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Numerical simulation of a vertically held metal-halide lamp ~Hg/Na/Sc system! is presented. The

lamp was driven by an ac current of 60 Hz. The model took convection and diffusion of various

species into account. A method for rapid calculation of optically thick radiation power was

developed. Density of scandium ions and sodium ions has a minimum on the central axis due to

radial ambipolar diffusion. Density of metallic atoms and ions and metal iodine molecules decreases

with increasing axial distance from the bottom of the tube. This tendency was explained by

convection and diffusion. The density of scandium ions depends on the direction of the current; the

density was greater at upward current than at downward current. © 2002 American Institute of

Physics. @DOI: 10.1063/1.1486255#

I. INTRODUCTION

High-pressure mercury lamps with metal-halide addi-

tives are widely used. The principal role of additives is to

give the light source better energy efficiency and a more

satisfactory color than there would be otherwise. A

computer-aided study may be useful to determine the effects

of each of the various additives on the discharge.

The main purpose of this simulation is to determine tem-

perature and the number densities of various kinds of par-

ticles including ions and electrons, and how they contribute

to the lamp’s optical and electrical properties. Hashiguchi,

Mori, and Tachibana1 modeled high-pressure mercury dis-

charge lamps; the energy equation coupled with momentum

and continuity equations was solved to obtain temperature

and convection velocity. The contribution of optically thick

lines to radiation power was the subject of exact analysis. We

have to consider all these problems in order to model metal-

halide lamps. In addition, we have to develop a method to

determine the number densities of various kinds of particles

which result from metal-halide additives; the diffusion of

these particles as well as convection have to be taken into

account. Dakin, Rautenberg, and Goldfield2 modeled a Hg/

Na/Sc system taking all these properties into account. Their

model was complicated and it was not well suited for prac-

tical purposes, although they gave temperature and number

densities of several kinds of particles for dc operation.

Ishigami3 made a more practical model but neglected con-

vection and diffusion. He solved the energy equation to-

gether with the equilibrium relations between species to ob-

tain temperature and the number densities of various kinds of

particles as a function of radial distance. He obtained the

optical and electrical properties of the lamp for time-

dependent as well as time-independent operation.

We present a time-dependent model which is applied to

various kinds of particles taking convection and diffusion

into account. A method for the rapid calculation of optically

thick radiation power has been developed and we are able to

calculate for several tens of periods in a reasonable comput-

ing time with this model. We will make a comparison with

this experiment in a later article.

Section II describes a fluid model. Sections III through V

describe transport coefficients, radiation power, and numeri-

cal method, respectively. Section VI describes results and a

discussion of the model, and Sec. VII contains concluding

remarks.

II. MODELING A METAL-HALIDE LAMP

We simulate discharge in a vertically held metal-halide

lamp which is shown in Fig. 1; the tube is a circular cylinder

and both upper and lower boundaries are replaced by circular

planes which are given as dotted lines to simplify calcula-

tion. We assume that local thermal equilibrium holds

throughout the region of calculation. The lamp is driven by

an ac current of 60 Hz. The dissipation time of thermal en-

ergy due to radiation is the same order of magnitude as the

period of driving current and we demonstrate the time-

dependent energy equation. The radial temperature gradient

induces convection due to buoyancy and we must solve the

equation of motion simultaneously with the energy equation.

The partial pressures of additives are small compared witha!Electronic mail: tatibana@kuee.kyoto-u.ac.jp
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the pressure of mercury and we use a one-fluid model to

determine the gas temperature and the convection velocity,

although radiation power and transport coefficients also de-

pend on the partial pressures of additives. Change in pressure

propagates in the gas with sound velocity and the character-

istic time of change in pressure in the tube is much smaller

than the period of driving current. Hence, we can safely use

steady state solutions for momentum equations and the con-

tinuity equation. The vertically standing tube has a symmetry

around the central axis and all physical quantities depend on

the radial position r and the axial position z but they do not

depend on the azimuthal angle. Equations ~1! through ~3!
give the continuity equation and momentum equations1
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where r is mass density, u and v are radial and axial veloci-

