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Abstract

Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian

force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of

nanofluid is developed in this work. It is applied to investigate the natural convection in a square enclosure

(the left wall is kept at a high constant temperature (TH), and the top wall is kept at a low constant

temperature (TC)) filled with Al2O3/H2O nanofluid. This model is validated by comparing numerical results with

published results, and a satisfactory agreement is shown between them. The effects of different nanoparticle

fractions and Rayleigh numbers on natural convection heat transfer of nanofluid are investigated. It is found

that the average Nusselt number of the enclosure increases with increasing nanoparticle volume fraction and

increases more rapidly at a high Rayleigh number. Also, the effects of forces on nanoparticle volume fraction

distribution in the square enclosure are studied in this paper. It is found that the driving force of the

temperature difference has the biggest effect on nanoparticle volume fraction distribution. In addition, the

effects of interaction forces on flow and heat transfer are investigated. It is found that Brownian force,

interaction potential force, and gravity-buoyancy force have positive effects on the enhancement of natural

convective heat transfer, while drag force has a negative effect.
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Background
Compared with common fluids such as water, nanofluid,

using nanoscale particles dispersed in a base fluid, has

an effect of enhancing the performance of natural con-

vection heat transfer due to its high heat conductivity

coefficient. Many researchers investigated nanoparticles

and nanofluid in recent years. Wang et al. [1] synthe-

sized stimuli-responsive magnetic nanoparticles and in-

vestigated the effect of nanoparticle fraction on its

cleavage efficiency. Bora and Deb [2] developed a novel

bioconjugate of stearic acid-capped maghemite nanopar-

ticle (γ-Fe2O3) with bovine serum albumin. Guo et al.

[3] produced magnetic nanofluids containing γ-Fe2O3

nanoparticles using a two-step method, measured their

thermal conductivities and viscosity, and tested their

convective heat transfer coefficients. Pinilla et al. [4]

investigated the growth of Cu nanoparticles in a plasma-

enhanced sputtering gas aggregation-type growth region.

Yang and Liu [5] produced a kind of stable nanofluid by

surface functionalization of silica nanoparticles. Zhu

et al. [6] developed a wet chemical method to produce

stable CuO nanofluids. Nadeem and Lee [7] investigated

the steady boundary layer flow of nanofluid over an ex-

ponential stretching surface. Wang and Fan [8] reviewed

the nanofluid research in the last 10 years.

Natural convection is applied in many fields, and ex-

tensive researches have been performed. Oztop et al. [9]

and Ho et al. [10] respectively investigated natural con-

vection in partially heated rectangular enclosures and

discussed the effects of viscosity and thermal conductiv-

ity of nanofluid on laminar natural convection heat

transfer in a square enclosure by a finite-volume method.

Saleh et al. [11] investigated heat transfer enhancement

utilizing nanofluids in a trapezoidal enclosure by a finite

difference approach. Ghasemi et al. [12], Santra et al. [13],
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and Aminossadati et al. [14] numerically simulated natural

convection in a triangular enclosure and studied the be-

havior of natural convection heat transfer in a differen-

tially heated square cavity, described a study on natural

convection of a heat source embedded in the bottom

wall of an enclosure, and used the SIMPLE algorithm

to solve the governing equation. Kargar et al. [15] used

computational fluid dynamics and an artificial neural

network to investigate the cooling performance of two

electronic components in an enclosure. Abu-Nada et al.

[16] investigated the effect of variable properties on

natural convection in enclosures filled with nanofluid,

and the governing equations are solved by an efficient

finite-volume method. Hwang et al. [17] investigated

the thermal characteristics of natural convection in a

rectangular cavity heated from below by Jang and Choi's

model [18].

The Lattice Boltzmann method is a new way to

investigate natural convection. Compared with the

above traditional methods, the Lattice Boltzmann

method has many merits including that boundary

conditions can be conveniently dealt with, the trans-

form between macroscopic and microscopic equations

is easily achieved, the details of the fluid can be

presented, and so on. In addition, nanofluid as the

media can enhance heat transfer due to factors such

as nanofluids having higher thermal conductivity and

the nanoparticles in the fluid disturbing the laminar

flow. Therefore, many researchers undertook investi-

gations on the natural convection of nanofluids by the

Lattice Boltzmann method. Barrios et al. [19] devel-

oped a Lattice Boltzmann model and applied it to in-

vestigate the natural convection of an enclosure with

a partially heated left wall. Peng et al. [20] presented

a simple a Lattice Boltzmann model without consider-

ing thermal diffusion, and this model is easily applied

because it does not contain a gradient term. He et al.

