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Numerical Simulation of Low Mach Number
Reactive Flows
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A new formulation for the numerical solution of low Mach number com-
pressible flow problems is presented and analyzed. In this formulation the
thermal part (energy and species equations) is solved implicitly and decoupled
from the momentum equation, whereas the hydrodynamic part (momentum-
continuity) is advanced in time using a high order splitting approach which
resuits in overali high order accuracy i time and minimal errors in mass con-
servation. These errors are analyzed using both analytical tools and benchmark
numerical examples. Results from two-dimensional simulations with one-step
global reaction in opposed jet flame and porous particle configurations are also
presented.

KEY WORDS: Combustion: numerical simulation: opposed jet flames: porous
particle combustion: splitting method.

1. INTRODUCTION

In the numerical solution of low speed compressible reacting flows involved
in combustion problems, the existence of high frequency acoustic waves
places a severe restriction on time steps. One can use regular perturbation
techniques to decouple acoustic waves from the equations (when they
are not of interest). In this work, a set of approximate equations, free of
acoustic wave interactions [Chu and Kovasznay (1958); Sivashinsky
(1979}); and Rehm and Baum (1978)] are obtained, where pressure appears
at leading order in the energy and state equations (“thermodynamic
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pressure” po), and at first order in the momentum equation {“hydro-
dynamic pressure” p,). The resulting equations, when the Mach number
approaches zero, are

/aT N N apo
pe ——+V-VT):VA/1VT+ Y v, —V.pT Y ¢, ¥,V,.+— (lla)

p(at i=1 i=1 ot
p(aa}:'%—wVY,):: —~V-pY,V, 4+, i=1.,N (1.1b)
po=pRT (1.1¢)

ov r 2. '

p E%—v-Vv = ~Vp +V.u| Vv+(Vy) -—g(V-v)I (1.1d)
%?%—V-Vp:pvlv (1le)

where v is the velocity field, T the temperature, and p the density. In
addition Y,, V, are the mass fraction, and diffusion velocity—defined for
example in Williams (1985)—of the ith species, whereas 47 and w, are the
heat of formation and rate of production of the i/th species respectively; g, 4
are the dynamic viscosity, and heat conductivity, respectively, whereas c,, ,
is the specific heat capacity of species #; D; which appears in the definition
of V, is the binary diffusion coefficient of species 7 and j.

All of these equations, except Eq. (1.1d), are derived from the balance
of &° (where e=yM? where y is the ratic of specific heats and A is the
Mach number) terms. The leading order momentum equation reduces to
Vp,=0; therefore, p, can only be a function of time. In an open system,
where the pressure has to approach a constant value at infinity (ie,
atmospheric pressure) the last term in the energy equation (1.1a} vanishes.
All quantities that appear in these equations, are the leading order terms
(&%) of their corresponding ¢ expansion, except for the hydrodynamic
pressure p,(X, ), which appears on the right side of the momentum
equation (1.1d) and is a first order (¢') quantity.

Several approaches have been used in the past for the integration of
Egs. (l.la)-(l.le). A chemically reactive flow system involves hydro-
dynamics, diffusive transport, and thermo-chemistry. Even the simplest
one-dimensional flame models can typically be solved analytically only
under additional simplifications such as steady-state, constant and equal
diffusivities of all species, and infinitely fast chemistry. Numerical methods
are generally required to obtain solutions if any realistic transport and
chemical kinetics are included. Numerical models of steady premixed and
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non-premixed flames [for example, see Kee er al,, (1985), and Lutz et al,
{1994)7, have long been utilized to complement experiments. Results
obtained with these one-dimensional models on strained flames are also
used in flamelet modeling of turbulent flames. Recently, transient one-
dimensional models have also been developed to simulate spherically
symmetric combustion systems such as a droplet or fuel particle gasifying
in a quiescent environment [Cho er al, (1992); Lee et al., (1995, 1996a)].

However, practical reactive flow systems are inherently two-or three-
dimensional. In fact, some phenomena such as the instability of a lean
hydrogen-air premixed flame can only be explained in a two-dimensional
context. A large class of chemically reactive flow problems are axisym-
metric and, thus, at least two-dimensional, examples include isolated
fuel particle combustion systems (in which particles move relative to a
quiescent environment), laminar flow reactors, concentric co-flowing non-
premixed flames, and air/fue! mixtures ignited by individual hot particles.
The important case of an opposed-jet configuration, which is used exten-
sively to obtained experimental data on one-dimensional strained flames
(premixed and non-premixed), is also a two-dimensional system.

Numerical modeling of two-dimensional chemically reactive com-
pressible flows with detailed chemistry and transport is just beginning and,
to date, have been mainly limited to steady-state simulations [ for example,
see Xu ef al. (1993); Ern et al. (1994); and Smooke et al. (1989), where
numerical simulations of a steady-state axisymmetric gas-jet non-premixed
methane flame are reported]. A review of different methods used for the
simulation of reactive flows can be found in Oran and Boris (1987). In
Patnaik er al. (1988) and Behrent ef a/. (1992), the focus is on the investi-
gation of instabilities of a one-dimensional premixed hydrogen/air flame in
a rectangular box, whereas in Dwyer (1990} and Dwyer and Sanders
(1988), transient simulations of octane droplet combustion in an oxidizer
stream are reported. In the latter, although diffusive transport is treated in
detail, the chemistry is described by a one-step global reaction. The effects
of internal circulation and heat transfer on the time-dependent vaporiza-
tion of a droplet in the absence of chemical reactions is reported in Patnaik
et al. (1985) and Megaridis and Sirignano (1992). These two-dimensional
numerical simulations are based on either finite difference or finite volume
methods. Recently, two-and three-dimensional simulations of turbulent
flows with simple and detailed chemistry have also been reported (a review
of such simulations can be found in Poinsot er «l. (1996)). In this work, the
low Mach number approximation is not employed and the nonreduced
equations are solved using a high-order finite difference scheme.

