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Abstract

Buoyancy driven, incompressible, and two-dimensional flow of a micropolar fluid inside an
inclined porous cavity in the presence of magnetic field is investigated. The non-linear partial
differential equations are solved by employing a robust Galerkin finite element scheme. The
pressure term in this scheme is eliminated by using Penalty method. The results are exhibited in
the form of streamlines, isotherms, local and average Nusselt numbers for two cases, namely
constant and sinusoidal heated lower wall of the conduit. In both cases, the side walls of cavity
are cold and upper side is insulated. The main difference between the two cases are observed
from temperature contours. For constant heated bottom wall a finite discontinuity appear in
temperature distribution at the corners of the bottom wall. In contrast, no such discontinuity
appears in the temperature distribution for non-uniform heated bottom wall. The quantitative
changes in temperature contours in different portions of cavity are identified by comparing the
results for both cases. The code is also validated and benchmarked with the previous numerical
data available in the literature. It is found that the magnetic field inclined at a certain angle
either suppresses or enhances the intensity of primary circulations depending on the inclination
of cavity. Further the average Nusselt number at the bottom wall is higher when magnetic field is
applied vertically inspective of the inclination of cavity. The analysis presented here has

potential application in solar collectors and porous heat exchangers.

Keywords: Buoyancy driven flow, Micropolar fluids, magnetic field, Numerical simulations,

inclined porous cavity, finite element scheme.

1.1 Introduction

! Corresponding author email: mubbashariiui@gmail.com
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Buoyancy driven flows inside closed cavities are of much interest to engineers, scientists and
researchers due to their various applications in the field of engineering such as, well-
ventilated

apartments, refreshing all types of electronic devices (computers, camcorders, VCRs, CD and
DVD players, televisions, radios, videos camera etc. ), accumulation of sun power, insulation
of atomic power plant, etc. Beside their applications, such flows are also considered as
classical problems for assessment of numerical methods and validation of Navier-Stokes
codes. Several authors have studied natural convection flows in closed enclosures. A brief
review of specialized literature on cavity flows is presented below.

An analytical study of natural convection flow inside a horizontal conduit is investigated by
Bejan and Tien [1]. Davis [2] employed a different numerical scheme to analyze a free
convection flow inside a square conduit and benchmarked the results with the previous data.
Guo and Wu [3] provided a mathematical model to examine two-dimensional mixed
convection transient flow and temperature stratification phenomena inside a cavity. A
numerical and theoretical study of time-dependent buoyancy driven flow inside a left heated
rectangular conduit was studied by Hall et al. [4]. Patterson and Armfield [5] provided a
comparison between numerical and experimental study of time-dependent free convection
flow inside a square conduit. Kuyper et al. [6] employed a numerical technique to simulate
the natural convection flow inside a differentially hated tilted square enclosure. A steady
state natural convection laminar flow in the presence of high Rayleigh number was analyzed
by Ravi et al. [7]. Barakos et al. [8] employed a finite volume method for benchmarking the
results of free convection flow inside a conduit. Ozoe and Maruo [9] obtained a correlation of
heat transfer rate dependent on Prandtl, Rayleigh and Hartmann numbers for the buoyancy
driven flow inside a square conduit. Ozoe and Okada [10] presented a mathematical model of
three dimensional natural convection flow inside a cavity and examined the influence of
direction of magnetic field. A numerical and analytical study of natural convection flow
inside a tilted cavity in the presence of transverse magnetic field was carried out by Vasseur
et al. [11]. They also benchmarked their results against the results provided by Cormack et al.
[12]. Alchaar et al. [13] employed a finite difference method to investigate the natural
convection flow inside a rectangular conduit in the presence of transverse magnetic and

compared their solution with the previous available analytical solution accomplished by
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Garandet et al. [14]. Rudraiah et al. [15] predicted the influence of transverse magnetic field
on time-dependent natural convection flow inside a rectangular conduit with the help of finite
difference method. The conduit side walls were maintained at a constant temperature while
horizontal boundaries were insulated. The study carried out by Oreper and Szekely [16]
reveals that convection currents are suppressed by magnetic field and crystal formation is
linked with strength of magnetic field. Alchaar et al. [17] employed a numerical scheme to
predict the influence of inclined magnetic field on buoyancy driven flow inside a rectangular
conduit. Their numerical simulations demonstrated that the influence of magnetic field is to
reduce the heat transfer and inhibit the beginning of convection current.

Free convection flows through porous medium have attracted much attention of
researchers due to their several technical usages in geothermal reservoirs, separation
processes in chemical engineering, oil exploration and solidification of castings. Vafai [18]
summarized latest developments on various aspects of flow and heat transfer through porous
media. The applications of fluid flow and heat transfer through porous medium in biological
systems were also presented by Vafai [19]. Tong and Subramanian [20] obtained boundary
layer solution based on modified Oseen technique for buoyancy driven flow inside a porous
rectangular enclosure. Effects of different aspect ratio on the free convection flow inside left
sided heated rectangular porous cavity were analyzed by Prasad and Kulacki [21]. Basak et
al. [22] employed a finite element scheme to investigate the effects of constant and variable
heated boundary on free convection flow inside a porous cavity. Walker and Homsy [23]
employed different methods to investigate the buoyancy driven flow inside a differentially
heated porous conduit. A numerical study for different parametric ranges of Darcy and
Rayleigh number was presented by Lauriat and Prasad [24]. Basak et al. [25] employed a
finite element scheme to predict the effects of various heating wall and inclination angles on
free convection flow inside a trapezoidal porous enclosure. Javed et al. [26] employed a
Galerkin finite element method to investigate the effects of uniform and non-uniform heated
inclined walls on free convection flow inside a porous triangular conduit in presence of
magnetic field.

