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ABSTRACT

Short duration, fast rise time uitra-wide-band (UWB) electromagnetic pulses 

(“nanopulses”) are generated by numerous electronic devices in use today. Moreover, 

many novel technologies involving nanopulses are under development and expected to 

become widely used soon. Study of nanopulse bioeffects is needed to probe their useful 

range in possible biomedical and biotechnological applications, and to ensure human 

safety.

Based on the well-known dispersive properties of biological matter and their 

expression as a summation of terms corresponding to the main polarization mechanisms, 

the Cole-Cole expression is commonly employed to describe the frequency dependence 

of the dielectric properties of a tissue. Solving the Maxwell’s equations coupled with the 

Cole-Cole expression, however, is difficult because it is not easy to convert the equations 

from the frequency domain to the time domain.

In this work we develop a computational approach to investigating 

electromagnetic fields in biological matter exposed to nanopulses, where the relative 

dielectric constant is given by the Cole-Cole expression for the frequency dependence of 

the dielectric properties of tissues. The Cole-Cole expression is first transformed to the z- 

domain using the z-transform method and then approximated by a second-order Taylor 

series of variable z. After converting the result from the frequency domain to the time

Hi
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domain, the fmite-difference time-domain method (FDTD) is used to solve Maxwell’s 

equations coupled with the Cole-Cole expression, and a perfectly matched layer is 

applied to eliminate reflections from the boundary.

The method is then applied to investigating the penetration of a short 

electromagnetic pulse into biological matter, where the relative dielectric constant is 

given by the Cole-Cole expression. Transmission, reflection, and absorption are 

calculated as a function of pulse width. It is found that these properties depend 

substantially on pulse characteristics.

Future work in this direction could be examining the relevance of pulse rise 

time and pulse shape to tissue penetration. Such study could help to elucidate non- 

thermal mechanisms of nanopulse bioeffects.
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NOMENCLATURE

E the electric field intensity ,V /m

H the magnetic field intensity, A / m

D the electric flux density , C l  m 2

B the magnetic flux density, Wbl m2

J the current density, A /m 2

P the volume electric charge density, C/tH

B the permeability

s the permittivity

<7 the conductivity

Bo the permeability of free space.

S q the permittivity of free space.

B r relative permeability

relative permittivity

t] the intrinsic impedance

Static Conductivity
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CHAPTER 1

INTRODUCTIONS

1.1 Overview

Short-duration, fast rise time ultra-wide-band (UWB) electromagnetic pulses 

(“nanopulses”) are generated by a broad range of electronic devices in use today, notably 

communications instruments. There is also interest in nanopulses in the development of 

ground-penetrating radar. Such devices can produce electromagnetic pulses with pulse 

widths o f just a few nanoseconds and electric field amplitudes greater than 10 5V Im.  

Many new technologies involving nanopulses are expected to become widely available in 

the near future, as the Federal Communications Commission issued a Final Rule on UWB 

in 2002 permitting the marketing and operation in the USA of products involving UWB. 

Study of nanopulse bioeffects, therefore, is needed to ensure human safety and to explore 

the useful range of such pulses in biomedical and biotechnological application.

Possible technologies involving nanopulses in medical settings include 

electroporation, allowing chemotherapeutic drugs to enter and kill cancer cells, and the 

development of new techniques for imaging tissue structures [1], Possible undesirable 

health effects resulting from nanopulse exposure are tissue damage, conformational 

changes in macromolecules, alteration of biochemical reaction rates, membrane effects 

other than electroporation, and temperature effects. It will be important to know the field

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

characteristics inside a tissue exposed to nanopulses to give a rational foundation to 

decision making on approval of a medical procedure involving. In many realistic 

situations, however, it is no simple matter to measure the electromagnetic field. 

Mathematical modeling has thus become indispensable for gaining a good grasp of the 

situation.

A number of mathematical models have been developed for the investigation of 

electromagnetic bioeffects [2-48]. Lin, for example, has studied the interaction of 

electromagnetic pulse with biological structures [2, 3, 4]. Samn and Mathur [5] have 

developed a mathematical model of a gigahertz-transverse electromagnetic-mode cell 

using FDTD code for an electromagnetic field in a tissue developed by Kunz and 

Luebbers [6]. The latter work, based on the Yee algorithm [7, 8, 9], included a more 

recent treatment of absorbing boundary conditions (perfectly matched layer method) [10, 

11], Schoenbach et al. [12] have employed a spherical cell model, introduced by Foster 

[13], and described the coupling of an electric field to the nuclear membrane. The results 

suggest an increasing probability of electric field interactions with cell substructures in 

prokaryotic and eukaryotic cells as pulse width is reduced into the sub-microsecond 

range. Joshi and Schoenbach [14, 15] have studied the temporal dynamics of 

electroporation of cells subjected to ultrashort voltage pulses, based on a coupled scheme 

involving the Laplace, Nemst-Planck, and Smoluchowski equations. The same authors 

have also proposed a self-consistent model analysis of electroporation in biological cells 

based on an improved energy model [16].

The Cole-Cole expression is commonly employed to model the frequency 

dependence of the dielectric properties of a tissue [17, 18, 19, 20, 21, 22]:
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where s*r{m) is the relative dielectric constant, s 0 is the permittivity of free space, a> is 

the angular frequency, s x is the permittivity in the terahertz frequency range, a s is the

a  is an adjustable parameter between 0 and 1, and As  is the change in permittivity in 

the corresponding frequency range. This model is based on the well-known dispersive 

properties of biological matter; the expression as a summation of terms corresponds to 

several main polarization mechanisms; the dielectric spectrum from Hz to GHz shows 4 

major regions of dispersion [20]. The complexity of the structure and composition of 

biological matter is such that each dispersion region is broadened by multiple 

contributions. With a choice of parameters appropriate to each tissue, Equation (1.1) can 

be used to predict dielectric behavior over the desired frequency range [19, 21, 22]. 

Solving Maxwell's equations when coupled to the Cole-Cole expression is difficult, 

however, because it is not easy to convert from the frequency domain to the time domain. 

To overcome this difficulty, the Cole-Cole model is usually approximated by a Debye 

model or a Lorentz model [23, 24, 25] as follows

However, As m, rm and &s could be different from As m, t m and a s , which means we 

need to recalculate these parameters.

ionic conductivity, and j  =  4—1 . For each dispersion region m , t  is the relaxation time,

(1.2)

N

=  £ „  +  X
j t o s  0

(1.3)
m -
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4

1.2 Objective of the Research

The objective of this research is to find a new approximation of the Cole-Cole 

expression without recalculating its parameters and develop a finite difference schemes 

for solving Maxwell’s equations coupled with it. To achieve this objective, the following 

missions are carried out in this dissertation:

(1) Approximate the Cole-Cole expression based on a z-transformation of the 

electric displacement and Taylor expansion.

(2) Develop finite difference schemes in ID, 2D and 3D using finite difference 

time domain method.

(3) Utilize a perfectly matched layer to eliminate reflection from the boundary.

(4) Apply the schemes to investigate the influence of variations in pulse shapes 

and in tissues on the electromagnetic fields.

The outcome of the work will provide an efficient numerical simulation for 

obtaining electromagnetic fields in biological tissues exposed to nanopulses, and give us 

a better understanding of the bioeffects of nanopulses.

1.3 Overview of the Dissertation

Chapter 2 contains reviews of underlying theory. First, Maxwell’s Equations are 

carefully discussed. Then, the FDTD method is described in detail as well as the z- 

transform method, which is a useful tool to solve the Maxwell’s equation coupled to the 

Cole-Cole expression. After that follows the review of dielectric properties of biological 

tissues.
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Chapter 3 is concerned with governing equations. Governing equations are listed 

and discussed carefully then the difficulty in solving the system is presented. Finally, the 

source term is presented in details.

Chapter 4 discusses the detailed simulation. First of ail, the governing equations 

are discretized. Then the dielectric constant for biological matter is approximated in 

different ways. After that, the boundary conditions are discussed in ID, 2D and 3D. 

Later on, the nanopulse is simulated, as well the energy of it is calculated. Eventually, the 

whole algorithm is presented step by step.

Chapter 5 shows the numerical results obtained by the FDTD method. Results of 

different dielectric models and different dimensions of problem space are carefully 

plotted. Then the transmission, reflection and absorption of the pulse energy are 

calculated and discussed.

Chapter 6 gives the conclusion of this dissertation and points out the future work

as well.
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C H A P T E R  2

BACKGROUND

2.1 Maxwell’s Equations

Based on the work and experiments of Ampere, Gauss, and Faraday, James Clerk 

Maxwell (1832-1879) unified the studies of his predecessors in four equations and 

foresaw the physical phenomenon of propagation of electromagnetic waves. Nine years 

after Maxwell’s death, Heinrich Hertz discovered electromagnetic waves experimentally, 

proving the global view of Maxwell’s theory.

The electromagnetic formalism is extremely simple and based primarily on 

Maxwell’s equations. The general, time dependent, Maxwell’s equations in differential 

form can be expressed as follows [26]:

(2 .1)
dt

(2.2)

(2.3)

V -5 = 0 (2.4)

where the various quantities involved are defined as

E -  the electric field intensity

6
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H-  the magnetic field intensity 

D - the electric flux density 

B - the magnetic flux density 

J - the current density 

p  -the volume electric charge density

Equation (2.1) is known as Faraday’s law of induction. It shows that the time 

derivative of the magnetic flux density can generate an electric field intensity. This 

equation defines the basic laws of induction, and it is most often associated with eddy 

current application.

Equation (2.2) is Ampere’s law. It expresses the manner by which a magnetic 

field can create a split into conduction current (associated with J ) and a time variation of 

the electric flux density (associated with d D / d t ). And the term d D I  dt is also known 

as the displacement current density as opposed to the conduction current density J .

Equation (2.3) is Gauss’s law, the observation that the divergence of D  is zero or 

not demonstrates whether the electric flux is conservative. We usually associate it with 

electrostatic applications.

Equation (2.4) is not associated with a particular law and simply states the 

nonexistence of isolated magnetic poles. It signifies that the magnetic flux is conservative. 

Because of the form of the expression it is sometimes referred to as the magnetic form of 

Gauss’s law.

From these equations, we can define a fifth relation. Applying the divergence on 

both sides of Equation (2.2) gives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r )  Ds

V ' ( V x f f )  = V - J  + V - - ^ -
dt

Using the fact that V • (V x H) = 0 , we have

0 = V -J  + -—(V-D).  
&

Utilizing Equation (2.3) gives

= (2.5)

This equation is called the electrical continuity equation. Obviously, from the 

above derivation, Equation (2.3) can be obtained from Equation (2.2), if the continuity 

equation is postulated. Similarly, Equation (2.4) can be obtained from Equation (2.1) by 

applying the divergence on both sides of Equation (2.1). Therefore, only two of the 

Maxwell’s equations, Equation (2.1) and Equation (2.2), are independent.

The Maxwell’s equations in differential form, Equation (2.1) and Equation (2.2), 

are written as linear partial differential equations. The important property of the field 

equations is defined by the interaction of fields with materials; therefore, it is necessary 

to associate linearity or nonlinearity of field relations with material properties. Since the 

field equations describe vector relations, and since there are four field quantities 

( E , H , D ,  and B),  the independent equations, Equations (2.1) and (2.2), are equivalent 

to 6 scalar equations in 12 unknowns. Thus two additional relations

B  = /iff (2.6)

and

D = sE  (2.7)

are needed to complete the system, where /i is the permeability of materials and s  the
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9

permittivity. These relations, equivalent to six scalar equations, are called the material 

constitutive relations which provide a link between four fields. In general, these relations 

are nonlinear.

In addition, we define a constitutive relation involving current densities and the 

electric field intensity

J  = erE , (2.8)

where cr is the conductivity.

The constitutive relations, Equations (2.6) - (2.8), define the interaction between 

fields and materials. These magnetic and electric properties of materials are the most 

important factors in testing because of their effect on material behavior and fields. In 

terms of modeling, material properties defined not only what type of computation is 

needed but also limit the model.

Conductivity of a material can be broadly defined as its ability to conduct electric 

current. Under the influence of an electric field, free electrons move at various velocities. 

The electron velocity is proportional to the electric field and, therefore, the current 

density J  in a conductor can be directly related to the applied electric field intensity E  

as Equation (2.8) which is Ohm’s law in point form.

Magnetic properties of materials are due to the interaction of external magnetic 

fields and moving charges in materials. Atomic-scale magnetic fields are produced inside 

materials through orbiting electrons. Equivalent current loops are generated due to these 

electrons. These behave like small magnets (magnetic moments). With assemblage of 

many such magnetic moments, the material volume contains a certain magnetic moment 

density. A net magnetic field is generated inside the material. This internal field is either
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aligned with external field to increase to total field or opposes it to decrease to the total 

field. If the internal magnetic moments are randomly oriented, as is often the case, the net

internal field is zero and the material behaves like free space from the magnetic point of

view. This is also the case for nonmagnetic materials. In general, the permeability jj, of a 

material expresses an intrinsic capacity of the material and indicates how much or how 

little it is susceptible to passage of the magnetic flux. Equation (2.6) shows the meaning 

of n  in a simple manner. Technically,// can be a complex number. The imaginary part 

of the complex permeability represents losses due to damping forces in the magnetic 

material. The real part represents materials without magnetic losses. In most cases there 

will be no need to consider permeability as a complex quantity since the real part for 

most materials is dominant. For practical use, it is common to define a relative 

permeability jur through the relation

p = juQjur , (2.9)

where //0 is the permeability of free space.

The electric properties of dielectric materials are largely defined by polarization 

of charges within the material due to an applied external electric field. Since charges in 

these materials are bound, conduction is negligible, but polarization of charges (i.e., 

alignment of electric dipoles with the external electric field) may be significant. This 

polarization increases the electric flux density in the material. We can thus write the 

constitutive relation of Equation (2.7) as

D = e0E + P  , (2.10)

where P  is the polarization vector and s 0 is the permittivity of free space [26]. The 

polarization vector is proportional to the electric field. Since the polarization vector P  is
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proportional to the electric field. Since the polarization vector P is proportional to the 

external electric field intensity E  we can write

D = s 0E  + £Qx eE = e0{\ + %e)E  , (2.11)

where %e is the electric susceptibility which is a dimensionless quantity. The quantity

s  = sQ0- + Ze) (2-12)

is defined as the complex permittivity. This is often written as

s  = e'+js" (2.13)

to signify the fact that permittivity is a complex quantity. The imaginary part of £ 

represents dielectric losses. However, since the loss mechanism in materials includes two 

loss components; one is due to dielectric, or polarization losses, the other due to 

conduction currents, the complex permittivity can be redefined as

, ..© £•"  +  <7. ,  ..£ = s - j ( — - — ) (2.14)
a

which most easily describes the loss mechanism. The real part of the complex

permittivity is the term we normally associate with dielectrics as the dielectric constant.

In lossless materials, the imaginary part is zero. In lossy materials, the imaginary part is

nonzero and has two parts; the first, due to £n is the dielectric loss while the second due

to a  is the conduction, although, in practice the two types of losses are indistinguishable.

2.1.1 Maxwell’s Equations in a 
Non-Frequency Dependent Medium

Assuming all the materials being simulated are nonmagnetic ( that is, H  = B /  ju0, 

and non-frequency dependent, which is specified by the relative dielectric constant s r 

and a constant conductivity a ) ,  we can write down the time-dependent Maxwell’s curl 

equations in a general form [26]:
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s -  = V x H - J  
d t

d H  1 x? w - V x E
dt juQ

(2.15)

(2.16)

Substituting

and

J  = arE

e = s Qs r

into Equation (2.15), we obtain :

dE 1 cr
 =  V x i f  E
dt SqS r £ qS r

(2.17)

Because £0 and juQ differ by several orders of magnitude, Ez and H x will differ 

by several orders of magnitude. This problem can be circumvented by making the 

following change of variable [27]

E =  — E , (2.18)
V Ao

which gives the “normalized” Maxwell’s equations in a non-frequency dependent 

medium as follows:

dE  1 „  „  cr

d t
V x H  E   ̂ (2.19)

a / /  l

£ ,£ r

V x ^ _  (2.20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

This system is called Gaussian units, a term frequently used by physicist for the reason of

simplicity in the formulations.

2.1.2 Maxwell’s Equations in a Frequency 
Dependent Medium

The dielectric constant and conductivity of most media vary at different

frequencies, which is of most interest in our research. As for getting to these frequency

dependent materials, it is necessary to change the formulation slightly and introduce the

use of the flux density into the simulation. As such, we write down a more general form

of Maxwell’s Equations [28]:

where D  is the electric flux density and the relative dielectric constant, er (co), is 

described by the Cole-Cole expression we will discuss later in this chapter. Normalizing 

these equations with

d t
(2.21)

D ( cd) = £ 0£ r (6))E(co) (2 .22)

(2.23)

and

D =
1

D
£0 • /i0

leads to
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8D  1
V x H (2.24)

D{a>) = s r {co )E {&), (2.25)

a # i
V x E (2.26)

Equation (2.24)-(2.26) are the “normalized” Maxwell’s equations in a frequency 

dependent medium.

A number of mathematical models have been developed for the investigation of 

electromagnetic bioeffects [2-48]. Especially, the finite difference time domain (FDTD) 

formulation is developed as a convenient tool for solving scattering problems of EM 

field. The FDTD methods, first introduced by Yee [9] in 1966 and later developed by 

Taflove and other [29-35], is a direct solution of Maxwell’s time-dependent curl 

equations.

2.2.1 Notations

Following Yee’s notation [9], we denote a grid point in the solution region as

2.2 FDTD Method

( iJ ,k )  = (iAx,jAy,kAz), (2.27)

and any function of space and time as

F n (i, j ,  k) = F(iAx, JAy, kAz, nAt), (2.28)

where Ax = Ay = Az is the space increment, and At is the time increment, while i, j ,

k  and n are integers. Using the second-order accurate central finite difference
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approximation for spatial and temporal derivatives, one may obtain the following two 

equations:

d F' t i  i k)( , J ’ * = ----------2................ -....  2----■+ 0 ( Ax 2) ,  (2.29)
dx Ax

and

+ (2.30)
dt At

2.2.2 Finite Difference Scheme 
in Free Space

Since D = s 0E  and B = /j0H  in free space, the time-dependent Maxwell’s curl 

equations can be written as

dE  1
dt s  q

dH  1

V x H (2.31)

V x E ,  (2.32)dt juQ

which represent a system of six scalar equations. We can express them in the rectangular 

coordinate system as follows:

d E,  1 , 8H , dH
- r f  = — (2. 33

dt  s 0 dy dz

d H x _ _ l f d Ey dE
- T —  -  ------(— ------------  , (2.34)dt /j 0 dz dy

with corresponding expressions for y and z directions.

Taking the central difference approximations, Equations (2.29) and (2.30), for 

both the temporal and spatial derivatives and using Ax for all the spatial increments we
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can write down the explicit finite difference approximation of Equations (2.33) and (2.34) 

as follows:

E ' ‘ + l (i + l / 2 , j , k )  = E ”~]>1 (i + 1 / 2 ,  j , k )  +

~ ^ — [H r !/2 (I + 1 / 2, j  + 1 / 2 , k )  -  H  r ! /2 (I + 1 / 2, j  -  1 / 2 , k )S 0Ax  ' (Z..3D)
+ H ; +il2(i + l / 2, j , k  - 1 / 2 ) -  H ; +l,2( i + 1 / 2 ,  j , k  + 1 /2 )1

and

H  ” + in (i, j  + 1 / 2 ,  it + 1 / 2 )  = H  "~1/2 (i, j  + 1 / 2 , *  + 1 / 2 )  +

+ 1 / 2 , *  + I) -  E " (i, j  + I / 2, k )  (236)
f i 0Ax
+ E " (/, j , k + 1 / 2 ) -  E H i ,  j  + I, k + 1 / 2 ) 1  

with corresponding expressions for y and z directions.

 2- k L ______

Figure 2.1 Positions of the field components in a Yee’s Cell 

Since the formulation of Equations (2.35) and (2.36) assumes that the E  and H  

fields are interleaved in both time and space, we have to use Yee cell [9] to discretize the
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components of E  and H  , as shown in figure 2.1. Notice that the calculations are

arranged in alternative layers in both space and time. For example, the new value of E  is

calculated from the previous value of E  and the most recent values of H . This is the 

fundamental paradigm of the FDTD method [9].

2.23 Stability

To ensure the accuracy of the computed results, the spatial increment Ax has to 

be small compared to the wavelength (usually < 1 / 10) or minimum dimension of the 

scatterer. To ensure the stability of the FDTD schemes, the temporal increment At must 

satisfy the following “Courant Condition” [6, 35]:

where c0 is the speed of light in the free space and n is the number of space dimension. 

In order to simplify the problem, we determine At by

Z-transform method [28, 38, 39] is a tool to convert the equations from the 

frequency domain to the time domain. In this section we briefly introduced the z- 

transfomi method as described in [28].

2.3.1 Definition of the Z-Transform

When dealing with functions in the sampled time domain the z transform is

extremely useful; i.e., we can rewrite a function x(t)  in the form of

(2.37)

(2.38)

2.3 The Z-Transform
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x if) =  X x (w• - n - M )  5 (2.39)
n ~  0

where At is a uniform time interval, and 8  is the Dirac delta function:

8{t) = 1 if t = 0

8{t) = 0 elsewhere. (2.40)

Then the Z transform is defined by

oo

Z[x(t)] = X(z)  = Y , X(” - • (2.41)
n= 0

Example It

Suppose we have a function like

x(t) = S ( t ) + 0.5 S(t  - A t ) + 0.258{ t - 2 - At) (2.42)

which can be written in the z-domain as

X(z)  =  1+ 0.5z_1 + Q.25z~2 (2.43)

Notice that the first term is simply 1, because z°=l.

In this form, the z_1 operator associated with each delay interval At and can be 

thought of as delay operator. Namely, if

y(t) = x{i -  At) , (2.44)

then

y(t) = S(t -  At) + 0.5S(t -  2 • At) + 0.258{t -  3 • At).  (2.45)

In the z-domain, it can be written as

Y(z) = z ' 1 + 0.5z”2 + 0.25z-3 . (2.46)

Obviously, it means

Y(z) = z - lX( z )  . (2.47)
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And if

w(t) = x ( t - n -  At) (2.48)

for the same reason, one may obtain

W(z) = z~”X(z)  (2.49)

If W(z) is defined as above, then

W(z) = z~n + 0.5z“('i+1) + 0.25z”<,!+2) , (2.50)

which, in turn, going back to time domain, means that

w(t) = 8{t - n  ■ At) + 0.5c>|7 -  (n + 1) • At] + 0.253{t - ( n  + 2) • A/] . (2.51)

We can add two z-transforms by lumping the same powers of z_1 together. For 

instance, adding X(z)  of Equation (2.43) and Y(z) of Equation (2.46) gives

X(z)  + Y(z) = l + 1.5z_I + 0.75z'2 +0.25z~3 (2.52)

Going back to the time domain, we obtain

x(t) + y(t) = 8{t) + 1.5£(f -  AO + 0.15d(t - 2 - At) + 0.25 S(t-3-At) , (2.53)

which could be obtained by adding x(t) of Equation (2.42) and y(t) of Equation (2.45) 

together, being sure to keep like delta terms together.

2.3.2 Convolution Using the Z-Transform

Starting with the definition of convolution in the discrete time domain,

oo

y{t) = iAt)^(iAt), (2.54)
i~ 0

where h(t) is a casual function which is zero for t less than zero.