Here, we present and analyze a new numerical approach for the
integration of the governing equations (1.1a)-(1.le). In order to facilitate
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the presentation (but not the implementation of the method in actual
computations), several simplifying assumptions wifl be made. First, detailed
transport processes are neglected, and only singlestep {global) reaction
mechanisms are considered. This means that all species have the same
molecular weight, specific heat capacity, and binary diffusion coefficient. In
addition, all dynamic transport coefficients x, 4, pD, and specific heat
capacity ¢, are assumed 1o be independent of temperature, so that the
kinematic transport coefficients v, o, and D become directly proportional to
temperature. In addition, thermodynamic pressure is assumed to be con-
stant in time as well as in space, corresponding to open systems. These
assumptions, however, are not necessary and are only made to simplify the
presentation of the numerical scheme. Detailed transport modeling and
comprehensive chemical reaction mechanisms have also been implemented
and are reported in Lee ef ol (1996b, 1997); Lee (1996).

After nondimensionalization with appropriate reference quantities, and
incorporation of all the simplifying assumptions, the following system is
obtained:

or V= T4 2\: Py (1.2a)
otV TRePr airl e '
oy, = o D - .
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All variables with tildes are nondimensional, whereas Re, Pr, and
Sc are the Reynolds, Prandtl, and Schmidt numbers respectively, Da is
the pre-exponential Damkdhler number of the one-step reaction, and
G@=D=v=T. The continuity equation (l.le) is replaced by Eq. (1.2¢),
which has been obtained from Egs. (1.1e), (1.1a), and (1.1c). It can be
observed from Eq. (1.2e) that the only sources for nonzero divergence of
the velocity field are the heat released by chemical reactions and diffusive
heat transfer (and, for closed systems only, global compression or expan-
sion). The reaction rate term #/ is described by a one-step global reaction,
with the reaction rate written in the Arrhenius form.
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2. NUMERICAL APPROACH

In this section, the solution of the semi-discrete problem is discussed
(where only temporal but not spatial derivatives are discretized). The
overall system can be considered as a differential algebraic system of the
form,

oy

i 2.1z
3 fiy(x, 1)) (2.1a)
0=g(y(x, 1)) (2.1b)

where y=1{T, ¥,,v}7 The predictive equations for y, Eq. (2.1a), corre-
spond to Egs. (1.2a}—(1.2b), and (1.2d), whereas the algebraic Eq. (2.1b)
corresponds to Eq. (1.2e). The state Eq. (1.2c) has been used to eliminate
density from the rest of the equations. Equation (2.1b) can be seen as a
constraint on the velocity field which is necessary in order to close the
system for the extra unknown p,, for which there is no predictive equation.
In a fully implicit solution of this nonlinear system based on high order
backward differentiation (or stiffly stable schemes, Gear (1971)) all
variables have to be evaluated at the new time level "+, The fully implicit
approach, however, is quite expensive and a combined implicit/explicit
approach, which preserves high order accuracy in time, is preferable.

All the terms in the energy (1.2a) and species (1.2b) equations are
advanced in time implicitly, because of the presence of chemical reaction
source terms (which in general involves different time scales and introduces
stiffness), except for the convective terms for which a high-order explicit
extrapolation for the velocity is used. On the other hand, since there is no
direct reaction source term in the momentum equations, the velocity field
responds to changes in temperature and density on a slower inertial time
scale. Therefore the integration of Eq. (1.2d), can be performed with a
semi-implicit splitting method, where the updated temperature and species
fields are used to determine density, from Eq. (1.2¢), divergence of the
velocity field from Eq. (1.2¢) and kinematic viscosity. The integration then
proceeds in the following way (dropping tildes for clarity)
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Here, 0% is the “thermal” divergence of the velocity field, and a,,, 8, are
the coefficients of the implicit and explicit, respectively, part of the Jth
order time integration scheme [Orszag er al. (1986); Karniadakis ef al.
(1991); Tomboulides er al. (1989)]. All quantities which are functions of
temperature and species mass fractions in the general case, («, D, v, p, and
w}) are evaluated using 7" and ¥Y7*'. The convective terms in all equa-
tions are integrated explicitly or semi-explicitly. Since the velocity field used
in Egs. (2.2a) and (2.2b) is known, these equations can be solved independ-
ently as a system of N+1 equations for 7"*' and ¥"*'. A sparse-
Jacobian stiff ODE solver (LSODES, Hindmarsh (1983)), is used for this
integration because in general the behavior of these equations will be
affected by the stiffness of the chemical reaction mechanism. The integra-
tion order in principle can be up to fifth.