Micropolar fluid dynamics is a branch of fluid mechanics which is concerned with motion of
fluids whose material points possess orientation [27-28]. Micropolar fluid is a fluid which is

concerned with rotation of fluid particles at microscale. These type of fluids are also known
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as polar fluids. Liquid crystals, animal blood and polymeric suspension are some examples of
micropolar fluid [27-28]. In fact, flows with rigid and randomly oriented or spherical
particles embedded in a viscous medium are well described by micropolar fluid. Only
rotational motion of these element is considered whereas deformation of these suspended
particles is ignored in the micropolar theory. The balance law of mass and linear momentum
are supplemented with principle of angular momentum to accurately describe the geometry
and intrinsic motion of microelements. This results in a non-symmetric stress tensor. Due to
its simplicity, the micropolar model is widely used to analyze the flows polymeric fluids with
additives, blood, suspensions etc. The rigorous mathematical theory of micropolar fluids was
developed by Eringen [29-31]. It is important to point out that micropolar fluid dynamics
emphasizes that non-Newtonian behavior of fluid is due to intrinsic motion of the
microelements and it requires the use of additional balance laws to model the flows of non-
Newtonian fluids. In contrast, there is a second approach which is based techniques of
microscopic non-Newtonian fluid mechanics (i.e. kinetic theory) and presents a variety of
constitutive equations to capture the non-Newtonian effects. Out of these, Maxwell and
Jeffrey are common non-Newtonian constitutive equations. Some recently studies regarding
use of these equations to describe the flows of non-Newtonian fluids are carried out by Hayat
et al. [32-34], Farooq et al. [35] and Khan et al. [36-39]. The micropolar fluid theory has also
become very popular in the field of engineering and technology and several researchers used
it to model isothermal hydrodynamic fluid phenomena inside closed conduits, parallel plates
and over stretching rigid surfaces having industrial and engineering applications. In the next
paragraph, a brief review of these attempts in presented.

Hayat et al. [40] employed homotopic approach to define the Brownian motion and
thermophoresis aspect in the flow of micropolar fluid on a stretching surface. Wagqas et al.
[41] calculated the skin coefficients and heat transfer rate for MHD mixed convection flow of
micropolar fluid on a stretching sheet. Igbal et al. [42] employed a Keller box technique to
predict the effects of inclination of magnetic field on the flow of micropolar Casson fluid
over a stretching sheet. Skin friction coefficient and heat transfer rate for MHD flow of
micropolar fluid between the parallel plates was analyzed by Nadeem et al. [43-44].
Tabassum et al. [45] employed the temperature-dependent viscosity model to examine the

stagnation point flow of micropolar nano-fluid. Jena and Bhattacharyya [46] used the
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Galerkin scheme based on shape function to predict the influence of microstructure on the
thermal convection inside a cubical container. Chen and Hsu [47] investigated the free
convection flow of micropolar fluid inside a container with aspect ratios 1, 2 and 4. A free
convection flow of micropolar fluid inside an inclined conduit was studied by Wang and
Hasu [48]. Bourantas and Loukopoulos [49] employed a numerical scheme to investigate the
natural convection flow of a conducting micropolar nano-fluid inside a tilted cavity. A
numerical study of convective flow of a micropolar fluid inside a trapezoidal cavity with
constant heated bottom wall is presented by Gibanov et al. [50]. Zadravec et al. [51]
developed an algorithm based on finite volume method to find numerical solution of free
convection flow of micropolar fluid in a square enclosure. Gibanov et al. [52] used the finite
difference scheme to analyze the free convection flow of micropolar fluid inside a
differentially heated wavy cavity. Unsteady flow of a micropolar fluid in a wavy triangular
conduit was studied by Sheremat et al. [53]. Alloui and Vasseur [54] reported the numerical
and analytical solution of a micropolar fluid in a rectangular shallow cavity. Ece and Buyuk
[55] examined buoyancy driven flow under the influence of transverse magnetic field inside
an inclined cavity which is heated from left and cold from top. The left and lower wall were
insulated. From the above cited literature it is noted that no such study is reported in the
literature which deals with buoyancy driven flow of micropolar fluid in an inclined porous-
saturated cavity under the influence of inclined magnetic field. It is intended to see how
inclined magnetic field, porous medium, cavity inclination and rheological parameters of the
fluid affect the flow and heat transfer rate. In fact for a presumed geometrical shape of the
enclosure, our objective is to identify a suitable combination of controlling parameters for
which heat transfer into the cavity is maximum/minimum. The important applications of
micropolar fluid flowing through porous media can be found in porous rocks, foams and
foamed solids, aerogels, alloys and polymer mixture etc. Further, the results of present study
are also potentially applicable to flows of biological fluids in thin conduits, polymeric and
colloidal suspensions, rigid crystals etc. Moreover, such study is also beneficial in design of
room vantilation systems, solar collectors and electronic cooling system. The present study
also complements the analysis of Ece and Buyuk [55] by taking the fluid inside the enclosure
as a micropolar fluid and using a different set of boundary conditions i.e. both vertical

boundaries of the conduit are cold whereas lower surface is maintained at constant or
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sinusoidal temperature and top wall is insulated. Moreover, the space inside the cavity is
also considered as porous. Physically, our model correspond to flow in a porous metal heat
exchanger. Moreover, in absence of porous medium our problem models the flow and heat
transfer in a solar collectors [56].

1.2 Mathematical formulations

Let us consider a two-dimensional flow of a micropolar fluid in the presence of inclined
magnetic field inside a tilted porous cavity. The vertical walls of the conduit are cold whereas
the top wall is insulated. A constant or variable temperature distribution is specified at the
lower wall of the cavity. The geometry of the considered flow problem are shown in Fig.1.

The cavity is inclined at angle w with the horizontal. A constant magnetic field of strength B

is applied in the direction making an angle ¢ with lower wall of the conduit.

Fig. 1: schematic diagram of the consider study
The continuity, momentum, angular momentum and energy equation for flow of micropolar fluid
are [29-31]:
V.V =0, (1)

p%—vz—Vp+(2y+K)VV.V—(,u+K)V><V><V+K’V><N+pg+j><B—%V,
! (2)

ﬂ—(05+,6’+7/)VV.N—)/V><V><N—2KN+KV><V,

ip Dr 3)
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DT
¢ — =kV’T,
PE Dt

(4)

In the above equations, D(D)/ DtZG(D)/ Ot +v, G(D)/ Ox, is the Stoke’s material derivative and
V, N and T denote velocity, micropolar and temperature fields, respectively. Moreover, p is the
fluid density, €, is the specific heat, kis the permeability of the porous medium, k is the thermal

conductivity, u is the dynamics viscosity, j is the microinertia, g is the gravitational

acceleration, k is the vortex viscosity coefficient and a,[,y are spin gradient viscosity

coefficients. The current density J has the following form

J=0o(VxB). 5)

