skip the point-source singu-

larity at the coordinate origin. It is necessary to consider an

appropriate relationship between the beam width a at 1/Ae

and the mesh width L1 . Their ratio must be small enough

to prevent spurious field entering through the edges, yet
large enough to avoid aliasing in the transformed domain.

Usually a/L151/3 yields good results. The desired spatial

resolution (dx) at the receiver plane (z5Lzt) for a fixed

number of pixels in the numerical mesh (N3N) will set

the spatial width of the final grid (L f). This width will in

turn determine the condition for performing an interpola-
tion when it is reached by the spherical-coordinate propa-
gation algorithm ~see Fig. 2!. The initial width a of the
super-Gaussian beam must be chosen so that the beam is

sufficiently sampled with N3N points and that the Fresnel

number N f5a2/l@ f 01Lz(1)# corresponding to the propa-

gation between z52 f 0 and the first interpolation plane

@Lz(1)# is large enough. A Fresnel number N f510 yields

rms errors of the vacuum-propagated mean intensity less

than 1023.

The total number of propagation steps must be greater
than 20. This will guarantee variances of the intensity fluc-
tuations for every step less than the 10% of the total one.6

This condition can be expressed as

s1
2~Dz !,0.1s1

2~Lzt!, ~16!

where Dz is the step length, Lzt is the total propagation

distance, and s1
2 is the variance of the intensity fluctuations

computed following Rytov’s theory.
Between interpolations the spherical algorithm sketched

before is applied, using the symmetrical split-step operator.
To do this it is necessary to start the simulation with a half
vacuum-propagation step. Next, iterative phase changes
~dotted arrows in Fig. 2! computed from Eq. ~8! and
vacuum propagations ~solid arrows in Fig. 2! are applied.
Before interpolations are done, a new half vacuum-
propagation step is performed.

Each time the numerical mesh grows to the spatial width

limit L f , the angular resolution is doubled by means of

interpolations of the propagated field using the FFT algo-
rithm. The interpolations are performed by first doing a

zero padding in the transformed domain and then carrying
out an inverse Fourier transform.12 Then the angular win-
dow is reduced to half its width to maintain the size of the
matrices.

3 Comparison with Theoretical and Experimental
Results

To evaluate the validity of the simulation, its results have
been compared with available theoretical predictions. Ry-
tov’s theory allows us to assure good simulator behavior in
the weak turbulence range.

Simulations in the weak turbulence range have been per-
formed for 17.5- and 35-km paths assuming a wavelength

of 830 nm and a uniform Cn
2, yielding a theoretical log-

amplitude variance sx
2'331024 in both cases. For the

17.5-km path we took Cn
2
510218 m22/3, a final mesh width

of 6 m, inner and outer scales of 9.4 cm and 6 m, respec-
tively, and three interpolations. For the 35-km path we took

Cn
2
52310219 m22/3, the same final mesh width and turbu-

lence scales as for the previous case, and three or four

interpolations. These Cn
2 values are admittedly very—

almost unrealistically—low, but they are only used because
they yield low log-amplitude variances that can be com-
pared with analytically computed figures. The variances es-
timated from the simulations were compared with the the-

oretical ones computed from the value at the origin (r
50) of the spatial covariance function of the log-amplitude

fluctuations, given by

Cx~r !52pE
0

`

dK J0~K ,r !Fx~K !K , ~17!

where Fx is the power spectral density of the log-

amplitude fluctuations expressed as

Fx~K !52pk2E
0

Lzt

dz FnS K

g D 1

g2
sin2F ~Lzt2z !K2

2kg G ~18!

with g5z/Lzt and Fn the spectrum of the index-of-

refraction fluctuations. We have considered a von Kármán
index-of-refraction spectrum to take into account the inner
and outer scales of turbulence in the calculation of the the-
oretical variances.

