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Numerical simulation of nonequilibrium effects in an argon plasma jet 

c. H. Chang and J. D. Ramshaw 
Idaho National Engineering Laboratory, Idaho Falls, Idaho 83415 

(Received 14 January 1994; accepted 12 July 1994) 

Departures from thermal (translational), ionization, and excitation equilibrium in an axisymmetric 

argon plasma jet have been studied by two-dimensional numerical simulations. Electrons, ions, and 

excited and ground states of neutral atoms are represented as separate chemical species in the 

mixture. Transitions between excited states, as well as ionization/recombination reactions due to 

both collisional and radiative processes, are treated as separate chemical reactions. Resonance 

radiation transport is represented using Holstein escape factors to simulate both the optically thin 

and optically thick limits. The optically thin calculation showed significant underpopulation of 

excited species in the upstream part of the jet core, whereas in the optically thick calculation this 

region remains close to local thermodynamic equilibrium, consistent with previous experimental 

observations. Resonance radiation absorption is therefore an important effect. The optically thick 

calculation results also show overpopulations (relative to equilibrium) of excited species and 

electron densities in the fringes and downstream part of the jet core. In these regions, however, the 

electrons and ions are essentially in partial local thermodynamic equilibrium with the excited state 

at the electron temperature, even though the ionized and excited states are no longer in equilibrium 

with the ground state. Departures from partial local thermodynamic equilibrium are observed in the 

outer fringes and far downstream part of the jet. These results are interpreted in terms of the local 

relative time scales for the various physical and chemical processes occurring in the plasma. 

I. INTRODUCTION 

The assumption of local thermodynamic equilibrium 

(LTE) in thermal plasmas has been widely used both in simu­

lations and in the interpretation of experimental data. In 

simulations, the LTE assumption significantly simplifies both 

the model and the computer code, thereby reducing the re­

quired developmental and computational effort. Experimen­

tally, the interpretation of enthalpy probe measurements re­

lies directly on the LTE assumption, since such 

measurements only provide information on the total enthalpy 

in the plasma, and not on how it is partitioned among the 

constituents. Similarly, emission spectroscopy measurements 

of the populations of upper excited states require the assump­

tion of either complete or partial LTE to be converted into 

temperatures. 

Departures from LTE in plasmas are of various different 

types. Translational or thermal nonequilibrium,I.2 in which 

the electrons have a different temperature from the heavy 

particles, occurs when the energy exchange rate between 

electrons and heavy particles is comparable to or slower than 

the time scales for plasma transport, provided a mechanism 

is present (e.g., an electric field and/or chemical reactions 

involving electrons) for preferentially heating or cooling the 

electrons or heavy particles. For example, thermal nonequi­

Iibrium is often associated with ionization nonequilibrium, 

since three-body recombination with electrons as the third 

body heats up the electrons via the chemical (ionization) 

energy release.3
,4 Thermal nonequilibrium has been studied 

extensively in various plasma flows including electric arcs,5 

radio-frequency (RF) plasmas,6 and plasma-solid wall 

interactions.7 

Ionization nonequilibrium commonly occurs at high 

plasma flow rates, where the fluid dynamical time scales 

which control plasma cooling are comparable to the relax­

ation time for energy equilibrium and/or recombination of 

electrons and ions. In particular,. strong departures from ion­

ization equilibrium are observed in low pressure plasma 

jets,3.4 where the flow is usually supersonic and collision 

frequencies for chemical reactions are low. Ionization non­

equilibrium has also been studied in electric arcs5 and in 

shock waves associated with reentry problems.8
,9 Thermal 

and/or ionization nonequilibrium are very important in ther­

mal plasma processing, since they have strong effects on 

both the macroscopic plasma flOW
3

-
5 and the heating of en­

trained particles.7 

Nonequilibrium effects can also occur in regions of steep 

gradients of temperatures or species concentrations, such as 

the fringes of plasma jets or electric arcs, where time scales 

for energy or species transport can become comparable to 

chemical or thermal relaxation time scales. Departures from 

both thermal and ionization eqUilibrium have been 

reported3
-

5 in the fringes of such plasmas even in situations 

where LTE prevails in the plasma core. Similar nonequilib­

rium effects occur in the boundary layer around a particle.? 