We take the Z transform on both sides of Equation (2.54)

co co co

y  y(nAt)z ~n — ^  ̂  h(nAt -  iAt)x(iAt)z~n , (2.55)
n~ 0  n= 0  i= 0
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and then interchange the summation signs:

co oo

Y(z) = ^jc(z'A?)^r h(nAt -  iAt)z~” . (2.56)
»=0 n=0

Multiplying by z~! -z’ gives

co co

Y(z) = 'y'ix(iM)z~' Y  h(nAt -  iAt)z~(n~l) . (2.57)
z=0 it—0

Using the parameter m = n - i  results in

CO 00

Y(z) = Y x(iAt)z " T , h(mAt)z ~m > (2.58)
1=0 m = 0

which means

Y(z) = H (z ) -X (z ) .  (2.59)

(Notice that m starts from zero, because h(mAt) is zero for the values of m less than 

zero.) This illustrates the convolution theorem for discrete functions: convolution in the 

discrete time domain becomes multiplication in the z-domain.

While dealing with the continuous functions, the convolution in the time domain

is

y{t) -  ^ h { t -  x)x(j)dx  (2.60)

where hit) is casual. The integral in Equation (2.60) can be approximated by

co

y(t) s  A t ^  h(t -  iAt)x(iAt) (2.61)
i=0

Taking the Z transform on both sides

co oo QO

Y ,  y(nAt)z~" = AtY ,  Y ,  hjnAt -  iAt)x{iAt)z~n . (2.62)
«=0 n—Q i~ 0

Identical to the previous derivation, one may obtain
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Y (z) = AtH (z) • X  (z) . (2.63)

Therefore, the convolution theorem for continuous functions is: convolution in the 

continuous time domain is multiplication in the z-domain and an extra A t .

Example 2:

Suppose an exponentially decaying function:

co

h(t) = Y^e~nk,'h8{t -  nAt) n = 0,1,2,3... (2.64)
n—0

and a discretized unit step function

u(t) = 8(t -  nAt) n = 0,1,2,3... (2.65)

Since

oo 1

V a "  = -------- when | a |< 1, (2 .66)
»=o 1 - a

H{z)  can be calculated as follows:

n = 0  n= 0  l  — e

(2.67)

and similarly

C/(z) = — L - .  (2 .68)
1 — z

Then the desired convolution is

^  • <2.69)

To get a solution in the time domain, we take the partial fraction expansion of Y(z)

(Z 70)
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i  - A t  i u  i  - A t  !t„l - e  0 l - e  0
where A = ---------77— and B =

Since

h=0 * £• «=0 A

from which, going back to the time domain, one may obtain

,-to/to

-z~n , (2.71)

00 _ p ~ ^ Tt t0 1

^(0  = Z '7 1  - M n f nAtit°5 ^  -  wA0  + Z , -  wA0w—0 -*■ ^ w=0 ■*■ ^

1 l - e ~ {n + l)A t 1 ?q

° Z  , S ( t -n A t)
n - 0 A ^

1 _  - ( n + l ) A / / f 0

= -7 — ^ -  ” = 0,1,2,... (2.72)

Or we can obtain Equation (2.72) using the convolution theorem for discrete functions,

00 n n l  _ -(h+1)A// *o

y(t) = 'Yj h(t-iAt)u(ikt) = '£j h(nAt- iAt)  = = ...........    (2.73)
1=0 ;=o 1=0 1 — e

On the other hand, we could simply get the solution from Equation (2.69)

Y(z) = 1 + (1 + e ^ ' h )z~IY(z) -  e~At/l°z~2Y(z) (2.74)

which, in the time domain, means

y(t) = 1 + (1 + e~A'/r° )y(t -  At) -  e~At/t°y{t -  2At) . (2.75)

2.3.3 Alternative Methods to Formulate 
the Z-Transform

We can solve the problems stated in the frequency domain in the time domain.

Our approach is to take the partial fraction expansion of the frequency domain

expression, find the corresponding Z transforms, and solve the problems in the z-domain.
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Our success depends on the ability to manipulate the frequency domain expression that 

can be found in a table like Table 2.1 as follows:

Table 2.1 Transform among the Time, Frequency, and Z-Domain [28]

Time Domain Frequency Domain Z Domain

5{t) 1 1

u(t) 1 1
ja> l - z ' 1

tu{f) 1

(jof)2 ( l - z - 1) 2

e'^ui t) 1 1
a  + jco I -  z^e~aM

However, for some expressions like the Cole-Cole expression, Equation (1.1), it is 

difficult to find out the corresponding Z transform directly, Thus we must find an 

alternative approximation to solve this problem.

Fourier transform theory tells us that a multiplication by joj in the frequency 

domain becomes a derivative in time domain:

Let

f { t )  = lF(o))eM do}, (2.76)

then

f ' ( t )  = ja>\F{m)ejMdo> = , (2.77)

which can be approximated by:
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f ' ( t )  s  ^  ^  • (2.78)

Taking the Z transform on Equations. (2.77) and (2.78) gives:

Z ( / p(0) = jmF{z) (2.79)

and

Z ( A 0 ) s  w w - z w - m  = b j l F ( z ) . (2 ,80)
Af At

Thus, the transition from the frequency domain to the z-domain is made by simply 

making the replacement

1- z -1
ja>=>  . (2.81)

At

As an example, for equation e~mu{t) , the transition from the frequency domain to the z- 

domain becomes

1 1 At
a  + jco 1 - z  1 aAt + l - z  1

a  + ------
At

(2.82)

Utilizing an approximation

1 =e~» for n «  1, (2.83)
1+ M

Equation (2.82) becomes

At At/(l + aAt) _ A t e ^
aAt + l - z ^ 1 1 - z - 1 /(I + aAt) l - z ^ e ^

The corresponding item in the table 2.1 is

(2.84)

1- z  e! -abt (2.85)
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Comparing it with Equation (2.84), we find when At -> 0 , Equation (2.84) approximates 

Equation (2.85) multiplied by At because the convolution theorem for continuous 

functions has been taken into account. As a matter of fact, the factor A t , has to be added 

when we make a transition from frequency domain to z-domain for a continuous 

function.

2.4 Dielectric Properties of Biological Tissues 

Propagation of electromagnetic waves in materials such as dielectrics and 

conductors is determined by their electrical parameters. In the case of dielectrics, chief 

among these is the complex permittivity, e , of the dielectric material. It is normal to 

refer to the relative permittivity, s r , of a dielectric as being its permittivity with respect 

to that of free space, s 0, such that:

s  = e0er (2 .86)

The relative permittivity of a dielectric is defined as the factor by which the 

capacitance of a capacitor increases when the volume between and around its plates is 

filled with dielectric as compared with free space. It is known that the permittivity of a 

dielectric is determined by its molecular/atomic structure but no theory exists to relate the 

two. It is also known that permittivity is often frequency and temperature dependent, 

since certain phenomena which determine its permittivity are functions of frequency and 

temperature. The orientation of polar molecules changes in sympathy with an applied 

radio frequency electric field. This phenomenon has a significant effect in determining 

the permittivity of the material. The ability of the polar molecules to align with the 

applied electric field at radio frequency is determined by the kinematics of the molecular
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structure and is described by relaxation theory.

The main features of the dielectric spectrum of tissues have been reviewed and 

reported by Foster and Schwan [36]. Their theoretical analysis is characterized by a 

single relaxation process centered around a single relaxation time constant.

D

Figure 2.2 Transient response of polar dielectric.

In the simplest case, the polarization of a sample will relax towards the steady 

state as a first-order process characterized by a single time constant, r . Thus the transient 

response looks like Figure 2.2, which has the form:

D  = DX +( D0 - D J (  l - e - f/r) ,  (2.87)

where D0 is the final value of D and is the initial value of D. Since D = s rs 0E , 

Dx = s xs 0E  and D0 = s ss 0E  where ex is relative permittivity at infinite frequency 

( cot  » 1) an d ^  static relative permittivity ( cot « 1 ) ,  we can rewrite Equation (2.87) in 

terms of permittivity:
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e re0E  = s xs qE  + ( s ss 0E  -  ene0E)(l -  e llT) . (2.88)

Canceling s 0E  both sides leaves

er = + (£s - s J - ( £ s ~ ) e~</r (2.89)

Taking Laplace transforms on both sides to convert to the frequency domain and simplify, 

one may obtain

Setting s = jco so as to transform back to the frequency domain gives

which is a single relaxation Debye equation. This equation exhibits a relaxation 

frequency centered on f c = 1/ 2/rr , and strictly, s r and s x refer to the relative

permittivity well below and well above f c respectively. The magnitude of the dispersion 

is described as As  = s s - s x . Equation (2.91) omits the currents flowing at infinite time 

such as would arise due to the movement of ions in a constant field. The model is 

expanded to include a static conductivity term, a s , where a s = jm s 0s s . Including this 

term results in

The dielectric spectrum of a tissue is characterized by several relaxation regions 

each of which is the manifestation of a polarization mechanism characterized by a single 

time constant, r  , namely, every relaxation region corresponds to a single Debye 

expression. Thus, we can model the dielectric spectrum of tissues with the summation of

(2.91)

g* I f -  + - g j_
1 + j m  jco£0

(2.92)
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Debye dispersions in addition to a conductivity term [23]:

A  £  f T

s , ( o ) = s .  + £ - ---- r =— + ~ ^ ~ ,  (2.93)
1+ J 6 ) t  m JW S  0

where A  is the number of relaxation regions.

However, both of the structure and composition of biological material are so 

complicated that each dispersion region may be broadened by multiple contributions to it. 

This effect could be empirically accounted for by introducing a distribution parameter, 

thus giving an alternative to the Debye model known as the Cole-Cole expression [17]:

*,(«>) = «■. + Z  : - , r - ;  , (2-94)t t i l  + ijcoz  m) - j(oe 0 

where the adjustable parameter a  ,between 0 and 1, is a measure of the broadening of 

the dispersion. This model is based on the well-known dispersive properties of biological 

matter and their expression as a summation of terms corresponding to the main 

polarization mechanisms [7], The dielectric spectrum extends from Hz to GHz and shows 

four major regions of dispersion. With a choice of parameters appropriate to each tissue, 

Equation (2.23) can be used to predict its dielectric behavior over the desired frequency 

range [19, 20].

2.5 Conclusion

As we discussed in the last section, the Cole-Cole expression could describe the 

broadening of the dispersion so well that it is commonly employed to model the 

frequency dependence of dielectric properties of a biological tissue. However, it is 

difficult to solve the Maxwell’s equations when coupled to the Cole-Cole expression 

because of the difficulty to convert the equations from the frequency domain to the time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

domain. Therefore, the z-transform is used to simplify the problem. The Cole-Cole 

expression is first transformed from the frequency domain to the z-domain using the z- 

transform method and then approximated by a second-order Taylor series of variable z. 

After that, the Cole-Cole expression in the z-domain is transformed to the time domain. 

Finally, FDTD is employed to solve Maxwell’s equations.
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CHAPTER 3

GOVERNING EQUATIONS

3.1 Governing Equations for the Study of Bioeffects

In our research we assume all the biological tissues being simulated are 

nonmagnetic: that is, H  = B!  fiQ, and the dielectric properties of them are isotropic but

frequency dependent. Therefore, the governing equations in our research are the

“normalized” Maxwell’s equations in a frequency dependent medium as follows [28]:

M  -  1 T7 ZT
^ ~ ~ r =  ’ (3.i)

V ^ O

D{a>) = e r {c o )E {c o ) , (3.2)

d H  1 T7 rV x E ,  (3 .3)
dt s o

where D(ca) = ^jl/(s0ju0)D(a>) is the “normalized” electric flux density,

E(a>) = JT 0 / ju0 E{co) is the “normalized” the electric density. In order to simplify the

notation, we still use D  and E  instead of D  and E  respectively in the later discussion. 

Equations (3.1) - (3.3) produce 9 scalar equations as follows:

3 , ~ I ( o o ) > (3-4)dt  ^ 0/ / 0 a j  dz

30
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d H
dt 1

'0f*0 dz dy
(3.5)

dD^

dt
1 d H * h

s oM(. dz dx
(3.6)

d H 1 { d E « d E * ) t
dt -yJe0M0 dx dz

(3.7)

dD, 1 { d H y d H * }
d t  j e oJu 0 dx  dy

(3.8)

d H :
dt 1 (3.9)

D x ( G)) = 8 r ( a}) E X{ ^ ) ,  

D ( m )  =  £ r { 6 ) )E y {co) ,

Dz{(o) = 8r{co)Ez{co).

(3.10)

(3.11)

(3.12)

There are 9 components o f D , E  and i f  in Equations (3.4)-(3.12). In one-dimensional 

space, we use Dz , E,  and H x with propagation in the y direction and let rest of the 

components be zero. In two-dimensional space, there are two groups of vectors for us to 

choose: (1) the transverse magnetic (TM) mode composed of Dz , E , , H r and H v, or (2)

the transverse electric (TE) mode consisting of Dx,Ex , D v, Ey, and H z . Interested in

E z field, we work with TM mode and set the rest to be zero. In three- dimensional space, 

we use all of the 9 components. The systematic interleaving of fields is illustrated in the 

Yee cell (Figure 2.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

3.2 Difficulty in Solving the System

The relative dielectric constant, s r (co), appearing in the governing equation (3.2) 

is usually described by the Cole-Cole expression as follows:

M ® )  = ^ 0 0 + 2  + , (3.13)
" i  1 + { j a n  m) m jcos 0

Notice that the parameters a m are non-integer which makes it extremely difficult to 

convert the Cole-Cole expression from frequency domain to the time domain. The usual 

way to overcome this difficulty is to approximate the Cole-Cole expression by a Debye 

model or a Lorentz model [26] as follows:

N Kp
e l ( o j )  = £ » + £ -  J , (3.14)

Z t i l +  J ( O T m JCOS 0

or

£*(&) = Soo + 2  — ---- 7A g"'~  y + - :<7s . (3-15)t t i  a>m +  2 j a t m -  co jcos o

However, As m , zm and a s are different from As m , rm and a s , namely, we have to 

recalculate these parameters, which is a large amount of work. After that, the Debye 

model or the Lorentz model is transformed from the frequency domain to the time 

domain using the inverse Fourier transform.

In this study, we develop a new approach by transforming the Cole-Cole 

expression to the z-domain using the Taylor series in z . The advantage of this approach 

is that the values of As m, t rn and a s can be used directly, z-transform method and then 

approximating the result using a second-order
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3.3 Source Term

The source term in our simulation is a short duration, fast rise time ultra-wide

band (UWB) electromagnetic pulse, nanopulse, characterized by the pulse widths of less 

than a few nanoseconds and extremely large electric field amplitudes greater than 

105 F / m . In our research, we use the following Gaussian pulse to model a nanopulse:

E  ( t)  = A e Hc-' f ' ^ V / m ,  (3.16)

where A is the amplitude, c is the center of the pulse, and w is the pulse width. The

energy stored in an electric field is calculated as follows:

Energy = e0c0 E 2 {t)dt , (3.17)

where c0 is the speed of light in the free space. Equation (3.16) is used as a source term 

in our simulation later on.
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CHAPTER 4

N U M E R IC A L  S IM U L A T IO N

4.1 Finite Difference Scheme

In our simulation, all the spatial increment Ax, Ay and Az are assumed the same 

size. To simplify the notation, we replace Ay and Az by Ax , because Ax is so 

commonly used for a spatial increment. Once Ax is chosen, as we mentioned in Chapter

Ax
2, the time step is determined by At =  to ensure the accuracy and stability. Since

2 -cn

the speed of light c0 = 1 / -Js0/uQ in the free space, we obtain

1 At 1
(4.1)

Vf oA> ^  ^

Taking the central difference approximations for both the temporal and spatial 

derivatives in the govern equations (3.4) - (3.9) and using equation (4.1) gives 

D nx+V\ i  + 1/2, j ,  k) = D n; V2{i + 1/2,  j ,  k)  +

i - [ i C '( /  + l / 2 , y  + l / 2 , £ ) - H nz (i + l / 2 J - l / 2 , k )  (4.2)

-  H n( i + 1/2, j , k  + \ / 2) + H n( i + 1/2, j , k  -1 /2 ) ] ,

d ;+,/2 (i, j  + 1 / 2 ,k) = d ; - ,/2 (i , j + 1 / 2 ,k)  +

|  • [a ;  (i, j  +1 / 2, k + 1 / 2) -  a ;  (i, j  +1 / 2, k -1  / 2) (4.3)

- # ; ( /  + 1/2, j  + U2, k)  + H" ( i - l / 2 , y + 1 /2 ,*],

34
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D'z,+l 12 (/, j , k  + 1/2) = D nz~xn (i, j ,  k + 1 / 2) + 
1 
2

[H; (i + 1 / 2, y, k + 1 / 2) -  H ;  (i - 1  / 2, j ,  k  +1 / 2) (4.4)

-  H nx ( i , j  + 1/2 ,k + 1/2) + H nx (i, j - l / 2 , k  + 1/2)],

H ”+1 {i , j  + H 2 ,k  + \ !2 )  = H" ( i , j  + l / 2 , k  + l / 2 )  + 

I . [Eny+l!2 (i, j  +1 / 2, k  +1) -  £ ; +112 { i , j  + l / 2 , k )

-  E n; xn(i, j  + l ,k  + l / 2 )  + E nz+l12(i, j , k  + 1 / 2)1

H ; +l(i + l / 2 , j , k  + l / 2 )  = H ny (i + l / 2 J , k  + l / 2 )  + 

^  ■ [E”+1/2 (i + \ , j , k  + l / 2 ) - E "+x'2 (i, j , k  + 1/2)

-  E nx+in (i +1 / 2, j ,  k  + 1) + E nx+X/2(/ + l / 2 , y ,  >t)],

(4.5)

(4.6)

i? ; +!{i + \ / 2 j  + H 2 ,k )  = H nz (i + l / 2 , j  + l / 2 , k )  +

1 .  [ £ x"+1/2 0  + 1/ 2, j  + l , k ) -  E ; +V2 0  + 1/ 2, j ,  k)  (4.7)

-  £ ; + ( / + 1, j + 1 / 2 , * ) + ^ ; +i/i (/, 7 + 1/ 2 , k ) i

The E  and H  fields are assumed interleaved around the Yee cell (figure 2.1) whose 

origin is at the location i , j , k .  Every E  field is located lA cell width from the origin in 

direction of its orientation while every H  field is offset lA cell width in each direction 

except that o f its orientation. The values o f E  and H  are calculated by separate loops, 

and they employ the interleaving described above. We choose corresponding components 

of the fields for ID, 2D and 3D as described in chapter 3.

4.2 Approximation of Dielectric Constant

The relative dielectric constant, s r(co), of biological tissues vary at different 

frequencies and can be commonly modeled by the Cole-Cole expression, Equation (3.13). 

The usual way to approximate the Cole-Cole expression is using a Debye model or a
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Lorentz model, Equations (3.14) or (3.15), which needs a large amount work of 

reparameterization.

Our alternative approach, in this research, is transforming the Cole-Cole 

expression to the z-domain using the z-transform method and then using a second-order 

Taylor approximation of the Cole-Cole expression to convert from the frequency domain 

to the time domain.

In this section, instead of discussing the reparameterization process described in 

[40], we show how the Debye model is transformed from frequency domain to the time 

domain using the Fourier theory at first, then followed by a z-transform method. After the 

discussion of the Debye model, the transformation of the Cole-Cole model from the 

frequency domain to the time domain using the z-transform method is presented in detail.

4.2.1 Formulating the Debye Model

Assuming a material that can be adequately represented by the following Debye 

formulation:

er = e . + r ^  + ̂ ,  (4.8)
1 + jcor jm s0

we substitute Equation (4.8) into Equation (3.2), which gives:

D(m) = £mE(a)) + — ^ +  (4.9)
1 + j a r  jo)£0

To simulate this medium in FDTD, Equation (4.9) must be put into time domain. There

are two ways to solve this problem. The first one is using Fourier transform, which is the

traditional method. The second one is using a much easier Z transform. We will discuss 

both of the two methods in the following paragraphs.
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First, we start with Fourier Transform. Let us define the last two terms of 

Equation (4.9) as

S(co) = ——̂ — E{a>) , (4.10)
1 + j m

I{G}) = - £ — E{m) . (4.11)
jcoe 0

y
In the first term, Equation (4.10), the inverse Fourier transform of — - —  is

1 + j  COT

(% / r)e~it/T)u(t) , where w(r) is the Heavyside function, which is 0 for £ < 0 and 1 

thereafter. Equation (4.10) in the frequency domain becomes the convolution:

S(0 = — f (4.12)
r  *b

in the time domain. Approximating this gives

Note that

r  Z-,

= ̂ e 4' ,ry [ F 4((H),r •£ ' ]  . (4.14)
r  «=0

Combining these two equations gives

5 " +e~At/TS n~l . (4.15)
T

In the latter term, Equation (4.11), Fourier theory tells us that 1/ jco in the frequency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

domain is integration in the time domain, so Equation (4.11) becomes

7(0 = — |  • (4.16)

Similarly* it can be approximated as a summation over the time steps.

£ 0 1=0 

=  ^ L (e ' +Y e ‘)
£q 1=0

= — E n + r - \  (4.17)
s 0

Going back to the time domain, Equation (4.9) can be reformulated as

D(t) = £xE(t) + S(t) + I(t) .  (4.18)

We can write it in the sampled time domain as follows:

D ” =e„En + S" + I n

= emE n +i— E n +e-/“/rS"-i) + (— E n + r ~ ]).  (4.19)
r  £0

Solving for E ” in Equation (4.19), one may obtain

T \ n  j n - \  - A t / r n H

= - f .  , (4.20)
aAt vAt 

£*, +  +
'0

S ” = e~MiTS n~l + ^ - E n, (4.21)
T

r  = r ~ x + ~ E n . (4.22)
£0

Then, we will show the advantage of using Z transform for the FDTD formulation 

o f the frequency dependent media. In order to avoid dealing with troublesome
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convolution integrals in the time domain, Equation (4.9) can be immediately written in

the z-domain. According to Table 2.1 in Chapter 2, taking the Z transform on

y  (7
terms and   , we obtain:

1 + j m  jcosQ

X _  X I t
1 + j a r  l / r  + jco 1- z  e■1 - A f / r

(4.23)

, (4.24)
j m e 0 j o )  1- z

X . . .Notice that    ■■— Z?(&») in the frequency domain is the convolution m the time
1 +  jCDT

y  I tdomain, on the other h an d , -—----■7-- -E{z)- At is also the convolution m the time
1- z  e r

domain because of the convolution theory of Z  transform described in section 2.3.2. 

Thus, we can write S(co), Equation (4.10), in the z-domain as

£( ? ) =  „ „ • £ ( * ) -At. (4.25)
1- z  e

Similarly, I{(o), Equation (4.11), can be written in the z-domain as

I(z) = ^ r E (z ) - te .  (4.26)
1 — Z

Rearranging these two equations gives

S(z) =  % I t - E ( z )  - A t  +  e~M,Tz -1 S(z) , (4.27)

J(z) = er /s0 • E(z) ■ At + z~lI(z) . (4.28)

Equation (4.9) in the z-domain then becomes

D(z) = £ x E ( z )  + E(z)  + e ^ lTz- lS{z)\ + [—  E(z) + z “!/(z )] , (4.29)
T £n
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from which we solve E(z) by

(4.30)
aA t yAtsx + ---------- +  - —oo

*

Here is the advantage of the Z transform: to get to the sampled time domain, replace I ( z )

with I n, z~xI{z) with I ”~l , and make a similar replacement with the other parameters.

What we get is

T~\n rn-l —AtIt o
E - = D - !  ~ e f  . (4.31)

crAt yAt
£* +  + A—£0 T

S« = e-A*/rS n-l + ZAt_E% (4.32)
T

I n = I ”- '+ — E n, (4.33)
£0

which is exactly the same as what we got using the previous method. The difference is 

we didn’t have to do anything with integrals and approximations, which makes the 

advantage of Z transform evident when dealing with complicated formulations like Cole- 

Cole expression.