In the above equation o is the electrical conductivity of the fluid. It is assumed that the magnetic
Reynolds number (Rm) is small and therefore the induced magnetic field due to motion of the

fluid is neglected [57]. It is also assumed that the Joule heating and viscous dissipation effects

are negligible.
Using the Boussinesq approximation, the governing equations in scalar form are:

ou Ov

9

2 2
P WAL R0 N SO 6_1/2!+6_1/21 +£a—N—gu-p[l—,B(T—Tc)]gsina)
ox Oy ox p )\ Ox~ Oy k

+0B’ [vsin¢cos¢—u sin’ ¢],

(7
2 2
P WLLPVLCLAR R0 Y (A3 6_\;4_8_\; —Eﬁ—N—iv—p[l—ﬂ(T—TC)]gcosa)
ox Oy oy p )\ ox” Oy pox k
+0B*|usingcosg—vcos® @ |,
[usingcosg 4] @®)
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2 2
JON . oN K[zN ou 8vj+y(6N+8Nj’

X oy pJ oy Ox E ox* oy’ )
oT oT o’T 0°T
ua— Va—:ao P B + P 7 |-
X Y X Y (10)
The boundary conditions for the considered geometry are:
u=0,v=0,N=¢ @_6_u at x=0,u=0,v=0, N=¢ @_6_u at x =/,
ox oy ox Oy
u=0,v=0,N=¢ @_6_u at y=0,u=0,v=0, N=¢ @_8_u at y=nh,
ox Oy ox Oy
T=T, or Tz(n—ﬂ)sin(%j,atyzo,
I'=T, at x=0 and x=I, 6—T:O, at y=h.
» (1)

Here T, and Ty are the temperatures of the cold and hot boundary of the conduit, respectively, h
and 1 are the height and length of the conduit, respectively, o, is the thermal diffusivity of
micropolar fluid, and v is the kinematic viscosity. The sinusoidal wall temperature at the bottom
wall is selected in accord to previous available studies in the literature on the cavity flow.
Specifically, Basak et al. [23], Sivasankaran et al. [58], Saeid and Yaacob [59], Natarajan et al.
[60], Sarris et al. [61-62], Bouhalleb and Abbassi [63] used variable heated bottom wall with a
motivation to understand the heat transfer characteristics in glass melting tank, where a number
of burners placed above the glass tank give rise to periodic temperature profiles on the surface of
the glass melt. The condition of sinusoidal heated bottom wall is also reported by Minkowyez

[64].

Introducing the normalized quantities:
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. . R ) . ~ T-T - 2 k
x:i,y:l,zzﬁ,u:&,v:l—vﬁ: < ,N:NL ,Ha=1IB E,Dazﬁ2
) h [ Q, 0 Th_Tc Q, H !
+ pa(xsin@+ ycosd) |2 T -T)P 2 ’
ﬁ:[p pg( yeosd)] ,Pr:i’Gr:gﬂo(hz . p=lg oK
pa, a v J a (12)

Egs. (6)- (10) and boundary conditions defined in (11) after dropping the bars yield:

8u+@209

u-GrPr’@sin

2 2
L(ua—u+v§—uJ:—6—p+ﬁ(1+R0)(aL2t+aZ’j+R‘)Pra—N— Pr3
ox~ Oy y Oy Day

7\Uox oy ox y
+Ha’Pr {vsin¢cos¢—lu sin’ 4,
x (14)
2 2
u@+v@:—a—p+1Pr(l+Ro) 8_\;4_%6_\2) —Ro;gPrﬁ—N— br v- yGrPr*fcosw
ox Oy oy ox~ y Oy ox yDa
2 : _ 2
+ Ha Pr[usm¢cos¢ v Ccos ¢], (15)
2 2
ua—N+v8—N=—;(Pr77RO 2N+la—u—ﬁ +;(Pr(1+&j 5];/+L28127 ,
ox oy y Oy Ox 2 J)Lox®  yo Oy (16)
00 00 0’0 10°0
U—+V—=)—+——,
ox oy ox~  y oy (17)
u=0,v=0,N=¢ @_ﬁ_u at x=0,u=0,v=0, N=¢ Q_a_u at x =1,
ox Oy ox Oy
u=0,v=0,N=¢ v _u at y=0,u=0,v=0, N=¢ v _u at y=1, (18)
ox Oy ox Oy
: 06
=1, 0r¢9:S1n(7rx), at y=0,0=0, at x=0 and x=1, a—zO, at y=1.
y
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In the above non-linear system of equations, Fr is the Prandtl number, G- is the Grashof
number, y is the aspect ratio ()( = h/ l) [42], n and R, are the micropolar parameters. The

dimensionless parameter R, is the ratio of vortex viscosity parameter k and dynamic viscosity .
The case when vortex viscosity is zero and microelements (material fluid particles) do not
possess orientation is characterized by R, = 0. In this case, the micro-rotation of material fluid
particles do not affect the bulk fluid motion and as a result the fluid apparent viscosity is
constant. For R, > 0, the rotational effect of material fluid particles become important. In such

situation, the apparent viscosity of fluid increases with increase in deformation rate. During the

k .
derivation of above equation it is supposed that y = (,u+5j J and J =I [50]. The parameter of

¢ (1 >C> O) is known as micro-gyration parameter. The case ¢ = 0 corresponds to the situation

in which microelement are unable to rotate near the boundaries due to greater density of
particles. The situation of weak concentration of microelements near the boundary is

characterized by the case/ =0.5. For unit value of ¢ , the turbulent flow arise. We shall only

present the results for the first two cases as the last case is beyond the scope of the present study.
2. Solution procedure

The partial differential equations (13)-(17) are highly non-linear. Therefore, we cannot
find the exact solution of the given system. The computational solution can be find by using any
numerical technique. Here we have employed a finite element scheme based on a Galerkin
method [23, 26, 65, 66]. This numerical scheme presents a convenient way to gain the
numerical/approximate solution of complex system of ordinary and partial differential equations.