After determining ali thermodynamic quantities (temperature 7"%!,
and species concentrations Y7+ !) at the new time level "+, all kinematic
transport coefficients «, D, v and density p, which are functions of 7!,
are also known. The integration of Egs. (2.2c), and (2.2d) is performed
using a mixed explicit-implicit splitting approach which results in an over-
all high order of accuracy in time, minimal errors in mass conservation,
and a partially decoupled solution procedure. The time integration method
is based on backward differentiation and is the same scheme used for the
integration of the energy and species equations. In addition, a pressure
Poisson equation, similar to that for incompressible flows, is derived for the
hydrodynamic pressure p,, accounting for the nonzero thermal divergence
of the velocity field, which can be considered as a constraint enforced by
the hydrodynamic pressure.

The integration of the momentum equation (2.2d) is explicit for the
nonlinear convective terms, and implicit for the viscous and pressure terms.
It proceeds in the following way, starting with the integration of the
convective terms

vi 172

J—1
——— Y a, V" I==3 B (v-V¥) 4 (2.3)
At At ! = !
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which can be solved to obtain v*. Then a variable coefficient Poissen equa-
tion is derived for the pressure p,, by taking the divergence of equation
(2.2d}, to obtain

vy ) n+1 n+1
v.(‘vf"):v v VoY) ! V.;:"+‘<V2v+§V(V-v)> (2.4)

pnf] At +—12_€

In order to decouple the pressure and velocity calculation, the terms
involving "' in the pressure equation have to be expressed in terms of
known quantities. This is performed using the identity

Viv=V(V-v)—Vx(Vxv)

which results in

v (Vm‘ Vv (V!
pn+])— At

n+1
+LV-§"1+’1(ﬂV(V-V)—VX(VXV)) (2.5)
Re 3

Using an irrational-solenoidal decomposition of the velocity field
y=vgs+v, and treating terms involving v, implicitly (using the known
“thermal” divergence of the velocity field, Q%3+') as

(V-V)"H =(V~V,)"+l ~ Q:1T+I
while an explicit extrapolation for the solenoidal part, results in
j=1
{V X v)n+ 1_ (V X vS)n+l P Z ﬂqmn-q
=0

where 0=V xv is the vorticity. This procedure is similar to splitting
methods used for incompressible flows, discussed in detail by Orszag et al.
(1986). Substituting the last two expressions in Eq. (2.5), results in the
following pressure Poisson equation

'(Vpl >=V'V*—70Q'}+]

pn+1 At

1 4 O
-I-'—"V'V'z+l <_VQn¢l__ ‘[;lvxm"“‘l) (26)
Re 3° =7 qg@ !
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which now dees net involve the unknown velocity v" ™' The boundary
conditions for the pressure equation are derived by taking the dot product
of Eq. (2.2d) in the direction normal to the boundaries n, and making the
substitutions mentioned earlier. In this way. a Neumann pressure boundary
condition is obtained when the velocity satisfies Dirichlet boundary
conditions, namely,

1 ép, é(n-v) - -
Wty (v-Vvy 9
p:;4] an a[ n Z ﬁ_,(_V V)

qy=0

gt

+4
Re

4 J-1
n-<§VQ”T“— ZO/)’,,me”"’) (2.7)

g=

where the first term in the righthand side of Eq. (2.7) is assumed to be
known for Dirichlet velocity boundary conditions. The rest of the splitting
scheme consists of the incorporation of the pressure correction to the
velocity field, and then integration of the viscous part of the momentum
equation in the following two steps

vE¥ ¥ Vp,

—_— 28}
At pirt (238)

vn+l R 4 v”"rl V** 1 ‘,11+1 B
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The boundary conditions for the velocity are incorporated in the
viscous step as well. The solution procedure is then completed by choosing
a method for the spatial discretization. The methods used in this work are
either global spectral methods or spectral element methods, which are
extensively described in Gottlieb and Qrszag (1977); Canuto er al. (1987);
Patera (1984); Ronquist (1988); Karniadakis er /. (1985); and Maday and
Patera (1987).

In the following sections, it will be demonstrated that the splitting
procedure described in this section gives an overall high order of accuracy
in time, and minimal errors in mass conservation (the so-called splitting
errors). The behavior of these errors is obtained using asymptotic analysis;
it is shown that splitting errors are always smaller than the formal trunca-
tion error ((4t’) of the Jth order integration scheme. In addition, the
asymptotically derived estimates are compared with results obtained from
the numerical solution of a quasi two-dimensional model problem. The
detailed description of the two-dimensional model problem, which is used
for this comparison is presented in Tomboulides and Orszag (1997).
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3. ERROR IN MASS CONVERSATION DUE TO SPLITTING

In order to obtain an estimate for the splitting errors, an equation for
the difference between the divergence of the velocity field g"*'=V.y"*!
and the “thermal” divergence O0%%' [see (2.2¢)] is obtained. The thermal
divergence Q%" ' can be considered as a constraint on the velocity field, in
the same way that the condition V-v=0 is a constraint for incompressible
flow. The equation for the difference ¢ =@"*' — Q"' can be obtained
by subtracting the divergence of Eq. (2.9), after using Eq. (2.8), from

Eq. (2.2d):

" n+!_V_ * ’,n+l _’ ) 1
700 ! +V-(VP'>=V-‘ <V~v”+‘+§‘7Q"F'> (3.1)

At i+l Ré’

which, using Eq. (2.6}, yields
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This 1s an elliptic (variable coefficient Helmholtz) equation for the
difference ¢ = Q" "' — Q%+, between the divergence at time step "' and
the value dictated by the energy equation from Eq. (2.2c). The right-hand
side of this elliptic equation is nonzero only when the viscosity is variable,
since, for v constant in space, it is identically equal to zero because of the
vector identity V-(Vx®)=0. In addition, this term is of order {4+,
where J is the order of the time stepping scheme used (typically up to
J=3};, its maximum value is ¢{47) which corresponds to a first order
scheme. To find the boundary condition for (3.2}, the boundary condition
for the divergence 0" ',