4.2.2 Formulating the Cole-Cole Model

We said in the second chapter that most of the biological materials are modeled 

by an empirical Cole-Cole expression, Equation (2.94), as follows:

£,.(0}) = f r + J -
m= 1 t

A s  a
• +

1 + { j a n  my~a* jcos 

Substituting it into Equation (3.2), we obtain
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„  . . „ .  x A £ mE ( m )  a  'E (a ) )  „
D(a>) = s mE(o})  + ]T  ---- /   \ i _g + —£—1----  • (4.34)

t ix 1 + (ja>t m) - j a e  0

Obviously, it is difficult to make a transition directly from the frequency domain to the

time domain because of the exponent 1 - a m, but we can make a transition from the

frequency domain to the z-domain, and then go back to the time domain from the z- 

domain.

Similar to the previous section, we let

m  = (4.35)
jas„

and

A s mE{as)

1 + (y'®0 1
Sm(a>) = -  , m = 1,2,3,4. (4.36)

In the z- transform theorem discussed in section 2.3.3, we know that jco can be replaced

1 -z~'
b y  , furthermore, the factor At that we usually add in the convolution theorem is

At

already in this approximation, so that in the z-domain we don’t need to put an extra At to 

correspond to the convolution in the time domain. Thus, applying the z-transform to 

Equation (4.35) and (4.36) we obtain

I(z)  = ^ S r - E { z ) - A t ,  (4.37)
1 —2

and

Sm(z) = -.........  A£!>SE).-------- , m — 1,2,3,4. (4.38)
l + ( I « ) 1-“- ( l _ z -> )'-“»■

At

From Equation (4.37) and (4.38), we have
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I(z) =      E(z)  + z 5/(z ) 5
e0

(439)

and

^  (z)[l + (1 -  z~xt a" ] = AemE(z) , m = 1,2,3,4. (4.40)

It is noteworthy that if  a m is not 0 or 1, then powers of z in Equation (4.40) are not

integers. This parameter complicates determination of the time steps when Equation

(4.40) is converted back to the time domain.

The situation is simplified by employing a second-order Taylor approximation as 

follows:

Substituting Equation (4.41) into Equation (4.40) and rearranging terms, we obtain

(4.41)

[0  -  « .  s .  M  + i  a  ■- « .  )«„ z-J s .  M l

(4.42)

Then Equation (434) in the z-domain becomes

4

Z>(z)  -  * , £ ( ! )  + £  S , ( z ) + / ( z )

= A E ( z ) i - f iB J ( l - a J z - ' S J z )  + U l - c lJ a „ z - !S J 2)]+z^I(z ) ,  (4.43)

where
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<7 At
A = s x + - i— + 2 /

As

|  -J- ( m \^ gM
At

(4 .44)

Sm (z) = 5 .  [(1 -  a .  ) z - X  (z) + 1 (1 -  )amz~2Sm (z)] (4.45)

+ -----—~~E(z) ,
i +

At

and

T 1 '  m \ l~am
(t TBm =   , m = 1,2,3,4. (4.46)

T  1 m \l~am
1 + ( * }

Hence, we can transform Equation (4.43) back to the time domain and obtain E  at the 

time step n as follows:

E- =i{£>" -Sa.IO-«.)«■' +̂ 0-a.)a.Sr2]} • (4-47)
m=1

where /" and S” (m = 1,2,3,4) are calculated as follows:

jn , (4.48)

s: = 5 JO -  a, )^r + i  (1 -  a„ )a. C s ]

+ -----^ (4. 49)
1 + ( ^ ) 1-“”

A t
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4.3 Boundary Conditions

4.3.1 Boundary Conditions in
One-Dimensional Space

In one-dimensional space, absorbing boundary conditions are necessary to keep 

outgoing electric and magnetic fields from being reflected back into the problem space. 

Usually, in computing the electric field, we need to know the surrounding magnetic field, 

which is a fundamental assumption of the FDTD method. However, we do not have the 

value to one side at the edge of the problem space. Since there is no source outside the 

problem space, the fields at the edge must be propagating outward. Thus we can estimate 

the value at the edge by using the value next to it.

Suppose we are looking for a boundary condition at the end where j  = 0. If a 

wave is going toward a boundary in free space, it is traveling at the speed of light. So in 

one time step, it travels:

Ax Ax
Distance=c0 ■ At = c0 •

2 Cq

This equation explains that it takes two time steps for a wave front to cross one grid. So 

an reasonable boundary condition in one dimension is

i? ;(0) = i< r2(0).

To implement this method, we just simply store a value of Ez (1) for two time steps, and 

then put it in Ez (0). Boundary condition like this has to be implemented at both ends. 

Figure 4.1 shows the results of a one-dimensional simulation in free space with absorbing 

boundary condition. A pulse that originates in the center propagates outwards and is 

absorbed without any reflection.
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Figure 4.1. —  (a), (b), (c) Simulation of an FDTD program in one-dimensional free space 
with absorbing boundary conditions at different time steps: (a) 110 time steps; (b) 150

time steps; (c) 170 time steps.
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(Figure 4.1, Continued)
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4.3.2 Boundary Conditions in 
Two-Dimensional Space

Suppose we are simulating a pulse generated from a point source propagating in 

two-dimensional free space. As the front of the pulse eventually come to the edge of the 

problem space. If nothing were done to address this situation, unpredictable reflections 

would happen. There is no way to distinguish between the real pulse and the reflected 

junk. However, there have been numerous approaches to this problem [6, 35].

One of the most efficient methods to reduce the reflection is the perfectly matched 

layer (PML) developed by Berenger [10, 11]. The basic idea is this: suppose a plane 

wave is propagating in medium A and strikes in a medium B, the fraction that is reflected 

is given by the reflection coefficient T , which is dictated by the intrinsic impedances r\A 

and tjB [41]:

where r}A and tjb are determined by the dielectric constants e and the permeabilities pi 

of the two media

We have assumed that the medias are nonmagnetic, that is, pi = piQ . So when a pulse is 

traveling in medium A with eA = 1 and it impinges upon medium B with s B = 4 ,  it 

“finds” a change in impedance and reflected a portion of itself given by Equation (4.50). 

However, if pi changes with s  so that ij remains a constant, T will be zero and no 

reflection will occur. This is not a final solution yet, because the pulse will continue 

propagating in the new medium. What we really want is a lossy medium that makes the

r  =  1 a  ~ 1 b  

1 a  +  1 b

(4.50)

(4.51)
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pulse die out before it hits the boundary. This is accomplished by making both e and p. 

complex numbers, because the imaginary part of dialectic constant represents the decay.

On the other hand, in two-dimensional space, the governing equations can be 

reduced to:

1 , d H > d H  
d t  d x  d y  ’ (4‘51)

D z (0)) = £ r (0 ))E z (co),  (4.52)

d H x 1 d E z___ X   z

3 H ,  1 5E.

(4.53)

s t  y y y r  e x  ■ (4-54)

If the electromagnetic field vectors are characterized by sinusoidal variation in time, they

can be written in the phasor forms. As an example, the electric filed intensity can be

written as E -  E0ejM. The derivative with respect to time, dIda),  is therefore jco in the

Fourier domain. By such, Equations (4.51)-(4.54) can be written in the Fourier domain

as follows:

1 d H v d H
jcoD  = - f =  ( ---- ^  x- )  (4 55)

^ o M o  d x  dy  ’

D z (co) = £ r ( w ) E z (co) , (4.56)

- r r  1 c E ,
J m H x  ~  T =  ~ r ~ , (4.57)

y  Mq£ 0 dy
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• r r  1 dEzJ CQJti y =  ,-----—  . (4.58)

Then, we will add some fictitious dielectric constants and permeabilities eFz, fiFx and 

VFy [42,43]:

1 8 H V d H
j o D z ■ s Fz (x)  ■ e Fz ( y )  = (— -̂-------------- , (4.59)

V^o^o dx dy

D z ( o )  = £ r ( o ) E z ( o )  , (4.60)

1 Si?
jcoH,  ■ fiFx (x) ■ Frx (y) = — = =  — ■- (4.61)

v / v ^

1 d E
j o H y  • f-iFy ( x )  • f-ipy (y) = - J —  . (4.62)

From the above equations, we can see these fictitious values have nothing to do 

with the r e a l  values of s r (&) that specify the medium.

Sacks, et al. [44] shows two conditions to build a PML:

(1) The impedance going from the background medium (medium A) to the PML 

(medium B) must be constant,

Va =Vb = J —  = 1 m = x ,y  or z . (4.63)
V Si' Fm

The impedance is 1 because we normalize the units.

(2) In the direction perpendicular to the boundary, the relative dielectric constant 

and relative permeability must be the inverse of those in the other directions, i.e., in the x  

direction,
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s Fx(x) = — n = y  or z » (4.64)eFn(x)

Mr*(x) =  n = y  or z . (4.65)
MFn(X)

We will assume that each of these is a complex quantity of the form

* * M  = Fr, M  = (1 + , (4.66)
J ( D S 0

V Fn (x ) = s Fn (x) = 1 + ^ , n = y  ox z  . (4.67)
jme  0

Obviously, Equation (4.66) and (4.67) fulfills Equation (4.63)-(4.65). If a D 

increases gradually as it goes into the PML, Equations (4.59), (4.61) and (4.62) will cause 

Dz (x) , H x (x ) and H y (x) to be attenuated.

Starting by implementing a PML only in the x  direction, we retain only the x 

dependent values of s F and fiF in Equations (4.59), (4.61) and (4.62) and obtain:

1 t d H yJ d ) D z ■ £ Fz ( x ) = - = = ( — *- -  — JL) (4.68)
V^o /^0 dx dy

1 dEz
j m H x ■ fiFx(x) = — T= = — f~  (4.69)

1 d E zj  mH • fiF (x) = - = =  , (4„y0)
V/io^o ax

Using the values of Equation (4.66) and (4.67), one may obtain as follows:

ja>D,  • [ i + ]  =  - _ L ^ ,  _  f l L )
jeo£0 7 £ o/“ o 8x dy  ’
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. TT M o - J x ) ^  1 dE ,  
j w H x • [ !+  =

j ®s o 4 m ^ o dy  ’

. jj n  crD(x)  1 3E ,jcoH . [ l  +  - 2 ^ ]  =
j ( 0 £ Q  [ I q S q  8 x

First, take a look at the left side of Equation (4.71):

jcoD, ■ [1 +  ^ J > M ]  =  j aDi  +  d '
j  C O S  o  G q

Going back to the time, Equation (4.71) becomes

3D,  | a D( x ) D 1 8Hy 8H
8 t e 0 2 4 E E  8 x  &

Taking the finite difference approximation, we obtain:

D;+U2( i , j ) - D r U2(i, j) , <TD( i ) D r U2(i , j) + D;+m(i,j)
A t  € 0

4 ^  ^

Rearranging Equation (4.76) gives:

j )  = j )  + gi 2 ( 0 -j - [ H ; 0 + U 2 J )

- H ; ( i - l / 2 J ) - H ; ( i , j  + l / 2 )  + H' y (i,  j -  1 /2 )] ,

where

1gi2{t)
l + a Dii)Atl{2-e0)

51

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)
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(4 '79)l + crD(i)At/(2-£0)

An almost identical treatment of Equation (4.73) gives:

H ; +1 (i + 1 / 2, j )  = f i3 ( i  + 1 / 2 ) F ;  (z + 1 / 2, y) +

f i 2 ( i  + U 2 ) - ^ [ E " ' ' ! (i + i J ) - E r ' , ! ( i , j ) ]  ’ < 4 ' 8 0 )

where

y?2(/ +1/2) = ----------------  , (4.81)
l + a D(i + l /2 )A t / (2 - s0)

t / (2 . s0) 
l + a D(i + l /2)At / (2-sQ)

Equation (4.72) will require a different treatment than the other two. Start by rewriting it

as

j * ! , -  > + (4.83)
V£oA> ^  s 0 jo) dy

Because 1/ jco can be regarded as an integration operator over time and jm  as a 

derivative over time, we can rewrite Equation (4.83) in the time domain as:

H f  (h i  +1 / 2) -  H nx (i, j  + 1/2) 1 E :+V2( i , j ) - E ; +1/2(i, j  +1)
A/ ^

M O  ^  E ? U2( i , j ) - E r ' n ( i , j  + 1)3
(4.84)

4*
\ h j

>0 (=0 Ax

Finally, we can write the schemes as follows:

curl = ^ ; +i/2 (/, y) -  ̂ r ' 72 (h i +1), (4.85)

/ £ 172(|,y +1 / 2) = rmV2( i ,  j  + l /2)  + curl , (4.86)

t f ;+1 ( / , 7  + 1/2) = H nx (i,7  + 1/2) + O.Scurl + _/?!(/) • / " f 2(i,y + 1/2) (4.87)
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with

^1(0  = ^ .  (4.88)

In calculating /  and g , it is not necessary to actually vary conductivities. Instead, one 

may use the auxiliary parameter

x , = ^  , (4.89)
2^0

that increases as it penetrates more deeply into the perfectly matched layer. Here, we 

employ an empirical formula given in [28] and let

* „ = v ( r - ) s. ' = 1.2." . (4.90)
pml

where lpml is the length of the perfectly matched layer. Now the quantities /  and g  are 

calculated as follows:

y?l(0 = x ,(0 , fi2(i + l /2 )  = ---— , m  + \ l 2 ) = \ + , (4.91)
l + x„(i + l/2 )  1 + xn (z + 1/ 2)

gi2(i) = — t — , g m  = . (4.92)
1 + xn(i) l + x„0 )

Throughout the main problem space, f i l  is 0, while the other four are 1.

So far, the implementation of the PML in the x direction is completed. 

Obviously, it should also be done in the y  direction. We have to add y  dependent terms 

from Equations (4.59), (4.61) and (4.62). Therefore, we have

. _ ri cr0 ( x ) 1f1 & D( y ) 1 I d H x .
j m D z - [I + = - 7= = ( — ^ -  — , (4 .93)

JG)£q j  (os 0 dy
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n , M * ) r in  , M f ) - .  1 ^  r f _„j(oH x •[! + — J Ll-t-—------- J - — p = —— , (4.94)
J036o jo jGq ^ Iju0£ 0 d y

. TT ri crD(*) <td (j>)-,-i 1 Sifr
J®Hy  • [1 + = "7= 7 ^  • (4.95)

Using the same procedure as before, we obtain the schemes for D r :

d : +U2 a ,  j ) = gi 3 (0  ■ gj 3(o  ■ D r 1/2 a ,  j )

+ g* 2 <i) • gj  2 ( 0 - ~ [ ^ ; 0 ' + l / 2 , y )  (4.96)

-  / / " ( /  -  1 / 2 , 7 )  -  H nx ( i , j  + 1 / 2) + H n ( i J -  1 /2 ) ] ,

for i7 :

curl = E ? v l { U j ) - E ? ' ‘2( U  + \) ,

C /2 (*, 7 + 1 /2 ) = I nmV2 (i, 7 + 1/2) + c» r/, 

^ ”+1 (h7 + 1/2) = j/3(y +1 / 2)Hnx ( i , j  + 1/2)

+ f j 2 ( j  +1 / 2) • [O.Scwr/ + y?l(i) • C 1/2(b j  +1 / 2)]
(4.97)

and for H , :JV

cur/ = £ r 1/2(i + l , 7 ) - ^ r 1/20'57) 5

c /2(i +1 / 2,7) = j ; ; 1/2(i + l / 2, j )  + curl ,

iJ  ;+1 (/ +1 / 2,7) = /z3(z +1 / 2 )F ; (f + 1/ 2,7)

+ //2(i + 1 /2)-[0.5cwr/ + # ( y )  • / £ ‘7 2 (1 +1 / 2 ,7)],
(4.98)

where j j  and g/ have same expression as f i  and g i .

Figure 4.2 shows the results of a two-dimensional simulation in free space with perfectly 

matched layer. A pulse originates in the center of the problem space. Notice that the 

outgoing contours remain concentric. Only when the front o f the pulse gets within 5
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points o f the edge, which is the PML, does distortion start to occur. The effectiveness of 

the PML is apparent in the last figure because no reflection occurs.

60

50

40

>- 30

20

10

0 .9 3 7
0 .8 7 5
0.812
0 .7 5 0
0 .6 8 7
0 .6 2 5
0.562
0 .500
0.437
0 .3 7 5
0 .3 1 2
0 .2 5 0
0 .1 8 7

0 .0 6 2

10 20 30 40 50 60
X

(a)

Figure 4.2. —  (a), (b), (c) Simulation of an FDTD program in two-dimensional free space 
with a perfectly matched layer at different time steps: (a) 160A t; (b) 170A t; (c) 180At.
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(Figure 4.2, Continued)
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(Figure 4.2, Continued)
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4.3.3 Boundary Conditions
in Three-Dimensional Space

The development of perfectly matched layer for three dimensions exactly follows 

the two-dimension case. The difference is there are 6 scalar equations each of which has 

3 directions to deal with. So the Maxwell’s Equations in the PML can be written as:

ja ,D r • [1 +  + ^ M ] [ l  + ,  - _ L _ (4. 99)
jcoe o j m 0 jo)£ q Qy dz

jcoDy • [1 + £ s ^ ] [ l  + , (4.100)
7 ^ o  7®£0 7 ^ o  Vf o/h> &  &

y<n£>,-[l + ^ i ]  [1 + ^ M ] [ l  + ^ M ) - '  = ( ^  -  ^ ) , (4.101)
7®^0 7 ^ o  7<^o V£o^o

j a H , •[! + + £ f i t£ l ]  = > ( M ,  -  M i . ) , (4 .102)
7®^o 7«^o 7®^o Vf o^o 5z aT

jcoHy • [1 + - ^ % 1  + ^ ^ - ] - 1[l + -^ > M ] = - ,= 1 =  ( ^ -  -  ^ - )  , (4.103)
jcos0 jcoe0 j  cos 0 yjs0ju0 dx dz

jcoHz • [1 + [1 + - ^ M ] [ i  + ^ 1 ] - *  = ~ — ) • (4.104)
7 ^ o  J°>e o 7 ^ o  V^o^o 5x

Following the same math we use in the two-dimensional case, we obtain the following 

finite difference schemes:

curl = \ H nz {i + 1 / 2 ,  j  + 1/2 ,  k ) - H nz {i +112 J  - 1 / 2 , * )

-  ; ( / >  1/2  + 1/ 2)+  # ; ( /  + 1/ 2 , y , * - 1/ 2)]

I nDx (i + 1/2,  j , k )  = (7 + 1/2,  j , k )  + curl ,

D " +i/2(i + 1/ 2, j , k )  = gj'3(j)gk3(k)D"~V2 (i + 1/ 2, j , k )  +

|g / - 2 (y )g i2( i) [c Mr/ + gil</ + 1 / 2)J£  (/ + ! /  2 , y, *)] 5 (4‘'l °5)
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with corresponding expressions for D "+1!2(z, j  + i /2 ,k )  and D"+l'2 (z, j , k  +1 /2 ), and

curl = [ E ”+V2 ( i j  + l / 2 , k  + l )~  E ny+h'2 (i, j  + 1/2 ,k)

-  E f 1' :2(z, j  +1, k  +1 /2 ) + E nz+hr2 (z, j , k  +1 /2)]

J ^ l/2 (i, j + 1/ 2 , A:+ 1/ 2) = r m 1/2 ( i J  + \ ! 2 , k  + H 2)  + curl

H ' f  (z',y + 1 /2 ,£  + 1 /2 ) = j j3 { j  +1 / 2) # 3 (J t +1 / 2)7/" (z, 7 +1 / 2, k +1 / 2)
1 , (4.106)

+ ~ J j 2 ( j  + l /2 )Jk2 (k  + l /  2 )[curl + f i ( i ) I nH+xV2(i, j  + l / 2 , k  + l / 2)

with corresponding expressions for i /"+1 (/' +1 / 2, j ,  k  +1 / 2) and

i f ”+1 (z+ 1/ 2,7 + 1/ 2, fc), where

crn(x)At
./ml(x) = gwzl(x) = —5------- , m = z, j , k  , in PML,

2^o

yhzl(x) = gml(x) = 0, m = i , j , k  , in the main problem space, (4.107)

fm2(x) = gm2(x) = ■■ , m = z, 7 , k , in PML,
l + crD (x)E t /2 s0

fm2{x) = gm2(x) = 1 , m = i , j , k , in the main problem space, (4.108)

fm3(x) = gm3(x) = -......... ■■■■?■■■■ ■■■-—  , i» = i ,7,k , in PML,
1 + oy, (x) A/ / 2 f0

fm3(x) = gw3(x) = 1 , m = i , j , k , in the main problem space. (4.109)

Notice that a D(i)/2e0 is approximated by the empirical formula Equation (4.90).
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4.4 Simulation of a Nanopulse

4.4.1 Simulating a Nanopiilse in 
One-Dimensional Space

In one-dimensional space, the source term, the nanopulse, is calculated by 

Equation (3.16), after the Ez values are computed within each time step. This is done by 

simply specifying a value of E2 at the source point, and overriding what was previously 

calculated. Otherwise, without adding the value of the previous time step to the source 

term, there would be an “invisible wall” on the source point, which reflects the income 

wave.

4.4.2 Simulating a Nanopulse in 
Two-Dimensional Space

One dimensional 
incident array

FMT,Incident plane 
wave is subtracted

Total field

ja
Incident plane 
wave is generated

Scattered field

ta

Source pointx

Figure 4.3 Total/Scattered field of the two-dimensional problem space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

To simulate a nanopulse in a 2D FDTD program, the problem space must be 

divided into two regions: the total field and the scattered field (Figure 4.3). The reason to 

do this is to prevent the plane wave from interacting with the absorbing boundary 

conditions and minimize the load on the absorbing boundary conditions. Figure 4.3 

illustrates how this is accomplished. We use an auxiliary one-dimensional array, which is 

easy to generate a plane wave. Choosing a source point we add an incident Ez field at 

that point. Then a plane wave propagates away in both directions. Since it is a one

dimensional array, the boundary conditions are perfect.

In the two-dimensional field every point in the problem space is either in the total 

field or in the scattered field. Therefore, if  a point is in the total field but it uses points in 

the scattered field to calculate the spatial derivatives when updating its value, it must be 

modified. The same is true for a point in the scattered field but use the points inside the 

total field. Finally, in the two dimensional space, there are three place must be modified:

(1) The D2 value at j  = ja  or j  = jb

Dz0 , ja)  = Dz0 , ja)  + 0.5HX inc{ j a -1 /2 ) (4.110)

Dz 0, jb)  = Dz 0, jb)  -  0.5H XJnc {jb + 1/2) (4.111)

(2) The H x value just outside j  = ja  or j  = jb

H x0, j a - 1/2) = H x0, j a - 1 /2 )  + 0.5Exjnc{ja) (4-112)

H x 0, j b  + 1 / 2) = H x (/, jb  + 1 / 2) -  0.5E, „ c {jb) (4.113)

(3) The H y value just outside j  = ja  or j  = jb

H y {ia - 1 /2 , j )  = H y 0ia - 1 /2 , j )  + 0.5Exjnc {j) (4.114)

H y {ib + 1 / 2, j )  = H y {ib + 1/2 J ) -  0.5 Ex _ inc ( j) (4.115)
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4.4.3 Simulating a Nanopiiise in
Three-Dimensional Space

It is similar to generate a nanopulse in three-dimensional space. A plane wave is 

generated in one plane of the problem space, in this case, we suppose it is XZ plane. So 

the plane is generated at j  = ja  and subtracted out at j  = jb.