ties, respectively, n is viscosity, p is pressure, and g is accel-

eration due to gravity. Equation ~4! gives the time-dependent

energy balance1
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where q and h are, respectively, internal energy and enthalpy

in unit volume, k is thermal conductivity, s is electrical con-

ductivity, E is axial electric field, and 2U is radiative power

loss in unit volume. We neglect the kinetic energy of fluid

and the work done by shearing stress due to viscosity be-

cause flow energy is much less than thermal energy. We also

neglect the difference in the potential energy of gravity in the

tube compared with thermal energy.

Thermal conductivity and electrical conductivity depend

on the number densities of ions and electrons. Radiation

power U includes line radiation from sodium atoms, scan-

dium atoms and scandium ions as well as that from mercury

atoms. Therefore, we have to determine the number densities

of these species to obtain k, s and U in Eq. ~4!. Condensates

of metal iodides are introduced in the tube because metal

iodides have considerable values of vapor pressure at tem-

peratures around 1000 K. We consider the number densities

of the following nine species as unknown variables: Hg1,

Na, Na1, Sc, Sc1, e~electron!, I~iodine!, NaI and ScI3 . We

take the pressure of mercury gas as the total pressure because

the partial pressures of additives are much smaller and the

dynamic pressure resulting from velocity is much less than

the static pressure. Hence, we determine the number density

of mercury atoms as a function of temperature because the

total pressure is uniform in the closed discharge tube.

It may be possible to determine the number density of

each species by solving the continuity equation for each spe-

cies which is expressed as

]nk

]t
1¹"fk5Sk , ~5!

where n is number density, f is particle flux vector, and S is

net creation rate of the species. Here, subscript k denotes

kind of species. Because we assume thermal equilibrium, we

can use equilibrium relations for ionization and dissociation,

which are independent of the creation and annihilation pro-

cesses included in S
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where K1 through K5 are equilibrium constants which de-

pend on temperature. Another relation which we can use is

the charge neutrality condition

nNa11nSc11nHg15ne . ~7!

This equation holds in the discharge tube except in the thin

sheath region near the boundary. We apply Eq. ~7! through-

out the region of calculation shown in Fig. 1. We have to

determine number densities of nine species but we have only

six independent equations given in Eqs. ~6! and ~7!. The

condition that each element is neither created nor annihilated

during the discharge gives the conservation equations for so-

dium, scandium, and iodine elements. This condition holds

in any point in the discharge tube and is expressed by the

following relations using the net creation rate S for Na, Sc

and I

FIG. 1. Schematic drawing of cylindrical vessel of a metal-halide lamp with

axial and radial dimensions. Calculating region is the area bounded by side

lines corresponding to sidewalls and upper and lower dotted lines corre-

sponding to upper and lower bases.
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SNa1SNa11SNaI50, SSc1SSc11SScI3
50,

S I1SNaI13SScI3
50.

The above relations are expressed by number densities by

using Eq. ~5!.

]
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Hence, we obtain nine equations for nine unknown number

densities. The particle flux density vector includes convec-

tion and diffusion for neutral particles and is expressed as

fn5nnw2DnS “nn1

nn

T
“T D , ~11!

where w is the convection velocity whose radial and axial

components are u and v , respectively, and subscript n means

neutral particle. The diffusion term includes the effect of

temperature gradient. The particle flux for ions is more com-

plex; the radial component c ion includes ambipolar diffusion

and axial component j ion includes drift due to axial electric

field
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Here, c ion includes ambipolar diffusion due to multiple kinds

of ions with temperature gradient and j ion includes drift ve-

locity due to axial electric field; the mobility m ion is deter-

mined from D ion using Einstein’s relation. Equations ~11!
and ~12! are derived in the Appendix.