Errors in the log-amplitude variance estimated from the
simulations decrease with increasing number of propaga-
tion steps. In Fig. 3 the errors for different numbers of
propagation steps can be seen. The simulations were per-

formed using 1283128-point grids. The error bars in the

Fig. 2 Outline of the simulation algorithm for long-path spherical wave propagation.
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error curves correspond to the standard deviation obtained

from several simulations. For a 1283128-point grid and 48

propagation steps we obtained errors in the log-amplitude
variances of about 8%. The errors fall when the number of

grid points increases, diminishing to 6.25% for 2563256

points and to 5.6% for 5123512 points. For a longer

propagation path ~35 km with three or four interpolations!
the variance errors decrease to less than 6% for a 128

3128-point grid and 48 propagation steps.

In Fig. 4 we present a typical estimate of the normalized
spatial covariance function of the log-amplitude fluctua-
tions obtained with the simulator for a homogeneous path
within a weak turbulence range. The path was 17.5 km

long, and we used a 1283128-point grid. The curve in the

figure corresponds to the theoretical covariance function
computed from Eqs. ~17! and ~18!. Good agreement be-
tween the simulated points ~1! and the theoretical covari-
ance function ~continuous line! is found. The error in the
correlation length defined as

rc5

*0
`Cx~r !dr

Cx~0 !
~19!

is less than 2% for a 1283128-point grid simulation, 100

iterations, and 48 steps. For larger numbers of points in the

matrices the errors amount to less than 3% for a 256

3256-point grid and to approximately 4.5% for a 512

3512-point grid.

The estimation of the coherence ~Fried’s! diameter (r0)

requires a more critical selection of the propagation param-
eters in the simulation, since it is necessary to have enough
resolution to resolve this length adequately and to perform

a good averaging of r0 . The suitable parameter settings can

be summarized in the following conditions: r0.4L0 /(N

21) and L0.30r0 , which, for a given number N of points

of the numerical grid, will fix the mesh width or the maxi-

mum outer scale L0 of the simulation.

The coherence diameters estimated from the simulations
are compared with the theoretical ones, computed from the

mutual coherence function M (r) as twice the value of r
that makes M (r)51/e . The mutual coherence function can

be expressed as

M ~r !5exp@2
1
2 Dw~r !#

5exp$2@Cx~0 !1Cf~0 !2Cx~r !2Cf~r !#%, ~20!

where Dw(r) is the wave structure function and Cx(r) and

Cf(r) are the spatial covariance functions of the log-

amplitude and phase fluctuations, respectively.
In Fig. 5 we show simulated versus theoretical coher-

ence diameters. The simulations were performed with a

5123512-point numerical mesh and a propagation distance

of 17.5 km. The error bars show the uncertainty due to the
lack of spatial resolution.

We have also simulated some controlled experiments
described in the literature13,14 in order to test the simula-
tor’s behavior in the saturation range. Specifically, in this
paper we show some results from the simulation of Con-
sortini et al.’s experiment described in Ref. 13.

Fig. 3 Errors of the simulated log-amplitude variances versus the
number of steps and the propagation distance.

Fig. 4 Theoretical (continuous line) and simulated (crosses) nor-
malized spatial covariance functions of the log-amplitude fluctua-
tions. Log-amplitude variance error 57.9%, correlation-length error
51.7%.

Fig. 5 Simulated versus theoretical coherence diameters. Error
bars show the uncertainty due to the lack of spatial resolution.
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The real experiments were carried out using a 488-nm
argon-ion laser with 400- to 500-mW power. The propaga-
tion length was 1200 m, and the intensity and the inner

scale l0 of the turbulence were measured simultaneously.

These simultaneous measurements allowed the authors to
separate the variances of irradiance for different inner-scale
ranges. Comparisons between Consortini et al. experimen-
tal results and our simulation ones are shown in Fig. 6, Fig.
7, and Fig. 8. The simulations used a mesh width of 1 m

and 2563256 points; we considered 3.9-, 7.8-, and

15.7-mm inner scales respectively.

The intensity variances s I
2 in these figures are presented

against the parameter b0 , defined by

b0
2
50.496Cn

2k7/6Lzt
11/6 , ~21!

which represents the irradiance variance for a spherical
wave in the limit of small fluctuations and in the limit of a

Kolmogorov power-law refractive-index spectrum (l0

50).