1 5P| J—1 , M+l (4 . L
—— = — . . n—y i n+1_ n+ %
57T on n lgﬂ[iq(v Vv)" ¢+ 7" 3VQ V x® ) (3.3)

should be subtracted from the numerical pressure boundary condition
(2.8), to obtain the {ollowing Neumann boundary condition

J-1
———;:n-(me”“» Y [L,me”"’> (3.4)
=0

Both Eq. (3.2) satisfied by ¢ and its boundary condition (3.4) have a
nonhomogeneous part which scales with ¢(4r’). The nonzero boundary
condition {34} is the cause of splitting errors that also appear in incom-
pressible flows [ie, the homogeneous solution of (3.2)], whereas the



148 Tomboulides, Lee, and Orszag

nonzero right-hand side of Eq. (3.2) is the part of the error which is caused
by the compressibility, only when the kinematic viscosity is spatially varying
[ie., the particular solution of (3.2)].

In this section, the error in mass conservation due to splitting will be
analyzed for the case of small values of 4t/Re. A one-dimensional problem,
which incorporates most of the important features of the problem, is used
for asymptotic analysis. 1t is assumed that the temperature T varies in
layers of thickness much larger than the length scale (47/Re)'?. This means
that if the temperature has a local structure similar to tanh (x/0), typical of
flame fronts, then the length scale d» (41/Re)'2. The domain of interest
extends from x= —1 to x= +1, and the boundary conditions are derived
from (3.4). Equation (3.2) in one dimension, becomes

8" +&%a(x) ¢' + b(x) ¢ = %a(x) Aw, (3.5)
with the boundary conditions
() =34dm,| ., (3.6)

Here, p=0""' - 05", doo,=V x "' = 3770 B,V x@"~% and e=(A1/Re)"".
The functions #(x) and b(x) are given by a(x)=7"/7, and b(x}= —1/T. It
will be assumed later that, for a Jth order time stepping method, de, if of
&(At’) everywhere, in order to get global estimates for ¢. Equation (3.5) is
a nonhomogeneous singularly perturbed ordinary differential equation. The
problem is divided into two separate problems, one with nonzero right-
hand side and zero boundary conditions (a particular solution ¢,, corre-
sponding to errors due to compressibility), and one with zero right-hand
side and nonzero boundary conditions (a homogeneous solution ¢,,,
corresponding to classical incompressible splitting errors). A particular
solution to Eq. (3.5) is found by first constructing the Green’s function of
the differential operator using the WKB method [Bender and Orszag
(1978)], and then finding the particular solution of the nonhomogeneous
problem. Applying WKB, it is found that the general solution of (3.5) has
10 O(e) the following form

1 X
¢(x)=AiT—'4eXp<iEJ T,(,lgt(t)) (3.7)

where 4, are constants to be specified by the boundary conditions. The
solutions ¢, and ¢, are found, to leading order, to be

$p(xy=2> 4o, T'(x) + O(* 4w ) (3.8)
dulx)=Fedow, |, T~ " x) f(x)+ O dw, | .\) (3.9)
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This means that if the quantity dw, is globally of order A¢ or £?Re (for a
first order overall scheme), the overall error in the interior of the domain,
due to the inhomogeneity on the right-hand side of (3.5), is of (¢(4t*/Re).
Similarly, the error in the interior for a time integrating scheme of order J
would by ¢(4t’ *'/Re). For simplicity we have assumed that Am(—1)=
dw{+1)=4w(+1). On the other hand, assuming again that 4o (+1}) is
({e*Re), the error close to the domain boundaries, which is due to the
effect of nonhomogeneous boundary conditions, becomes (A1 %/Re'?).
This estimate is true in boundary layers of ((¢) close to the boundaries
x~ + (1 —¢), where the function f(x) has an overall contribution of &{1).
In the rest of the domain, the function f(x) in Eq. (3.9) is exponentially
small. Therefore, the error in mass conservation is of ¢(4t' 7' */Re'?} in a
boundary layer of ¢z} away from the boundaries, and of &{4r’*'/Re) in
the interior of the domain for a general Jth order time integration scheme.

In Fig. 1, we plot the distribution of the two sources of divergence
error, the nonzero right side of (3.5) and the nonzero boundary condition
{3.6), respectively. The plotted case is for £¢=0805, 6=0.1, Re=1 and
dw, =&, and corresponds to the temperature profile, also plotted in the
same figure, 7 =0.5(3 +tanh (x/6}).

8=0.1, £=0.05

18 F
16 F
14
1.2

0.0001

<
5x10-%

0

2% 1%

167

ok

-1 -0.5 0 05 1

Fig. 1. Distribution of temperature. and divergence error for 2=005, 6 =0.1. and Ao, ="
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4, EXAMPLES OF REACTING FLOW SIMULATIONS

In this section, three examples of compressible reacting flows simulated
using the numerical approach are presented. These examples include a
quasl two-dimensional model problem formulated as a benchmark
problem, an opposed jet non-premixed flame, and the gaseous burning of
a porous sphere. All these examples involve simple transport and single-
step reaction. Examples involving detailed transport and comprehensive
chemistry are reported in [ Lee ef al. {1996b, 1997); Lee (1996)].