III. TRANSPORT COEFFICIENTS

Collisions between particles determine transport coeffi-

cients which are the averaged quantities over many particles;

we make an averaging procedure using Maxwellian velocity

distribution. The working gas consists of several kinds of

particles and we estimate the contribution of each particle to

each of the transport coefficients.

A. Viscosity

Heavier particles contribute more to viscosity. The mer-

cury atom is one of the heavy particles and it is the dominant

component. Therefore, the viscosity is totally determined by

collisions between mercury atoms. We use the Lennard-

Jones potential to determine viscosity.4 The viscosity is inde-

pendent of the pressure of mercury.

B. Thermal conductivity

Each of the heavy particles transports the same kinetic

energy as an electron because gas temperature equals elec-

tron temperature in the arc discharge. However, an electron

moves much faster than any heavy particle and it also trans-

ports much more energy than any heavy particle in unit time.

The number density of mercury atoms is, however, much

larger than that of electrons. Therefore, we take mercury at-

oms and electrons into account to calculate thermal conduc-

tivity. We consider electron collisions with mercury atoms

and ions; we use the momentum transfer collision cross sec-

tion determined by England and Elford.5 Hashiguchi and

co-workers1 give thermal conductivity of mercury gas as a

function of temperature. The start of the electrons’ contribu-

tion to thermal conductivity is dependent upon the gas pres-

sure at high temperature because electron density is different

for different gas pressures. We calculate electron density and

ion density for the Hg/Na/Sc system taking all species into

account.

C. Electrical conductivity

Electric charge is carried by electrons and ions. The mo-

bility of electrons is much greater than that of ions and we

take only electrons into account to determine the electrical

conductivity of the working gas. Electron collisions with

mercury atoms and with ions are taken into account. Hash-

iguchi and co-workers1 give electrical conductivity of mer-

cury gas as a function of temperature; it also depends on gas

pressure even for lower temperatures. As described above,

we calculate electron density and ion density taking all spe-

cies into account to determine the electrical conductivity of

the Hg/Na/Sc system.

D. Diffusion coefficients

Dakin and co-workers2 calculated the diffusion coeffi-

cients of sodium atoms and sodium ions in mercury gas as a

function of temperature, but collisions with ions were ne-

glected. We calculate the diffusion coefficient of other par-

ticles in mercury gas using the fact that the diffusion coeffi-

cient is inversely proportional to the square root of the

reduced mass of a moving particle with a target particle. The

potential function is assumed to be the same as the one be-

tween a sodium atom and a mercury atom. The diffusion

coefficient of scandium ions in mercury gas is calculated

from the diffusion coefficient of sodium ions in the same

way. We use them for the Hg/Na/Sc system.

IV. RADIATION POWER

A. Line radiation

We calculate radiation power taking 82 lines of mercury

atoms, 64 lines of sodium atoms, 201 lines of scandium at-

oms and 92 lines of scandium ions into account. Two mer-

cury lines ~185.0 and 253.7 nm! and two sodium lines ~589.0

and 589.6 nm! are resonance lines and are optically thick.

We regard nine other strong mercury lines as optically thick
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and all of the other lines as optically thin. Radiation power

U thin,k of an optically thin line k emitted from unit volume is

expressed as

U thin,k5Ak

gk

Z
n exp~2Ek /kBT !,

where Ak is transition probability, gk is statistical weight of

excited level k, Z is partition function of species, n is number

density of the species, Ek is energy of the excited level mea-

sured from the ground state of the species, and kB is the

Boltzmann constant. Data of the transition probabilities of

these lines are provided by the following articles. The tran-

sition probabilities of mercury lines are collected from data

obtained by Mosburg and Willke,6 Stormberg and Schafer,7

and Benck, Lawler, and Dakin.8 We use the data of Wiese,

Smith, and Miles,9 for the transition probabilities of sodium

lines and we use the data of Lawler and Dakin10 and Fuhr

and Wiese11 for the transition probabilities of the atomic and

ionic lines of scandium.