Analogous considerations apply to the popUlations of ex­

cited electronic states of atoms and ions in the plasma. De­

partures from excitational eqUilibrium may be expected to 

occur when the time scales for collisional and radiative tran­

sitions between excited states are comparable to those for 

convection and diffusion in the plasma. Such departures have 

recently been studied using an idealized zero-dimensional 

collisional-radiative (CR) model for excited state 

kinetics. 10.1 1 A primary objective of the present work is to 

extend such studies to include interactions with convective 

and diffusive effects. Analogous departures from vibrational 

equilibrium in recombining diatomic gases were observed 

some time ago.f2 

3698 Phys. Plasmas 1 (11), November 1994 1 070-664X/94/1 (11 )/3698111/$6.00 © 1994 American Institute of Physics 

Downloaded 30 May 2012 to 131.252.4.4. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



The populations of upper excited states are important in 

the interpretation of emission spectroscopic measurements. 

According to the results of CR model calculations by Repetti 

et al. II and measurements by Owano et at., 13 regardless of 

whether lower excited states are in equilibrium or not, upper 

excited states were found to be in partial local thermody­

namic equilibrium (PLTE) with electrons when the electron 

density was higher than about 1015 cm-3
• Gordon and 

Krugerl4 observed that small amounts of hydrogen selec­

tively quench the first excited state of argon, thereby driving 

argon plasmas away from excitation equilibrium. This depar­

ture from PLTE reflects the disparity between the time scales 

for quenching and transitions between excited states. Cho 

and Eddy 15 also observed departures from PLTE in hydrogen 

plasmas. which they interpreted in terms of a more complex 

generalized multithermal equilibrium (GMTE) model. 

In this paper, departures from thermal, chemical, and 

excitation equilibrium in an argon plasma jet are studied by 

direct two-dimensional simulations using a two-temperature 

multicomponent fluid dynamical model with chemical and 

excited state kinetics. These simulations are not intended to 

correspond to any particular experiment, but the conditions 

are generally typical of plasma jets used in plasma 

processing. 16.17 For comparison purposes, we also performed 

a similar simulation with much lower values of the torch 

power and argon flow rate. To our knowledge, this study 

represents the first complete numerical simulations of multi­

dimensional plasma flow with excited state kinetics. Previ­

ous studies of excited state kinetics have taken a more em­

pirical approach in which experimental data is used in 

conjunction with zero-dimensional CR models,14,15 while 

previous one-dimensionaI5.9 and multidimensionaI3
,4.7.13 non­

equilibrium plasma flow studies have neglected excited state 

kinetics. The present simulations are fully self-consistent in 

all respects. so that all effects due to time scale disparities are 

fully and automatically accounted for. Indeed, a leitmotiv of 

the present work is that the essential physics of nonequilib­

rium behavior in thermal plasmas largely resides in the rela­

tive time scales of the various competing physical and 

chemical processes, including fluid dynamical effects such as 

convection and diffusion as well as chemical and excitational 

rate processes. We elaborate on this theme by a rather de­

tailed examination of the local time scales occurring in the 

plasma. 

We represent electrons, ions, and atomic ground and ex­

cited states as separate chemical species in the plasma mix­

ture. All important rate processes are treated as separate ki­

netic chemical reactions, including ionization/recombination 

reactions and collisional and radiative transitions between 

ground and excited states. Reaction rates are obtained from 

the collisional-radiative (CR) model described by Braun and 

Kunc.1O Thermal nonequilibrium is represented by a conven­

tional two-temperature model.l.2 Diffusion of charged spe­

cies in plasmas is controlled by the local electric field which 

spontaneously develops to preserve zero current density and 

local charge neutrality. Diffusion under these conditions is 

referred to as ambipolar diffusion, I suitable formulations for 

which have recently been developed for arbitrary multicom-
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ponent plasmas. 18,19 The present simulations include the two­

temperature version of this formulation. 19 

To examine excitation equilibrium in plasmas, it is nec­

essary to allow for the transport of resonance radiation asso­

ciated with transitions between the ground and first excited 

state. For this purpose it would be desirable to include a 

detailed quantitative description of radiative transport, allow­

ing for the large variations in photon mean free path with 

wavelength. However, this would be a much more ambitious 

undertaking. We have therefore adopted a simplified ap­

proach in order to capture the qualitative effects of resonance 

radiation transport on excitation nonequilibrium. This ap­

proach uses Holstein escape factors20.21 to represent reso­

nance radiation transport in. terms of the "net" radiation es­

caping from the plasma. Even though Holstein escape factors 

have only been derived for simple geometries20,21 (such as 

plane and cylindrical), they may still be used to represent the 

two extreme cases of optically thick and thin plasmas, cor­

responding to complete self-absorption and escape of reso­

nance radiation, respectively. 