The Penalty method [65] is used to remove the pressure term in the momentum equations by

using continuity equation. The penalty parameter 9 is introduced by using incompressibility
condition as follows:

p=—5(2—;‘+%], (19)

The Egs. (14), (15) will take the new form as given below
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1 ou  Ou O (0u ov Pr o’u 0w\ RProN  Pr
—|u—+v—|=-—=—| —+— |+—(1+R,) + + — -

u
4 ox ay x| ox oy ;( ox* oy’ y Oy Day’
—GrPrzé’sina)+HazPr[vsin¢cos¢—iusin24,
X (20)
2

u@+ v__9 au+av + yPr (1+R)62+16V R;gPra—N— b,
ox Gy 6y ox Oy ox~ y Oy ox yDa

_ 2 2 1 _

yGrPr-@cosw+ Ha Pr[usm¢cos¢ v COs ¢], @1

In order to satisfy continuity equation a large value of J taken generally equal to 10 " returns

the consistent solution.
2.2 Formulation of FEM
The finite element approximations of the velocity vector V' =[u,v,0], micro-rotation vector
N= [O, o,N ] and temperature 6 are of the form
u= Zu[¢f (x,y), v= Z\Wf (x,), N= ZN,¢16 (x,y), 0= ZQ¢f (x,)- (22)
=1 i=1 =1 =l

Upon using Eq. (28) into Egs. (31) — (34), we get the residual errors of the above non-linear

equations which are

by 1 o o4, of L 04 0 9, o4
R;):?;uii{(z:uigéi]ax (Z ¢j }gﬁdQ 5{;“%9 = j a—dQ}

i=1 i=1 =l e Ox

204 R) )2 9, 24 99, %, }dQ—RO : Nqus/ g0+ Pr3 [ > ugdo
z i=1 0° a‘x a‘x ay 8); i=l1 6y al 0° i=1

Q°

+GrPrsinw | i@igzﬁfdQ—HazPrl:singécosgb [ vgran—Lsin 4] iuigzﬁfdQ}
P

0° i=1 0° i=1 0° i=1
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‘dQ

oSS0 5 (o g

i=1

Q¢

m a ¢ < m a a ° . m €
+Zvi J.i%d +xPr(1+R,) sz ¢ 6¢ 12 4 o4 }dQ—ROzPrZNiI¢j%dQ ,(24)
oo O 0y = dy Oy o e Ox

l

ﬂcDaQ o

I ) v¢ dQ+ yGrPr? cosa)j P dQ— HazPr{sm¢cos¢IZu¢dQ cos ¢IZV¢ dQ

Qll Qll

R =>"N, {( N, j (Zmzvl_#jﬁaﬁ;}gj dQ+ZPrR077[2Zm: N, I¢j¢[edg+%zm:u, J' ¢; %d(z
i=1 i=1 i=1 Q° i=1 Q° ’(25)
s R\ op; og° 8¢? og°
V’({ ’ dQ}ZPr(H 2JZIN§H dx  Ox ay Oy }dQ
y & op; 0g° 1 0p; O
4 _ i . J i
R! ‘?@H(ZW j (;vgﬁ j }¢ dQ+ Zej{ s +;c . }dQ} (26)

The above equations (23) — (26) are the non-linear algebraic equations which are solved by using

Newton’s iterative scheme. The procedure we followed is given below:
2.3 Newton’s iterative Scheme

Newton - Raphson method is used here to get the higher order of convergence. Let us transform
the above system into Newton - Raphsan form as

J(ab—ab”)—R(ab):O, 27

J(d) . . . . . . o . .
where ( ) is the jacobian matrix which consist of all derivatives of the non-linear residual

u,v

system of component of the velocity micro-polar rotation vector N and temperature g,

R(a”) . . . . .
( ) is the vector of residual and ? is the iterative index.

3. Computation of Heat transfer rate and stream function

1) Stream function and Nusselt number

12

https://mc06.manuscriptcentral.com/cjp-pubs



Page 13 of 37 Canadian Journal of Physics

The components of the velocity and stream function are calculated numerically by using the

technique given in [23]. The local Nusselt numbers V¢ is given by

_90

Nu = ,
on (28)

where n is the direction normal to the plane. The local Nusselt number at vertical and bottom

walls have the following general expression:
Nub:—;(Z:Q.i and Nusz—;(za.i
i=1 Oy i=1 ox (29)
Averaging over the length of bottom and vertical walls, we get
_ 1 _ 1
Nu, = ;(_[Nubdx and Nu, = ;(.[ Nu dx,
0 0 (30)
as average Nusselt numbers.

Table 1

Average Nusselt number at the lower wall of the conduit for the case of sinusoidal heated wall

No. of six nodal X w Gr ¢ Da  Ha S Ry, 7 Nu / % Error
X

triangular elements

1024 1 45° 10° 45° 10° 100 05 2 1 2.1365
2048 e e e e e - 211320 0.21
3072 ce e e e e e 201303 0.08
4096 e e e e e o 201300 0.01

4. Algorithm validation

To ensure the optimal solution of the given problem, the grid independent test is very important.
Various mesh sizes are used to perform the numerical simulations of the considered problem and
it is noted that, when the computational mesh containing 4096 triangular elements is refined to
4096 elements, the percentage error between the computed results obtained at two mesh sizes is
0.01% (Table 1). A further mesh refinement can be made to reduce the error but at very high

computational cost. Moreover, refining the mesh with increasing the nodal elements from 4096
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do not significantly alter the physical features. Therefore, we have used the non-uniform mesh of
4096 triangular elements to investigate the present problem. After achieving grid independence,
the developed code is validated against the results of Ece and Buyuk [55]. To this end, we have
solved the Eqgs. 11-14 of paper by Ece and Buyuk [55] using our own developed code. The
results for stream function and temperature for Pr =1,y = 1,Ha = 50,Gr = 10, ¢ = w =
459 are shown in Fig. 2 in the form of contours. In Fig.2, the dotted line contours are plotted
from our numerical solutions. The superimposed asterisks in each contours represent the values
of stream function and temperature based on the solution computed by Ece and Buyuk [55].
Figure 2 shows an excellent agreement between numerical results based on our code with the
corresponding results of Ece and Buyuk [55]. This obviously corroborates the validity of our

numerical code and thus the confidence on results produced in the next section is quite high.
S. Numerical results

Numerical simulations of the problem under investigation are carried out for different
values of Prandtl number valid for liquid metals, air, water, glycerol and polymer melts. The
angle of inclination w of the conduit is selected in the range —45°% < w < 45°. The aspect ratio
for the square conduit is equal to unity. The flow equations evidently show that the magnitude of
Ha and Gr are playing an important role to build a buoyancy or magnetic force dominant flow
field inside the cavity. It is known that the buoyancy forces are logically much active for greater
values of Grashof number. Whereas Lorentz force impedes the flow and retains the convection
currents. The specific ranges of various parameters involved in the simulations are: 0 < Ha <

150,107 < Da < 107%,0 < Ry < 12 and 0° < ¢ < 90°. The other micropolar parameter 77

1s fixed at a unit value.