The calculation of radiation power emitted from opti-

cally thick lines is more complicated. We must take the effect

of absorption in the gas into account. First, we calculate the

radiation intensity of an optically thick line coming from an

arbitrary direction into a point in the tube, taking absorption

into account. Then, we determine its radial and axial compo-

nents. By integrating over all directions, we obtain all radial

and axial components of the radiation intensity of the line.

Hence, we obtain the radiation intensity vector of the line at

the point. The vector’s divergence gives the radiation power

of this line. The total radiation power from optically thick

lines U thick is obtained by summing all optically thick lines.

Details of the method of calculation are described in Ref. 1.

B. Continuum radiation

We consider bremsstrahlung caused by electron-mercury

atom collisions as continuum radiation power U f f . An ex-

pression given by Zollweg, Lieberman, and Burnham12 is

used for the calculation of U f f

U f f~T !5E Bl~T !Ke0nenHgdl ,

Ke057.28310230l2.19 for l.9.031025 ~cm!,

Ke053.30310228l2.6 for l.9.031025 ~cm!,

where Bl(T) is radiation intensity of blackbody at wave-

length l , and the expression for Ke0 is determined from data

in Fig. 4 of Ref. 12. Integration with wavelength was made

for several temperatures to obtain U f f(T). Zollweg and co-

workers used Rockwood’s data13 for the momentum transfer

cross section of an electron with a mercury atom. On the

other hand, Hashiguchi and co-workers1 used the cross sec-

tion determined recently by England and Elford.5 England

and Elford gave a larger value for the cross section than

Rockwood. We multiply U f f(T), which was determined on

the basis of Rockwood’s cross section, by a factor of 1.5 to

obtain U f f(T) based on England and Elford’s cross section.

The results are expressed by the following analytical form:

U f f~T !52.24310234nenHg~831024 T21.35!

3~W/cm3! for T.1688 K,

U f f~T !50 for T,1688 K.

C. Method for the rapid calculation of optically thick
radiation power

The method for calculating radiation power of optically

thick lines U thick described above is exact but it requires very

long computing time. Moreover, it takes an intolerably long

computing time to calculate an ac-driven discharge for sev-

eral tens of periods. Thus, we need to devise a method for

rapid calculation. The radiation power U thick depends on tem-

perature and the number densities of related species but it has

a nonlocal character; it depends on whole profiles of tem-

perature and densities in the tube. The radiation of the lamp

is mainly emitted from the central part where physical quan-

tities are almost axially uniform. Hence, to make a rapid

calculation, we assume that U thick depends on temperature

and density profiles only in the radial direction.14 The effect

of convection on the energy equation is negligible in the

axially uniform region because the amount of energy brought

into this region by convection is taken out from this region

by convection. Therefore, energy Eq. ~4! is reduced to

]q

]t
5

1

r

]

]r
S rk

]T

]r
D1

]

]z
S k

]T

]z
D1sE2

2U . ~14!

In the following, we consider a cylindrical volume which has

enough height for an absorption calculation. First, we calcu-

late temperature for an ac-driven discharge on the midplane

of the volume solving Eq. ~14! as a function of time; U thick is

calculated using the exact method described in Sec. IV A. We

obtain various radial temperature profiles corresponding to

various phases; the driving current is different for different

phases.

The radial temperature profile is divided into two parts:

the temperature at the center T(0), and relative profile F(r).

Here, F(r) is defined by

F~r !5

T~r !2T~R !

T~0 !2T~R !
, ~15!

where T(R) is the temperature at the sidewall. Profiles of

F(r) are different for different phases. We choose a number

of typical profiles from them and we name the chosen pro-

files Fs(r)s.

The standard values of optically thick radiation power

U thick
s (r) are determined in the following way:

~1! Select a profile Fs(r) from the group of Fs(r)s.

~2! Determine Ts(r) from Fs(r) and appropriate value of

Ts(0).

~3! Calculate U thick
s (r) from Ts(r) using the exact method

together with number densities which are determined as

a function of temperature.