Finally, four places must be modified:

(1) The Dy value at k = ka or k  = kb +1

Dy O', j + 112, ka) = Dz O', j  +1 / 2, ka) -  0.5HXJnc ( j  + 1/ 2) (4.116)

Dy( i , j  + 1/2,kb+ T) = Dz(i, j  + 1/2,k b + 1) + 0.5Hx itl(( j  + 1/2)  , (4.117)

(2) The D z value at j  = ja  or j  = jb

Dz (i, ja,  k  +1 / 2) = Dz (i, ja,  £ + 1/2) + 0.5 H x_inc { j a -1 /2 )  (4.118)

Dz (i, jb,  £ + 1/2) = D2 (/', jb,  £ + 1 /2 )-0 .5  H xJmc {jb + 1/2) (4.119)

(3) The H x value just outside j  = ja  or j  = jb

H x {i, j a - l / 2 , k  + l /2)  = H x{ i , j a - l / 2 , k  + l /2)  + 0.5Exinc {ja) (4.120)

H x{i,jb + l / 2 , k  + l /2)  = H x{i,jb + l / 2 , k  + l / 2 ) - 0 .5 E x !nc{jb) (4.121)

(4) The H y value just outside j  = ja  or j  = jb

H y { i a - l / 2 , j , k  + l /2)  = H y {ia- 1 /2 ,y ,£ + 1/2) + 0 .5 ^ , , ,  ( j)  (4.122)

H y {jb + l /2 ,y ,£  +1/2) = H  y{ib + \ ! 2 , j , k  + 1/2) -  0.5At _if!C (y) (4.123)

4.4.4 Pulse Energy

The energy stored in an electric field is calculated as Equation (3.17):

Energy = e0c0 £ E 2 {t)dt,
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which can be easily approximated by:

T

Energy = s 0c0A t ^ ( E ’' )2 . (4.124)

This expression can be used to calculate the transmission, reflection, and absorption of 

pulse energy by a barrier as a function of pulse width. Transmission is defined as the ratio 

of the pulse energy entering the barrier, here, a biological tissue to the initial pulse 

energy; reflection as the ratio of pulse energy reflected by the barrier to the initial pulse 

energy, and absorption as the ratio o f pulse energy absorbed by barrier to the initial pulse 

energy.

However, one thing must be pointed out that a tricky in calculating the reflection 

because we need to separate the reflected pulse from the original one. This can be solved 

as follows: Suppose a pulse is propagating in the y  direction. The electric filed

amplitude at a fixed point M  in front of the barrier is stored versus time. This fact results 

in the values of total electric field versus time at that point E ”ot. We then remove the 

barrier and do the calculation again in free space. This method gives us the incident 

electric field at the point M , E-nc. Therefore, for each time step, the reflected field is 

given by

4.5 Algorithm

The algorithm for simulating the electromagnetic fields in biological tissues 

exposed to a nanopulse in three-dimensional space can be described as follows:

Step 1. Set up /  and g  as defined in Equations (4.107)-(4.109).

(4.125)
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Step 2. Calculate D  from Equation (4.105) and corresponding expressions for the

y and z directions.

Step 3. Modify Dy,Dz as described in Equations (4.116)-(4.119).

Step 4. Calculate E  from Equation (4.47) and then / ” and S" (m = 1,2,3,4) from

Equations (4.48) and (4.49).

Step 5. Calculate H  from Equation (4.106) and corresponding expressions for the 

y and z directions.

Step 6 . Modify H x, Hy as described in Equations (4.120)-(4.123).

Step 7. Calculate energy rate from Equation (4.124).

Repeat steps 2-7 until the required steps are carried out.
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CHAPTER 5

COMPUTATIONAL RESULTS AND DISCUSSION

5.1 Comparison of Different Models

In general, there are two ways to solve Maxwell’s equations when coupled to the 

Cole-Cole expression. Usually, we can approximate the Cole-Cole model by other 

models such as a Debye model. However, we need to rewrite all the parameters for the 

new model, which is a painstaking job. The other way is transforming the Cole-Cole 

expression to the z-domain using the z-transform method and then approximating the 

results using a Taylor series in z .

We have computed the EM field in a tissue on exposure to a Gaussian pulse with

both methods. The pulse was chosen to be Ez -  e~(300“'!) /i0000F !m , where n is the time 

step. The pulse shape is shown in Figure 5.1. We placed a slab having the electrical 

properties of human skin between the 900th and 1100th grid points in the propagating 

direction. The grid size was Ax = 0.5/jm. The parameter for the Cole-Cole model and 

Debye model are shown in Table 5.1. Figure 5.2 shows a sequence of snapshots of the 

electric field intensity versus position during pulse propagation. It is clear that there is no 

significant difference between the models for the chosen parameter values.

65
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Figure 5.1. Pulse shape of E z = e 10000 V / m
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Table 5.1 Dielectric Properties of Human Skin [20, 45]

Debye Cole-Cole

4.0 4.0

0.014 0.0002

Ae{ 38 32

A s 2 0 1100

A s3 0 0

A e4 0 0

rx(ps) 6.9 7.23

t 2(ns) 0 32.48

r.ijus) 0 0

r 4 (ms) 0 0

a l 0 0.1

a 2 0 0.2

(X̂ 0 0

a 4 0 0
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(a)

Figure 5.2.—(a)-(d) A sequence of snapshots of the electric field intensity versus position 
during pulse propagation at different time steps: (a) 2000 time steps; (b) 2400 time steps;

(c) 3200 time steps; (d) 3600 time steps.
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(Figure 5.2, Continued)
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(Figure 5.2, Continued)
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(Figure 5.2, Continued)
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5.2 Numerical Results for Different Dimensions 

We have tested the algorithm for obtaining EM fields induced by a Gaussian 

pulse shown in Figure 5.3. We modeled a slab having the dielectric properties of blood 

between the 25th and 35th grid points in the y  direction. The problem spaces for ID, 2D 

and 3D are listed as follows:

ID: y  e [0,60]/z?w,

2D: x x  y  e [0,60]/jm x [0,60]/jm 

3D: x  x y  x z e [0,60]/#w x [0,60] /j m  x  [0,60]jjm .

The parameters in Cole-Cole expression are shown

Av
Ax = Ay = Az-l.Ojum and At = ---- = 1.6667xl0~15s .

2 c0

5.9(b) and 5.4(c)-5.9(c) show a sequence of snapshots of the electric field intensity versus 

position for the pulse at different time steps in ID, 2D and 3D. Propagation and reflection 

of the pulse are clearly evident, as is the phase change on passing from a region of low 

dielectric (air) to one of high dielectric (blood). Furthermore, it is clear that the values of 

E3 are uniform at a fixed position of y  in 2D and 3D; thus we can use the Ez values on 

the symmetric axis to represent the values in the whole space. That is, in the two- 

dimensional space, we pick up the Ez values on the line x  = 30, and in the three- 

dimensional space, we choose the values on the line x  = 30, z = 30. Figure 5.10 shows a 

sequence of snapshots of the values of Ez versus y  position on the symmetric axis in 

ID, 2D and 3D at different time step. As we can see, there is no major difference among 

these results for different dimensions in the total field, while in the perfect matched layer,

in Table 5.2. The values 

Figures 5.4(a)-5.9(a), 5.4(b)-
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the pulse in ID had a different behavior from those in 2D and 3D, that is because there is 

no artificial PML in ID and we only apply an absorbing boundary condition to it.

Next, a model of a blood cell was placed at the center of the 3D cube. The radius 

of the cell was 10 jjm and the other parameters were the same as the previous case. 

Figures 5.1 l(a)-5.15(a) and 5.1 l(b)-5.15(b) show the contours of Ez when the time are 

140, 160, 170, 180 and 200, where the pulse is impinging on the cell, passing through the 

cell, passing out from the cell, passing through the boundary, and has passed through the 

boundary. Contours are plotted in the xy cross-section at z = 30 and in the half cube 

where z = 0 ~ 30 . It is clear that the nanopulse penetrates a spherical cell having the 

indicated frequency-dependent properties.
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Figure 5.3 Pulse shape of E z = e 100 V / m
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Figure 5.4.—(a), (b), (c) Snapshots of E z versus position for the pulse at 130 time steps 
in: (a) one-dimensional space; (b) two-dimensional space; (c) three-dimensional space.
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(Figure 5.4, Continued)
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(Figure 5.4, Continued)
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Figure 5.5.—(a), (b), (c) Snapshots of E z versus position for the pulse at 140 time steps 
in: (a) one-dimensional space; (b) two-dimensional space; (c) three-dimensional space.
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(b)

(Figure 5.5, Continued)
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(Figure 5.5, Continued)
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Figure 5.6.—(a), (b ) , (c) Snapshots of E z versus position for the pulse at 150 time steps 
in: (a) one-dimensional space; (b) two-dimensional space; (c) three-dimensional space.
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(Figure 5.6, Continued)
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(Figure 5.6, Continued)
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Figure 5.7.—(a), (b), (c) Snapshots of E z versus position for the pulse at 180 time steps 
in: (a) one-dimensional space; (b) two-dimensional space; (c) three-dimensional space.
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(Figure 5.7, Continued)
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Figure 5.8.— (a ), (b), (c) Snapshots of Ez versus position for the pulse at 200 time steps 
in: (a) one-dimensional space; (b) two-dimensional space; (c) three-dimensional space.
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Figure 5.9.—(a), (b), (c) Snapshots of E z versus position for the pulse at 210 time steps 
in: (a) one-dimensional space; (b) two-dimensional space; (c) three-dimensional space.
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Figure 5.10.—(a)-(f) A sequence of snapshots of the values of Ez versus y  position on 
the symmetric axis in ID, 2D and 3D at different time steps: (a) 130 time steps; (b) 140 
time steps; (c) 150 time steps; (d) 180 time steps; (e) 200 time steps; (f) 210 time steps.
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Figure 5.11.— (a), (b) Contours of Ez at 140 time steps in: (a) the xy cross section at 
z  = 30; (b) the half cube where z = 0 ~ 30.
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Figure 5.12.—(a), (b) Contours of Ez at 160 time steps in: (a) the xy cross section at 
z = 30; (b) the half cube where z = 0 ~ 30.
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Figure 5.13.—(a), (b) Contours of Ez at 170 time steps in: (a) the xy cross section at 
z = 30 ; (b) the half cube where z  = 0 ~ 30.
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Figure 5.14.—(a), (b) Contours of Ez at 180 time steps in: (a) the xy cross section at 
z = 30; (b) the half cube where z = 0 ~ 30 .
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Figure 5.15.—(a), (b) Contours of E2 at 200 time steps in: (a) the xy cross section at 
z = 30 ; (b) the half cube where z = 0 ~ 30.
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(Figure 5.15, Continued)
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5.3 Penetration of a Pulse

We have further studied application of the new method to penetration of a 

Gaussian pulse into biological matter. The grid size was Ax = 0.1mm and the time

A.x
increment At = ------ = 1.6667 x 10~13 s . The pulses were chosen as follows:

2c0

( 5 w ~ n ) 2

Ez = 105e V im  , (5.1)

where w is the width of the pulse set to a value between 100At and 2000A t. A uniform 

dielectric slab of thickness 1m m  -  lc m  was used to model biological tissues. The 

parameters for the five different cases are shown in Table 5.2. Transmission, reflection, 

and absorption were calculated as a function of pulse width for each case. Figures 5.16- 

5.20 show the energy rate versus the pulse width.

In case 1 the material had ex = 4.0 but was not dispersive. Consequently no 

energy was absorbed. Figure 5.16 shows how transmission and reflection varied with 

pulse width and slab thickness. Most o f the energy passed through the slab. Penetration, 

however, increased with pulse width and decrease with slab thickness. Reflection was 

simply the complement of transmission; no energy is absorbed by a non-dispersive 

medium.

In case 2 the material was dispersive and had e „ = 4.0 and crs =1.0 ; the

remaining dielectric properties were 0. Figure 5.17 shows transmission, reflection, and 

absorption as a function of pulse width and slab thickness. Evidently the extent of 

penetration decreased with slab thickness. Reflection increased with slab thickness, 

regardless of pulse width. For larger thickness of slab, it increased with pulse width
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while for the smaller ones it showed an opposite behavior. On the contrary, absorption 

increased with pulse width for thinner slab while behaved oppositely for the thicker one.

In case 3 the dielectric slab had the properties of mammalian blood. One can see 

from Figure 5.18 that transmission decreased with increasing in slab thickness. The 

portion o f the initial pulse energy penetrated the thick slab was relatively so small that it 

may hint an insufficiency to treat blood-borne pathogens. For reflection and absorption, 

the shapes of curves changed with the slab thickness. Whether it is caused by a real 

physical effect or numerical influence is still unknown at this time. Theoretical study is 

needed to explain these behaviors.

In case 4 the slab was considered to be sclera, i.e. the sclerotic coat of the 

mammalian eyeball. The results shown in Figure 5.19, are similar to those o f case 3. The 

calculation may be useful for deciding whether eye protection should be worn in the 

vicinity o f a nanopulse generator.

In case 5 the slab was modeled as breast fat. Figure 5.20 illustrates that a large 

portion of energy passed through the slab. Penetration decreased with slab thickness. A 

very small portion of the energy was reflected, and reflection increased with either pulse 

width or slab thickness. Absorption increased with either pulse width or slab thickness, in 

contrast to the behavior o f blood and sclera. This analysis may be pertinent to interest in 

the use ofUWB pulse in breast cancer detection [46],

As to the physics o f the time-dependence of the applied pulse, it is not very clear 

why pulse width or rise time should result in bioeffects. Of course, the energy deposited 

in a sample will depend on pulse width, but when the pulse is so short, the temperature
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rise will be insignificant [47], Further experimental study is needed to elucidate 

mechanisms of non-thermal effects.

Table 5.2 Dielectric Properties [20, 21, 22]

Case 1 Case 2 Case 3 Case 4 Case 5

(Non-dispersive) (Dispersive) (Blood) (Sclera) (Breast Fat)

£» 4.0 4.0 4.0 4.0 2.5

0.0 1.0 0.7 0.5 0.01

A sr 0 0 56 50 3

Ae2 0 0 5200 4000 15

<1 0 0 0 105 5 x 104

■rt-
< 0 0 0 5 x l0 6 5 x 107

Tx( p s ) 0 0 8.377 7.958 17.680

r 2( n s ) 0 0 132.629 159.155 63.660

t 3(jus) 0 0 159.155 159.155 454.700

t 4( m s ) 0 0 15.915 15.915 13.260

0 0 0.1 0.1 0.1

a 2 0 0 0.1 0.1 0.1

a 3 0 0 0.2 0.2 0.1

a 4 0 0 0 0 0
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Figure 5.16.— (a), (b), (c) Transmission, reflection and absorption in case 1.
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Figure 5.17.—(a), (b), (c) Transmission, reflection and absorption in case 2.
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Figure 5.18.—(a), (b), (c) Transmission, reflection and absorption in case 3.
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Figure 5.19.—(a), (b), (c) Transmission, reflection and absorption in case 4.
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Figure 5.20.—(a), (b), (c) Transmission, reflection and absorption in case 5.
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CHAPTER 6

CONCLUSION

In this study, we have developed a novel approach for simulating the propagation 

of a pulse electric field in biological matter subjected to a nanopulse. A new 

approximation of the Cole-Cole expression for the frequency dependence o f the dielectric 

properties o f tissue is used to improve the traditional Debye model. This method, based 

on a z-transformation and a second-order Taylor Approximation of the Cole-Cole 

expression, simplifies conversion from the frequency domain to the time domain. 

Maxwell’s equations are then calculated using the finite difference time domain method 

coupled with the perfectly matched layer method in order to eliminate reflections from 

the boundary.

The new approach has been applied to investigate of the penetration of 

electromagnetic Gaussian nanopluses into biological matter. Transmission, reflection, 

and absorption of energy were calculated as a function of pulse width for different 

biological tissues. It is found that these properties depend substantially on pulse width as 

well as type of tissue. Absorption of energy from exposure to nanopulses can have a 

damaging effect on dells and tissues.

Future work in this direction should examine the role of pulse rise time in 

transmission, reflection, and absorption, as well the relevance of pulse shape to tissue

127
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penetration. Moreover, the temperature distribution in biological tissues exposed to 

electromagnetic waves could be investigated [49]. Such study could help to elucidate 

non-thermal mechanisms of nanopulse bioeffects.
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Source Codes for ID  Simulation

11 PML.cpp : Defines the entry point for the console application.
//
/*Fd3d_4.3.c. 3D FDTD, plane wave on a dielectric sphere. */
/* this program simulates the plane wave in 3 dimensions impinging on a dielectric cylinder 
the input to the program are, npml = 14, number spheres = 1, radius of cylinder = 20, 
epsilon = 30, conductivity = .3, and nsteps = 30,40, 75,100*/

#include "stdafx.h"
# include <math.h>
# include <stdlib.h>
# include <stdio.h>

#defme IE 151

#define Basel 60 
#define Base2 600

double amp0,ampl,amp2; 
int ww;
double dx[IE]; 
double ex[IE]; 
double hy[IE]; 
double ix[IE]; 
double gaxl[IE]; 
double gax2[IE]; 
double gax3[IE]; 
double gax4[IE]; 
double gbxl[IE]; 
double gbx2[IE]; 
double gbx3[IE]; 
double gbx4[IE];

double gdxl[IE]; 
double gdx2[IE]; 
double gdx3[IE]; 
double gdx4[IE]; 
double gcxflE]; 
double gx[IE]; 
double sxl[IE][3]; 
double sx2[IE][3]; 
double sx3[IE][3]; 
double sx4[IE][3];

double inc_dx[IE]; 
double inc_ex[IE]; 
double inc_hy[IE]; 
double inc_ix[IE]; 
double inc_gaxl[IE]; 
double inc_gax2[IE]; 
double inc_gax3[IE]; 
double inc_gax4[lE]; 
double inc_gbxlfIE];
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double inc_gbx2[IE]; 
double inc_gbx3[IEj; 
double inc_gbx4[lE];

double in c g d x l [IE];
double mc_gdx2[IE]; 
double inc_gdx3[IE]; 
double inc_gdx4[JE]; 
double inc_gcx[IE]; 
double inc_gx[IE]; 
double inc_sxl[IE][3] 
double inc_sx2[IE][3] 
double inc_sx3[IE][3] 
double inc_sx4[IE][3]

double thick; 
double pw;
double tran[60],ref[60],absp[60]; 
intcor[60];

int main(int argc, char* argv[])
{

int cn=0; 
int flag 1=0; 
int flag2=0; 
int flag3=0;

int n,i,ic,nsteps; 
double ddx,dt,epsz,muz,pi,T; 
int numsph;
int NCUR,NPR2,NPR1;

double tO,spread,pulse; 
double ez_inc[IE],hx_inc[IE];

double ex_low_ml ,ex_low_m2,ex_high_ml ,ex _high_xn2; 
double inc_ex__low_ml,inc_ex_low__m2,inc_ex Mgh_ml ,inc_ex_high_m2; 
double energyl; 
double energy2; 

double energy3;

int count 1; 
int count2; 
int count3;

double radius[ 10],epsilon[ 10],sigma[ 10],eps,cond;
double dell 1 [ 10],de!12[ 10],dell3 [ 10],dell4[ 10];
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double tau 1 [ 10],tau2[ 10],tau3 [10],tau4[10]; 
double alpha 1 [ 10],alpha2 [10] ,alpha3 [10],alpha4[10]; 
double A1,A2,A3,A4,B!,B2,B3,B4,C1,C2,C3,C4;

double dist;

// double real_pt[NFREQS] [IE] [JE],imag_pt[NFREQS][IE] [IE];

F I L E  *fpl,*lp2,*fp3,*lp4; 
ic = (IE-l)/2 ;

pi = 3.1415926;
epsz = 8.8e-12;
muz = 4*pi*l.e-8;
ddx =1 .e-4; /* Cell size *!
dt = ddx/6e8; /* Time steps */

// fpl = fopen("0.dat","w");
// fprintf(fpl,"Thickness Pulse Distance Pulse Num Crossing Ref Absorb peneration \n"); 

fpl = fopen( "transmission, dat"," w"); 
fprintf(fp 1 ,"TITLE=ELECTRIC FIELD\n”); 
fyrintf(fp 1,"VARIABLES=PulseWidth, TransmissionW); 

fp2 = fopen("ref.dat","w"); 
lprintf[fp2,'TITLE=ELECTRIC FIELD\n");
^rintf(4j2,"VARIABLES=PulseWidth,Reflection\n"); 

fp3 = fopen("Absportion.dat","w"); 
fprintf(fp3, "TITLE=ELECTRIC FIELD\n");
^rintf(fp3,''VARIABLES=PulseWidth, Absorption\n"); 

fp4 = fopen("ldEz-t.dat","w"); 
fprintf(fp4,MTITLE=ELECTRIC FIELD\n"); 
lprintf[fp4,"VARIABLES=Y, Ez\n");
/* Initialize the arrays */

// Dis=ee* 10000; 
for(int wall=4;wall<=4;wall++)
{

if(wall=T)
thick=5.0;

else if(wall— 2)
thick=10.0; 

else if(w all=3)
thick=20.0; 

else if(w all=4)
thick=50.0;

for(int width= 1; width<=20; width++)
{
ww=width*100;
pulse=0.0; 

amp0=0.0; 
ampl=0.0; 
amp2=0.0; 
flagl=0; 
flag2=0; 
flag3=Q; 
energy! =0.0;
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energy2=0.0;
energy3=0.0;
countl=0;
count2=0;
count3=0;
NCUR=2;
NPR1=1;
NPR2=0;
for ( i=0; i < IE; i++ ) { 
ez_inc[i] = 0.; 
hx_inc[i] = 0.;

ex[i]= 0.0; 
dx[i]= 0.0; 
ix[i]=0.0;
hy[i]= 0 .0;
gcx[i]= 1.0;

gx[i]=0.0;
gaxl[i]=0.0
gax2[i]=0.0
gax3[i]=0.0
gax4[i]=0.0
gbxl[i]=0.0
gbx2[i]=0.0
gbx3[i]=0.0
gbx4[i]=0.0

gdxl[i]=0.0
gdx2[i]=0.0
gdx3[i]=0.0
gdx4[i]=0.0

}

for ( i=0; i < IE; i++ ) { 
ez_inc[i] = 0.; 
hxincfi] =0.;

inc_ex[i]= 0.0; 
inc_dx[i]= 0.0; 
inc_ix[i]= 0.0; 
inc_hy[i]= 0.0; 
inc_gcx[i]= 1.0;

inc_gx[i]=0.0;
inc_gaxl[i]=0.0
inc_gax2[i]=0.0
inc_gax3[i]=0.0
inc_gax4[i]=0.0
inc_gbxl[i]=0.0
in cgb x2[i]= 0 .0
inc_gbx3[i]=0.0
inc_gbx4[i]=0.0
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inc gdxl fi]=0.0
inc_gdx2[i]=0.O
inc_gdx3[i]=0.0
inc_gdx4[i]=0.0

ex_low_m2=0.; 
ex low ml=0.; 
ex_high_m2=0.; 

ex_high_ml=0.;

inc_ex_low_m2=0.;
inc_ex_lo w jn l  =0.; 
inc_ex_high_m2=0.; 

in c e x h ig h m  1=0.;

///////////////

for ( i=0; i < IE; i+ + ) {

for(int temp=0;temp<3 ;temp++) {

sxl[i][temp]=0.0;
sx2[i][temp]=0.0;

sx3[i][temp]=0.0;
sx4[i][temp]=0.0;

}}

III
for ( i=0; i < IE; i++ ) {

for(int temp=0;temp<3;temp++){

in csx l [i][temp]=0.0;
inc_sx2 [i] [temp]=0.0;

inc_sx3 [i] [temp]=0.0; 
inc_sx4 [i] [temp]=0.0;

}}

/* Specify the dielectric sphere */

epsilon[0] = 1.; 
sigma[0] = 0 .; 
delll[0]=0.; 
dell2[0]=0.; 
dell3[0]=0.: 
dell4[0]=0.
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taul[G]=G.; 
tau2[0]=0.; 
tau3[0]=0.; 
tau4[0]=0.; 

alpha! [0]=O.; 
alpha2[0]=0.; 
alpha3 [0]=0.; 
alpha4[Q]=0.;

numsph=l;

radiusfl]=thick;