[21] proposed a new Lattice Boltzmann model which

introduced an internal energy distribution function to

simulate the temperature field, and the result has a

good agreement with the benchmark solution. Nemati

et al. [22] simulated the natural convection of a lid-

driven flow filled with Cu-water, CuO-water, and

Al2O3-water nanofluids and discussed the effects of

nanoparticle volume fraction and Reynolds number

on the heat transfer. Wang et al. [23] presented a

Lattice Boltzmann algorithm to simulate the heat

transfer of a fluid-solid fluid, and the result has a

satisfactory agreement with the published data. Dixit

et al. [24] applied the Lattice Boltzmann method to in-

vestigate the natural convection of a square cavity at high

Rayleigh numbers. Peng et al. [25] developed a 3D incom-

pressible thermal Lattice Boltzmann model for natural

convection in a cubic cavity. The above Lattice Boltzmann

methods are all single-phase models, and the nanofluid

was seen as a single-phase fluid without considering the

interaction forces between nanoparticles and water. In

addition, the effects of these interaction forces on heat

transfer were disregarded.

There are few two-phase lattice Boltzmann models that

consider the interaction forces between nanoparticles

and a base fluid for natural convection in an en-

closure. Xuan et al. [26] proposed a two-phase Lat-

tice Boltzmann model to investigate sudden-start

Couette flow and convection in parallel plate chan-

nels without researching the effect of forces on vol-

ume fraction distribution of nanoparticles. Because

these forces were not investigated before our work,

the effects of forces between water and nanoparticles

on the fluid flow patterns were unknown. In addi-

tion, as we know, the nanoparticles in the fluid easily

gather together and deposit, especially at high vol-

ume fraction. Hence, the nanoparticle distribution in

the fluid flow is important for nanofluid application,

which is another objective in our paper. However,

the single-phase model cannot be used to investigate

nanoparticle distribution. Furthermore, natural con-

vection of a square enclosure (left wall kept at a high

constant temperature (TH), and top wall kept at a

low constant temperature (TC)) filled with nanofluid

is not investigated in the published literatures. In this

paper, a two-phase Lattice Boltzmann model is pro-

posed and applied to investigate the natural convec-

tion of a square enclosure (left wall kept at a high

constant temperature (TH), and top wall kept at a

low constant temperature (TC)) filled with Al2O3-

water nanofluid and the inhomogeneous distribution

of nanoparticles in the square enclosure.

Methods
Lattice Boltzmann method

The density distribution function for a single-phase fluid

is calculated as follows:

f σα rþ eαδt ; t þ δtð Þ � f σα r; tð Þ
¼ � 1

τσf
f σα r; tð Þ � f σeqα r; tð Þ

� �

þ δtF
σ 0

α ð1Þ

Fσ 0

α ¼ G⋅
eα � u

σð Þ
p

f σeqα ð2Þ

where τ
σ

f is the dimensionless collision-relaxation time

for the flow field, eα is the lattice velocity vector, the sub-

script α represents the lattice velocity direction, f σ
α

r; tð Þ
is the distribution function of the nanofluid with velocity

eα (along the direction α) at lattice position r and time t,

f σeq
α

r; tð Þ is the local equilibrium distribution function, δt
is the time step, δx is the lattice step, the order numbers
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α = 1,. . .,4 and α = 5,. . .,8, respectively represent the rect-

angular directions and the diagonal directions of the lat-

tice, Fσ
0

α
is the external force term in the direction of the

lattice velocity without interparticle interaction, G =

− β(Tnf − T0)g is the effective external force, where g is

the gravity acceleration, β is the thermal expansion coeffi-

cient, Tnf is the temperature of the nanofluid, and T0 is the

mean value of the high and low temperature of the walls.

A nanofluid is a two-phase fluid constituted by

nanoparticles and a base fluid, and there are interaction

forces (gravity and buoyancy force, drag force, inter-

action potential force, and Brownian force) between

nanoparticles and the base fluid. Thus, the macroscopic

density and velocity fields are simulated using the dens-

ity distribution function by adding the forces term.

f σα rþ eαδt ; t þ δtð Þ � f σα r; tð Þ
¼ � 1

τσf
f σα r; tð Þ � f σeqα r; tð Þ

� �

þ
2τσf � 1

2τσf
⋅
Fσ
α δteα

Bαc2
þ δtF

σ 0

α ð3Þ

where Fσ

α
represents the total interparticle interaction

forces, and Bα is one of the weight coefficients.
2τσ

f
�1

2τσ
f

is a

coefficient. Because the total interparticle interaction

forces cannot be optionally added in the lattice

Boltzmann equation, we introduce an unknown coeffi-

cient in the total interparticle interaction forces. In order

to enable the lattice Boltzmann equation including the

total interparticle interaction forces to recover to the

Navier-Stokes equation, based on the mass and momen-

tum conservation, we used multi-scale technique to de-

duce the unknown coefficient which is equal to
2τσ

f
�1

2τσ
f

.