The entire system of governing equations described 

above constitutes a comprehensive computational model for 

nonequilibrium thermal plasmas. This model is embodied in 

the LA VA computer code, the single-temperature version of 

which has previously been described. 16 The original version 

of LA V A has now been extended to two temperatures, and the 

resulting current version is capable of handling either single­

or two-temperature multicomponent plasma flows with arbi­

trary numbers of species and reactions. 

The present calculations have been performed for the 

two extreme situations of optically thick and thin plasmas in 

order to obtain insight into the importance of the various 

effects. This illustrates the capability of modeling to isolate 

individual processes and assess their effects in ways that are 

often difficult or impossible to accomplish experimentally. 

Departures from ionization, excitation, and thermal equilib­

rium are all observed in different regions of the flow field, 

and these departures are correlated with the relative time 

scales occurring in the plasma. Departures from excitation 

eqUilibrium occur in most of the flow field, due to the fact 

that the time scale for deexcitation is relatively slow and 

forms a "bottleneck" or rate-limiting process. In the physi­

cally more realistic optically thick case, we find that the elec­

trons and ions in the plasma core are essentially in PLTE 

with the excited state at the electron temperature, even 

though the ionized and excited states are not in eqUilibrium 

with the ground state. This is consistent with previous 

observations 1l,13,14 of PLTE of excited states, and also corre­

lates well with the regions where the time scale for recom­

bination is much shorter than the other time scales. In con­

trast, we find significant departures from PLTE in the fringes 

of the jet, and to a lesser degree in the downstream region, 

and this can again be understood in terms of the relative time 

scales. To our knowledge, the present investigation is the first 

theoretical study of PLTE based on a complete simulation in 

which all of the various physical effects and associated time 

scales are simultaneously and self-consistently included. 
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II. FLUID DYNAMICAL MODEL 

The fluid dynamical equations solved by LA VA consist of 

momentum and thermal internal energy equations for the 

multi component fluid mixture, continuity equations for each 

component of the mixture, and state and constitutive rela­

tions. Viscous stresses and thermal conduction are included 

in full generality, while species diffusion is represented by a 

self-consistent effective binary diffusion approximation,22,23 

suitably generalized to allow for ambipolar diffusion of 

charged species in both thermal equilibrium18 and 

nonequilibrium. 19 A detailed description of the governing 

equations for LTE plasmas is given elsewhere. 16 The present 

discussion will therefore concentrate on the extension of the 

model to nonequilibrium. 

The species conservation equations are given by 

Bp' 
-' + V '(p,u)= - V .J,+p'<; at I ", 

(1) 

(2) 

where Pi is the partial mass density (mass per unit volume) 

of species i, u is the fluid velocity, J j is the diffusional mass 

flux of species i, p) is the rate of change of Pi due to chemi­

cal reactions,16 and p= "ZiPi is the total mass density of the 

fluid. The diffusion fluxes J i are determined by a self­

consistent effective binary diffusion approximation,22.23 gen­

eralized to allow for ambipolar diffusion of charged particles 

in two-temperature plasmas. 19 Under the assumption that 

pressure and thermal diffusion are negligible compared to 

ordinary (concentration) diffusion, the resulting expression 

for J i for all species except electrons is given by 

_ pMi(Di+D t ) (Pi) 
Jj -- RgT V P 

Pi" pM/Dj+D t ) (pj) 
+ "'-' R T V + Ai ' 