////////////// blood

epsilon[l]=4.;
sigma[l]=0.7;
delll[l]=56;
de!12[l]=5200;
dell3[l]=0.;
dell4[l]=0.;
taul[l]=8.377e-12;
tau2[l]=132.629e-9;
tau3[l]=159.155e-6;
tau4[l]=15.915e-3;
alphal[l]=0.1;
alpha2[l]=0.1;
alpha3[l]=0.2;
alpha4[l]=0.;

/* Calculate gax,gbx */ 
for ( i = 0; i < IE; i+ + ) {

eps = epsilon[0]; 
cond = sigma[0];
C1 =pow(taul [0]/dt,l-alpha 1 [0]) 
C2=pow(tau2 [0]/dt, 1 -alpha2[0]) 
C3=pow(tau3[0]/dt, l-alpha3[0]) 
C4=pow(tau4 [0]/dt, 1 -alpha4[0]) 
Bl=alphal[0];
B2=alpha2[0];
B3=alpha3[0];
B4=alpha4[0];
A 1 =dell 1 [0]/( 1+C1); 
A2=dell2[0]/( 1+C2);
A3=dell3 [0]/( 1+C3); 
A4=dell4[0]/( 1+C4);

dist = (ic-i);

// dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.)); 
dist=sqrt(pow(dist,2.));

for (n=l; n<= numsph; n++) {
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{
ydist=ydist-3;

xdist=xdist-3;
dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));

}
*/

if( dist <= radiusfn]) { 
eps = epsilon[n]; 
cond = sigmajn];

C 1 =pow(tau 1 [n]/dt, 1 -alpha 1 [n]);
C2=pow(tau2 [n]/dt, 1 -a!pha2[n]);
C3=pow(tau3 [n]/dt, 1 -alpha3 [n]);
C4=pow(tau4[n]/dt, l-alpha4[n]);
Bl=alphal[n];
B2=alpha2[n];
B3=alpha3[n];
B4=alpha4[n];
Al=delll[n]/(1+Cl);
A2=dell2 [n]/( 1+C2);
A3=dell3 [n]/( 1+C3);
A4=dell4 [n]/( 1+C4);

}

}
gcx[i]=l./(eps+(cond*dt/epsz)+Al+A2+A3+A4);

gaxl[i]=(l-B l)*Cl/(l+C l);
gax2[i]=( 1 -B2)*C2/( 1+C2);
gax3[i]=(l-B3)*C3/(l+C3);
gax4 [i] =( 1-B4) *C4/( 1+C4);
gbxl[i]=0.5*(l-B l)*Bl*Cl/(l+Cl);
gbx2[i]=0.5*(l-B2)*B2*C2/(l+C2);
gbx3 [i]=0.5 *( 1 -B3)*B3 *C3/( 1+C3);
gbx4 [i] =0.5 * (1-B4) *B4 *C4/( 1+C4);
gdxl[i]=Al;
gdx2[i]=A2;

gdx3[i]=A3;
gdx4[i]=A4;
gx[i]=cond*dt/epsz;

}

tO = 40.0;
spread = 10.0; 
T = 0;
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//while ( nsteps > 0 )  {
// print£( "nsteps - >  ");
I I  scanf("%d", &nsteps);
I I  printf("%d \n", nsteps); 
nsteps= 60*ww;

for ( n = l; n <=nsteps ; n++) {
T =  T +  1 ;

NPR2=NPR1;
NPR1=NCUR; 
NCUR=(NCUR+1 )%3;

I *  —  Start of the Main FDTD loop —  */

pw=(double)ww; 
pulse=exp(-(T-5 *pw)*(T-5 *pw)/(pw*pw));

I* Calculate the Dx field */

for ( i=Q; i < IE; i+ + ) {

dx[i] =dx[i]+0.5*( hy[i-l]- hy[i]) ;

}

dx[5]=dx[5]+pulse;

for ( i= l; i < IE-1; i+ + ) {

B 1 =gax 1 [i] *sxl [i] [NPR1 ]+gbx l[i]*sxl [i] [NPR2];
B2=gax2[i]*sx2 [i] [NPR1 ]+gbx2 [i]*sx2 [i][NPR2]; 

B3=gax3 [i]*sx3 [i] [NPRl]+gbx3 [i] *sx3 [i] [NPR2];
B4=gax4 [i] *sx4[i] [NPR1 ]+gbx4[i] *sx4 [i] [NPR2]; 

ex[i] = gcx[i]*(dx[i] - ix[i]-Bl-B2-B3-B4); 
ix[i]= ix[i] + gx[i]*ex[i]; 
sx 1 [i] [NCUR]=B 1 +gdxl [i] *ex[i];

sx2[i][NCUR]=B2+gdx2[i]*ex[i]; 
sx3 fi] [NCUR]=B3+gdx3 [i] *ex[i]; 
sx4 [i] [NCUR]=B4+gdx4[i] *exf i];

}

ex[0]=ex_low_m2;
ex_low_m2=ex_low_ml; 
ex_low_ml=ex[ 1 ];

ex[IE-1 ]=exjhigh_m2; 
ex_high_m2=ex_high_ml; 
ex__high_ml =ex[IE-2];
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for( i=0;i<IE-l;i++)
{

hyri]=hy[i]+ 0.5*(ex[i]-ex[i+l]);
}

///////

/* Calculate the Dx field */

for ( i=0; i < IE; i+ + ) {

inc_dx[i] =inc_dx[i]+0.5*( inc_hy[i-l]- inc_hy[i]) ;

}

inc_dx[5]=inc_dx[5]+pulse;

for ( i=l; i < IE-1; i+ + ) {

B 1 =inc_gax 1 [i] *inc_sxl [i][NPRl ]+inc_gbxl [i]*inc_sxl [i][NPR2];
B2=inc_gax2 [i] *inc_sx2[i] [NPR1 ]+inc_gbx2 [i] *inc_sx2 [i] [NPR2]; 

B3 =inc_gax3 [i] *inc_sx3 [i] [NPR1 ] +inc_gbx3 [i] *inc_sx3 [i] [NPR2];
B4=inc gax4 [i] *inc_sx4 [i] [NPR1 ]+inc_gbx4 [i] *inc_sx4 [i] [NPR2]; 

inc exfi] = inc_gcxfi]*(inc_dx[i] - inc_ix[i]-B 1-B2-B3-B4); 
inc_ix[i]= inc_ix[i] + mc_gx[i]*inc_ex[i]; 
in c sx  1 [i] [NCUR]=B 1 +inc_gdxl [i] *inc_ex[i];

inc_sx2 [i] [N CUR]=B2+inc_gdx2 [i] *inc_ex[i]; 
inc_sx3 [i] [NCUR]=B3+inc_gdx3 [i]*inc_ex[i]; 
incsx4[i][NCUR]=B4+inc_gdx4[i]*inc_ex[i];

inc_ex[0]=inc_ex_low_m2;
inc_ex_low_ih2=mc_ex_lo w_m 1; 
inc_ex_low_ml =inc_ex[ 1 ];

inc_ex[IE-1 ]=inc_ex_high_m2; 
inc_ex_high_in2=inc_ex_high_ml; 
in c e x h ig h m l  =inc_ex[IE-2];

for( i=0;i<IE-l;i++)
{

inc_hy[i]=inc_hy[i]+ 0.5 *(inc_ex[i]-inc_ex[i+1 ]);
}
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if(n% 100= 0)
{

printf(''Thickness=%f, width=%f, n= %d\n",thick,pw,n);

fprintf(ip4,"ZONE \n"); 
for( int s=0;s<IE;s++)

fprintf(fp4,"%d %20.121f\n",s,ex[s]);

}

ampO=inc_ex[ 8 ];
ampl=ex[8]-inc_ex[8];
amp2=exfIE-8];

// calculate energy

if(countl% 2=0)
{

energy 1 =energy 1 +4 *amp0 *amp0;
}
else
{

energy 1 =energy 1 +2 *amp0*amp0;
}
count 1++;

// }

if(flag2=0)
{

if(amp2!=0)
flag2=l;

}
//

if(flag2==l)
{

if(count2% 2=0)
{

energy2=energy2+4 *amp2 *amp2;
}
else
{

energy2=energy2+2*amp2 *amp2;
}
count2++;

}

if(flag3==0)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

if(ampl<0.0)
fiag3=l;

}

if(f lag 3 = l)
{

if(count3%2=0)
{

energy3=energy3+4*ampl *ampl;
}
else
{

energy3=energy3+2 *amp 1 *amp 1;
}
count3++;

}

}//for
tran[width]=energy2/energy 1;
ref[width]=energy3/energy 1;
absp[width]=(energyl-energy2-energy3)/energyl;
cor[width]=ww;

}//for
fprintf(Q>l,"ZONE \n");

for( cn= 1 ;cn<=20;cn++)
fprintf(fp 1 ,"%d %20.121f\n",cor[cn],tran[cn]); 
fj3rintf(fp2,"ZONE \n"); 

for( cn= 1 ;cn<=20;cn++)
fprintf(fp2,"%d %20.121f\n",cor[cn],ref[cn]); 
4>rintf(4>3,"ZONE \n"); 

for( cn=l ;cn<=20;cn++)
fprintf(fp3,"%d %20.121f\n",cor[cn],absp[cn]);

}//for

return 0;

}
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Source Codes for 2D Simulation 
// PML.cpp : Defines the entry point for the console application.
//
/*Fd3d_4.3.c. 3D FDTD, plane wave on a dielectric sphere. */
/* this program simulates the plane wave in 3 dimensions impinging on a dielectric cylinder
the input to the program are, npml = 14, number spheres = 1, radius of cylinder = 20, 
epsilon = 30, conductivity = .3, and nsteps = 30, 40, 75, 100*/

#include "stdafx.h"
# include <math.h>
# include <stdlib.h>
# include <stdio.h>

#define IE 61
#define JE 61
#defme KE 61
#define ia 5
#defme ja  5
#define ka 5
#define NFREQS 10
#define Emp .33
double amp0,ampl,amp2,ww;
double energy 1 ,energy2,energy3;
int flagl,flag2,flag3;
int countl ,count2,count3;

double dz[IE][JE],ez[IE][JE]; 
double hx[IE][JE],hy[IE][JE]; 
double iz[IE][JE];
double gaz 1 [IE] [JE], gaz2 [IE] [JE] ,gaz3 [IE] [JE] ,gaz4 [IE] [JE]; 
double gbz 1 [IE] [JE],gbz2[IE] [JE] ,gbz3 [IE] [JE] ,gbz4[IE] [JE]; 
double gdz 1 [IE][JE],gdz2 [IE][JE],gdz3 [IE] [JE] ,gdz4[IE] [JE]; 
double gcz[IE][JE]; 
double gz[IE][JE];
double szl [IE][JE][3],sz2[IE][JE][3],sz3 [IE] [JE] [3],sz4[IE][JE] [3];
double ihx[IE] [JE] ,ihy[IE] [JE];
double ez in e  [JE] ,hx_inc [JE],dz_inc [JE] ,iz_inc [JE];
double ez_low_ml,ez_low_m2,ez_high_ml,ez_high_m2;

double inc_gazl[JE]; 
double inc_gaz2[JE]; 
double inc_gaz3[JE]; 
double inc_gaz4[JE]; 
double inc_gbzl[JE]; 
double inc_gbz2[JE]; 
double inc_gbz3[JE]; 
double inc_gbz4[JE];

double inc_gdzl[JE]; 
double inc_gdz2[JE]; 
double inc_gdz3[JE]; 
double inc_gdz4[JE]; 
double inc_gcz[JE]; 
double inc_gz[JE]; 
double inc_szl[JE][3];
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double inc_sz2[JE][3]; 
double inc_sz3[JE][3]; 
double inc_sz4[JE][3];
///////////////////

double org dzflElfJE], org_ez[IE][JE]; 
double org_bx[IE][JE], org_hy[IE][JE]; 
double org_iz[IE][JE];
double org_gaz 1 [IE] [ JE] ,org_gaz2[IE] [JE],org_gaz3 [IE] [ JE] ,org_gaz4[IE] [JE]; 
double org_gbz 1 [IE] [JE] ,org_gbz2 [IE] [JE] ,org_gbz3 [IE] [JE] ,org_gbz4 [IE] [JE]; 
double org_gdz 1 [IE] [ JE] ,org_gdz2 [IE] [ JE] ,org_gdz3 [IE] [ JE] ,org_gdz4 [IE] [ JE]; 
double org_gcz[IE][JE]; 
double org_gz[IE][JE];
double org_szl[IE]]JE][3],org_sz2[IE][JE][3],org_sz3[IE][JE][3],org_sz4[IE][JE][3]; 
double org_ihx£IE]]JE],org_ihy[IE][JE];
double org_ez_inc[IE],org_hx_inc[JEj,org_dz_inc[JE],org_iz_inc[JE];
double org ez low m l ,org_ez_low_m2,org_ez_high_ml ,org_ez_highjtn2;
double org_inc_gaz 1 [JE];
double org_inc_gaz2 [JE];
double org_inc_gaz3 [JE];
double org inc gaz4[JE];
double org inc gbz 1 [JE];
double org_inc_gbz2[JE];
double org_inc_gbz3[JE];
double org inc gbz4[~JE];

double org_inc_gdzl[JE]; 
double org_inc_gdz2 [JE]; 
double org_inc_gdz3 [JE]; 
double org_inc_gdz4[JE]; 
double org_inc_gcz[JE]; 
double org_inc_gz[JE]; 
double org_inc_sz 1 [JE] [3]; 
double org_Jnc_sz2[JE][3]; 
double org_inc_sz3 [JE] [3]; 
double org_inc_sz4 [JE] [3 ];

//////////////////////
int main(int argc, char* argv[])
{

int n,i,j,icjc,kc, nsteps, njpml; 
double ddx,dt,epsz,muz,pi,npml,T; 
int ib,jb,kb,numsph;

int N CUR,NPR2,NPR 1; 
double xn,xxn,curl_e; 
double tO,spread,pulse,thick;

double gi2 [IE] ,gi3 [IE]; 
double gj2[JE],gj3[JE]; 
double filfIE],fi2[IE],fx3[IE]; 
double fjl[JE],g2[JE],fj3[JE];

double radiusf 10],epsilon] 10],sigma] 10],eps,cond; 
double dell 1 [ 10],dell2[ 10],dell3[ 10 ],d ell4 [l0]; 
double taul[10],tau2[10],tau3[10],tau4[10];
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double alpha 1 [ 101 ,a!pha2 [ 10] ,alpha3 [ 10] ,alpha4 [10]; 
double A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4; 

double dist,xdist,ydist;
double alfa,beta,rise,x,peak,ratio;

FILE *fp,*fjri,*fp2,*fp3,*fp5,*fp6,*fp7,*fp8,!S‘fp9,*lpl0; 
ic = (IE-l)/2 ; 
jc = (JE-1 )/2 ; 
kc = (KE-l)/2 ; 
ib = IE - ia -1 ; 
jb = JE - ja  -1 ; 
kb = KE - ka - 1; 
pi = 3.14159; 
epsz = 8.8e-12; 
muz = 4*pi*l.e-7; 
ddx = le-6; /* Cell size */
dt = ddx/6e8; /* Time steps */

alfa=0.1; 
beta=0.08;
rise=(log(alfa)-log(beta))/(alfa-beta); 
x=(log(alfa)-log(beta))/(alfa-beta); 
peak=exp(-alfa*x)-exp(-beta*x); 
ratio=l.0/peak;

fp = fopen("Ez-t.dat","w");
Iprmtf(fp,”TITLE=ELECTRICFIELD\n");
4nntf(fi5,"VARIABLES=X, Y, Ez\n"); 

fp5 = fopen(" 130.dat","w");
fjprintf(fp5, "TITLE=ELECTRIC FIELD\n"); 
fi>rintf(t>5,"VARIABLES= Y, Ez\n");

Ip6 = fopen(" 140.dat","w"); 
fprintf(ip6,"TITLE=ELECTRIC FIELD\n"); 
f^rintf(Q>6,"VARIABLES= Y, Ez\n");

fp7 = fopenC'l 50.dat","w"); 
fprintf(fp7,"TITLE=ELECTRIC FIELDW);
Q)rintf(^)7,"VARIABLES= Y, EzW);

fp8 = fopen("180.dat","w"); 
fprintf(fp8,"TITLE=ELECTRIC FIELDW); 
fprintfllp8,"VARIABLES= Y, EzW);

fp9 = fopen("200.dat","w,f); 
fprintf(fp9,"TITLE=ELECTRIC FIELD\n”); 
fprintf(f|>9,"VARIABLES= Y, Ez\n");

fplO = fopen("210.dat","w"); 
fprmtf(fp 10, HTITLE=ELECTRIC FIELD\n"); 
fprintf(fp 10," VARI ABLES= Y, Ez\n");

fpl = fopen("data.dat","w");
fprintf(fpl,"Rising Time Thickness Crossing Ref Absorb peneration \n");

fp2 = fopen("ldEz-t.dat",''w");
f^rintf(§)2,"TITLE=ELECTRIC FIELD\n");
fprintf(ip2, "VARIABLES=Y, Ez\n");

fp3 = fopen("Ez-t 1 .dat"," w");
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fprintf(fp3, "TITLE=ELECTRIC FIELDW); 
fprintf(fp3,'lVARIABLES=Y, Ez\n");

/* Initialize the arrays */
for(int wall=l ;wall<=l ;wall++)

{
tfaick=(double)wall*2.0;

for(int width=8;width<=8;width++)

//////////
amp0=0.0;

amp 1=0.0; 
amp2=0.0; 
flagl=0; 
flag2=0; 
flag3=0; 
energyl=0.0; 
energy2=0.0; 

energy 3 =0.0;
count 1=0;
count2=0;
count3=0;
NCUR=2;
NPR1=1;
NPR2=0;

ilium
for ( j=0; j < JE ;j++) {

for ( i=0; i < IE; i++ ) {
ez[i][j]=0.0;
dz[i][j]=0.0;
hx[i]D]=0.0;
hy[i]D]=0.0;
iz[i]0]=O.O;

gcz[i]Jj]= 1.0;
gz[i]D]=0.0;
gazl[i][)]=0.0;
gaz2[i][j]=0.0;
gaz3[i][j]=0.0;
gaz4[i][j]=0.0;

gbzl[i][j]=0.0;
gbz2[i][j]=0.0;
gbz3[i]jj]=0.0;
gbz4[i]jj]-0.0;

gdzl[i][j]=0.0;
gdz2[i][j]=0.0;
gdz3[i][j]=0.0;
gdz4[i][j]=0.0;
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ihx{i][j] = 0.0; 
ihy[i]0]=O.O;

} }

///////////////

for ( j=0; j < JE; j+ + ) {
for ( i=0; i < IE; i++ ) {

for(int temp=0;temp<3;temp++){

} } } 

///

szl [i] [j] [temp]=0.0; 
sz2[i][j][temp]=0.0;

sz3 [i] [j] [temp]=G.O; 
sz4[i][j][temp]=0.0;

for(j=0;j<JEy++)
{

ez_inc[j]=0; 
dzjnc[j]=0; 
hx_inc[j]=0; 
iz_inc[j]=Q; 
inc_gcz[j]= 1.0; 
inc_gz[j]=0.0; 
inc_gazl [j]=0.0 
mc_gaz2jj]=0.0 
inc_gaz3[j]=0.0 
inc_gaz4[j]=0.0 
inc_gbzl[j]=0.0 
inc_gbz2[j]=0.0 
uic_gbz3[|]=0.0 

inc gbz4ffl=0.0;
inc_gdzl[j]=0.0
inc_gdz2[j]:=0.0
inc_gdz3[j]=0.0
inc_gdz4[j]=0.0
}

ez_low_ml=0;
ez_low_m2=0;
ez_high_ml=0;
ez_high_m2=0;

/////
for ( j=0; j < JE; j++ ) {

for ( i=0; i < IE; i++ ) {
org_ez[i][}]= 0.0;
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org_dz[i]0]= 0.0 ; 
org_hx[i][j]= 0.0 ; 
°rgjr/[i][j]=  0 .0 ; 
org_iz[i][jj= 0.0;

org gczriir.il— 1.0;
org_gz[i]D]=0.0;
org_gazl[i][j]=0.0
org_gaz2[i][j]=0.0
org_gaz3[i]jj]=0.0
org_gaz4[i]Q]=0.0

org_gbzl[i][j]=0.0
org_gbz2[i]0]=0.0
°rg_gbz3[i][j]=0.0
°rg__gbz4[i][j]=0.0

org_gdzl[i][j]=0.0
org_gdz2[i][j]=O.0
°rg_gdz3[i]0]=0.0
org_gdz4[i][j]=0.0

org_ihx[i]03 = 0.0;
orgJliyfi] [j ] = 0.0;

} }

///////////////

for ( j=0; j < JE; j++ ) { 
for ( i=0; i < IE; i+ + ) {

for(int temp=0;temp<3 ;temp++) {

o rg sz l [i][j][temp]=0.0; 
org_sz2[i][j][temp]=0.0;

org_sz3 [i][j] [temp]=0.0; 
org_sz4[i][j][temp]=0.0;

} } }

Hi

for(j=0;j<JE;j++)
{

org_ez_incjj]=0;
org_dz_inc[j]=0;
org_hx_inc{j]=0;
org_iz_inc[J]=0;
orginc gcz[j]= 1.0;
org_mc_gz[j]=0.0; 
org_inc_gazl fj]=0.0; 
org_inc_gaz2[j]=0.0; 
org_inc_gaz3 (j]=0.0; 
org_mc_gaz4[j]=0.0; 
o rg in c g b z l [j]=0.0;
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org_inc_gbz2[j]=0.0; 
org_inc_gbz3[)]=0.0; 

org_inc_gbz4 [j ] =0.0;
o rg in c g d z l [j]=0.0; 
org_inc_gdz2 [j ]=0.0; 
org_inc_gdz3[j]=0.0; 
or g_inc_gdz4 [j ]=0.0; 
}

org_ez_low_ml =0; 
org_ez_low_m2=0; 
org_ez_high_ml=0; 
org_ez_high_m2=0;

////////

/* Parameters for the Fourier Transforms */

/* Boundary Conditions */

for ( i=0; i < IE; i++ ) {

fil[i] = 0.; 
gi2[i] = l.; 
fi2[i] = l.; 
gi3[i] = 1.; 
fi3[i] = 1.;
}

for ( j=0; j < JE; j++ ) {

fjl[j] =  0.; 

g)2D] = 1.; 
fj2[j] = l-; 
gj3D3 = 1-;
f(3[j] = 1.;
}

njpml =5; 
npml=5.0;
for ( i=0; i < njpml; i+ + ) { 

xxn = (npml-i)/npml; 
xn =Emp *po w( xxn, 3.); 
gi2[i] = l./(l.+xn); 
gi2[IE-i-l] = l./(l.+xn); 
gi3 [i] = (1 .-xn)/( 1 .+xn); 
gi3[IE-i-l] = (l.-xn)/(l.+xn); 

xxn = (npml-i-.5)/npml;
xn = Emp*pow(xxn,3.);
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fil [i] = xn; 
fi![IE-i-2] = xn; 
fi2[i] = l./(l.+xn); 
fi2[IE-i-2] = l./(l.+xn); 
fi3[i] = (l.-xn)/(i.+xn); 
fi3[IE-i-2] = (l.-xn)/(l.+xn);

for ( j=0; j < n_pml; j+ + ) { 
xxn = (npml-j)/npml;
xn = Emp*pow(xxn,3-);

gj2[j] = l./(l.+xn); 
gj2[JE-j-l] = l./(l.+xn); 
gj3[j] =(l.-xn)/(l.+xn); 
gj3[JE-j-l] = (l.-xn)/(l.+xn); 

xxn = (npml-j-.5)/npml; 
xn = Emp*pow(xxn,3-); 
fjl[j] =xn; 
fjl[JE-j-2] = xn; 
m i  = l./(l.+xn); 
fj2[JE-j-2] = l./(l.+xn);
§3[j] =(l.-xn)/(l.+xn);
§3 [JE-j-2] = (1 .-xn)/( 1 .+xn);