Due to the very long derivation process, we directly gave

the final result in the paper.

The weight coefficient Bα is given as:

Bα ¼

0 α ¼ 0
1

3
α ¼ 1; . . . ; 4

1

12
α ¼ 5; . . . ; 8

8

>

>

>

<

>

>

>

:

ð4Þ

For the two-dimensional nine-velocity LB model

(D2Q9) considered herein, the discrete velocity set for

each component α is:

eα ¼

0; 0ð Þ α ¼ 0

c cos α� 1ð Þπ
2

h i

; sin α� 1ð Þπ
2

h i� �

α ¼ 1; 2; 3; 4
ffiffiffi

2
p

c cos 2α� 1ð Þπ
4

h i

; sin 2α� 1ð Þπ
4

h i� �

α ¼ 5; 6; 7; 8

8

>

>

<

>

>

:

ð5Þ

The density equilibrium distribution function is chosen

as follows:

f σeqα ¼ ρσwα 1þ eα⋅u
σ

c2s
þ eα⋅u

σð Þ2
2c4s

� uσ2

2c2s

" #

ð6Þ

wα ¼

4

9
α ¼ 0

1

9
α ¼ 1; . . . ; 4

1

36
α ¼ 5; . . . ; 8

8

>

>

>

>

>

<

>

>

>

>

>

:

ð7Þ
where c2s ¼ c2

3
is the lattice's sound velocity, and wα is the

weight coefficient.

The macroscopic temperature field is simulated using

the temperature distribution function.

Tσ
α rþ eαδt ; t þ δtð Þ � Tσ

α r; tð Þ
¼ � 1

τσT
T σ
α r; tð Þ � T σeq

α r; tð Þ
� �

ð8Þ

where τT is the dimensionless collision-relaxation time

for the temperature field.

The temperature equilibrium distribution function is

chosen as follows:

Tσeq
α ¼ waT

σ 1þ 3
eα⋅u

σ

c2
þ 4:5

eα⋅u
σð Þ2

2c4
� 1:5

uσ2

2c2

" #

ð9Þ

In the case of no internal forces and external forces,

the macroscopic temperature, density and velocity are

respectively calculated as follows:

Tσ ¼
X

8

α¼0

T σ
α ð10Þ

ρσ ¼
X

8

α¼0

f σα ð11Þ

u
σ ¼ 1

ρσ

X

8

α¼0

f σα eα ð12Þ

Considering the internal and external forces, the

macroscopic velocities for nanoparticles and base fluid

are modified to:

upnew ¼ up þ
FpΔteα

2ρσ
ð13Þ

uwnew ¼ uw þ ΔtFW

2LxLyρw
ð14Þ

where Fp represents the total forces acting on the

nanoparticles, Fw represents the total forces acting on the

base fluid, and LxLy represents the total number of lattices.
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When the internal forces and external forces are

considered, energy between nanoparticles and base

fluid is exchanged, and the macroscopic temperature

for nanoparticles and base fluid is then given as:

Tσ
new ¼ T σ þ δtτT

dT

dt
¼ T σ þ δtτTΦαβ ð15Þ

where Φαβ is the energy exchange between nanoparticles

and base fluid, Φαβ ¼
hαβ Tβ x;t�δtð Þ�Tα x;t�δtð Þ½ �

ραcpαaα
, and hαβ is the

convective heat transfer coefficient of the nanofluid.

The corresponding kinematic viscosity and thermal

diffusion coefficients are respectively defined as follows:

νσ ¼ 1

3
c2 τσf �

1

2

� �

δt ð16Þ

χσ ¼ 1

3
c2 τσT � 1

2

� �

δt ð17Þ

The dimensionless collision-relaxation times τf and τT
are respectively given as follows:

τσf ¼ 0:5þMaH
ffiffiffiffiffiffiffiffi

3Pr
p

c2δt
ffiffiffiffiffiffi

Ra
p ð18Þ

τσT ¼ 0:5þ 3ν

Prc2δt
ð19Þ

where Ma = 0.1, H = 1, c = 1, δt = 1, and the other param-

eters equations are given as follows:

Pr ¼ ν

α
¼ cpμ

k
ð20Þ

ν ¼ μ

ρ
ð21Þ

From Equations 18 and 19, the collision-relaxation time

for the flow field and the temperature field can be calcu-

lated. For water phase, the τf collision-relaxation times are

respectively 0.51433 and 0.501433 at Ra = 103 and Ra =

105, and the collision-relaxation time τT is 0.5. For nano-

particle phase, the τf collision-relaxation times are respect-

ively 0.50096 and 0.500096 at Ra = 103 and Ra = 105, and

the collision-relaxation time τT is 0.500025.