5.1 Uniform heated bottom wall

In the present section, the numerical results are reported for the first case namely,
uniform heated lower wall of the cavity. Figs. 3-7 exhibit the effects of pertinent physical
parameters on the streamlines and isotherms. The effects of w (angle of inclination of cavity) and
¢ (angle of inclination of magnetic field) on streamlines and isotherms are displayed in Figs. 3

and 4, respectively. For the case when magnetic field is parallel to x-axis (¢p = 0°) and w = 45°,
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the cavity is filled with both clockwise and anticlockwise circulations. The strength and size of
clockwise circulations is greater than the strength of anticlockwise circulations. The strength of
counter clockwise circulations increases with increasing ¢ to 45° or 90°. With increasing ¢ to
459 or 90° the anti-clockwise circulating roll also increases in size. It is noted that for w = 45°
there does not exist any value of ¢ for which the circulations are symmetric about the vertical
centerline. In contrast, for w = 0%, the circulating rolls become symmetric for ¢p = 0° and
¢ = 90°. Similarly, no symmetric pattern of streamlines is noted for any value of ¢ when
w = 459, In that case an increase in ¢ results in the formation of strong clockwise circulating
roll in the right half of the cavity. Fig. 4 reveals that for each fixed value of w and ¢ = 0°, the
contours of different values of 8 spanning the entire cavity rise toward the top adiabatic wall.

However, with increasing ¢, these contours are suppressed toward the bottom wall.

Fig. 5 illustrates the effects of Prandtl number on streamlines and isotherms in a cavity inclined
at 459 for the case Gr = 10°. The objective is to see the isotherms and streamlines for very low,
moderate and large values of Prandtl number. The values Pr = 0.015 and 7 are typical for liquid
mercury and water while the values Pr = 103 and Pr =10* correspond to glycerol and polymer
melts, respectively. It is observed that for Pr = 0.015 (for high thermal conductivity fluids) the
counterclockwise circulations which are composed of two circulating rolls occupy the major
portion of the cavity. The distorted clockwise circulations exist only in right half of the cavity.
All these circulating rolls constitute an asymmetric pattern of streamlines inside the cavity. The
intensity of circulations is low and heat transfer is mainly due to conduction and that is why the
corresponding isotherms are less distorted. With increasing Prandtl number to 103 both the
strength and size of counterclockwise circulations increase. The convection effect becomes
prominent and isotherms lose their symmetry. Due to stronger counterclockwise circulations, the
isotherms are pushed toward the right wall. Moreover, the contour for €=0.4 split into two
contour lines. For Pr = 10* both strength and size of anti-clockwise circulations increase while
clockwise circulations diminish and can only be found in lower right corner of the cavity. The
corresponding isotherms are pushed toward the right wall. Moreover, in this case the two contour

lines for #=0.4 reunite into a single contour.

The streamlines and isotherms for different values of Darcy number in a cavity tilted at 45%are

shown Fig. 6. For this case, the streamlines are composed of two asymmetric rotating rolls in
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absence of porous medium (Da - OO) . The size of anticlockwise rotating roll is much bigger

than the clock rotating roll. With increasing Darcy number (decreasing the permeability of the
porous medium), the anticlockwise roll increases in size and occupies the entire cavity. In fact, a
decrease in permeability of the medium impedes the flow and retains the convection currents.
Moreover, the strength of circulation is greatly reduced with decreasing Darcy number. The
isotherms for Da = 1073 which are distorted and asymmetric about the vertical centerline

become symmetric when Da takes the value 107>,

The effects of micropolar parameter or vortex viscosity parameter R, on streamlines and
isotherms are presented through Fig. 7. The parameter R, in the present problem is a measure of
increase in the apparent viscosity of the fluid. Larger values of R, correspond to fluids with
greater apparent viscosity and vice-versa. Here, it is noted that an increase in Ry impedes the
strength of both clockwise and anticlockwise circulations. This is due to increase in the
effective/apparent viscosity of the fluid due to strong rotation of the fluid particles. For larger
values of R the cavity in filled with weak intensity anticlockwise circulations except in the top
right corner where a small weak clockwise circulating roll can be identified. The isotherms
indicate the suppression of temperature contour with increasing R,. The isotherms plot for

Ry = 12 clearly portray the conduction dominant heat transfer mode in the cavity.
5.2 Non-uniform heated bottom wall

The streamlines and isotherms for the case of non-uniform heated bottom wall are shown
through Fig. 8 - 12. Figs. 8 and 9 report the effects of w and ¢ on streamlines and isotherms,
respectively for same values of the involved parameters as used in Fig. 3 and 4. Similar trends
are noted for non-uniform heating case as observed for uniform heating case by comparing Figs.
5 and 10 except some minor details. For instance, in contrast to uniform heating case the non-
uniform heating case for Pr = 0.015 only confirms the existence of two asymmetric circulating
rolls. Moreover, for Pr = 103 the two contour lines for &= 0.4 in uniform heating case reunite
into single contour for non-uniform heating case. A comparison of Figs. 3 and 8 reveals that for
non-uniform heating case the anticlockwise circulating rolls for w = —45° and ¢ = 0°,45°,90°
are bigger than their counterparts for uniform heating case. No significant changes are observed
between results of both cases for @ = 0° and ¢ = 0% 45°90° except larger circulating