~4! Prepare a spline formula to determine U thick
s (r) between

two discrete values of Ts(0).
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In this way, we obtain U thick
s (r)s for discrete sets of Fs(r)s

and an arbitrary value of T(0). When T(r) is given, opti-

cally thick radiation power is taken from data of U thick
s (r);

Fs(r) is selected so as to best fit F(r), and then U thick
s (r) is

obtained from Fs(r) and T(0).

A test calculation of temperature was made by solving

Eq. ~14! using the approximate method.14 It should be noted

that U thick
s (r) was determined from Ts(r) but k and s were

determined from T(r); Ts(r) was not exactly the same as

T(r) because we used Fs(r) instead of F(r). We revised the

value of temperature as an appropriate average of T(r) and

Ts(r) to determine physical quantities at the next time step.

Temperatures calculated using the exact method and the ap-

proximate method agreed within 2%.14

We used a workstation whose CPU was Alpha R21164

~667 MHz!. It took 4.23104 s to calculate over 20 half pe-

riods with the exact method and it took 176 s with the ap-

proximate method. The computing time was reduced by a

factor of 240. We used the approximate method thereafter to

save computing time.

V. NUMERICAL METHOD

Numerical procedure consists of three parts: calculation

of velocities and pressure, calculation of number densities,

and calculation of temperature. Figure 2 shows a flow chart

of the numerical procedure: we determine u, v and p using

previous values of temperature, we determine number densi-

ties using velocities and temperature, and we determine tem-

perature using velocities and number densities. The proce-

dure is repeated until temperature converges. Then, we

increase time by Dt and the calculation is repeated. Each

procedure is described in the following.

A. Velocities and pressure

Equations ~1! through ~3! are replaced by linearized fi-

nite difference equations; we linearize nonlinear terms re-

placing unknown variables with previously obtained values

except one diagonal unknown. We use Patankar’s semiim-

plicit method for pressure-linked equations15 ~SIMPLE for

short!; the continuity equation is used to determine pressure.

Under-relaxation factors are used to stabilize numerical cal-

culations.

B. Number densities

We determine particle fluxes using previously obtained

temperature and number densities. Then, finite difference

equations of Eqs. ~8! through ~10! reduce to the sum of sev-

eral unknown number densities as a function of the known

value. Hence, we obtain nonlinear algebraic equations in-

cluding nine unknown number densities at each lattice point

in the tube. We solve these equations using the Newton-

Raphson method to obtain number densities.

C. Temperature

Internal energy and enthalpy consist of thermal energy

and potential energy of ionization and dissociation. The ion-

ization degree of mercury atoms is of the order of 1023 and

the amount of additives is less than 1022 of the amount of

mercury. The thermal energy of mercury atoms is dominant

and other energies are negligible. Therefore, internal energy

q and enthalpy h are reduced to

q5

3

2
nHgkBT and h5

5

2
nHgkBT . ~16!

Equation ~4! is replaced by a linear implicit finite difference

equation of temperature. To make linearization, we deter-

mine thermal conductivity, electrical conductivity, and radia-

FIG. 2. Flow chart of numerical calculations as a function of time. Time t is

advanced by Dt after temperature T converges.

FIG. 3. Current ~a! and temperature ~b! at the center in the tube as a function

of time t. Here, T means the period of driving alternating current.
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tion power using previous values of temperature and number

densities. Axial electric field E is determined from electrical

conductivity and the driving current; E is assumed to be

uniform over the cross section of the tube. We use the under-

relaxation method to obtain temperature.