Interaction forces between base fluid and nanoparticles

As noted before, a nanofluid is, in reality, a kind of

two-phase fluid. There are interaction forces between

liquid and nanoparticles which affect the behavior of

the nanofluid. The external forces include gravity and

buoyancy forces FH, and the interparticle interaction

forces include drag force (Stokes force) FD, interaction

potential FA, and Brownian force FB. We introduce

them as follows.

Table 1 Thermo-physical properties of water and Al2O3 [29]

Physical properties Fluid phase (H2O) Nanoparticles (Al2O3)

ρ (kg/m3) 997.1 3970

cp (J/kg k) 4179 765

v (m2/s) 0.001004 -

k (W/m/K) 0.613 25

Figure 1 Schematic of the square cavity.

Table 2 Comparison of the mean Nusselt numbers with

different grids (Ra = 1 × 105, Pr = 0.7)

Physical
properties

128 × 128 192 × 192 256 × 256 320 × 320 Literature
[30]

Nuavg 4.5466 4.5251 4.5220 4.5218 4.5216

Figure 2 Temperature distribution at horizontal midsections-

sections of the enclosure (Ra = 105, Pr = 0.7).
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The gravity and buoyancy force is given as:

FH ¼ � 4πa3

3
gΔρ

0 ð22Þ

where a is the radius of a nanoparticle, and Δρ' is the

mass density difference between the suspended nanopar-

ticle and the base fluid.

The drag force (Stokes force) is given as:

FD ¼ �6πμaΔu ð23Þ

where μ is the viscosity of the fluid, and ∆u is the vel-

ocity difference between the nanoparticle and the base

fluid.

The interaction potential is presented as [27]:

VA ¼ � 1

6
A

2a2

L2cc � 4a2
þ 2a2

L2cc
þ L2cc � 4a2

L2cc

� �

ð24Þ

where A is the Hamaker constant, and Lcc is the center-

to-center distance between particles.

The interaction potential force is shown as:

FA ¼
X

8

i¼1

ni
∂VA

∂ri
ð25Þ

where ni is the number of the particles within the adja-

cent lattice i, ni = ρσV/mσ, mσ is the mass of a single

nanoparticle, and V is the volume of a single lattice.

The Brownian force is calculated as [28]:

FB ¼ Gi

ffiffiffiffiffi

C

dt

r

ð26Þ

where Gi is a Gaussian random number with zero

mean and unit variance, which is obtained from a

program written by us, and C = 2γkBT = 2 × (6πηa)

kBT, γ is the surface tension, kB is the Boltzmann

constant, T is the absolute temperature, and η is the

dynamic viscosity.

The total per unit volume forces acting on nanoparticles

of a single lattice is:

Fp ¼ n FH þ FD þ FA þ FBð Þ=V ð27Þ

where n is the number of the particles in the given lattice,

and V is the lattice volume.

In a nanofluid, the forces acting on the base fluid are

mainly drag force and Brownian force. Thus the force

acting on the base fluid in a given lattice is:

Fw ¼ �n FD þ FBð Þ ð28Þ

Table 3 Comparison of average Nusselt numbers with

other published data (Pr = 0.7)

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Present work 1.118 2.247 4.522 8.808

D'Orazio et al. [33] 1.117 2.235 4.504 8.767

De Vahl Davis [34] 1.118 2.243 4.519 8.800

Khanafer et al. [31] 1.118 2.245 4.522 8.826

Figure 3 Temperature nephogram of nanofluid at different Rayleigh numbers (a) Ra = 1 × 103 and (b) Ra = 1 × 105.
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Results and discussion
The two-phase Lattice Boltzmann model is applied to

simulate the natural convection heat transfer in a square

cavity which is shown in Figure 1. The square cavity is

filled with the Al2O3-water nanofluid. The thermo-

physical properties of water and Al2O3 are given in

Table 1. The height and the width of the enclosure are

both H. The left wall is kept at a high constant

temperature (TH), and the top cold wall is kept at a low

constant temperature (TC). The boundary conditions of

the other walls (right wall and bottom wall) are all adia-

batic. The initial conditions for the four walls are given

as follows:

x ¼ 0 u ¼ 0; T ¼ 1; x ¼ 1 u ¼ 0; ∂T=∂y ¼ 0
y ¼ 0 u ¼ 0; ∂T=∂y ¼ 0; y ¼ 1 u ¼ 0; T ¼ 0

	

ð29Þ
In the simulation, a non-equilibrium extrapolation

scheme is adopted to deal with the boundary, and the

criteria of the program convergence for the flow field and

the temperature field are respectively given as follows:

Error1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i;j

h

uσx i; j; t þ δtð Þ � uσx i; j; tð Þ
i2

þ uσy i; j; t þ δtð Þ � uσy i; j; tð Þ
h i2

	 


s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i;j
uσx i; j; t þ δtð Þ2 þ uσy i; j; t þ δtð Þ2
h i

r < ε1

ð30Þ

Error2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i;j
Tσ i; j; t þ δtð Þ � T σ i; j; tð Þ½ �2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i;j
T σ i; j; t þ δtð Þ2

q < ε2

ð31Þ

where ε is a small number, for example, for Ra = 1 × 103,

ε1 = 10−6, and ε2 = 10−6. About 2 weeks is needed to

achieve the equilibrium state for the low Rayleigh number

(Ra = 1 × 103), and about 1 month for the high Rayleigh

number (Ra = 1 × 105).

Figure 4 Velocity vectors of nanofluid components. Left, water; right, nanoparticles. ϕ = 0.03 (a) Ra = 1 × 103, (b) Ra = 1 × 105.
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The Nusselt number can be expressed as:

Nu ¼ hH

knf
: ð32Þ

The heat transfer coefficient is computed from:

h ¼ qw

TH � TL

: ð33Þ

The thermal conductivity of the nanofluid is defined by:

knf ¼ � qw

∂T=∂x
: ð34Þ

Substituting Equations 33 and 34 into Equation 32, the

local Nusselt number along the left wall can be written as:

Nu ¼ � ∂T

∂x

� �

⋅
H

TH � TL

: ð35Þ

The average Nusselt number is determined from:

Nuavg ¼
Z

1

0

Nu yð Þdy: ð36Þ

In order to perform a grid independence test and val-

idate the Lattice Boltzmann model proposed in this

work, we used another square enclosure, because there

are exact solutions for this square enclosure. The left

wall is kept at a high constant temperature (TH), and the

right wall is kept at a low constant temperature (TC).

The boundary conditions of the other walls (top wall

and bottom wall) are all adiabatic, and the other condi-

tions are the same as those in Figure 1.

As shown in Table 2, the grid independence test is

performed in a square enclosure using successively sized

grids, 128 × 128, 192 × 192, 256 × 256, and 320 × 320 at

Ra = 1 × 105, Pr = 0.7. It can be seen from Table 2 that

there is a bigger difference between the result obtained

with grid sizes 128 × 128 and 192 × 192 and the re-

sult available from the literature [30] than when com-

pared with the result obtained with grids 256 × 256

and 320 × 320. In addition, the result with grid 256 ×

256 and the result with grid 320 × 320 are very close.

In order to accelerate the numerical simulation, a grid

size of 256 × 256 was chosen as a suitable one which

can guarantee a grid-independent solution.

In order to validate the Lattice Boltzmann model pro-

posed in this work, the temperature distribution at mid-

sections of the enclosure at Ra = 1 × 105, Pr = 0.7 is

compared with the numerical results from Khanafer

et al. [31] and experimental results from Krane et al.

[32] in Figure 2. It can be seen that the results of this

paper have a good agreement with those numerical [31]

Figure 5 Temperature difference driving force at different Rayleigh numbers , ϕ = 0.03 (a) Ra = 1 × 103 (b) Ra = 1 × 105.

Table 4 Comparison of different forces (Ra = 105, ϕ = 0.03)

Forces

FS FA FBx FBy FH FDx FDy

Minimum −6E−06 −3.2E−19 −5E−13 2E−14 −9E−19 −8E−16 −1.6E−15

Maximum 6E−06 −2E−20 5E−13 2E−13 −1E−19 1.2E−15 1.6E−15
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and experimental [32] results. They are closer to the ex-

perimental [32] than the numerical [31] results. In

addition, the Nusselt number results at different Ray-

leigh numbers of this paper are compared with other

published literature listed in Table 3, and it can be seen

that the results are in good agreement.

Due to the temperature balance between water and

nanoparticles, the temperature nephogram of water

and nanoparticles for each of the nanoparticle fractions

are identical. The temperature nephograms of nano-

fluid at Ra = 1 × 103 and Ra = 1 × 105 are presented

in Figure 3. It can be seen that isotherms are more

crooked with the higher Rayleigh number, which denotes

that the heat transfer characteristic transforms from con-

duction to convection.

Because there are fewer nanoparticles than water

molecules, and the drag force of nanoparticles on

water is small, the velocity vectors of nanofluid with

different nanoparticle fractions have such small differ-

ences that it is difficult to distinguish them. However,

the differences can be observed in the Nusselt number

distribution. For this reason, only the velocity vectors

of nanofluid components with ϕ = 0.03 at different

Rayleigh numbers are given as an example in Figure 4.