intensity in uniform heating case. For the case when w = 0% and ¢ = 0°,45°,90° the clockwise
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circulating roll appearing in the cavity for non-uniform heating case is bigger in size than for
uniform heating case. A comparison of Figs. 4 and 9 shows the contour for 8 = 0.5 — 0.9
spanning the entire cavity for non-uniform heating case are more suppressed in comparison to
their counterpart for uniform heating case. Moreover, contrary to the uniform case the two
contour lines for 8 = 0.5 for w = 0°, ¢ = 0°,45%,90° reunite into single contour spanning the
entire cavity for non-uniform heating case. One obvious thing noted by comparing Figs. 4 and 9
is the disappearance of singularity from the left and right corners of the cavity for non-uniform
heated case. By comparing Figs. 6 and 11, it is noted that in contrast to uniform heating case
clockwise circulations do not disappear inside the cavity by decreasing Darcy number to 10~ for
non-uniform heating case. Moreover, the contour for € =0.1 splits into two contour lines for
uniform heating case. A comparison of Figs. 7 and 12 reveals that clockwise circulations decay
faster in uniform heating case. Moreover, by comparing results for both figures it is found that
the strength of circulations is greater in uniform heating case. The effects of micro-gyration

parameter & on streamlines and isotherms can be observed by comparing Fig. 13 with Fig. 12.

The results indicate that there is no appreciable effect of & on streamlines and isotherms.

5.3 Local Nusselt Number at the heated surface of the conduit

Fig. 14 (a) shows the effects of micropolar parameter R, on the local heat transfer rate for both
considered cases namely, uniform and non-uniform/sinusoidal heated lower surface of the
enclosure when Gr = 10% Da =10"3,Ha =10,¢p = w =45° and n=1. The choice of
parameters clearly indicates that both cavity and magnetic field are inclined at angle of 45°. For
the first case (uniform heating) the local heat transfer rate attains maximum value at the left edge
of the lower surface due to jump discontinuity existing at edges of the lower wall and minimum
at x =0.78 due to inclined conduit with counterclockwise direction. The local Nusselt number
decreases with increasing micropolar parameter in the interval 0 <x <0.74 and reverse trend can
be observed in the regime 0.76 <x<1. On the other hand for the second case (sinusoidal
heating), the maximum value of local heat transfer rate appears at x = 0.35 and minimum at right
edge of the lower surface. Here, the local Nusselt number decrease with increasing micropolar
parameter in the interval 0 < x <0.62 and reverse trend can be observed in the regime
0.62 <x<1. Fig. 14 (b) reveals that minima in the local Nusselt number profiles shift toward the

left wall while maxima appearing at the left corner decreases with increasing Hartman number
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for uniform heating case. Moreover, maxima in the local Nusselt number profiles also shift
toward the right wall with increasing Hartmann number for non-uniform heating case. Fig. 14 (c)

shows a decrease in the local Nusselt number with increasing the permeability of the porous
medium (Da - OO) for both uniform and non-uniform heating cases over major portion of the

lower wall. The effects of inclination angle w on the local Nusselt number are shown in Fig. 14
(d). In all profiles ¢ = 0°, therefore the maxima appear at both right and left edges of the bottom
wall for uniform heating case. Moreover, the minima (maxima) in local heat transfer rate profiles
shift toward the right wall with increasing w for uniform heating case (non-uniform heating
case). With increasing w the local heat transfer rate increases in the left half of bottom wall while

a reverse trend is noted in the right half for both uniform and non-uniform heating cases.
5.4. Average Nusselt Number at the hot wall

Numerical values of average Nusselt number at the bottom wall for various values of Gr, w and
¢ are listed in Table 3 for both uniform and non-uniform heating cases. It is observed that
average Nusselt number is independent of w and ¢ for smaller values of Gr. For larger values of
Gr, an increase in average Nusselt number is noted with increasing both w and ¢. Moreover, a
rapid increase in average Nusselt number is achieved with increasing Grashof number for
w = —45% or 45°. Further, the average Nusselt number is substantially low for non-uniformly
heated case in comparison to the uniformly heated case. Table 4 enlists the numerical values of
average Nusselt number for different values of Da, Ry, Pr and Ha for both uniform and non-
uniform heating cases when Gr = 10°. It is noted that average Nusselt number decreases with

increasing either of these parameter for both uniform and non-uniform hating case.
6. Discussion

The thermal boundary conditions imposed at the walls of the cavity in absence of the
parameters w, ¢, Ha, R, induce the buoyancy driven flow inside the square cavity. The warm
fluid from the middle portion of the cavity rise along the two cold vertical walls and form two
symmetric rolls with clockwise and anticlockwise rotations in the enclosure. The temperature
contours are symmetric about the vertical centerline. The scenario entirely resembles with
situation investigated in a great deal by Basak et al. [66]. Now with increasing either of w, ¢, Ha

and R, a substantial change in the pattern of streamlines and isotherms is anticipated. The
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parameter w is a measure of inclination angle of the cavity. The parameter ¢ determines the
direction of applied magnetic field; ¢ = 0° corresponds to magnetic field parallel to lower wall,
¢ = 459 corresponds to the situation in which magnetic field is applied diagonally and similarly
the situation in which magnetic field acts in direction perpendicular to the bottom wall is

characterized by ¢ = 90°. The parameter Ha characterized the strength of the applied magnetic

field. The rheological parameter R is the ratio of vortex viscosity K and dynamics viscosity u.
For Ry > 0, the rotational effect of material fluid particles become significant which results in an
increased apparent (shear-dependent) viscosity of the fluid. Having established the physical
meanings of the involved parameter, we now turn to the discussion of the observed results. For
w = 0° and ¢ = 0° (the magnetic field applied in x-direction) vortices are symmetric about the
vertical centerline. For w = 45° and ¢p = 0° the buoyancy effects resists (assists) the flow in the
right (left) half of the cavity. Due to this fact, the clockwise circulations diminish while
anticlockwise circulations grow in entire part of the cavity. The situation is reversed for w =
—45% and ¢ = 0°. Now magnetic field applied diagonally or vertically to any of these situations
either increase or decrease the intensity of convection currents. For w = —45% and ¢ = 0°, the
change in the direction of applied magnetic field slightly increases the intensity of clockwise
circulations and at the same time accelerates the counterclockwise circulations. For w = 45° and
¢ = 09, the similar setting enhances the intensity of counterclockwise circulations and at the
same time induces the clockwise circulations. For @ = 0° the application of diagonal magnetic
field produces two asymmetric rolls occupying almost the equal portions of the cavity.
Interestingly, for w = 0° the application of magnetic field in vertical direction results in the
same symmetric flow pattern but with increased intensity as compared to the case w = 0° and
¢ = 0°. In fact, for w = 0° and ¢ = 0° the Lorentz force term only appear in the y-momentum
equation and hence does not affect the symmetry of the flow pattern. Similarly, the case w = 0°
and ¢ = 90° results in the contribution of Lorentz force term in x- momentum equation and
therefore the resulting flow pattern is also symmetric. For other cases in which Lorentz force
term appears in both x and y-momentum equations, the resulting flow pattern is asymmetric. The
isotherms when both clockwise and anticlockwise rolls exist with one roll occupying the major
portion of the cavity (w = —45°,45% ¢ = 0°,45°,90°), represents the conduction dominant