4.1. Model Problem

Having obtained an estimate for the structure and magnitude of
splitting errors, a model problem is used here to verify the results of the
asymptotic analysis and test all important aspects of the numerical solution
procedure. For example, a simple one dimensional analytical solution
would not be sufficient for this purpose, since in one dimension the right-
hand side of the error equation {3.2) is identically zero, even for a variable
kinematic viscosity. This is demonstrated by the numerical solution of the
following one-dimensional example in the domain —1<x <1

oT, ., T, x &°T,
ot +Us dx  Re Pr dx?

eU, oU, 4v 83U, 1 0P,

+ Wy (4.12)

% ] 1
ot ® dx 3Re 0x*  p, Ox (4.16)
2po dpo _ oU,
o P T Ty (41e)
PDT():] (4.ld)

In these non-dimensionalized equations v=a = T. The reaction term in the
energy equation is specified as

o ! 2 (X ! a 2 l
=35 sech <(5> ’*'(52 oy tanh (5) sech (()) (4.2)

where the parameter § corresponds to the thickness of the temperature
layer, as in Fig. 1. The problem is closed by specifying the boundary
conditions

! +1
Uo(i1)=To(il)=5(3+tanh<7>)
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The steady state solution of this problem is simply
U x)= Ty x) ! 3 h(Z ) 4.3
x)= o(lj—i + tan *O: ) ( 3)

and resembles a premixed flame located at x =0 with reactants approaching
the flame from the side x= —1, and products exiting the domain at
x=+1. The reaction term (4.2) is chosen artificially to yield the flame
front (4.3). The reaction term (4.2) does share some qualitative structure
with that expected for premixed flames, but, due to the second term on the
right side of (<.2), it has an ariificial energy sink for x <0 with x ~J and
Re Pr< ({1).

The numerical solution of this one-dimensional problem is obtained
using the numerical approach described in Section 2. For the spatial dis-
cretization 4 spectral elements are used in the x direction, and the number
of collocation points inside each of these elements varies from 5 to 15. It
can be seen {rom the results plotted in Fig. 2 that the L, error of both the
solution and of the divergence of the velocity field (as defined in Section 3),
decay exponentially with the number of collocation points. This kind of
exponential convergence is typical of spectral type methods; for this
problem the magnitude of the error is not affected by the time step 4¢, but
only by the spatial discretization error, ie., the errors in Fig. 2 are almost
independent of the value of 4t The reason for this is that the right-hand

logli,{e)
[=]
-

Fig. 2. Error U,— U, and divergence error ¢ =70, ¢x— O as a function of number of
collocation points for base llow of model problem.

854 12 2-3
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side of Eq. (3.2) is identically equal to zero in one-dimension. In addition,
the vorticity is identically equal to zero as well, and the boundary
condition for the error in the divergence of the velocity field becomes
homogeneous, as can be observed from Eq. (3.4). This implies that splitting
errors are identically equal to zero in the whole domain, and the only
source of error in obtaining the steady solution of system (4.]1a)-(4.1d) is
the spatial discretization error. Therefore, in order to test all aspects of our
numerical method, a more complex model problem should be constructed.

Following the analysis in Orszag et al. (1986), a two-dimensional
linear stability analysis was performed for the one-dimensional problem
described by Eq. (4.3). The objective of this analysis is to obtain the least
stable eigenmode. Subsequently, this least stable eigenmode was used as an
initial condition for the time integration scheme described in Section 2 and
the value of the decay rate (eigenvalue) and splitting errors were monitored
during the integration. This new problem involving the integration of the
two-dimensional linearized equations, has the features required to test the
numerical scheme. A detailed account of the solution of this model problem
is given in Tomboulides and Orszag (1997) and only some representative
results are presented here.

In Fig. 3, the error in the value of the decay rate, as obtained by a
time-dependent simulation of the linearized two-dimensional problem,

o, = 3.37684537615

e

B T T

o J

6 F -
L o ]

J

/ ° 1
_____ log(at) |

Rlog{4t)

log( oy — 0,)

30 - ° ... Blog(at)]
o 1

[ { . 1 i
5 -4 -3 2 -1
log( at j

Fig. 3. Error in decay rate ¢, for k=1 using diflerent order integrating schemes.
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using a 1%, 2" and 3" order time integration scheme, is shown. As can be
observed from the figure, first, second and third order accuracy is obtained,
respectively, for each of the schemes used, demonstrating the fact that
splitting errors do not destroy the formal order of accuracy because they
are of higher order.

The value of the error in mass conservation is plotted as a function of
At in Fig. 4. The divergence error at the domain boundary (Fig. 4a) and at
the middle of the domain (Fig. 4b) are plotted with points for different time
stepping orders and values of Ar; also shown with lines are the asymptotic
estimates obtained in Section 3. As can be observed, when the value of
e=(d4t/Re)' * is small enough with respect to the “flame thickness” (here
0=02}, i.e, when 41 <001 {for Re = Pr=1), the results of the asymptotic
analysis agree well with the simulations. Also, for very low values of 41, ihe
ertors for the third order in time scheme are very close to spatial discretiza-
tion errors [with 257 Legendre points, with spatial error of ¢(10~'%)], and
even to round-off error ¢ (107"), and the overall error saturates. There-
fore, we conclude that the estimates obtained for the behavior of splitting
errors are refiable and the overall accuracy of the numerical scheme is high.
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4.2, Opposed Jet Flame

The transient two-dimensional numerical approach described here has
been used in the simulation of an opposed-jet non-premixed flame, which
is an important experimental configuration typically used to approximaie
a one-dimensional non-premixed flame [Law (1988)]. This experimental
configuration offers the advantages of minimal heat losses, and nearly one-
dimensional flame geometry in the vicinity of the stagnation plane (close to
the axis of symmetry). In the limit of zero strain, quantitative information
regarding one-dimensional non-premixed flames can be obiained by
extrapolation. Traditionally, the non-premixed flame generated by this
experimental configuration is analyzed in a one-dimensional context (see,
for example [ Law (1988)]), whereas, in theoretical studies, the flow field
near the stagnation plane is described by a simple potential stagnation flow
solution.