Separating the nanofluid into its two constitutive com-

ponents, it can be seen that the velocity vectors of the

Figure 6 Density distribution of water phase at Ra = 1 × 103 (a) ϕ = 0.01 (b) ϕ = 0.03 (c) ϕ = 0.05.
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water component are larger than those of the nanopar-

ticle component due to the law of conservation of mo-

mentum. The velocity difference between the water

component and the nanoparticle component gives rise

to the drag force. In addition, it can be seen that velocity

increases with Rayleigh number, which can also explain

that the heat transfer characteristic transforms from con-

duction to convection.

Driving force and interaction forces have a big effect

on nanoparticle volume fraction distribution and the

flow and heat transfer characteristics of the nanofluid.

The main driving force in this work is the temperature

difference. Interaction forces between nanoparticles and

base fluid include gravity-buoyancy force, drag force,

interaction potential force, and Brownian force. In order

to compare the effects of these forces, the ranges of

them are presented in Table 4. We used double-

precision variables in our code. From Table 4, we can

find that the temperature difference driving force FS is

much bigger than the other forces (interaction forces be-

tween nanoparticles and base fluid). The driving force

has the greatest effect on nanoparticle volume fraction

distribution, and the effects of other forces on nanopar-

ticle volume fraction distribution can be ignored in this

case. However, these other forces play an important role

in the flow and heat transfer of the nanofluid. Apart

Figure 7 Density distribution of water phase at Ra = 1 × 105 (a) ϕ = 0.01 (b) ϕ = 0.03 (c) ϕ = 0.05.
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from the temperature difference driving force, the

Brownian force is much larger than other forces, which

is different from other two-phase fluids. For this reason,

the Brownian force can enhance the heat transfer of the

nanofluid by disturbing the flow boundary layer and the

thermal boundary layer. Drag force comes about due to

the velocity difference between nanoparticles and

water molecules, and the nanoparticles in the water

decrease the velocity of nanofluid in the enclosure,

which in turn attenuates the natural convection of

nanofluid in the enclosure. The interaction potential

force prevents the nanoparticles from gathering to-

gether and keeps the nanoparticles dispersed in the

water. In addition to the above forces, there is the

gravity-buoyancy force, that is, the sum of gravity of

the nanoparticles themselves and the buoyancy force of

the water. The gravity-buoyancy force and temperature

difference driving force together give rise to the vel-

ocity vectors of the nanofluid within the enclosure. In

summary, Brownian force, interaction potential force,

and gravity-buoyancy force contribute to the enhanced

natural convective heat transfer, while drag force con-

tributes to the attenuation of heat transfer.

The temperature difference driving force distribution

in the square at different Rayleigh numbers is given

in Figure 5. From Figure 5, we can see that the tem-

perature difference driving force along the left wall

(high temperature) and the top wall (low temperature)

is high. Its direction along the high-temperature wall

is upward, and that along the low-temperature wall is

Figure 8 Nanoparticle volume fraction distribution at Ra = 1 × 103. (a) ϕ = 0.01, (b) ϕ = 0.03, and (c) ϕ = 0.05.
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downward, while the temperature difference driving

force in other regions far away from the two walls (left

wall and top wall) is small. From Figure 3, it can be

seen that the temperature gradient near the left wall

and the top wall is higher than that in other regions,

which causes a high temperature difference driving

force near there. Similarly, the temperature gradient in

other regions is small, causing only a low temperature

difference driving force in that vicinity. In addition,

it can be seen that the same driving force line at a

high Rayleigh number becomes more crooked than

that at a low Rayleigh number. This is because the

driving force is caused by the temperature difference

(temperature gradient); a bigger temperature gradient

causes the same driving force line to become more

crooked. It can be seen from Figure 3 that isotherms

are more crooked at a higher Rayleigh number, and

the isotherm changes correspond to the changes of

temperature gradient. Thus, the conclusion that the

same driving force line at a high Rayleigh number be-

comes more crooked than that that at a low Rayleigh

number is obtained.

Figures 6 and 7 give the density distribution of the

water phase at Ra = 1 × 103 and Ra = 1 × 105. For a

low Rayleigh number (Ra = 1 × 103), when the water

near the left wall is heated, its density decreases and

flows upward, so the density of water near the top

right corner also becomes smaller. Then when the

Figure 9 Nanoparticle volume fraction distribution at Ra = 1 × 105. (a) ϕ = 0.01, (b) ϕ = 0.03, and (c) ϕ = 0.05.
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water is cooled by the top wall, the density of the

water becomes larger. Then the denser water flows

downward to the lower right corner, and so, the

density of water in the lower right corner is larger

than that in other regions. Because the temperature

gradient (corresponding to the temperature difference

driving force) is small and the temperature is high in

the lower left corner, the density of water in the

lower left corner is thus low. For a high Rayleigh

number (Ra = 1 × 105), the temperature gradient

and the corresponding driving force become larger,

then the lower-density water, including that in the

lower left corner, rises to the top right corner. The

denser water is cooled by the top wall and flows

downward to the lower right corner, and the area

where the denser water in the lower right corner be-

comes larger.