heat transfer case. In this situation only few temperature contours occur asymmetrically near the
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side walls. While rest of contours are smooth asymmetric curves spanning the entire cavity. It is
noted that the contour for #=0.5 show the tendency of splitting into two contour lines only for
the cases w = 45%, ¢ = 0° and w = 45° and w = 0°. Thus these two cases as compared to
other four cases are convection dominant. The symmetric case arises only when the circulating
rolls are symmetric w = 0%, ¢ = 0° or 90°. In symmetric case the isotherms for 8 = 0.5 — 0.1
occure symmetrically along the side wall. The significant temperature gradients near the side and
bottom walls indicate the development of thermal boundary layer. The streamlines for case
w=¢ =0° and w = 0% ¢ = 90° look similar but isotherms are not. A comparison of both
cases reveal that the case @ = 0° = ¢ is convection dominant compare to the case w = 0°,¢ =
90°. In the next part of the discussion to our aim is to elaborate the effects of Prandtl number,
Darcy number and micropolar parameter for typical cavity and magnetic field inclination angles
i.e. w = 45° = ¢. For the case when both cavity and magnetic field are inclined at angle of 45°
and when Grashof number is high and magnetic field is strong, it is natural to anticipate on the
basis of our previous discussion that flow pattern will be asymmetric with the low intensity of
circulations for fluid with small Prandtl number. The size of anticlockwise roll is bigger than that
of clockwise roll. With increasing Prandtl number to 103 both intensity and size of anticlockwise
circulations increase. Moreover, for this case the intensity of clockwise circulations also
increases. In such scenario, the convection effects become significant and as a results the
temperature contour start splitting but due to bigger anticlockwise roll are pushed toward the
right wall. When Prandtl number takes the value 10* the size of clockwise circulating roll
diminishes and cavity is mostly filled with anti-clockwise circulation. This scenario is not
favorable for convective heat transfer. The temperature contours reunite instead of splitting into
two contour line and at the same time pushed toward the right wall. The conduction is dominant

1n this case.

Another important parameter in our analysis is Darcy number. For a typical situation
when both cavity and magnetic field are inclined at 45°, Hartmann number is moderate, Grashof
number is high, fluid inside the cavity is of high thermal conductivity (Pr = 1) and when
permeability of the porous medium is low (Da = 1073), the flow in view of our previous
discussion exhibits pattern comprising of counterclockwise roll occupying the maximum portion
of the cavity. With decreasing Darcy number the clockwise circulations vanish and cavity is only

filled with low intensity counterclockwise circulations. Decreasing the permeability of porous
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results in greater resistance offered by the porous matrix to the flow induced by convection. The
suppression of convection currents leads to symmetric temperature contours inside the cavity. In
such scenario, heat transfer is mainly due to conduction. The effect of increasing micropolar
parameter is similar to the decreasing Darcy number i.e. an increase in R, diminishes the
clockwise circulations and also reduces the intensity of anticlockwise circulations. In fact, an
increase in R, results in an increase in the effective viscosity of fluid and this leads to
suppression in the strength of convection currents. Thus, the contours for various values of 8
spanning the entire cavity are suppressed toward the bottom wall. The thermal boundary layer
instead of developing at the side and bottom walls grows inside the entire cavity. Table 3 and 4
show that for fixed values of Prandtl number, Darcy number and micropolar parameter the
average Nusselt number at the bottom wall of inclined cavity is maximum when Grashof number
is high and when magnetic field is inclined at 90°. The above result is true for both uniformly
and non-uniformly heated cavity. A decrease is average Nusselt number is observed with
increasing either of Darcy number, Prandtl number, Hartmann number and micropolar
parameter. The results suggest three possible ways to increase the heat transfer from the bottom
wall for a given fluid flowing inside the porous cavity. One remedy is to increase slightly the
permeability of the porous medium, the second one is to adjust the inclination of angles of cavity

and applied magnetic field and third one is to tune the rheological characteristics of the fluid.
Conclusions

Magnetohydrodynamic natural convection flow of micropolar fluid inside a porous-
saturated cavity is numerically simulated using a robust finite element scheme for various values
of Grashof number, Prandtl number, Hartmann number, micropolar parameter and inclination

angles. The study can be summarized in the following main points:

» The clockwise circulations dominate inside the porous cavity tilted at 45° when
flow is subject to magnetic field applied parallel to the bottom wall. The intensity
of anticlockwise circulations increases with increasing the inclination angle of
the magnetic field. The opposite trend prevails when cavity is inclined at 45°.
For w = 0°, the flow pattern is symmetric when inclination angle of magnetic
field is 0° or 90°. The strength of circulating rolls in greater in later case. The

corresponding isotherms reveal convection dominant heat transfer for o = —45°
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or 45° and when inclination angle of magnetic field is zero. Similar result is also
true for non-inclined cavity (w = 0°).

> The flow inside the cavity (for which ¢ = w = 45°) only comprises of weak
anti-clockwise circulations with decreasing the permeability of porous media.
The isotherms achieve symmetric patterns thereby indicating conduction
dominant heat transfer.

> For cavity with ¢ = w = 45°, an increase in rheological of fluid (R,) decreases
the intensity and size of clockwise circulating roll. At the same time the size of
anticlockwise roll increases but its intensity remains low. The isotherms spanning
the entire cavity are compressed toward the bottom wall with increasing R,.

» The average Nusselt number achieves maximum value for a specific fluid with
presumed geometrical configuration of the cavity when (i) magnetic field is
applied vertically, (i1)) when the permeability of the media is high and (iii) when

rheological parameter R is small.