The assumption of potential stagnation flow, however, breaks down in
areas far away from the stagnation plane, and one-dimensional analysis
neglects cross streamline diffusion. The geometry of this experimental
set-up in reality is at [east two-dimensional {typically axially symmetric).
Our numerical model can provide a full two-dimensional analysis of this
experimental configuration, taking into account compressibility effects due
to heat release in the flame zone.

Here we report axisymmetric simulations of a non-premixed counter
flow configuration with one step chemistry and simple transport. The
geometric setup and boundary conditions are shown in Fig. 5; the flow
consists of two counter-flowing axial jets of fuel and oxidizer respectively.
Also shown are two spectral element meshes {showing elements only}): one
consisting of 64 elements, and the other of 80 elements, which we used to
adequately resolve the flame zone. The number of collocation points inside
each element was varied between 7 and 9, in each direction. The reactant
gases enter the domain with a nondimensional temperature of T=1,
whereas the velocity profile at the exit of the tubes is parabolic; the
Reynolds number is the same for both gases and is equal to
Re= UD/v =100, where U is the mean exit velocity, D the diameter of the
tube exit and v the kinematic viscosity of the gases at the inlet temperature.
The domain is constrained by two plates, located at the exit of the tubes,
which are kept at a fixed temperature T=1, and it extends between
—05<:<05 and 0 <r<4 (where all lengths are nondimensionalized by
the tube diameter D). The chemistry is described by the one-step global
reaction

IF+l0-P (4.4)
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Fig. 5. Computational domain and spectral element mesh arrangement for (a) case L
b} case II of the opposed jet configuration.

where F, O and P, are the fuel, oxidizer, and product, respectively, and the
physical properties of all species are assumed to be equal. The reaction
rate. appearing in Eq. (1.2a), is given by the following expression

W=Y2Y e T (4.3)

where no dependence on temperature has been assumed for the pre-
exponential Arrhenius rate constant, and T, =E,/R is the activation
temperature. Two different numerical experiments were performed for this
problem; in both, all parameters were kept fixed, except for the reaction
rate parameters Da, T, which were varied from Da=2x10* and 7, =20
for case I, to Da=2x10° and T, =40 for case Il (D« is the pre-exponen-
tial Damk®ohler number defined in Section 1). In case 11, the reaction rate
constants are such that the chemical induction time is longer, but the
reaction time is shorter than case 1.

In both cases, the ignition was performed by first obtaining the steady
state solution for the cold flow and then igniting the flow using a high
temperature strip close to the stagnation plane as an initial condition. Both
simulations reached a steady state solution when integrated for long time;
these steady state solutions are plotted in Figs. 6 and 7, for cases I and 1I,
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(a)

-1, 1

(b

(c)

{d)

(e)

®

Fig. 6. Case | isocontours of (a) axial velocity: (b) radial velocity: (c) temperature: {d) reac-
tion: (¢) fuel mass fraction; and (f) product mass fraction. The minimum and maximum values
of all variables are noted under each plot. Because this figure was generated by transformation
of color plots to grey scale. the darkest tone does not correspond to the highest value.
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(a) u
-L1D
(b)
(c)
(1,4.85)
(@)
0, 13.8)
(e
(4]

.
{0, 0.996)

Fig. 7. Case Il isocontours of (a) axial velocity: (b) radial velocity: {¢) temperature; (d} reac-
tion rate: (¢} fuel mass fraction: and (f) product mass fraction. The minimum and maximum
values of all variables are noted under each plot. Because this figure was generated by transfor-
mation of color piots to grey scale. the darkest tone does not correspond to the highest value.
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respectively. The axisymmetric simulations reveal two-dimensional effects
in the far field (the flow enters the domain in the axial direction but turns
radially in the far field, as can be seen in figs. 6a and 6b), and a region of
guasi one-dimensionality only up to a radial extent of about one tube
radius along the stagnation plane.

As observed from the isocontours of temperature (Fig. 6c¢), reaction
rate (Fig. 6d), fuel mass fraction (Fig. 6e), and product mass fraction
{Fig. 6f), the case I steady state solution consists of a planar diffusion flame
located at the stagnation plane, which, for this stoichiometric configura-
tion, is exactly half way between the fuel and oxidizer exit plane (z=0). It
can also be observed that product gases are being convected radially
upstream because of a very weak recirculation, close to the top and bottom
of the domain and between 0.5 <r < 1.25, shown by the white regions in
Fig. 6b.