Figures 8 and 9 respectively present the nanoparti-

cle distribution of nanofluid with volume fractions at

Ra = 1 × 103 and Ra = 1 × 105. For a low Rayleigh

number (Ra = 1 × 103), the driving force along the

left wall is upward, and many nanoparticles are driven

to the top right corner, which contributes to the high

nanoparticle volume fraction in the top right corner.

However, the temperature gradient in the lower left

corner is small and causes a correspondingly small

temperature difference driving force. Thus, many

nanoparticles are left in the lower left corner, which

contributes to the high nanoparticle volume fraction

in the lower left corner. There is a large temperature

gradient in the lower right corner, and the large driv-

ing force displaces the nanoparticles off the lower

right corner, which contributes to the low nanoparti-

cle volume fraction in the lower right corner. For a

high Rayleigh number (Ra = 1 × 105), the convection

heat transfer is enhanced and the velocity of the

nanofluid becomes larger, and the temperature gradi-

ent and the corresponding driving force become big-

ger. Thus, many nanoparticles from the bottom are

driven to the top by the driving force, which contrib-

utes to the low nanoparticle volume fraction at the

bottom and a high nanoparticle volume fraction at

the top. In addition, we can see that the nanoparticle

volume fraction distribution is opposite to that of the

water-phase density distribution. From Table 4, we

can see that the temperature difference driving force

is the biggest one, and the changes of the water-phase

density and the inhomogeneous nanoparticle distribu-

tion are mainly due to the driving force. Through the

above analysis, it is found that the nanoparticles mi-

grate to locations where the water density is small,

and thus, the conclusion that the nanoparticle volume

fraction distribution is opposite to that of the water-

phase density distribution is obtained.

It is also found that almost all the isolines behave with

oscillations in Figures 6, 7, 8, 9, but smooth isolines are

given in Figures 3 and 5. Due to the ruleless Brownian

movement of nanoparticles, it is difficult for nanofluid to

achieve a complete equilibrium state, which is the differ-

ence compared with other common two-phase fluids. In

order to expediently judge the equilibrium state and save

time, we choose the temperature equilibrium states of

water phase and nanoparticle phase as the whole

nanofluid equilibrium state in the computation. When

Figure 10 Nusselt number distribution along the heated surface using Al2O3-water nanofluid at Ra = 103.
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the water-phase and nanoparticle-phase temperatures all

achieve equilibrium state, the whole nanofluid (temperature

distribution, velocity vectors, density distribution, and

nanoparticle volume fraction distribution) is considered as

being in an equilibrium state. Hence, the temperature iso-

lines in Figures 3 and 5 look smooth due to a complete

equilibrium state, and the density distribution in Figures 6

and 7 and nanoparticle volume fraction distribution in

Figures 8 and 9 behave with oscillations due to an

approximate equilibrium state. Although the interparticle

interaction forces have little effect on heat transfer, they

play an important role on the nanoparticle distribution.

Figure 10 shows the Nusselt number distribution

along the heated surface using Al2O3-water nanofluid at

Ra = 103. It can be seen that the Nusselt number along

the heated surface increases with nanoparticle volume

fraction at low Y (0 < Y < 0.58) and decreases with nano-

particle volume fraction at high Y (0.58 < Y < 1). Because

Figure 12 Average Nusselt numbers at different Rayleigh numbers (a) Ra = 103 and (b) Ra = 105.

Figure 11 Nusselt number distribution along the heated surface using Al2O3-water nanofluid at Ra = 105.
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the heat transfer is more sensitive to thermal conductiv-

ity than viscosity at low Y, while it is more sensitive to

viscosity than thermal conductivity at high Y.

Figure 11 shows Nusselt number distribution along the

heated surface using Al2O3-water nanofluid at Ra = 105.

It can be seen that the Nusselt number along the heated

surface increases with nanoparticle volume fraction at

low Y (0 < Y < 0.875) and decreases with nanoparticle

volume fraction at high Y (0.875 < Y < 1). Compared with

Figure 7, the Nusselt number becomes larger, and the en-

hanced heat transfer section also gets longer. The high

Rayleigh number increases the velocity and then en-

hances the heat transfer.