VI. RESULTS AND DISCUSSION

Calculation was carried out for a 250 W lamp made by

Japan Storage Battery Co., Ltd. The geometry of the lamp is

schematically shown in Fig. 1; the inner diameter of the tube

is 16 mm and the gap between electrodes is 32 mm. We put

31 lattice points along the radial direction from the center to

the sidewall and we put 21 lattice points along the axial

direction from electrode to electrode. The time step Dt is the

period of driving current divided by 3200. Condensates of

sodium iodine and scandium iodine as well as an amount of

34 mg of liquid mercury were introduced into the tube. Mass

ratio of NaI to ScI3 was 6.5:1. The coldest temperature Tc in

the tube was unknown at operation. When Tc5900 K vapor

pressures of NaI and ScI3 are estimated to be 26.9 and 14.1

Pa,16 respectively. When Tc5950 K they are 80 and 38.5 Pa.

We made calculations for both values of Tc .

Convection velocities u and v are zero on the boundary.

We specify temperature on the boundary. The temperature is

assumed to be 1000 K on the sidewall and it is assumed to be

3000 K on the electrodes which are at the center on the upper

FIG. 4. Temperatures at three axial positions as a function of radial distance

at the maximum current ~a! and at the zero current ~b!. Here, three kinds of

lines, i.e., thin solid, dotted and thick solid lines, show the radial density

profiles at the axial positions of z510 mm, 16 mm ~center! and 22 mm,

respectively. It is noted here that the three kinds of lines have the same

meaning in the following figures.

FIG. 5. Convection velocities in the tube at the maximum current. The

maximum value of the axial velocity is 30 cm/s on the central axis.

FIG. 6. Number density of mercury atoms at three axial positions as a

function of radial distance r at the maximum current. The number density is

almost independent of the axial position.

FIG. 7. Number density of mercury ions at three axial positions as a func-

tion of radial distance at the maximum current.
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and the lower boundaries. Temperature gradually decreases

to 1000 K with increasing radial distance from the center.

The lamp was driven by an ac current of 60 Hz; effective

current was 2.34 A. Calculation was continued for 50 periods

and results in the last period are shown in the following

figures.

Figure 3 shows temperature at the center on the mid-

plane as a function of time for Tc5950 K; discharge current

is also shown. The temperature at the center varies from

4500 to 6400 K in a cycle. The pressure varied from 0.49 to

0.56 MPa in a cycle. Figure 4 shows radial temperature pro-

files for three axial positions: z510, 16, and 22 mm at the

maximum current 4~a! and at zero current 4~b!. The tempera-

ture profile is axially almost uniform at the maximum current

but it increases slightly with increasing axial distance from

the bottom of the tube. Figure 5 shows convection velocity at

the maximum current; the gas ascends in the hot region and

it descends near the wall. The axial velocity has a maximum

value of 30 cm/s on the central axis.

Figures 6–16 show the number densities of various

kinds of particles at the maximum current as a function of r

for three axial positions shown in Fig. 4. Figure 6 shows the

number density of mercury atoms. The pressure of mercury

atoms is uniform in the tube and we obtain a smaller number

density at higher temperature; the radial temperature profile

at the maximum current is given in Fig. 4~a!. The number

density is almost independent of the axial position. Figures 7

and 8 show the number density of mercury ions and elec-

trons, respectively. The number density has a maximum at

the center where temperature is at maximum; mercury ions

increase because of a sharp increase in the ionization degree

with increasing temperature in spite of a decrease in the

number density of mercury atoms shown in Fig. 6. The nega-

tive charge of electrons is mainly canceled by mercury ions.

The difference between them shows the contribution of so-

dium and scandium ions. The number density of mercury

ions and electrons has a tendency to increase slightly with

increasing axial distance from the bottom. The cause of

change in the number density of mercury atoms and elec-

trons is explained by a change in temperature because the

temperature profile given in Fig. 4~a! shows the same ten-

dency; change in number density is amplified compared with

change in temperature.

Figure 9 shows the number density of scandium ions.

One of the remarkable differences in the profile compared

with that for mercury ions ~Fig. 7! is that it has a minimum at

the center. Figure 10 shows the number density of scandium

ions which was calculated without diffusion and axial drift. It

should be noted here that our experimental data, which will

be given in a following article, agree more closely with the

results in Fig. 9. It is clear that the minimum at the center in

Fig. 9 is caused by radial diffusion. The radial electric field

was mainly determined by charges of mercury ions and elec-

trons. It is directed outward near the center even though the

number density of scandium ions has a minimum at the cen-

FIG. 8. Number density of electrons at three axial positions as a function of

radial distance at the maximum current.