(@) | (b)
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Fig 2: Streamlines (a) and temperature (b) contours for Gr = 10%, Ha = 50,w = ¢ = 45°
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w = —45°
w=0
w = 45°

Fig 3: Effects of ¢» and w on streamlines for Gr = 10%,R, = 2,Da < 1073,Ha = 50,y = 1.
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¢ = 0° ¢ = 45° ¢ = 90°

w = —45°
w=0°
w = 45°

Fig 4: Effects of ¢ and w on isotherms for Gr = 10%,R, = 2,Da = 1073, Ha = 150,y = 1.
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Fig. 5: Effects of Prandtl number on streamlines and isotherms for Gr = 10%, R, = 2,Ha = 60, ¢ =w= 459 and
Da = 1073,

Da = 107°
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Fig. 6: Effects of Darcy number on streamlines and isotherms for Gr = 10%,R, = 2, Ha =

50,¢ = w = 45°.

Fig. 7: Effects of micropolar parameter on streamlines and isotherms for Gr = 10°%,Da = 1073,Ha = 10,¢ =

w = 45°
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Fig. 10: Effects of Prandtl number on streamlines and isotherms for Gr = 10%,R, = 2,Ha = 150,¢p = w = 459
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Fig. 11: Effects of Darcy number on streamlines and isotherms for Gr = 10%,R, = 2, Ha =

60,¢ = w = 45°

12: Effects of micropolar parameter on streamlines and isotherms for Gr = 10%,Da = 103, Ha = 10, o =w= 450
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Fig. 13: Effects of micropolar parameter on

" v streamlines and isotherms for weak concentration
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Fig.14: variation of local Nusselt number against (a) micropooar parameter, (b) Hartman

number, (¢) Darcy number and (d) inclination angle.

Table 2
[41] Present work [41] Present work
N“% (Ha=0) M/ (ta=0) M/ (Ha=100) N/ (Ha=100)
V4 w Gr
¢=0° ¢=45° ¢=90° $=0" ¢$=45 ¢=090°
1 0° 10° 3.7458 3.7603 3.6814 3.6770 3.6787 3.7054 3.6875 3.6891
- - 10* 4.7716 4.7767 3.6831 3.6819 3.6813 3.6842 3.6823 3.6816
- - 10° 6.6773 6.6780 3.8242 39447 3.8852 3.8249 3.9450 3.8855
- -45° 10° 3.7555 3.7544 3.6829 3.6801 3.6802 3.6824 3.6798 3.6796
- - 10* 4.5528 4.5510 3.6806 3.6846 3.6843 3.6800 3.6840 3.6846
- - 10° 6.3797 6.3740 3.8546 3.8774 3.8750 3.8539 3.8757 3.8730
- 45" 10° 3.6828 3.6812 3.6803 3.6815 3.6801 3.6798 3.6809 3.6791
- - 10* 4.3342 4.3321 3.6780 3.6820 3.6801 3.6776 3.6802 3.6755
- - 10° 5.6870 5.6730 3.7032 3.6833 3.7119 3.6935 3.6736 3.7028
Table 3
Variation of the average Nusselt number at hot wall of the conduit
Pr w Gr Da Ha <& Ry, 7 Uniform Heated Non-uniform/Sinusoidal heated
p=0" ¢=45° $=90° $=0° $=45" =090
1 0° 10° 107 100 05 2 1 6.1472 6.1472 6.1472 1.9925 1.9926 1.9927
- - 10* - - - - - 61477 6.1479  6.1482 1.9998 2.0005 2.0022
- - 10° - = e - - 6.1702  6.1958  6.2479  2.0919 2.1177 2.1714
— =45 10 - - - - - 6.1472 6.1472  6.1472 1.9923 1.9921 1.9924
- - 10* - - - - - 6.1478 6.1476  6.1480 1.9977 1.9955 1.9992
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-— ——-- 10° ———— e em = -—= 62004 6.1916 6.2071 2.0850 2.0602 2.1098

-—- 45° 10° m——— mmem —m = = 0.1472  6.1472 6.1472 1.9923 1.9926 1.9924

-—- - 104 m———mmem am —- = 61484 6.1484 6.1481 1.9977 2.0008 1.9992

-— ——-- 10° ——— e e e— —- 62021 6.2232 6.2084 2.0854 2.1300 2.1101
Table 4

Variation of the average Nusselt number at hot wall of the conduit with ¢ = 45°, y = 1.

n ) Da Gr Ha ¢ Pr Uniform Heated Non-uniform/Sinusoidal
heated
R0=O R0=2 R0:4 R():O R0:2 R0:4
1 0° 102 10° 100 0.5 1 6.2724 6.2326 6.2131 2.2183 2.1625 2.1330
—_— - 1073 e e - - 6.2118 6.1958 6.1871 2.1495 21177 2.0997
R — 107* e e e - 6.1560 6.1544 6.1535 2.0403 2.0344 2.0307
— 45 107%? - e - --- 6.2233 6.2135 6.2066 2.0929 2.0752 2.0650
—_— - 1073 e e - - 6.1969 6.1916 6.1969 2.0734 2.0602 2.0525
R — 107* e e e - 6.1554 6.1546 6.1542 2.0231 2.0195 2.0173
—  45%  107% em e - - 6.3342 6.2819 6.2563 2.2655 2.1983 2.1626
R — I S —— - 6.2422 6.2232 6.2126 2.1665 2.1300 2.1127
—_— - 107* e e - - 6.1590 6.1573 6.1564 2.0336 2.0287 2.0256
33

https://mc06.manuscriptcentral.com/cjp-pubs



Canadian Journal of Physics Page 34 of 37
10”° 0 0 --- 6.9542  6.7587 6.6550 2.9234 2.6358 2.5018
-- 50 --- --- 6.5282  6.4393 6.3903 2.4833 2.3518 2.2842
- 100 --- --- 6.2422 6.2231 6.2123 2.1665 2.1320 2.1123
10”° 100 --- 0.015 6.2721 6.2440 6.2276 2.1869 2.1477 2.1247
-- 100  --- 7 6.2415 6.2229 6.2125 2.1661 2.1321 2.1129
- 100 --- 1000 6.2011 6.1837 6.1739  2.1455 2.1148 2.0977
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