Figure 9 shows the saturation of the intensity variances

computed for a 17.5-km path, a 5123512 numerical mesh,

and three different inner scales of the turbulence ~2.35, 6,
and 9.5 cm!. The outer scale was fixed at 6 m. The vari-
ances of irradiance from the simulations are again pre-

sented versus the parameter b0 defined in Eq. ~21!. Note

that in the saturation regime, the irradiance variances in-
crease monotonically with increasing inner-scale size, as
had been found in previous experiments.13

The normalized spatial covariance functions obtained

from these simulations with an inner scale l056 cm and

different turbulence strengths ~Fig. 10! show the typical
saturation effect.15 As the strength of the turbulence in-
creases, the covariance curves fall off progressively faster,

at spacing lesser than R f5AlL , and have higher tails than

in the weak turbulence case.
Figure 11 presents the theoretical and simulated normal-

ized spatial covariance functions for a 140-km propagation
path in a weak turbulence case. We used a 6-m mesh width,

5123512 points, 100 iterations, six interpolations, and 64

propagation steps. The low structure constant of the index

Fig. 6 Variances of the irradiance fluctuations simulated with a
3.9-mm inner scale versus b0 . Simulated results (points connected
by lines) are shown superimposed on experimental measurements
by Consortini et al.13 (triangles, circles, and crosses) in the 3- to
4-mm inner-scale range.

Fig. 7 Variances of the irradiance fluctuations simulated with a
7.8-mm inner scale versus b0 . Simulated results (points connected
by lines) are shown superimposed on experimental measurements
by Consortini et al.13 (triangles, circles, and crosses) in the 8- to
10-mm inner-scale range.

Fig. 8 Variances of the irradiance fluctuations simulated with a
15.7-mm inner scale versus b0 . Simulated results (points con-
nected by lines) are shown superimposed on experimental mea-
surements by Consortini et al.13 (triangles, circles, and crosses) in
the higher than 10-mm inner-scale range.

Fig. 9 Simulated strength of scintillation versus the parameter b0

defined in Eq. (21), for various inner scales (2.35, 6, and 9.5 cm),
path length 17.5 km, and a 5123512-point mesh.
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of refraction selected (Cn
2
510218 m22/3) ensures that the

simulation corresponds to a weak turbulence condition, so
that it can be compared with theoretical results. The theo-

retical log-amplitude variance was approximately 3

31022, and its estimated error was less than 10%.

4 Conclusions

We have simulated the propagation of spherical waves
from a point source through a three-dimensional random
medium using a multiple-phase-screen technique. The use
of a divergent spherical coordinate system has allowed
avoiding the windowing of the beam characteristic of the
Cartesian algorithm. To overcome the loss of resolution in
the sampled field occurring in long-path propagation simu-
lations, we have proposed a new algorithm that performs
repeated interpolations of the field with a zero-padding
technique and reduces the angular window to maintain the
size of the matrices.

We have compared the simulation results in the weak
turbulence regime with estimates based on Rytov’s theory.
In particular we have calculated errors in the estimated
variances of the log-amplitude fluctuations, normalized
spatial covariance functions, and coherence diameters.

The saturation-range behavior of the simulator has been
studied by comparing its results with the experiments car-
ried out by Consortini et al.13 We have compared the vari-
ances of the irradiance fluctuations for different inner scales
of the turbulence. We have also presented curves of the
saturation of the log-amplitude variances and normalized
spatial covariance functions for long-path propagation
simulations.

The comparison of the simulation results with experi-
mental ones and with analytical theory predictions shows
very good agreement that confirms the good operation of
the proposed algorithm ~within the limits imposed by the
matrix sizes!.
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3. J. M. Martin and S. M. Flatté, ‘‘Simulation of point-source scintilla-
tion through three-dimensional random media,’’ J. Opt. Soc. Am. A
7~5!, 838–847 ~1990!.

4. J. A. Fleck, Jr., J. R. Morris, and M. D. Feit, ‘‘Time-dependent propa-
gation of high energy laser beams through the atmosphere,’’ Appl.
Phys. 10, 129–160 ~1976!.

5. W. A. Coles, J. P. Filice, R. G. Frehlich, and M. Yadlowsky, ‘‘Simu-
lation of wave propagation in three-dimensional random media,’’
Appl. Opt. 34~12!, 2089–2101 ~1995!.
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