}

/* Specify the dielectric sphere */

epsilon[0] = 1 
sigma[0] = 0.; 

delll[0]=0.; 
dell2[0]=0.;
de!13[0]=0.; 
dell4[0]=0.; 
taul[0]=0.; 
tau2[0]=0.; 
tau3[0]==0.; 
tau4[0]=0.; 

alpha 1[0]=0.;
alpha2[0]=0.;
alpha3[0]=0.;
alpha4[0]=0.;

radius [1]=5;
epsilon[l]=4.; 
sigma[l]=0.7; 
delll [1]=56; 
dell2[l]=5200; 
dell3[l]=0.; 
dell4[lj=0.; 
taul[i]=8.377e-12; 
tau2[ 1 ]=132.629e-9;
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tau3[l]=159.155e-6;
tau4[ 1 ]=15.915e-3;
alphal[l]=0.1;
alpha2[l]=0.1;
alpha3[l]=0.2;
alpha4[l]=0.;
numsph=l;

/* Calculate gaz,gbz *1 
for ( i = 0; i < IE; i++ ) { 

for ( j = 0; j < JE; j++ ) { 
eps = epsilon[0]; 
cond = sigma[0];

Cl=pow(taul[0]/dt,l-alphal [0]);
C2=pow(tau2[0]/dt, 1 -alpha2[0]);
C3 =po w(tau3 [0]/dt, 1 -alpha3 [0]);
C4=pow(tau4[0]/dt, 1 -alpha4[0]);
Bl=alphalfO];
B2=alpha2[0];
B3=alpha3[0];
B4=alpha4[0];
A1 =dell 1 [0]/( 1+C1);
A2=dell2 [0]/( 1+C2);
A3=dell3 [0]/( I+C3);
A4=dell4[0]/(1 +C4); 

xdist = (ic-i); 
ydist = (jc-j);

// dist = sqrt(pow(xdist,2.) + pow(ydist,2.));
dist=sqrt(pow(ydist,2.)); 

for (n=l; n<= numsph; n++) {
/* if(n= 3)

{
ydist=ydist-3;

xdist=xdist-3;
dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));

}
* /

if( dist <==radms[n]) { 
eps = epsilon[n]; 
cond = sigma[n];

Cl=pow(taul[n]/dt,l-alphal[n]);
C2=pow(tau2[n]/dt, 1 -alpha2[n]);
C3=po w(tau3 [n]/dt, 1 -alpba3 [n]);
C4=pow(tau4 [n]/dt, 1 -alpha4[n]);
Bl=alphal[n];
B2=alpha2[n];
B3=alpha3[n];
B4=alpha4[nj;
A 1 =dell 1 [n]/( 1+C1);
A2=dell2[n]/(1+C2);
A3=dell3 [n]/( 1+C3);
A4=dell4[n]/( 1+C4);

} }
gcz[i][j]=l ./(eps+(cond*dt/epsz)+A 1+A2+A3+A4); 
gazl[i][j]=(l-Bl)*Cl/(l+Cl);

gaz2 fi][j]={BB2)*C2/(l+C2);
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gaz3[i][}]={l-B3)*C3/(l+C3);
gaz4[i](j]=(l-B4)*C4/(l+€4);
gbzl[i][j]=0.5*(l-B l)*Bl*C l/(l+Cl)
gbz2[i]jj]=0.5*(l-B2)*B2*C2/(l+C2)
gbz3[i]0]=0.5*(l-B3)*B3*C3/(l+C3)
gbz4[i] [j]=0.5 *( 1 -B4)*B4*C4/( 1+C4)
gdzl[i][j]=Al;
gdz2[i][j]=A2;

gdz3[i]D]=A3;
gdz4[i]D]=A4;

gz [i] [j]=cond*dt/epsz;
}}

////////

for ( j = 0; j < IE; j+ + ) {

eps = epsilon[0];
cond = sigma[0];

Cl=pow(taul [0]/dt, 1-alphal [0]);
C2=pow(tau2f0]/dt, l-alpha2[0]);
C3=pow(tau3 f 0]/dt, 1 -alpha3 [0]);
C4=pow(tau4[0]/dt, 1 -alpha4[0]);
Bl=alphal[0];
B2=alpha2[0];
B3=alpha3[0];
B4=alpha4[0];
Al=delll[0]/(1+Cl);
A2=dell2[0]/( 1+C2);
A3=dell3[0]/(1+C3);
A4=dell4 f 0]/( 1+C4);

ydist = (jc-j);
// dist = sqrt(pow(xdist,2.) + pow(ydist,2.));

dist=sqrt(pow(ydist,2.));

// dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));
for (n= l; n<= numsph; n++) {

if( dist<=radius[n]) { 
eps = epsilon[nj;
cond = sigma[n] ;

C 1 =pow(tau 1 [nj/dt, 1 -alpha 1 [n]) 
C2=pow(tau2 [n]/dt, 1 -alpha2 [n]) 
C3=pow(tau3 [n]/dt,l-alpha3 [n])
C4=pow(tau4[n]/dt 1 -alpha4fn]) 
Bl=alphal[n];
B2=alpha2[n];
B3=alpha3[n];
B4=alpha4[n];
Al=delll[n]/(1+Cl);
A2=dell2 [n]/( 1+C2); 
A3=dell3[n]/(1+C3); 
A4=dell4[n]/( 1+C4);

>
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inc_gcz[j]=l./(eps+(cond*dt/epsz)+Al+A2+A3+A4);
inc_gazl[j]=(l-Bl)*Cl/(l+Cl);

inc_gaz2[j]=(l -B2)*C2/{ 1+C2);
inc_gaz3 O H  l-B3)*C3/( 1+C3);
inc_gaz4 jj]=( 1 -B4)*C4/( 1+C4);
m c_gbzlO ]^.5*(l-B l)*B l*C l/(l+CI);
inc_gbz2Q]=0,5*(l-B2)*B2*C2/(i+C2);
inc_gbz303=O.5*(I-B3)*B3*C3/(l+C3);
inc_gbz4 [j ]=0.5 *( 1-B4) *B4 *C4/( 1+C4);
inc_gdzl[j]=Ai;
inc_gdz2JJ]=A2;

inc_gdz3[j]=A3;
inc_gdz40]=A4;
inc_gz[j]=cond*dt/epsz;

}

tO = 40.0; 
spread = 10.0;
T = 0;
nsteps = 400;

for ( n = l; n <=nsteps ; n++) {
// pulse=1000*ratio*(exp(-alfa*(T))-exp(-beta*(T))); 

T = T +  1;
pulse=exp(-(T-100)*(T-100)/100.0);

NPR2=NPR1;
NPR1=NCUR;
N CUR=(N CUR+1 )%3;

//////////////////////// with slab
for ( j=0; j < IE; j++ ) {

dzincO] =dz_inc0]+0.5*( hx_inc(j-l]- hx_inc[j]);

}

dz_inc[3]=pulse+dz_incf3];

////////////

I *  Calculate the Dz field */

for ( i=l; i < IE; i+ + ) { 
for ( j= l ; j  < IE; j+ + ) {
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dz[i]B] = gi3[i]*gj3|j]*dz[i][j]
+ gi2[i]*gj2D]*-5*(hy[I]D]- hy[i-l]01~ hx[i]D]+ hx[i]0-l]);

} }

/* Incident Dz */

for ( i=ia; i <= ib; i+ + ) {

dz[i]Qa]=dz[i]Qa] + .5*hx_inc[ja-l]; 
dz[i][jb] = dz[i][jb] - .5*hx_inc[jb];

}

for ( j= l; j < JE-1; j++ ) {

Bl=inc_gazl [j]*inc_szl [j] [NPR1 ]+inc_gbz 1 [j]*inc_szl [j][NPR2];
B2=inc_gaz2 [j ] *inc_sz2 [j ] [NPR 1 ]+inc_gbz2 [j ] *inc _sz2[j] [NPR2 ]; 

B3=inc_gaz3 [j] *inc_sz3 [j][NPRl]+inc_gbz3[j]*inc_sz3 [j] [NPR2];
B4=inc_gaz4[j]*inc_sz4[j][NPRl]+iiic_gbz4[j]*inc_sz4|j][NPR2]; 

ez_inc[j] = inc_gcz[j]*(dz_inc[j] - iz_inc[j]-B 1-B2-B3-B4); 
iz_inc[i]= iz_inc[i] + inc_gz[i] *ez_inc[i]; 
in c s z l [j][NCUR]=B l+inc_gdzl jj]*ez_inc[j];

inc_sz2[j][NCUR]=B2+inc_gdz2[j]*ez_inc[j]; 
inc_sz3 [j] [NCUR]=B3+inc_gdz3 0]*ez_inc[j]; 
inc_sz4 [j ] [NCUR]=B4+inc_gdz4 [j ] *ez_inc [j ];

}

// ez_inc[3] =ez_inc[3]+pulse;

// ez_inc[3] =pulse;
/* Boundary conditions for the incident buffer*/

ez_inc[0] = ez_low_m2; 
ez_low_m2 = e z lo w m l ; 
e z lo w m l = ez_inc[l];

ez_inc[JE-l] = ez_high_m2; 
ez_high_m2 = ez_high_ml; 
e z h ig h m l = ez_inc[JE-2];

for ( j=0; j < JE-1; j+ + ) { 
hx_inc[|] = hx_inc[j] + .5*( ez_inc[j] - ez_inc[j+l]);

}

// pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
// pulse=100000*exp(-(T-100)*(T-100)/l 00.0);

/* Calculate the E from D field */
/* Remember: part of the PML is E=0 at the edges */ 
for ( i= l; i < IE; i++ ) {
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fo r( j= l ; j  < J E ; j + + )  {

B 1 =gaz 1 [i] 0] *sz 1 [i] 0] [NPR1 ]+gbzl [i] [ jfsz  1 [i] [j] [NPR2];
B2=gaz2[i]0]*sz2[i]D][NPRl]+gbz2[i][j]*sz2[i][j][NPR21;

B3=gaz3[i][j]*sz3[i][j][NPRl]+gbz3[i][j]*sz3[i][j][NPR2];
B4=gaz4 [i] [j] *sz4[i] [j] [NPR1 ]+gbz4[i] [j] *$z4 [i] [j] [NPR2]; 

ez[i]0] = gcz[i]tj]*(dz[i][j] - iz[i][j]-Bl-B2-B3-B4); 
iz[i]0] = iz[i]D3 + gz[i]0]^z[i]D]; 
sz 1 [i] [j] [N CUR]=B 1 +gdz 1 [i] [j ] *ez[i] [j ];

sz2 [i] D ] [NCUR]=B2+gdz2 [i] 0] *ez[i] [j ]; 
sz3[i][j][NCUR]=B3+gdz3[i][j]*ez[i][j]; 
sz4 [i] [j ] [NCUR]=B4+gdz4 [i] 0] *ez[i] [j ];

} }

I* Calculate the Hx field */

for ( i=Q; i < IE; i++ ) { 
for ( j= 0 ;j < JE-1 ;j+ + ) {

curl_e = ( -ez[i][j+l] + ez[i][j]); 
ilix[i][j] = ihx[i]0] + cu rie ;
M i]D]=fj3D]*hxW 0]

+ fj2[j]*.5*( curi e + fil[i]*ihx[i]0]);
} }

/* Incident Hx */

for ( i=ia; i <= ib; i+ + ) {

hx[i][ja-l] = hx[i][ja-l] + ,5*ez_inc[ja]; 
hx[i][jb] = hx[i][jb] - .5*ez_inc[jb];

\
i

I* Calculate the Hy field */

for ( i=0; i < IE-1; i+ + ) {
for ( j=0; j < JE; j+ + ) {

curl_e = ez[i+l]jj] - ez[i][j]; 
ihy[i][j] = ihy[i][j] + curi e ; 
hy[i][j] = fi3[i]*hy[i]Lj]
+ fi2[ij*.5*( cu r te  + fj 1 Ol^ihytijO]);

} }

/* Incident Hy */

fo r(j= ja ;j < = jb ;j+ + ) {

hyfia-l][j] =hy[ia-l][j] - ,5*ezjnc[j]; 
hy[ib]0] =hy[ib][j] + ,5*ez_inc[j];

}
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////

if((n%2)==0)
{

printf("%d \n ",n);

fjprintf(fp,"ZONE 1=61, J=61, K=l, F=POINTW'); 

int s;
for(int ys=0;ys<JE;ys++)

for(int xs=0;xs<IE;xs++)
fprintf(fp,"%d %d %lf \n",xs,ys,ez[ys][xs]); 
fprintf(fp2,''ZONE \n"); 

for( s=0;s<JE;s++)
fprintf(fp2,"%d %20.121f\n",s,ez[30] [s]); 
fprintf(fp3,"ZONE \n"); 
for( s=0;s<JE;s++)
fprintf(fp3,"%d %20.121f\n",s,ez_inc[s]);

if(n=130)
{

for( s=0;s<JE;s++)
fjniritf(fp5,''%d %20.121f\n",s,ez_inc[s]);
}

if(n=140)
{

for( s=0;s<FE;s++)
fprintf(fp6,"%d %20.121f\n",s,ez_inc[s]);
}

if(n=150)
{

for( s=0;s<JE;s++)
fprintf(fp7,"%d %20.121f\n",s,ez_inc[s]);
}

if(n==180)
{

for( s=0;s<JE;s++)
fprintf(fp8,"%d %20.121f\n",s,ez_mc[s]);
}

if(n=200)
{

for( s=0;s<JE;s++)
fprintf(fp9,"%d %20.121f\n”,s,ezjnc[s]);
}

if(n=210)
{

for( s=0;s<JE;s++)
fprintf(fplO,"%d %20.121f\n",s,ezjnc[s]);
}
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}

//////////////////////////////with slab 
//////////////////////////////without slab

for (j= 0 ;j < JE ;j+ + ) {

org_dz_incfj] = org_dz_inc[j]+0.5*( org_hx_inc[j-l]- org_hx_inc[j]);

}

org_dz_Jnc[3 ]=pulse+org__dz_inc [3];

////////////

/* Calculate the Dz field */

for ( i=l; i < IE; i+ + ) {
for ( j —1; j < JE; j+ + ) {

org_dz[i][j] = gi3[i]*gj3[j]* org_dz[i][j]
+ gi2[i]*gj2[j]*.5*( org_hy[i]tj]- org_hy[i-l][j]- org_hx[i][j]+ org_hx[i][j-l]);

} }

I* Incident Dz */

for ( i=ia; i <= ib; i++ ) {

org_dz[i][ja] = org_dz[i][ja] + .5* org_hx_mc[ja-l]; 
org_dz[i][jb] = org_dz[i][jb] - .5* org_hx_inc[jb];

for ( j —1; j < JE-1; j+ + ) {

B l=  org_inc_gazl[j]* org inc sz 1 [j][NPR1 ]+ org_inc_gbz 1 [j]* org inc szl[j][NPR2];
B2= org inc_gaz2[j]* org_inc_sz2[j][NPR 1 ]+ org_inc_gbz2[j]*

org_inc_sz2 [j ] [NPR2];
B3= org_inc_gaz3 [j]* org_inc_sz3[j] [NPR 1 ]+ org_inc_gbz3 [j]* org_inc_sz3 [j][NPR2]; 

B4= orgJmc_gaz4 [j] * org_inc_sz4 [j] [NPR 1 ] + org_inc_gbz4[j ] * 
org_inc_sz4|J][NPR2];

org_ez_inc(j] = org_inc_gcz[j]*(org_dz_inc|j] - org_iz_inc[j]-Bl-B2-B3-B4); 
org_iz_inc[i]= org_iz_inc[i] + org_inc_gz[i] *org ez_inc[i]; 
org_inc_sz 1 [| ] [NCUR]=B 1+org_inc_gdz 1 [j] *org_ez_inc[j];

orgJnc_sz2 [j][NCUR]=B2+org_Jnc_gdz2[j] *org ez ine0 j ; 
org_inc_sz3 [j ] [N CUR]=B 3 +org_inc_gdz3 [j ] * o r g e z in c  [j ]; 
org_inc_sz4 [j][N CUR]=B4+org_inc _gdz4 [j ] *org_ez_inc [j ];
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// ez_inc[3] =ez_inc[3]+pulse;

// ez_inc[3] =pulse;
/* Boundary conditions for the incident buffer*/

org_ez_inc[0] = org_ez_low_m2; 
org_ez_low_m2 = org_ez_low_ml; 
org_ez_low_ml = org_ez_inc[l];

org_ez_incf JE-1 ] = org_ez_highjn2; 
org_ez_high_m2 = org_ez_high_ml; 
or g e z h ig h m  1 = org_ez_inc[JE-2];

for ( j= 0 ; j<  JE-1 ;j+ + ) { 
org hx incjj] = org_hx_inc[j] + .5*( org_ez_inc[j] - o rg_ezinc[j+ l]);

for ( i=l; i < IE; i++ ) { 
for ( j= l; j < JE; j++ ) {

Bl=org gazl [i]0]*org_sz 1 [i]0 ][NPR1 ]+org_gbz 1 [i][j]*org_szl [i][j][NPR2];
B2=org_gaz2[i][j]*org_sz2[i][j][NPRl]+org_gbz2[i][j]*org_sz2[i][j][NPR2];

B3=org_gaz3[i][j]*org_sz3[i][j][NPRl]+org_gbz3[i][j]*org_sz3[i][j][Nl>R2];
B4=org_gaz4[i]fj]*org sz4[il[j][NPRl]+org gbz4[il[jl*org sz4[i][j][NPR2]; 

org_ez[i][j] = o rggczfi]0]*(org_dz[i][j] - org_iz[i][j]-B 1-B2-B3-B4); 
iz[i][)] = iz[i][j] + gz[i][j]*ez[i]0]; 
o rg sz l [i][j][NCUR]=B l+org_gdzl [i][j]*org_ez[i][j];

org_sz2[i] [j] [NCUR]=B2+org_gdz2 [i] [j]*org_ez[i] [j]; 
org_sz3 [i] 0][NCUR]=B3+org_gdz3 [i] [j ] *org_ez[i] 0]; 
org_sz4fi][j][NCUR]=B4+org_gdz4[i][j]*org_ez[i][j];

} }
/ *  Calculate the Fourier transform of Ex. */

I* Calculate the incident field */

/* Calculate the Hx field */

for ( i=0; i < IE; i+ + ) { 
for ( j=0; j < JE-1; j+ + ) {

curi e = ( -org__ez[i]jj+l] + org_ez[i][j]); 
org_ihx[i][j] = org_ihx[i][j] + curie ; 
°rg_hx[i][j] = fj3[j]*org_hx[i][j]

+ fj2[j]* 5*( cu r i e  + fil[i]*org_ihx[i][jl);
} }

f* Incident Hx */

for ( i=ia; i <= ib; i+ + ) {

org_hx[i][ja-I] = org_hx[i][ja-l] + .5*org_ez_inc[ja]; 
org_hx[i][jb] = org hx[i][jb] - .5*org_ez_inc[jb];
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/* Calculate the Hy field */

for ( i=0; i < IE-1; i+ + ) { 
for ( j=0; j < JE; j++ ) {

curi e = org_ez[i+l][j] - org_ez[i][j]; 
org_ihy[i][j] = org_ihy[i][j] + curi e ; 
orgJiy[i]|j] =fi3[i]*org_hy[i][j]
+ fi2[i]*.5*( curi e + § 1 [)]*org_ihy[i][j]);

I \

/* Incident Hy */

for ( j=ja; j <= jb; j+ + ) {

org_hy[ia-l][j] = org_hy[ia-l][j] - .5*orgL_ez_inc[j]; 
org_hy[ib][j] = org_hy[ib][j] + .5*org_ez_inc[j];

}

//////////////////////////////////////////////////////////////////////////////without s lab 

///////////energy
//

amp0=org_ez[30] [8];
ampl=ez[30][8]-org_ez[30][8];
amp2=ez[30] [52];

// calculate energy

if(count 1 %2==0)
{

for(i=ia;i<=ib;i++)
energy 1 =energy 1+4 *org_ez[30] [8] *org_ez [3 0] [8 ];

}
else
I

for(i=ia;i<=ib;i++) 
energy 1 =energy 1 +2 *org_ez[30] [8]*org_ez[30] [8];

}
count 1++;

// }

if(flag2=0)
{
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if(amp2!=0)
flag2=l;

II

if{flag2==l)

if(count2%2==0)
{

for(i=ia;i<=ib;i++)
energy2=energy2+4^ez[30][52]*ez[3O][52];

}
else
{

for(i=ia;i<=ib;i++)
energy2=energy2+2*ez[30][52]*ez[30][52];

}
count2++;

if(flag3— 0)
{

if(ampl<0.0)
flag3=l;

}

if(flag3==l)
{

if(count3% 2=0)
{

for(i=ia;i<=ib;i++)
{

amp 1 =ez[i] [8]-org_ez[i] [8];
energy3=energy3+4i!:ampl *amp 1;

}
}
else
{

for(i=ia;i<=ib;i++)
{

amp 1 ~ez[i] [8]-org_ez[i][8];
energy3=energy3+2*ampl *ampl;

}
}
count3++;

}
////////1lllllllenergy
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fprintf(fpl,"%10.8f %10.8f %10.8f %10.8f %10.8f %10.8f\n",(double)ww/60000.0, 
2.0*thick*ddx,energy2/energyl ,energy3/energy 1 ,(energyl-energy2-energy3)/energy 1, l-energy3/energyl);

printf("%10.8f %10.8f %10.8f %10.8f %10.8f %10.8f\n",(double)ww/60000.0, 
2.0*thick*ddx,energy2/energyl,energy3/energyl,(energyl-energy2-energy3)/energyl,l-energy3/energyl);

}
}

return 0;
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Source Codes for 3D Simulation
// PML.cpp : Defines the entry point for the console application.
//
/*Fd3d 4.3.C. 3D FDTD, plane wave on a dielectric sphere. */
/* this program simulates the plane wave in 3 dimensions impinging on a dielectric cylinder 
the input to the program are, npml = 14, number spheres = 1, radius of cylinder = 20, 
epsilon = 30, conductivity -  .3, and nsteps = 30,40, 75, 100*/