FIG. 9. Number density of scandium ions at three axial positions as a

function of radial distance at the maximum current.

FIG. 10. Number density of scandium ions at three axial positions as a

function of radial distance at the maximum current. Diffusion and axial drift

are neglected.

FIG. 11. Number density of sodium ions at three axial positions as a func-

tion of radial distance at the maximum current.
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ter. Figure 11 shows the number density of sodium ions. It

shows a similar density profile to that of scandium ions

though the minimum at the center is partly caused by a de-

crease in sodium atoms due to rarefaction by high tempera-

ture as is shown in Fig. 6; the ionization degree of sodium

atoms is high enough near the center and a sharp increase in

ion density like that shown in Fig. 7 did not occur in this

case.

Figures 12–16 give the number densities of Na, Sc, I,

NaI, and ScI3 . They show the same tendency as Figs. 9 and

11 in that the number density decreases with increasing axial

distance from the bottom. All these particles resulted from

metal-halide condensate which existed on the bottom of the

tube. Vaporized particles were transported upward by an as-

cending convection flow in the hot region but some of them

were lost by radial diffusion. Therefore, the supplied amount

decreased with increasing axial distance from the bottom.

Figure 10 shows that number density is axially uniform if

diffusion and axial drift are negligible.

The radial density profile in Figs. 12– 16 is explained by

the temperature effect shown in Fig. 6 together with disso-

ciation and ionization which change as a function of tem-

perature. The number density of sodium atoms ~Fig. 12!
shows a large dip at the center because the ionization degree

is high there. The dip in the number density of scandium

atoms at the center is smaller than that of sodium atoms

because the ionization energy of scandium atoms is greater

than that of sodium atoms. The number density of iodine

atoms ~Fig. 14! is uniform along the radial direction com-

pared with that of sodium and scandium atoms. We neglected

ionization of iodine atoms because the ionization degree is

less than 1%. Figures 12–14 show that the number density of

atoms decreases near the wall; the number of iodide mol-

ecules increases with decreasing temperature as is shown in

Figs. 15 and 16.

It should be noted that the number densities presented in

Figs. 6–16 are snapshots at the ascending current maximum

where the axial electric field is directed upward. Figure 17

shows the number density of scandium ions at the descend-

ing current maximum where the axial electric field is di-

rected downward. The number density at the descending cur-

rent phase is smaller than that at the ascending current phase

as is shown in Fig. 9 in the middle region of the discharge

tube. Figures 18 and 19 show contour plots of the tempera-

ture and the number density of scandium ions in the dis-

charge tube at the ascending current maximum and at the

descending current maximum, respectively. More scandium

ions exist near the lower boundary region ~z,8 mm! at the

descending current phase than that at the ascending current

phase in contrast to the results shown in Figs. 9 and 17 for

the middle region ~z 5 10–22 mm!. This may be explained

by the action of the axial electric field which pushes positive

ions downward in the descending-current phase.

VII. CONCLUDING REMARKS

We use simple geometry as shown in Fig. 1 to neglect

complex phenomena occurring near electrodes and therefore

our model is unable to determine quantities related to elec-

trodes such as a potential drop at the electrode. This is a

problem which will be left for future work.

Optically thick lines are limited to resonance lines of

mercury atoms and sodium atoms, and several strong lines of

mercury atoms. However, several strong lines of scandium

atoms seem to be optically thick under the operating condi-

tion studied here. We might define several strong lines of

scandium atoms as optically thick if data of spectral width

were available.

The approximate method to calculate U thick was deter-

mined from the property of optically thick lines at the inner

region of the discharge tube; the effect of absorption may

decrease near the upper and lower boundaries and U thick

FIG. 12. Number density of sodium atoms at three axial positions as a

function of radial distance at the maximum current.