The induction time for case II is longer than that of case I, and the
reactant gases do not react immediately as they meet at the stagnation
plane; instead, they flow radially outwards without reacting, and at the
same time mix by diffusion and convection (as can be observed in Fig. 7b,
there exists a small recirculation region in both the upper and the lower
part of the domain, between 0.5 << 1.75). Figures 7e and 7f show fuel
and product mass fraction isocontours, respectively, (the fuel and oxidizer
mass fraction isocontours being exactly antisymmetric with respect to the
stagnation plane), and indicate that fuel diffuses into the oxidizer side and
vice versa. Subsequently, at a radial location »~ 1.86, the reactants form a
triple flame structure, consisting of a premixed flame sitting normal to the
flow direction and a diffusion flame trailing the premixed one (Fig. 7d).
The top part of the premixed flame is fuel rich, whereas the lower one is
fuel lean and the flame is curved towards the product gases because its
maximum strength is at =0 (where the concentration of the reactant
gases is closer to stoichiometric). The trailing diffusion flame 1s much
weaker than the leading premixed flame, starting exactly at the point where
the fuel rich and fuel lean parts meet. In addition, as can be observed from
the temperature and product mass fraction isocontours {Figs. 7¢ and 7f,
respectively), both enthalpy and product gases are convected radially
upstream because of the weak recirculation,

To illustrate more clearly the difference between the two flame
configurations corresponding to cases [ and il, temperature, species con-
centrations and reaction rates are plotted across the flame, which is along
the axis of symmetry =0 for case I (planar diffusion flame), and along
the stagnation plane z =0 for case I] (annular premixed flame), in Figs. 8
and 9, respectively. The flame profile for case I has the typical structure of
a one-dimensional diffusion flame, whereas that of case II shows the reactant
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gases approaching the flame zone in stoichiometric proportions along the
stagnation line, and therefore forming a premixed flame. The maximum
normalized value of temperature inside the flame zone is 4.094 for case I,
and 4.85 for case I1, whereas the reaction rate maxima are 17.15 and 13.8
respectively. Since the temperature of the cold gases is T=1 and the non-
dimensionalized heat of the reaction is #”=4, the adiabatic flame tem-
perature for both problems is 5. Consistent with classical asymptotic results
in combustion literature [ Williams (1985)] which predict thinner reaction
zones and higher flame temperatures for higher activation energies, the
maximum temperature for case II is higher than the one for case I inside
the flame. In addition, at the steady state, the total integral of the reaction
rate over the domain. [, pw’ dv, is limited for both cases I and II by the
total fuel (or oxidizer) mass flux D7 /4, where 117 = pU=0.5 is the mass
flux per unit area. This maximum value can only be achieved if the fuel and
oxidizer are completely consumed during the reaction; the amount of reac-
tants that exit the domain unburned is approximately 3.5% for both cases
Iand IL
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Eig. 8. (a) Variation of temperature and reaction rate: (b) species mass fractions along the
line r=0 for case 1.
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Fig. 9. (a) Variation of temperature and reaction rate: (b) species mass [ractions along the
line = =1 for case 1.

In case II, since the mean velocity of the reactant gases decreases
radially (because of the increasing area) as roughly I/r, the premixed flame
can stabilize itself at the location where the flame speed matches the local
flow velocity. An estimate of this can be obtained as follows: the “burning
rate eigenvalue” can be obtained as (pS,) = p, (Wi &(T4))' 2, where v,
is the maximum value of the reaction rate vw’, and p, and «(T),) are the
values of density and heat diffusivity evaluated at the maximum tem-
perature 7,. Here, the maximum flame temperature is T, =4.85, the maxi-
mum reaction rate is 13.8 (at approximately r=1.89), «(7,)=0.024, and
2, =0.206, resulting in (pS;) =~ 0.12. On the other hand, an estimate of the
local mass flow rate ( pv) for strained flames can be obtained by using the
density and velocity normal to the flame (in this case radially) evaluated at
the inflection point of the temperature profile. Here, the inflection point of
the temperature profile is located at about » = 1.82 where the values of the
density and radial velocity are 0.53 and 0.23, respectively; therefore the
value of (pv) is very close to 0.12 as well.

Trailing the premixed annular flame, there exists a weak diffusion
flame along the stagnation plane; this weaker reaction zone is also evident
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in Fig. 9a, as a long tail in the reaction rate profile after the premixed peak
at about r=1.89. Profiles of reaction rate and species mass fractions across
this reaction zone are shown in Fig. 10: fuel and oxidizer diffuse from the
fuel rich and fuel lean side, respectively, into the weak reaction zone. The
icaction rate peaks on both sides of the diffusion flame correspond to the
top and bottom curved parts of the annular premixed flame (see Fig. 7d).
As can be observed, the diffusion reaction zone is at least an order of
magnitude weaker than the main premixed reaction zone [the maximum
reaction rate being /(1) instead of (*(10)].

These two axisymmetric simulations reveal two-dimensional effects in
the far field and also demonstrate that, even for simple transport and a
one-step reaction mechanism, a mere change of the Damkohler number
and the overall activation energy, can change the structure of a non-
premixed flame from a nearly one-dimensional planar diffusion flame into
an annular triple flame.

Such a transition has been observed experimentally [ Papas (1995)].
However, this kind of behavior can only be observed for high activation
energy fuels (i.e. methane) without inert co-flows around the fuel and
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oxidizer streams, which are usually introduced in experiments to confine
reaction in the local region between the reactant exists. The parameters
used for case II can be thought of as corresponding to a reactant
temperature of 500K and activation temperature of 20, 000K, which are
comparable to the oxidation of methane.