#include "stdafx.h"
# include <math.h>
# include <stdlib.h>
# include <stdio.h>

#define IE 61 
#define JE 61 
#define KE 61 
#define ia 5 
#defineja 5 
#define ka 5 
#defme NFREQS 10 
#define Emp .33

double dx[IE]fJE] [KE],dy[IE][JE] [KE],dz[IE][JE][KE]; 
double ex[IE][JE][KE],ey[IE][JE] [KE],ez[IE] [JE] [KE]; 
double hx[IE] [JE] [KE] ,hy[IE] [JE] [KE] ,hz[IE] f JE] [KE]; 
double ix[IE] [JE] [KE],iy[IE] [JE] [KE],iz[IE] [JE][KE]; 
double gax 1 [IE] [JE] [KE],gay 1 [IE] [JE][KE],gaz 1 [IE] [JE] [KE]; 
double gax2[IE] [JE] [KE],gay2[IE][JE][KE],gaz2[IE] [JE] [KE]; 
double gax3 [IE] [JE] [KE],gay3 [IE][JE] [KE],gaz3 [IE] [JE] [KE]; 
double gax4[IE] [JE] [KE],gay4[IE][JE] [KE],gaz4[IE] [JE] [KE];

double gbxl [IE][JE][KE],gby 1 [IE][JE][KE],gbz 1 [IE][JE] [KE]; 
double gbx2 [IE] [JE] [KE] ,gby2 [IE] [JE] [KE] ,gbz2 [IE] [JE] [KE]; 
double gbx3 [IE] [JE] [KE] ,gby3 [IE] [JE] [KE] ,gbz3 [IE] [JE] [KE]; 
double gbx4 [IE] [JE] [KE] ,gby4 [IE] [JE] [KE] ,gbz4 [IE] [JE] [KE];

double gdx 1 [IE] [JE] [KE] ,gdy 1 [IE] [JE][KE],gdz 1 [IE] [JE] [KE]; 
double gdx2[IE] [JE] [KE] ,gdy2 [IE] [JE] [KE],gdz2 [IE] [JE] [KE]; 
double gdx3 [IE] [JE] [KE] ,gdy3 [IE] [JE] [KE] ,gdz3 [IE] [JE] [KE]; 
double gdx4 [IE] [JE] [KE],gdy4[IE] [JE][KE],gdz4 [IE] [JE] [KE]; 
double gcx[IE] [JE] [KE] ,gcy[IE] [JE] [KE] ,gcz[IE] [JE] [KE]; 
double gx[IE][JE][KE],gy[IE][JE][KE],gz[IE][JE][KE]; 
double sxl[IE][JE][KE][3],syl[IE][JE][KE][3],szl[IE][JE][KE][3]; 
double sx2[IE][JE][KE][3],sy2[IE][JE][KE][3],sz2[IE][JE][KE][3]; 
double sx3 [IE] [JE] [KE] [3],sy3 [IE] [JE] [KE] [3],sz3 [IE] [JE] [KE] [3]; 
double sx4[IE] [JE] [KE] [3],sy4[IE] [JE] [KE] [3],sz4 [IE] [JE] [KE] [3];

double idxl[ia] [JE][KE],idxh[ia] [JE] [KE 
double ihxl[ia] [JE] [KE],ihxh[ia] [JE] [KE' 
double idyl[IE][ja][KE],idyh[IE][ja][KE 
double ihyl[IE] [ja] [KE],ihyh[IE] [ja] [KE 
double idzl[IE][JE][ka],idzh[IE][JE][ka] 
double ihzl[IE][JE][ka],ihzh[IE][JE][ka]
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double inc_gazl[JE]; 
double inc_gaz2[JE]; 
double inc_gaz3[JE]; 
double inc_gaz4[JE]; 
double inc_gbzl[JE]; 
double inc_gbz2[JE]; 
double inc_gbz3[JE]; 
double inc_gbz4[JE];

double inc_gdzl[JE]; 
double inc_gdz2[JE]; 
double inc_gdz3[JE]; 
double inc_gdz4[JE]; 
double inc_gcz[JE]; 
double inc_gz[JE]; 
double inc_szl[JE][3]; 
double inc_sz2[JE][3]; 
double inc_sz3[JE][3]; 
double inc_sz4[JE][3];

int main(int argc, char* argv[])
{

int n,i,j,k,icjc,kc,nsteps,n_pml; 
double ddx,dt,epsz,muz,pi,npml,T; 
int ib,jb,kb,numsph;

int NCUR,NPR2,NPR1; 
double xn,xxn,curl_e; 
double tO,spread,pulse;
double ez_inc[JE],hx_inc[JE],dz_inc[JE],iz_inc[JE]; 

double ez low m l ,ez_low_m2,ez_high_ml ,ez_high_m2;

int ixh, jyh, kzh;

double gil [IE],gi2[IE],gi3[IE]; 
double gj 1 [JE],gj2[JE],gj3[JEl; 
double gkl [KE],gk2[KE],gk3 [KE]; 
double fil[IE],fi2[IE],fi3[IE]; 
double fjl[JE],f52[JE],fj3[JE]; 
double fk 1 [KE] ,fk2 [KE], fk3 [KE];

double radius[10],epsilon[ 10],sigma[ 10],eps,cond; 
double dell 1 [10],dell2[l0],dell3[ 10],dell4[l0]; 
double tau 1 [ 10],tau2[ 10],tau3[10],tau4[10];
double alpha 1 [ 10],alpha2[l 0],alpha3 [ 10],alplia4[ 10]; 
double A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4; 

double dist,xdist,ydist,zdist,curl_h;
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FILE *fp,*fp 1 ,*fp2,*fp3,*fp5,*fp6,*^7,*fp8,*fp9/fp 10 ;
ic = (IE-l)/2 ;
jc = (JE -l)/2 ;
kc = (KE-l)/2 ;
ib = IE - ia -1;
jb = JE - ja -1 ;
kb = KE - ka - 1;
pi = 3.14159;
epsz = 8.8e-12;
muz = 4*pi*l.e-7;
ddx = le-6; /* Cell size */
dt = ddx/6e8; /* Time steps *1
NCUR=2;

NPR1=1;
NPR2=0;

/* Initialize the arrays */ 
for ( j=0; j < JE; j+ + ) {

for ( k=0; k < KE; k++ ) { 
for ( i=0; i < IE; i+ + ) { 
ex[i][j][k]=0.0; 
ey[i]D][k]= O.o; 
ez[i]0][k]=O.O; 
dx[i][j][k]=0.0; 
dy[i]Q][k]=0.0; 
dz[i][j][k]=0.0; 
hx[i][j][k]=0.0; 
hy[i]D][k]=0.0; 
hz[i][j][k]=0.0; 
ix[i]D'][k]=0.0; 
iy[i]0][k]= 0.0; 
iz[i]tj][k]=0.0;

gcx[i]0][k]= 1.0 
gcy[i]D][k]= 1.0 
gcz[i][j][k]= 1.0

gx[i][j][k]=0.0;
gy[i]D1[k]=0.0;
gz[i]D][k]=0.0;

gaxl[i][j][k]=0.0; 
gax2[i][j][k]=0.0; 
gax3[i][j]fk]=0.0; 
gax4[i][j][k]=0.0; 
gay 1 [i] [j] [k]=0.0; 
gay2[i][j][k]=0.0; 
gay3[i]01[k]=O.O; 
gay4[i]0][k]=0.0; 
gaz 1 [i] [j ] [k]=0.0; 
gaz2[i][j][k]=0.0; 
gaz3[i][j][k]=0.0; 
gaz4[i][j][k]=0.0;

gbxlfi][j][k]=0.0;
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gbx2[i][j][k]=0.0 
gbx3[i][j][k]=0.0 
gbx4[i][j][k]=0.0 
gbyl[i][j][k]=0.0 
gby2[i]D][k]=0.0 
gby3[i]0][k]=O.O 
gby4[i](j]fk]=0.0 
gbzl[i][j][k]=0.0 
gbz2 [i] 0 3 [k]=0.0 
gbz3[i][j][k]=0.0 
gbz4[i][j][k]=0.0

} } } 

///////////////

gdxl[i]Lj][k]=0.0
gdx2[i][j][k]=0.0
gdx3[i]0]fk]=O.O
gdx4[i][j][k]=0.0
gdyl[i][j][k]=0.0
gdy2[i][j][k]=0.0
gdy3[i]D][k]=0.0
gdy4fi]0][k]=0.0
gdzl[i]D][k]=0.0
gdz2[i][j][k]=0.0
gdz3fi]D][k]=0.0
gdz4[i][j][k]=0.0

for ( j=0; j < JE; j+ + ) { 
for ( k=0; k < KE; k++ ) { 
for ( i=0; i < IE; i+ + ) {

for(int temp=0; temp<3 ;temp++) {

sxl[i][j][k][temp]=0.0;
sx2[i][j][k][temp]=0.0;

sx3 [i] [j] [k] ftemp]=0.0 
sx4fi] [j] [k] [temp]=0.0 
syl[I]0][k][temp]=O.O 

sy2[i]0][k]ftemp]=0.0;
sy3 [i] 0 ] [k] [temp]=0.0 
sy4[i][j][k][temp]=0.0 
szl[i][j][k][temp]=0.0; 

sz2[i] [j] [k] [temp]=0.0;
sz3 [i] 0] [k] [temp]=0.0; 
sz4[i][j][k][temp]=0.0;

} } }}

III

for(j=0;j<JE;j++)
{

ez_inc[j]=0;
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dz_inc[j]=0; 
hx_inc[j]=0; 
iz_inc[j]=0; 
inc_gcz[j]= 1.0; 
inc_gz[j]=0.0; 
inc_gazl[j]=0.0 
inc_gaz2[j]=0.0 
inc_gaz3[j]=0.0 
inc_gaz4[j]=0.0 
inc_gbzl[j]=0.0 
inc_gbz2[j]=0.0 
inc_gbz3[j]=0.0 

inc_gbz4[j]=0.0;
inc_gdzl[j]=0.0
inc_gdz2[j]=0.0
inc_gdz3[j]=0.0
inc_gdz4[j]=0.0
}

ez_low_ml=0;
ez_low_m2=0;
ez_high_ml=0;
ez_high_m2=0;

/////

for ( i=0; i < ia; i+ + ) { 
for ( j=0; j < JE; j+ + ) { 

for ( k=0; k < KE; k++ ) { 
idxl[i][j][k] = 0.0; 
idxh[i][j][k] = 0.0; 
ihxl[i][j][k] = 0.0; 
ihxh[i][j][k] = 0.0;

} } }

for ( i=0; i < IE; i++ ) { 
for ( j=0; j < ja; j+ + ) { 

for ( k=0; k < KE; k++ ) { 
idyl[i][j][k] = 0.0; 
idyh[i][j][k] = 0.0;
ihyl[i][j][k] = 0.0;
ihyh[i][j][k] =0.0;

} } }

for ( i=0; i < IE; i+ + ) { 
for ( j=0; j < JE;j++ ) { 

for ( k=0; k < ka; k+ +) { 
idzl[i][j][k] = 0.0; 
idzh[i][j][k] = 0.0; 
ihzl[i][j][k] = 0.0; 
ihzh[i][j][k] = 0.0;

} } }
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/* Boundary Conditions */

for ( 1=0; i < IE; i++ ) {
g il[i]= 0 .;
fil[i] = 0.;
gi2[i] = I.;
fi2 [i]=L ;
gi3[i] = 1.;
fi3[i] = L;
}
for ( j=0; j < JE; j+ + ) { 
gjiD] =  o.; 
fjl[j] = 0.;
gj2D1 = 1-;
PD] = 1-; 
gj3D3 = U 
PD] = i-;
}

for ( k=0: k < IE; k+ + ) {
gkl[k] = 0.;
fkl[k] =0.;
gk2[k] = 1.;
fk2[k] = 1.;
gk3[k] = 1.;
fk3[k] = 1.;
I&
printf( "npml --> "); 
scanf("%lf', &npml); 
printf("%lf\n", npml); 
n_pml =(int) npml;

7
npml=5;
n_pml=(int) npml;

for ( i=0; i < n_pml; i+ + ) { 
xxn = (npml-i)/npml; 
xn = Emp*pow(xxn,3.); 
fil[i] = xn; 
fll [IE-i-1] =xn; 
gi2[i] = l./(l.+xn); 
gi2[IE-i-l] = l./(l.+xn); 
gi3[i] = (l.-xn)/(l.+xn); 
gi3 [IE-i-1] = (l.-xn)/(l.+xn); 

xxn = (npml-i-.5)/npml; 
xn = Enf)*pow(xxn,3.); 
gil[i] =xn; 
gil [IE-i-2] = xn; 
fi2[i] = l./(l.+xn); 
fi2 [IE-i-2] = L/(l.+xn); 
fi3 [i] = (l.-xn)/(l.+xn);
63 [IE-i-2] = (1 ,-xn)/( 1 ,+xn);

}
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for ( j=0; j < njpxnl; j+ + ) { 
xxn = (npml-j)/npml; 
xn = Emp*pow(xxn,3.); 
fjl(J] =xn; 
fj 1 [JE-j-1] =xn; 
gj2[j] = l./(l.+xn); 
gj2[JE-j-l] = l./(l.+xn); 
gj3D] =(l.-xn)/(l.+xn); 
gj3[IE-j-l] = (l.-xn)/(l.+xn); 

xxn = (npml-j-.5)/npml;
xn = Emp*pow(xxn,3.);
g jljj] =xn; 
gj 1 [JE-j-2] =xn; 
m m  = l./(l.+xn); 
f]2[JE-j-2] = l./(l.+xn);
§30] =(l.-xn)/(l.+xn); 
fj3[JE-j-2] = (l.-xn)/(l.+xn);

}

for ( k=0; k < n_pml; k++) { 
xxn = (npml-k)/npml; 
xn = Emp*pow(xxn,3.); 
fkl [k] = xn; 
fkl[KE-k-l] =xn; 
gk2[k] = l./(l.+xn); 
gk2[KE-k-l] = l./(l.+xn); 
gk3[k] = (l.-xn)/(l.+xn); 
gk3[KE-k-l] = (l.-xn)/(l.+xn); 

xxn = (npml-k-.5)/npml; 
xn = Emp*pow(xxn,3.); 
gkl [k] = xn; 
gkl [KE-k-2] = xn; 
fk2[k] = l./(l.+xn); 
fk2 [KE-k-2] = l./(l.+xn); 
fk3[k] = (l.-xn)/(l.+xn); 
fk3 [KE-k-2] = (l.-xn)/(l.+xn);

}

/* Specify the dielectric sphere */

epsilon[0] = 1.; 
sigmafO] = 0 .; 

dell 1 [0]==0.; 
dell2[0]=0.; 
dell3[0]==0.; 
dell4[0]=0.; 
taul[0]=0.; 
tau2[0]=0.; 
tau3[0]=0.; 
tau4[0]=0.; 

alphal [0]=0.;
alpha2[0]=0.; 
alpha3 [0]=0.; 
alpha4[0]=0.;
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printf( "Number spheres --> "); 
scanf("%d", &numsph); 

printf{ "mimsph= %d \n ",numsph);

for (n = 1; n <= numsph; n++) { 
printf( "Sphere radius (cells), epsilon, sigma —> "); 
scanf("%lf %lf % lf& radius[n], &epsilon[n], &sigma[n]);

printf("Delll,Dell2,Dell3,De!14—>");
scanf("%lf % lf %lf %lf',&delll [n],&dell2[n],&dell3[n],&dell4[n]); 
printf(”Taul ,Tau2,Tau3,Tau4— >");
scanf("%lf %lf %lf %lf',&taul [n], &tau2 [n], &tau3 [n], & tau4 [n]); 
printf("Alphal,Alpha2,Alpha3,Alpha4—>");
scanf("%lf %lf %lf % lf' ,&alpha 1 [n] ,&alpha2 [n], &alpha3 [n] ,&alpha4 [n]); 

printf( "Radius = %10.2f Eps = %10.2f Sigma = %10.8f\n ",
radius[n],epsilon[n],sigma[n]);

}

for (n = 1; n <= numsph; n++) { 
printf( "Radius = %10.2f Eps = %10.2f Sigma = %10.8f\n ", 
radius[n],epsilon[n],sigma[n]);

}
*/

radius[l]=10;
epsilon[l]=4.;
sigma[l]=0.7;
delll[l]=56;
dell2[l]=5200;
dell3[l]=0.;
dell4[l]=0.;
taul[l]=8.377e-12;
tau2[l]=132.629e-9;
tau3[l]=159.155e-6;
tau4[l]=15.915e-3;
alphal[l]=0.1;
alpha2[l]=0.1;
alpha3[l]=0.2;
alpha4[l]=0.;
numsph=l;

/* Calculate gax,gbx */ 
for ( i = 0; i < IE; i++ ) { 
for ( j = 0; j < JE; j++ ) { 
for ( k = 0; k < KE; k++ ) { 
eps = epsilonfO]; 
cond = sigma[0];

Cl=pow(taul [0]/dt,l-alpha! [0]);
C2=pow(tau2[0]/dt,l-alpha2[0]);
C3=pow(tau3 [0]/dt, 1 -alpha3 [0]);
C4=pow(tau4 [0]/dt, 1 -alpha4[0]);
Bl=aiphal[0];
B2=alpha2[0];
B3=alpha3[0];
B4=alpha4[0];
A 1 =dell 1 [0]/( 1+C1);
A2=dell2 [0]/( 1+C2);
A3=dell3[0]/(1+C3);
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A4=dell4[0]/( 1+C4);

ydist = (jc-j); 
xdist = (ic-i-.5); 
zdist = (kc-k);
dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));

// dist=sqrt(pow(ydist,2.)); 
for (n=l; n<= numsph; n++) {

/*
if(n==3)
{

ydist=ydist-3;
xdist=xdist-3;

dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));
}
*/

if( dist <= radius [n]) { 
eps = epsilon[n]; 
cond = sigma[n];

Cl=pow(taul [n]/dt,l-alpha 1 [n]);
C2=pow(tau2[n]/dt, 1 -alpha2 [n]);
C3=pow(tau3 [n]/dt, 1 -alpha3 [n]);
C4=pow(tau4[n]/dt, 1 -alpha4[n]);
Bl=alphal[n];
B2=alpha2[n];
B3=alpha3[n];
B4=alpha4[n];
Al=delll[n]/(1+Cl);
A2=dell2[n]/( 1+C2);
A3 =deU3 [n]/( 1+C3);
A4=dell4 [n]/( 1+C4);

}

}
gcx[i][j][k]=1 ./(eps+(cond*dt/epsz)+A 1+A2+A3+A4);

gaxl[i][]][k]=(l-Bl)*Cl/(l+Cl);
gax2 [i] [j ] [k]=( 1-B2) * C2/( 1+C2);
gax3[i][j][k]=(l-B3)*C3/(l+C3);
gax4 [i][j][k]=(l -B4)*C4/(1+C4);
gbxl[i][j][k]=0.5*(l-Bl)*Bl*Cl/(l+Cl);
gbx2[i][j][k]=0.5*(l-B2)*B2*C2/(l+C2);
gbx3[i][j][k]=0.5*(l-B3)*B3*C3/(l+C3);
gbx4 [i] [j ] [k]=0.5 *( 1-B4) *B4 * C4/( 1+C4);
gdxl[i][]'][k]=Al;
gdx2 [i] [j] [k]=A2;

gdx3[i][j][k]=A3;
gdx4 [i] [j ] [k]=A4; 
gx[i][j][k]=cond*dt/epsz;

}}}

/* Calculate gay,gby */ 
for ( i = 0; i < IE; i+ + ) {
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for ( j  =  0; j  <  J E ;  j + + )  { 

for ( k = 0; k <  K E ;  k++ ) { 
eps = epsilon[0]; 
cond = sigma[0];

Cl=pow(taul[0]/dt,l-alphal [0])
C2=pow(tau2[0]/dt, 1 -alpha2[Q])
C3=pow(tau3[0]/dt, l-alpha3[0j)
C4=pow(tau4[0]/dt, 1 -alpha4[0])
Bl=alphal[0];
B2=aipha2[0j;
B3=alpha3[0];
B4=alpha4[0];
A 1 =dell 1 [0]/( 1+C1)
A2=dell2f0]/(1+C2)
A3=dell3 [0]/( 1+C3)
A4=dell4[0]/( 1+C4) 

xdist = (ic-i); 
ydist = (jc-j-.5); 
zdist = (kc-k);
dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));

// dist=sqrt(pow(ydist,2.));
for (n=l ; n<= numsph; n++) {

/* if(n==3)
{

ydist=ydist-3;
xdist=xdist-3;

dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));
}
*/

if( dist <= radiusfn]) 
eps = epsilon[n]; 
cond = sigma[n];

{

C 1 =pow(tau 1 [n]/dt, 1 -alpha 1 [n]) 
C2=pow(tau2[n]/dt, l-alpha2[n]) 
C3=pow(tau3 [n]/dt, 1 -alpha3 [n]) 
C4=pow(tau4[n]/dt, l-alpha4[n]) 
Bl=alphal[nj;
B2=alpha2[n];
B3=alpha3[n];
B4=alpha4[n];
A 1 =dell 1 [n]/( 1+C1);
A2=dell2 fn]/( 1+C2);
A3=dell3 [n]/( 1+C3);
A4=dell4 [n]/( 1+C4);

gcy[i][j][k]=l./(eps+(cond*dt/epsz)+Al+A2+A3+A4);
gayl[i]0][k]=(l-B irC l/{l+C l);

gay2 [i] 0 ] [k]=( 1 -B2)*C2/(1+C2); 
gay3 [i][j] [k]=( 1 -B3)*C3/(1+C3); 
gay4[i][i]fk]=(l-B4)*C4/(l+C4); 
gbyiri][j]tk]=0.5*(l-B l)*B l*C l/(l+C l); 
gby2[i]0]fk]=0.5!i!(l-B2)*B2*C2/(l+C2); 
gby3[i][j][k]=0.5*(l-B3)*B3*C3/(l+C3); 
gby4[i][j][k]=0.5*( 1 -B4)*B4*C4/( 1+C4); 
gdyl[i]0][k]=Al;
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gdy3 [i] [j ] [k]=A3; 
gdy4[i][j][k]=A4;

gdy2[i]0][k]=A2;

gy[i]jj][k]=cond*dt/epsz;

}}}

* Calculate gaz,gbz */ 
for ( i = 0; i < IE; i+ + ) { 

for ( j = 0; j < IE; j-H-) { 
for ( k = 0; k < KE; k++ ) { 
eps = epsilon[0]; 
cond = sigma[0];

C 1 =pow(tau 1 [0]/dt, 1 -alpha 1 [0]);
C2=pow(tau2 [0]/dt, 1 -alpha2[0]);
C3=pow(tau3 [0]/dt, 1 -alpha3 [0]);
C4=pow(tau4 [0]/dt, 1 -alpha4 [0]);
Bl=alphal[0];
B2=alpha2[0];
B3=alpha3[0];
B4=alpha4f0];
Al=delll[0]/(1+Cl);
A2=dell2[0]/( 1+C2);
A3=dell3 [0]/( 1+C3);
A4=dell4[0]/( 1+C4); 

xdist = (ic-i); 
ydist = (jc-j); 
zdist = (kc-k-.5);
dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));

// dist=sqrt(pow(ydist,2.));
for (n=l; n<= numsph; n++) {

/ *  if(n==3)
{

if{ dist <= radius[n]) { 
eps = epsilonfn]; 
cond = sigma[n];

ydist=ydist-3;
xdist=xdist-3;

dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));
}
*/

C 1 =pow(taul [n]/dt, 1 -alpha 1 [n]); 
C2=pow(tau2 [n]/dt, 1 -alpha2[n]); 
C3=pow(tau3 [n]/dt, 1 -alpha3 [n]); 
C4=pow(tau4[n]/dt,l-alpha4[n]); 
Bl=alphal[nj;
B2=alpha2[n];
B3=alpha3[n];
B4=alpha4[n];
Al=delll[n]/(1+Cl);
A2=dell2 [n]/( 1+C2);
A3 =del!3 [n]/( 1+C3);
A4=del 14 [n]/( 1+C4);