FIG. 13. Number density of scandium atoms at three axial positions as a

function of radial distance at the maximum current.

FIG. 14. Number density of iodine atoms at three axial positions as a func-

tion of radial distance at the maximum current.
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would then be larger than that obtained by the present calcu-

lation. To take the effect of the boundary into account, we

simply double the value of U thick at the lattice points nearest

to the upper and lower boundaries. However, it is clear that a

more precise method is desirable.

APPENDIX: PARTICLE FLUX DUE TO DIFFUSION IN
MERCURY GAS

When we use the coordinate system which moves with

convection velocity, we observe diffusion of various species

in mercury gas; mercury gas itself is at rest in this coordi-

nate. The general expression for diffusion flux17 reduced for

neutral species to

fn
0
52n ,HgDn“S nn

nHg
D ,

where fn
0 is particle flux of neutral species observed in this

coordinate. As the pressure of mercury gas is uniform, nHg is

expressed by

nHg5

T0nHg
0

T
,

where superscript 0 means the standard value. Using this

relation, we obtain

fn
0
52DnS “nn1

nn

T
“T D .

Returning to the laboratory coordinate system, we obtain Eq.

~11!.
Particle flux of charged species is the same for the axial

component except for the addition of the drift term. We now

consider radial flux of charged species which includes ambi-

polar diffusion created by multiple kinds of ions. We first

assume that temperature is uniform. The radial particle flux

of each charge species in the moving coordinate with con-

vection velocity is given by

c
Hg1

0
5mHg1nHg1Er2DHg1

]nHg1

]r
,

FIG. 15. Number density of sodium iodine molecules at three axial posi-

tions as a function of radial distance at the maximum current.

FIG. 16. Number density of scandium iodine molecules at three axial posi-

tions as a function of radial distance at the maximum current.

FIG. 17. Number density of scandium ions at three axial positions as a

function of radial distance at the maximum current, but the current flows

downward in comparison with Fig. 9 where the current flows upward.

FIG. 18. Contour plots of temperature and number density of scandium ions

in units of 1014 cm23 at the ascending current maximum.

53J. Appl. Phys., Vol. 92, No. 1, 1 July 2002 Hashiguchi et al.

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



c
Na1

0
5mNa1nNa1Er2DNa1

]nNa1

]r
,

c
Sc1

0
5mSc1nSc1Er2DSc1

]nSc1

]r

and

ce
0
5meneEr2De

]ne

]r
,

where Er is radial electric field, and electron mobility me is

negative. As the total ion flux equals electron flux, Er is

given by

Er5

De

]ne

]r
2DHg1

]nHg1

]r
2DHg1

]nHg1

]r
2DHg1

]nHg1

]r

mene2mHg1nHg12mNa1nNa12mSc1nSc1

'
De

mene

]ne

]r
,

where we use the charge neutrality condition and where elec-

tron transport coefficients are much larger than ion transport

coefficients. Using Einstein’s relation, we obtain

Er52

DHg1

mHg1ne

]ne

]r
52

DNa1

mNa1ne

]ne

]r
52

DSc1

mSc1ne

]ne

]r
.

Finally, for ion species we obtain

c ion
0

52D ionS ]n ion

]r
1

n ion

ne

]ne

]r
D .

This equation reduces to the well-known expression for am-

bipolar diffusion when n ion5ne . When temperature is non-

uniform, c ion
0 is given by

c ion
0

52D ionnHgF ]

]r
S n ion

nHg
D1

n ion

ne

]

]r
S ne

nHg
D G

52D ionS ]n ion

]r
1

n ion

ne

]ne

]r
1

2n ion

T

]T

]r
D .

Returning to the laboratory coordinate system, we obtain Eq.

~12!.
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FIG. 19. Contour plots of temperature and number density of scandium ions

in unit of 1014 cm23 at the descending current maximum.
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