P j*i? g P 
(3) 

where subscript e denotes the free electrons, M i is the mo­

lecular weight of species i, D i is the laminar effecti ve binary 

diffusivity of species [,22,23 D t= fL/pSC t is the turbulent dif­

fusivity, fLt is the turbulent viscosity (defined later), SCt is the 

turbulent Schmidt number, Pi is the partial pressure of spe­

cies i, P = "Z iP i is the total pressure, T is the heavy particle 

temperature, R g is the universal gas constant, and Ai is the 

ambipolar forced diffusion flux given by 

1 ( Pi Ai= R T MiqiPi(Di+Dt)- - ~ Mjqjp/Dj 
g P j*e 

+D t ) --, 

) 

VPe 

qePe 
(4) 

where q i is the electric charge per unit mass of species i. The 

diffusional flux of electrons is then given by 

(5) 
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The momentum equation can be written as 

B(pu) ( 2 ) at+V .(puu) = -V p+ 3" pk +V'O', (6) 

where k is the turbulent kinetic energy per unit mass. The 

viscous stress tensor 0' is given by 

0'= (fL+ fLt)[VU+ (Vufl + (h + ht)(V ·u)l, (7) 

where fL is the molecular viscosity, h is the second viscosity 

coefficient,24 h t= -(2/3)fL" I is the unit dyadic, and super­

script T denotes the transpose. The laminar bulk viscosity is 

h + (2/3) fL, which vanishes for monatomic gases. 

Thermal nonequilibrium is represented by solving sepa­

rate energy equations for the total thermal internal energy of 

the mixture and for the thermal internal energy of the free 

electrons. These equations are given by1.2 

~~) . at + V ·(peu) = - pV ·u- V .q+ P€+ QC, (8) 

a(Peee) _ ·c . C • 

at + V '(Pee"u) - - Pe V ·u- V 'q,,+ p"ee+ Q e + Qeh, 

(9) 

where € is the viscous dissipation rate, e is the total thermal 

internal energy per unit mass, (t is the rate of change of pe 

due to chemical reactions,16 ee and Q~ are the corresponding 

quantities for the free electrons, and Qeh is the energy ex­

change rate between electrons and heavy particles (defined 

later). Energy losses due to the escape of optically thin ra­

diation from the plasma are modeled by omitting the corre­

sponding terms from QC and Q~, so that the radiation energy 

is lost to the system rather than being deposited in the 

plasma. This is why radiation loss terms do not explicitly 

appear in Eqs. (8) and (9). The radiative transitions to be 

treated in this way are described in Sec. III below. 

The heavy particle energy is obtained by subtracting the 

electron energy from the total energy. The heat flux vectors q 

and q" contain contributions from both pure heat conduction 

and species diffusion,16 and take the form 

(11) 

where Kh and Ke are the laminar thermal conductivities of 

heavy particles and electrons, respectively, T e is the electron 

temperature, C ph and C pe are, respectively, the heavy particle 

mixture and electron specific heats at constant pressure (de­

fined later), Prt is the turbulent Prandtl number, and hi is the 

partial specific enthalpy of species i. In laminar flow P€=<I> 

=O':Vu, while € in turbulent flow is obtained by solving a 

transport equation as described below. 

The thermodynamic state relations must be generalized 

to allow for two temperatures, Thus the total thermodynamic 

pressure is given by 
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(12) 

The total thermal internal energy is related to the tempera­

tures by 

pe= L Piei(T)+PeeATe), 
i*e 

(13) 

where e i( T) is the partial specific thermal internal energy of 

species i at temperature T. The specific heats at constant 

volume and pressure are given by 

de· 
PhCvh=L Pi d;' 

.*e 

dee 
C ve = dT ' 

e 

(14) 

(15) 

(16) 

(17) 

where Ph="i:,i*ePi' Notice that the above energies and en­

thai pies are purely thermal and do not include heats of for­

mation. 