Figure 12 presents the average Nusselt numbers at dif-

ferent Rayleigh numbers. Although the Nusselt number

distribution along the heated surface increases with

nanoparticle volume fraction in one section and de-

creases in the other section, the average Nusselt numbers

at Ra = 103 and Ra = 105 both increase with nanoparticle

volume fraction. For this square enclosure (left wall is

kept at a high constant temperature (TH), and top cold

wall is kept at a low constant temperature (TC)), adding

nanoparticles can enhance the average heat transfer at

both a low and a high Rayleigh number. In addition, the

enhancement of the average Nusselt numbers is much

more pronounced at a high Rayleigh number than at a

low Rayleigh number.

Conclusion
A 2D two phase Lattice Boltzmann model has been de-

veloped for nanofluids and the simulation results of this

two-phase Lattice Boltzmann model are in good agree-

ment with published experimental results. This model

is applied to investigate the natural convection of a

square enclosure filled with Al2O3 nanofluid. The ef-

fects of different nanoparticle fractions and Rayleigh

numbers on natural convection heat transfer of nano-

fluid are investigated. In addition the effects of forces

on the nanoparticles volume fraction distribution and

the heat transfer are also investigated.

It is found that the Nusselt number distribution

along the heated surface firstly increases, and then de-

creases with Y at both low and high Rayleigh numbers.

Average Nusselt numbers of the whole square enclos-

ure both increase with nanoparticles volume fraction

at a low and a high Rayleigh number. In addition, the

enhancement of the average Nusselt numbers is much

more pronounced at a high Rayleigh number than at a

low Rayleigh number.

It is found that the temperature difference driving force

is the biggest force and has the greatest effect on nanopar-

ticle volume fraction distribution. For a low Rayleigh num-

ber, the nanoparticle volume fraction is low in the lower

right corner and high in the top right corner and lower left

corner. For a high Rayleigh number, the nanoparticle

volume fraction is low at the bottom and high at the top.

Apart from the temperature difference driving force,

Brownian force, interaction potential force, and gravity-

buoyancy force contribute to the enhanced natural con-

vective heat transfer, while the drag force contributes to

the attenuation of heat transfer.

Nomenclature

a radius of nanoparticle (m)

A Hamaker constant

Ba weight coefficient

c reference lattice velocity

cs lattice sound velocity

cp specific heat capacity (J/kg K)

eα lattice velocity vector

f σ
α
density distribution function

f σeq
α

local equilibrium density distribution function

Fσ
0

α
dimensionless external force in direction of lattice

velocity

Fσ

α
dimensionless total interparticle interaction forces

FS dimensionless temperature difference driving forces

FB dimensionless Brownian force

FH dimensionless gravity and buoyancy force

FD dimensionless drag force

FA dimensionless interaction potential force

g dimensionless gravitational acceleration

G dimensionless effective external force

Gi Gaussian random number

haβ convective heat transfer coefficient (W/(m2 K))

H dimensionless characteristic length of the square

cavity

k thermal conductivity coefficient (W/m/K)

kB Boltzmann constant

Lcc center-to-center distance between particles (m)

Ma Mach number

mσ mass of a single nanoparticle (kg)

ni number of the particles within the adjacent lattice i

Nu Nusselt number

Pr Prandtl number

r position vector

Ra Rayleigh number

t time (s)

Tσ

α
temperature distribution function

T σeq
α

local equilibrium temperature distribution function

T dimensionless temperature

T0 dimensionless average temperature (T0 = (TH + TC)/2)

TH dimensionless hot temperature

TC dimensionless cold temperature

uσ dimensionless macro-velocity

uc dimensionless characteristic velocity of natural

convection
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VA dimensionless interaction potential

V volume of a single lattice (m3)

w
α
weight coefficient

x, y dimensionless coordinates

Greek symbols

βσ thermal expansion coefficient (K−1)

ρσ density (kg/m3)

v kinematic viscosity (m2/s)

η dynamic viscosity (Pa s)

χ thermal diffusion coefficient (m2/s)

γ surface tension (N/m)

φ nanoparticle volume fraction

δx lattice step

δt time step

σ components (σ = 1, 2, water and nanoparticles)

τf dimensionless collision-relaxation time for the flow

field

τT dimensionless collision-relaxation time for the

temperature field

∆T dimensionless temperature difference

(∆T = TH – TC)

Δρ’ dimensionless mass density difference between

nanoparticles and base fluid

∆u dimensionless velocity difference between

nanoparticles and base fluid

Φαβ dimensionless energy exchange between

nanoparticles and base fluid

Error1 maximal relative error of velocities between two

adjacent time layers

Error2 maximal relative error of temperatures between

two adjacent time layers

Subscripts

α lattice velocity direction

avg average

C cold

nf nanofluid

H hot

w base fluid

p nanoparticle
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