} }
gcz[i][jl[k]=l./(eps+(cond*dt/epsz)+Al+A2+A3-i-A4);
gazl[i]0][k]=(l-B l)*Cl/(l+Cl);
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gaz2[i][j][k]=(l-B2)*C2/(l+C2);
gaz3[i][j][k]=(l-B3)*C3/(l+C3); 
gaz4 [i] [j] [k]=( 1 -B4)*C4/(1+C4); 
gbzl[i][j][k]=0.5*(l-Bl)*Bl*Cl/(l+Cl) 
gbz2[i]0][k]=0.5*(l-B2)*B2*C2/(l+C2) 
gbz3[i][j][k]=0.5*(l-B3)*B3*C3/(l+C3) 
gbz4 [i] [j ] [k]=0.5 *( 1 -B4)*B4 *C4/(1+C4) 
gdzl[i][j][k]=Al; 
gdz2 [i] 0 ] [k] =A2;

gdz3[i][j][kJ=A3;
gdz4[i]{J][k]=A4;

gz[i] [j] [k]=cond*dt/epsz;
}}}

tO = 40.0; 
spread = 10.0;
T = 0; 
nsteps = 1; 

fp = fopen("Ez-t.dat'V'w");
fprintf(fp/TITLE=ELECTRIC FIELD\n"); 
%rintf(fp,"VARIABLES=X, Y, Ez\n");

fp5 = fopen(" 130.dat","w"); 
fprintf(fp5,"TITLE=ELECTRIC FIELD\n"); 
%intf(4)5,"VARIABLES=X, Y, Z, Ez\n");

fp6 = fopen(" 140.dat","w"); 
fprintf(fp6, "TITLE=ELECTRIC FIELD\n"); 
fprmtf(fp6,"VARIABLES= X, Y, Z, Ez\n");

fp7 = fopen(" 150.dat","w"); 
fprmtf(fp7/’TITLE=ELECTRIC FIELD\n"); 
fprintf(fp7,"VARIABLES= X, Y, Z, Ez\n");

fp8 = fopen("l 80.dat","w"); 
^rintf(fp8,"TITLE=ELECTRICFIELD\n"); 
4rintf(fp8,"VARIABLES= X, Y, Z, EzW );

fp9 = fopen("200.dat","w"); 
fprintf(fp9,"TITLE=ELECTRIC FIELD\n"); 
f|mntf(f|>9,"VARIABLES= X, Y, Z, Ez\n");

fplO = fopen("210.dat"," w"); 
fprintf(fjp 10, "TITLE=ELECTRIC FIELDW); 
fj}rintf(fp 10,''VARIABLES= X, Y, Z, Ez\n");

fpl = fopen("data.dat'V'w");
fjmntf(fpl,"Rising Time Thickness Crossing Ref Absorb peneration V ) ;

fp2 = fopen("ldEz-t.dat","w"); 
fprintf(f^2/'TITLE=ELECTRICFIELD\n"); 
fprintf(fp2,"VARIABLES=Y, Ez\n");

fp3 = fopen("Ez-tl .dat","w");
f^rintf(fp3,"TITLE=ELECTRIC FIELDVn"); 
4)rintf(fp3,"VARIABLES=Y, Ez\n");
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//while ( nsteps > 0 )  {
/*

printf( "nsteps —> "); 
scanf("%d", &nsteps); 
printf{"%d \n", nsteps);
*/

nsteps=400; 
for ( n= l; n <=nsteps ; n++) {

T = T + 1;
NPR2=NPR1;

NPR1=NCUR;
NCUR={NCUR+1 )%3;

/* —  Start of the Main FDTD loop —  */

/* Calculate the incident buffer */ 
for ( j=0; j < JE; j+ + ) {

dzincjj] =dz_inc[j]+0.5*( hx_inc[j-l]- hx_inc[j]);

pulse=exp(-(T-100)*(T-100)/100.0); 
dz_inc[3]=pulse+dz_inc[3];

////////////
/* Calculate the Dx field */

for ( i=l; i < ia; i++ ) { 
for ( j= l; j < JE; j+ + ) { 

for ( k = l; k < KE; k++ ) { 
curl h = ( hz[i]0][k] - hz[i][j-l][k] 

-hy[i][j]fk]+hyfi30][k-l]); 
idxl[i][j][k] = idxl[i][j][k] + curl_h; 
dx[i]D][k] = gj3D']*gk3[k]*dx[i][j][k]

+ gj2[j]*gk2[k]*.5*(ciirl_h + gil[i]*idxl[i][j][k]);
} } }

for ( i=ia; i <= ib; i+ + ) { 
for ( j= l; j < JE; j+ + ) { 

for ( k=l; k < KE; k+ +) { 
curl_h = ( hz[i]fj][k] - hz[i][j-l][k] 

-hy[i]0][k]+hy[i]0][k-l]); 
dx[i]D][k] = gj30]*gk3[k]*dx[i]fj][k]

+ gj20]*gk2(j]*.5*curl_h;
} } }

for ( i=ib+l; i < IE; i++ ) { 
ixh = i - ib - 1; 
for ( j= l ; j < JE; j+ + ) { 

for ( k= l; k < KE; k++) { 
curl_h = ( hz[i]{j][k] - hz[i][j-l][k]
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-hy[i]0][k]+hy[i][j][k-l]); 
idxh[ixh][j][k] = idxh[ixh]£j][k] + curl_h; 
dx[i][j][k] = gj30]*gk3[k]*dx[i][j][k]

+ gj2[j]*gk2[k]*.5*(curl_h + gil[i]*idxh[ixh][j][k]);
} } }

/* Calculate the Dy field */

for ( i= l; i < IE; i+ + ) { 
for ( j= l;  j < ja; j-H-) { 

for ( k= l; k < KE; k+ + ) { 
c u r ih  = ( hx[i][j][k] - hx[i][j][k-lj 

- hz[i][j][k] + hz[i-l][j][k]); 
idyl[i][j][k] = idyl[i][j][k] + curl_h; 
dy[i]0]fk] = gi3 [i] *gk3 [k] *dy[i] [j] [k]
+ gi2 [i] *gk2[k] *. 5 *( c u r lh  + gjl[j]*idylfi][j][k]);

} }}

for ( i= l; i <IE; i++) { 
fo r( j= ja ;j< = jb ;j+ + ) { 

for ( k = l; k < KE; k + + ) { 
c u r lh  = ( hx[i]jj][k] - hx[i][j][k-l]

-hz[l]D][k]+hz[i-l]D][k]); 
dy[i]0][k] = gi3 [i] *gk3 [k] *dy[i] [j] [k]

+ gi2[i]*gk2[k]*.5* curl h ;
} } }

for ( i= l; i < IE; i++ ) { 
for ( j=jb+l; j < JE; j+ + ) { 

jy h = j - j b - 1; 
for ( k=l; k < KE; k++ ) { 

curl h = ( hx[i][j]tk] - hx[i][j][k-l]
■ hz[i][i][k] + hz[i-l][j][k]) ; 

idyh[i][jyh][k] -  idyh[i][jyh][k] + curl h; 
dy[i]D][k] = gi3 [i] *gk3 [k] *dy[i] [j] [k]
+ gi2[i]*gk2[k]*.5*( c u r lh  + gjl[j]*idyh[i][jyh]tk]);

} } }

/* Incident Dy */

for ( i=ia; I  <= ib; i++ ) { 
fo r ( j= ja ;j< = jb -l;j+ + ) { 

dy[i][j][ka] = dy[i][j]fka] - .5*hx_inc[j]; 
dy[i]D][kb+l] = dy[i][j][kb+l] + ,5*hx>c0];

} }

./* Calculate the Dz field */

for ( i=l; i < IE; i++ ) { 
fo r ( j= l;j  < JE; j+ + ) { 

for ( k=0; k < ka; k++ ) { 
curl_h = (hy[ijD][k]-hy[i-l]D][k] 

-hx[i]U][k]+hx[i]U-l]tk]); 
idzl[i][j][k] = idzi[i][j][k] + curl_h; 
dz[i][j][kj = gi3[i]*gj3[j]*dz[i][j][k]
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+ gi2[i]*gj2[j]*.5*( curl h + gkl[k]*idzl[i][j][k]);
} ) }

for ( i= l; i < IE; i+ + ) { 
for ( j= l; j < JE; j+ + ) { 

for ( k=ka; k <= kb; k+ + ) { 
curl_h = ( hy[i][j][k] - hy[i-l][j][k]

- hx[i]tj][k] + hx[i][j-l][k]) ; 
dz[i]D][k] = gi3[i]*gj30]*dz[i]jj][k]

+ gi2[i]*gj2jj]*.5* curl_h;
} } }

for ( i= l; i < IE; i++ ) { 
for ( j= l; j < JE; j+ + ) { 

for ( k=kb+l; k < KE; k+ +) {
IcTili — k - kb - 1 ’

curl h = ( hy[i][j][k] - hy[i-l][j][k]
-M i]ra [k ] + hx[i]D-l][k]);

idzh[i][j][kzh] = idzh[i][j][kzh] + curlh ; 
dz[i]|j]M  = gi3[i]*gj3D]*dz[i][j][k]
+ gi2[i]*gj2[j]*.5*( curl h + gkl[k]*idzhfi]0 ][kzh]);

} } )

/* Incident Dz */

for ( i=ia; i <= ib; i++ ) { 
for ( k=ka; k <= kb; k++) { 

dz[i][ja]rk] = dz[i][ja][k] + .5*hx incfja-11; 
dz[i][jb][k] = dz[i][jb][k] - .5*hx jncQb];

} }

for ( j= l; j < JE-1; j+ + ) {

Bl=inc__gazl [j] *inc_sz 1 [j] [NPR1 ]+inc_gbz 1 [j]*inc_sz 1 [j] [NPR2];
B2=inc_gaz2[j]*inc_sz2[j][NPRl]+inc_gbz2[j]*inc_sz2[j][NPR2];

B3=inc_gaz3[j]*inc_sz3[j][NPRl]+inc_gbz3[j]*inc__sz3[j][NPR2];
B4=inc_gaz4 0 ] *inc_sz4[j ] [NPR1 ]+inc_gbz4 [j ] *inc_sz4 [j ] [NPR2]; 

ez_inc[j] = inc_gcz[j]*(dz_inc[j] - iz_inc[j]-Bl-B2-B3-B4); 
iz_inc[i]= iz_inc[i] + inc_gz[i]*ez_inc[i]; 
inc_sz 1 [j] [NCUR]=B 1 +inc_gdz 1 [j]*ezinc[j];

inc_sz2[j][NCXJR]=B2+inc_gdz2[j]:i'ez_inc[j]; 
inc_sz3 [j ] [NCUR] =B3 +inc__gdz3 (j ] *ez_inc [j ]; 
inc_sz4[j][NCUR]=B4+inc_gdz4[j]*ez_mc[j];

}
/* Boundary conditions for the incident buffer*/

ez_inc[0] = ez_low_m2; 
ez_low_m2 = e z lo w m l ;
ez_low_ml = ez_inc[i];

ez_inc[JE-l] = ez_high_m2; 
ez_high_m2 = ez_high_ml; 
e z h ig h m l = ez_inc[JE-2];
/* Source */
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/./ pulse = exp(-.5*(pow((tO-T)/spread,2.0)));
// pulse= 1OOOGO*exp(-(T -100) *{T -100)/100.0);

// for ( i=0; i < IE; i+ + ) {
// for ( k=0; k < KE; k++ ) {
// dz[i][6][k]=pulse;
// }

/* pulse = sin(2*pi*4G0*!e6*dt*T); 
for ( k=kc-6; k <= kc+6; k++) { 

dz[ic][jc][k] = 0 .;

}
pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
dz[ie][jc][kc] = pulse;*/

// printf("%4.0f %6.2f\n ”,T,pulse);

/* Calculate the E from D field */
/* Remember: part of the PML is E=0 at the edges */ 
for ( i= l; i < IE-1; i++ ) { 

for ( j= l ; j  < IE-1; j+ + ) { 
for ( k=l; k < ICE-1; k + + ) {
Bl==gaxl[i][j][k]*sxl[i][j][k)[NPRl]+gbxl[i][j][k]*sxl[i][j]fk][NPR2];

B2=gax2 [i] [j ] [k] * sx2 [i] [j ] [k] [NP R 1 ]+gbx2 [i] [j ] [k] * sx2 [i] [j ] [k] [NPR2]; 
B3=gax3[i][j][k]*sx3[i][j][k][NPRl]+gbx3[i][j][k]*Sx3[i][j][k][NPR2];

B4=gax4[i]0][k]*sx4[i]tj][k][NPRl]+gbx4[i]0][k]*sx4[i]0][k][NPR2]; 
ex[i]D1fk] = gcx[i][j][k]*(dx[i][j][k] - ix[i]0][k]-Bl-B2-B3-B4); 
ix[i]D][k] = ix[i][j][k] + gx[i][j][k]*ex[i][j][k]; 
sxl[i][j][k][NCUR]=Bl+gdxl[i][j][k]*ex[i][j][k];

sx2 [i] [j] [k] [N CUR]=B2+gdx2 [i] [j ] [k] *ex[i] [j ] [k]; 
sx3 [i] [j] [k] [N CUR]=B3+gdx3 [i] [j] [k] *ex[i] [j] [k]; 
sx4 [i] 0 ] [k] [N CUR]=B4+gdx4 [i] [j ] [k] *ex[i] [j ] [k];

Bl=gayl[i][j][k]*syl[i}[j][k][NPRl]+gbyl[i][j][k]*syl[i][j][k][NPR2};
B2=gay2 [i] 0 ] [k] * sy2 [i] [j ] [k] [NP R 1 ] +gby2 [i] [j ] f k] *sy2 [i] [j ] [k] [NPR2]; 

B3=gay3[i]0][k]*sy3[i]U][k][NPRl]+gby3[i][j][k]*sy3[i][j][k][NPR2];
B4=gay4 [i] [j ] [k] * sy4 [i] [j ] [k] [NP R 1 ]+gby4 [i] [j ] [k] *sy4 [i] [j ] [k] [NP R2]; 

ey[i]U][k] = gey[i]0]M*(dy[i]0]M  - iy[i]0][k]-Bl-B2-B3-B4); 
iy[i]0][k] = iy[i][j][k] + gy[i]0][k]*ey[i][j][k]; 
syl[i]0]tk][NCUR]=Bl+gdyl[i]0][k]*ey[i]0][k);

Sy2[i]0][k][NCUR]=B2+gdy2[i]0][k]*ey[i]0][k]; 
sy3 [i] [j] M  [NCUR]=B3+gdy3 [i] [j ] [k]*ey[i] [j] [k]; 
sy4[i]0][k][NCUR]=B4+gdy4[i]0][k]*ey[i]0][k];

Bl=gazl[i][)'][k]*szl[i][j][k][NPRl]+gbzl[i][j][k]*szl[i][j][k][NPR2];
B2=gaz2[i][j][k]*sz2[i][j][k][NPRl]+gbz2[i][j][k3*sz2[i]!j][k][NPR2];

B3=gaz3[i][j][k]*sz3[i][j][k][NPRl]+gbz3[i][j][k]*sz3[i][j][k][NPR2];
B4=gaz4[i][j][k]*sz4[i]fj][k][NPRl]+gbz4[i][j][k]*sz4[i][j][k][NPR2]; 

ez[i]D][k] = gcz[i][j][k]*(dz[i][j][k] - iz[i]D][k]-Bl-B2-B3-B4); 
iz[i]D][k] = iz[i]D'][k] + gz[i] [j ] [k] *ez[i] [j ] [k]; 
sz 1 [i] [j] [k] [NCUR]=B 1 +gdz 1 [i] [)] [k] *ez[i] [j] [k];

sz2[i] [j] [k] [NCUR]=B2+gdz2 [i] [j] [k] *ez[i] [j] [k]; 
sz3 [i] [j] [k] [NCUR]=B3+gdz3 [i] [j ] [k] *ez[i] [j] [k];
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sz4[i][j][k][NCUR]=B4+gdz4[i][j][k]*ez[i][j][k3;

} ) }

/* Calculate the Fourier transform of Ex. */

/* Calculate the incident field * i

for ( j=0; j < JE-1; j+ + ) {
hx_inc[j] = hx_inc[j] + ,5*( ez_inc[j] - ez_inc[j+l]);

}

/* Calculate the Hx field */

for ( i=0; i < ia; i+ + ) { 
for ( j=0; j < JE-1; j+ + ) { 

for ( k=0; k < KE-1; k++) { 
curi e = ( ey[i][j][k+l] - ey[i][j][k]

- ez[i][j+l][k] + ez[i][j][k]) ; 
ihxl[i][j][k] = ihxl[i][j][k] + cu rie ;
m m m = p o r fk s tk rh x H rn p c ]

+ jj2[j]*fk2[k]*.5*( curi e + fil[i]*ihxl[i][j][k]);
} } }

for ( i=ia; i <= ib; i++ ) { 
for(j=0;j < JE-l;j++) { 

for (k = 0 ;k <  KE-1; k++) { 
curl_e = ( ey[i][j][k+l] - ey[i]Q'][k]

- ez[i][j+l][k] + ez[i]|j][k]); 
hxHDIM  = f)3D]*fk3[k]*hx[i]0]tk]

+ fj20]*fk2M *5#curl_e;
} } }

for ( i=ib+l; i < IE; i++ ) { 
ixh = i - ib-1; 
for ( j=0; j < JE-1; j+ + ) { 

for (k = 0 ;k <  KE-1; k++) { 
curl_e = ( ey[i][j][k+l] - ey[i][j][k]

- ez[i][j+l][k] + ez[i]jj][k]) ; 
ihxh[ixh][j][k] = ihxh[ixh][j][k] + curl_e; 
hx[i]0][k] = Q3[j]*fk3[k]*lix[i][j][k]
+ g2[j]*fk2[k]*.5*( curi e + fil[i]*ihxh[ixh]D][k]);

} ) }

I* Incident Hx */

for ( i=ia; i <= ib; i++ ) { 
for ( k=ka; k <= kb; k++ ) { 

hx[i][ja-l][k] = hx[i][ja-l]fk] + ,5*ez_inc[ja];
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hx[i][jb][k] ==hx[i][jb][k] - .5*ez_inc[jb];
} }

/* Calculate the Hy field */

for ( i=0; i < IE-1; i++ ) { 
for ( j=0; j < ja; j+ + ) { 

for (k = 0 ;k <  KE-1; k + + ) { 
curi e == ( ez[i+I][j][k] - ez[i][jj[k]

- ex[i][j][k+l] + ex[i][j][k]); 
ihyl[i]|j][k] = ihyl[i][j][k] + curl_e ; 
hyHO lM  = fi3 [i] *fk3 [k] *hy f i] [j ] [k]
+ fi2[i]*fk3[k]*.5*( curl_e + fj 1 [j]*ihylfi]0][k]);

}  } }

for ( i=0; i < IE-1; i+ + ) {
for(j=ja;j<=jb;j++) { 

for (k = 0 ;k <  KE-1; k+ +) { 
curl_e = ( ez[i+l][j][k] - ez[i][j][k]

- ex[i][j][k+l] + ex[i][j][k]) ; 
hy[i]0JM = fi3[i]*fk3[k]*hy[i]jj][k]

+ fi2 [i] * fk3 [k] *. 5 *curl_e ;
} ) )

for ( i=0; i < IE-1; i+ + ) { 
fo r(j= jb + l;j < JE ;j+ + ) { 
jy h = j - jb-1; 

for (k = 0 ;k <  KE-1; k+ + ) { 
curi e = ( ez[i+l][j][k] - ez[i][j][k]

- ex[i][j][k+l] + ex[i][j][k]); 
ihyhfi][jyh}[k] = ihyh[i][jyh][k] + curi e ; 
hy[i]D']M = fi3[i]*fk3[k]*hy[i][j][k]
+ fi2[i]*fk3[k]*.5*( curi e + giO]*ihyh[i][jyh][k]);

} } }

/* Incident Hy */

for (j= ja;j < = jb ;j+ + ) { 
for ( k=ka; k <= kb; k++ ) { 

hy[ia-l][j]fk] = hy[ia-1 ][j][k] - .5*ez_inc[j]; 
hy[*]D]M  =hy[ib][j][k] + .5*ez_inc0];

} )

/* Calculate the Hz field */

for ( i=0; i < IE-1; i++ ) { 
for ( j=0; j < JE-1; j+ + ) { 

for ( k=0; k < ka; k++ ) { 
curi e = ( ex[i]fj+l][k] - ex[i]0][k]

- ey[i+l][j][k] + ey[i][j][k]); 
ihzl[i][j][k] = ihzl[i][j][k] + curi_e; 
hz[i]Q][k] = fi3[i]*fj3[j]*hz[i][j][k]
+ fi2[i]*fj2[j]*5*( c u r ie  + fkl[k]*ihzl[i][j][k]);

} } }
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for ( i=0; i < IE-1; i+ + ) { 
for ( j=0; j < JE-1; j+ + ) { 

for ( k=ka; k <= kb; k++) { 
curi e = ( ex[i][j+l][k] - ex[i][j][k]

- ey[i+l]0][k] + ey[i][j][k] );

+ fi2[i]*fj2[j]*5*curl_e;
} } }

for ( i=0; i < IE-1; i++ ) { 
for(j=0; j < JE-1; j+ + ) { 

for ( k=kb+l; k < KE; k++) { 
kzh = k - kb - 1; 

curi e = ( ex[i][j+l][k] - ex[i]0][k]
- ey[i+l][j][k] + ey[i][j][k]); 

ihzh[i][j][kzh] = ihzh[i][j][kzh] + cu rie ; 
hz[iJD][k] = fi3[i]^3D]*hZ[i]0][k]
+ fi2[i]*fj2[j]*.5*( curi e + fk 1 [k]*ihzh[i] [j] [kzh]);

} } }

////
if[(n% 2)=0)

{

printf("%d \n ",n); 
lprintf(fp,"ZONE 1=61, J=61, K=l, F=POINT\n");

for(int ys=0;ys<IE;ys++)
for(int xs=0;xs<IE;xs++)
fprintf(Q>,"%d %d %lf \n",xs,ys,ez[ys][xs][30]);

if(n>=140&&n<=280&&(n%4)=0)
{
^rintf(Q)5,"ZONE 1=61, J=61, K=31, F=POINT\n"); 
for(int ks=0;ks<31 ;ks++) 

for(int ys=0;ys<JE;ys++)
for(int xs=0 ;xs<IE ;xs++)
ft»rintf(ft>5,"%d %d %d %lf\n",xs ,ys,ks,ez[xs][ys][ks]);

}
}

////////
/*

if(n=140)
{
^rintf(fy5,"ZONE 1=61,1=61, K=31, F=POINT\n"); 
for(int ks=0;ks<3 l;ks++) 

for(int ys=0;ys<JE;ys-H-)
for(int xs=0 ;xs<IE ;xs++)
fprintf(fp5,"%d %d %d %lf \n",xs,ys,ks,ez[xs][ys][ks]);

}
V

if(n=160)
{
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t>rmtf(fp6,"ZQNE 1=61, J=61, K=31, F=POINT\n"); 
for(int ks=0;ks<31 ;ks++) 

for(int ys=0;ys<JE;ys++)
for(int xs=0;xs<IE;xs++)
fprinti(fp6,''%d %d %d %lf \n",xs,ys,ks,ez[xs][ys][ks]);

if(n==17G)
{
fprintf(ip7,"Z0NE 1=61, J=61, K=31, F=POINT\n"); 
for(int ks=0;ks<31 ;ks++) 

for(int ys=0;ys<JE;ys++)
for(int xs=0;xs<IE;xs++)
fprintf(fp7,''%d %d %d %lf \n",xs,ys,ks,ez[xs] [ys] [ks]);

}
if(n=180)

{
fprintf(fp8,"Z0NE 1=61, J=61, K=31, F=POINT\n"); 
for(int ks=0;ks<31 ;ks++) 

for(int ys=0;ys<JE;ys++)
for(int xs=0;xs<IE;xs++)
fprintf(fp8,"%d %d %d % lf \n",xs,ys,ks,ez[xs][ys][ks]);

}
if(n=200)
{
Iprintf(fp9,"ZONE 1=61, J=61, K=31, F=POINT\n"); 
for(int ks=0;ks<31 ;ks++) 

for(int ys=G;ys<JE;ys++)
for(int xs=0;xs<IE;xs++)
fprintf(lp9,H%d %d %d %lf \n",xs,ys,ks,ez[xs] [ys] [ks]);

}
if(n=210)
{
fprintf(fp 10,"ZONE 1=61, J=61, K=31, F=POINT\n"); 
for(int ks=0;ks<31 ;ks++) 

for(int ys=0;ys<JE;ys++)
for(int xs=0;xs<IE;xs++)
fprintf(^)10,"%d %d %d % lf \n" ,xs,ys,ks,ez[xs] [ys] [ks]);

}
/////

}
fclose(fp);

I *  —  End of the main FDTD loop —  *1

return 0;
}
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