The energy exchange rate between electrons and heavy 

particles is given b/ 

. me 
Qeh=3 - ksne(T-Te)(Vei+ Vea)' 

mh 
(18) 

where nk and mk are, respectively, the number density and 

mass of species k, and ks is Boltzmann's constant. The col­

lision frequency Vet between electrons and ions is obtained 

using the cutoff Coulomb potential,9.10 while the electron­

neutral collision frequency Vea is obtained from published 

collision cross-section data.9,10 

In the present simulations, the k -€ turbulence model
16 

is 

used to represent the effects of turbulence. Transport equa­

tions are solved for the turbulent kinetic energy per unit mass 

k and its dissipation rate E, 

a(pk) 
--+V·(pku) 

at 

2 
= - '3 pkV ·u+ V .[(,u+ ,ut)V k]+ <I> - pE, (19) 

(20) 

where the coefficients are given by ci = 1.44, C2= 1.92, 

C3= -1.0, and O'E= 1.3. The turbulent viscosity ,ut is then 

given by 

_ Cp.pk2 
,ut--

E
-, 
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(21) 

where cp.=0.09. This is the same version of the k-E model 

described and used in previous studies,16.17 with the same 

values of the various parameters. In particular, we use the 

values Prt =Sct =0.7 instead of the more conventional values 

Prt =Sct =0.9. As is well known, k-€ models have particular 

difficulties in dealing with axisymmetric and swirling jets, 

for which various ad hoc correction terms25.26 have fre­

quently been employed. The effects of these correction terms 

for plasma jets have previously been studied,17 and none 

produced significantly better results than the basic model 

with no correction terms. In the present simulations, such 

correction terms were therefore omitted. 

Simple k-E models of this type are not really satisfac­

tory even for simple incompressible flows, for which they 

often require ad hoc corrections. It would therefore be most 

remarkable if such models were quantitatively applicable to 

thermal plasmas without further major modifications, so this 

should not be expected. However, such models usually do 

provide useful semiquantitative results of fair accuracy, 17,27 

and one may reasonably hope that this will continue to be the 

case in simulations of the present type. 

III. COLLISIONAL-RADIATIVE (CR) MODEL 

In the present model, electrons, ions, and excited and 

ground states of neutral atoms are treated as separate species 

in the mixture. All collisional and radiative transitions are 

treated as separate chemical reactions between these species. 

Reaction rates are then to be obtained from existing 

collisional-radiative (CR) models. In the present simulations, 

we adopted the three-level atomic model described by Braun 

and Kunc.1O Four lower excited states [3 p5 4s 1 P 1 and 

3p54s(3 Po ,3p) ,3P2)] separated by very small energy gaps 

are lumped together and treated as a single excited state p, 
while subscripts C and s refer to the ionized and ground 

states, respectively. All higher excited states are neglected. 

The following reactions (transitions) are included in the 

model 

Ars+e-;::::!Arp+e-, 

Ars+e-;::::!Ar+ +e- +e-, 

Arp+e-;::::!Ar+ +e- +e-, 

Arp-tArs+hv, 

Ar+ +e- -tArs+hv, 

Ar++e- -tArp+hv. 

The first three reactions represent collisional transitions and 

ionization/recombination processes by electron impact, and 

the remaining three represent the net radiative decay of ex­

cited and ionized species. Other collisional processes are ne­

glected. Collisional rates for upward and downward transi­

tions as well as the effective (net) radiative decay rates A eff 

are obtained as described by Braun and Kunc.
1o 

The plasma 

is assumed to be optically thin to the continuum radiation 

due to recombination processes, so the effective rates A~~ 
and A~~ for radiative recombination are the same as the cor­

responding true rates A c p and A c s .10 The effective rate A ~~ 
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for spontaneous emission of resonance radiation is obtained 

by multiplying the true rate Aps by the Holstein escape factor 

K 
20,21 

ps' 

The Holstein escape factor is a macroscopic parameter 

which represents the fraction of the resonance radiation leav­

ing the plasma. The optically thick case (Kps=O) corresponds 

to complete self-absorption of the p-s spectral line, while 

the optically thin case (Kps = 1) corresponds to complete es­

cape of the line radiation. The use of this escape factor re­

places a detailed radiation transport calculation, which would 

be much more difficult and time consuming. Holstein escape 

factors have been systematically derived only for simple ge­

ometries, but they may be used more generally to represent 

resonance radiation transport in the two extreme cases of 

optically thick (Kps=O) and optically thin (Kps= 1) plasmas, 

and this is what is done in the present study. 