This new capability of analyzing the opposed-jet flame oifers a new
means to validate previous one-dimensional numerical simulations. Since
our new model is capable of handling detailed transport, variable fluid
properties, and realistic chemical kinetics, it also offers an attractive new
way to analyze data obtained in these experiments, and to assist in the
design and optimization of these experiments.

Note that, although here we only report the results of non-premixed
flames generated by the opposed-jet confliguration, our numerical model
can also be used to analyze strained premixed flames generated by the
same experimental configuration. These flames are also of importance, as
almost all modern data on freely propagating one-dimensional premixed
flames are obtained from such experiments, which are also analyzed only
by one-dimensional models (see for example the Sandia flame code Kee et
al. (1985), or Law (1988)).

4.3, Porous Sphere

A droplet or particle burning in an oxidizer stream, which is another
important configuration in combustion, can be analyzed by our numerical
model. Here, we report the results of two model problems which physically
correspond to a porous sphere burner, issuing fuel into an oxidizer
stream, which is sufficiently hot to ignite the reactants, forming flames with
different structure. The spectral element meshes used for these calculations
{showing elements only) are shown in Fig. 11, and consist of 220 elements
with 5x5 collocation points within each element (Fig. 1la), and 250
elements with 7x 7 collocation points (Fig. 11b). The second mesh was
designed after the location of the flame zone was identified using the first
mesh, and was then refined to adequately resolve all scales.

The temperature of the hot oxidizer stream equals 2 and enters the
domain from the left side with a velocity of 1. The cold fuel issues from the
porous sphere with a radial velocity equal to 10% of the free stream
velocity, at a temperature equal to 1. The simulations proceeded in the
same way as for the opposed jet: the cold flow was first advanced to a
steady state, and then the reaction rate term was turned on. For this case,
there was no need for a high temperature strip as an initial condition, since
the oxidize enters the domain with a temperature high enough to start the
reaction.
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(a)

(b)

Fig. 11, Spectral element grids used for the simulation of the reactive flow around a porous
sphere: (a) mesh with 220 elements (5 x 5 collocation points per element). and —4.5 <= <25,
0<r<4.5. (b) mesh with 230 elements (7 x 7 points per element), and —5<-<20. 0<r <35,

The two model simulations reported here, differ only in the value of
the overall activation temperature which was 12.5 in case I and [5 in case
11. The other parameters, the Reynolds number (based on the {ree stream
velocity, diameter of the sphere, and the kinematic viscosity of the oxidizer
at T=2) and pre-exponential Damkdhler number were equal to 50 and
1,000, respectively.

In case I, the overall activation energy is sufficiently low that after the
initial transient processes, a steady envelope flame establishes itself around
the particle, as shown in Figs. 12a and 12b in terms of temperature and
reaction rate isocontours. The maximum temperature inside the flame zone
is equal to 4.24. whereas the maximum value of the reaction rate is equal
to 2.51. The adiabatic flame temperature is equal to 5.5 (the temperature
of the reactant gases is 1 and 2 respectively, whereas the non-dimen-
sionalized heat of reaction is equal to 4). The one-step reaction, and corre-
sponding reaction rate expression are the same as expressions (4.24} and
(4.25) of the previous section, respectively, and the physical properties of
all species are assumed to be equal.

In the second case, with increased activation energy and corre-
spondingly longer chemical induction time, instead of an envelope closed
flame, we see the establishment of a wake type flame (similar in nature to
a premixed flame) as shown in Figs. 13a and 13b. The maximum values of
temperature inside the flame zone and reaction rate for this case are equal
to 4.72 and 2.90, respectively. Because the fuel exiting from the porous
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Fig. 12, 1a} Isocontours of tempermure: (b) reaction rate for the porous sphere case 1 with

T, =125, Because this figure was generated by transformation of color plots to grey scale, the
darkest tone does not correspond to the highest value,

@

1, 4.72

©

©, 2.50)

Fig. 13. {a) Isocontours of temperature: (b} reaction rate jor the porous sphere casc 11 with
T, =15. Because this figure was generated by transformation of color plots to grey scale. the
darkest tone does not correspond to the highest value,



Low Mack Number Reactive Flows 165

sphere is completely consumed in both cases due to the reaction, the total
integral of the reaction rate, |, p¥' dv over the whole domain is the same
in both cases at the steady state and equals 2znm,-, where m1,.=0.1 is the
mass flux of the fuel per unit area being issued from the surface of the
sphere. This quantity reflects the total burning rate of the system. As in
the opposed-jet configuration, although the total burning rate here is the
same in both cases, the maximum temperature is higher for case 11 than for
case I.

Similar calculations using realistic transport properties and elemental
chemical kinetics have also been performed, and reported elsewhere
[Lee er al. (1996b, 1997); and Lee (1996)].

5. CONCLUSIONS

A new method for the simulation of low Mach number combustion,
which combines both accuracy and numerical efficiency, and which should
be applicable to a wide range of combustion problems in the future, is
presented. The numerical accuracy of the method has been analyzed
asymptotically for splitting errors; the analysis of 2 more sophisticated
model problem can be found elsewhere [ Tomboulides and Orszag (1997)].
We have illustrated the application of this method to problems involving
flames in opposed jet configurations and porous sphere burners. Applica-
tions of the method to problems involving detailed transport and
comprehensive chemistry have also been performed and are reported in
[Lee ef al. (1996a); and Lee (1996).]
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