In the present simUlations, the time scales associated 

with these transitions/reactions range over more than ten or­

ders of magnitude due to the wide range of temperatures and 

species densities encountered in the flow field. This range of 

time scales includes characteristic times very short compared 

to those associated with fluid dynamical effects such as con­

vection. The presence of these very short time scales pre­

cludes the use of conventional explicit or linearly implicit 

schemes for coupling these kinetic processes to the fluid 

flow. We therefore use a fully implicit algorithm for treating 

an arbitrary system of coupled fast and slow chemical reac­

tions in fluid dynamics.28 

IV. COMPUTATIONAL RESULTS 

The model described above has been used to simulate a 

turbulent argon plasma jet flowing into a cold argon environ­

ment. The calculational region is 6 cm radially by 12 cm 

axially, and is subdivided by a nonuniform 40X68 computa­

tional mesh as shown in Fig. 1. The torch geometry corre­

sponds to a typical commercial plasma torch (Miller SG-

100). The inside radius of the torch nozzle at the exit is R i =4 

mm. The outside radius of the torch housing is Ro=33.3 mm. 

The geometry is axisymmetric. so the simulations were per­

formed in two-dimensional cylindrical coordinates. The ra­

dial coordinate is r and the axial coordinate is z. The left 

boundary is the symmetry axis, the nozzle exit plane is at 

z=O, and the flow is upward. The torch body portion of the 

bottom boundary is treated as a solid wall. The remainder of 

the bottom boundary, as well as the top and right boundaries, 

are open boundaries at which the pressure is assumed to be 

ambient. The flow at these boundaries is calculated rather 

than imposed, so it can be either inward or outward at dif­

ferent locations on the boundary. Where inflow exists, the 

properties of the inflowing gas are taken to be those of the 

ambient cold argon. 

Radial profiles of axial, radial, and swirl velocity, tem­

perature, species densities, and turbulence parameters at the 

torch exit are required as inflow boundary conditions for the 

calculations. Frequently some or all of these profiles are not 

known, and it is then necessary to assume their forms subject 

to the constraints provided by the given values of argon mass 

flow rate Wand net torch power P. In the present calcula-
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open boundaries 

open boundary 

FIG. I. Calculation domain and computational mesh. 

tions the swirl velocity was taken to be zero,17 and the axial 

velocity and temperature profiles at the torch exit plane z =0 

were taken to be of the form 

(22) 

T=(TO-Tw)[ l-(;Jm}+Tw, (23) 

where Tw=700 K, and the parameters uo, To. n, and m are 

related to Wand P via the relations16 

f
R 

W=PambV=27T 0 'pur dr, (24) 

where u is the axial velocity, Pamb and Tamb are, respectively, 

the density and temperature of the cold argon entering the 

torch, AH~ is the heat of formation of species i at absolute 

zero, and the i summation runs over Ars • Arp , Ar +, and e -. 

The parameter values used in the present simulations were 

uo=918.4 mis, To= 12674 K, n =3, and m =9, resulting in 

values of V=35.4 /Im, and P= 12.1 kW, which are typical 

operating conditions for this torch. 17 The species densities Pi 

are obtained from p and T by assuming complete LTE at the 

inflow, including ionization, excitation, and thermal equiIib-
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FIG. 2. Velocity vectors for optically thick case. 

rium (Te= D. As will be seen, the present simulations pre­

dict significant departures from eqUilibrium in plasma jets at 

atmospheric pressure in spite of the fact that LTE is assumed 

at the inflow. In reality, it is likely that significant departures 

from equilibrium exist at the inflow as well, thereby further 

increasing the overall importance of nonequilibrium effects. 

Information regarding inflow profiles of turbulence in 

plasma torches is not available. We simply assumed an in­

flow turbulent kinetic energy profile of the form27 

(26) 

where (avlar)max is the largest axial velocity gradient with 

respect to radial direction at the nozzle exit, and kmax is de­

fined as 

(27) 

The inflow profile of E was then obtained from the turbulent 

kinetic energy profile by the prescription of Leschziner and 

Rodi.
26 

Calculations were performed for both Kps=O (optically 

thick) and Kps = 1 (optically thin). (The optically thin calcu­

lation was performed using a reduced 4 cmX 10 cm compu­

tational region with a 35X62 mesh to save computer time 

without significantly affecting the results.) The calculations 

were initialized by filling the computational domain with 

quiescent ambient cold argon, which is then displaced by the 

incoming plasma until a statistically steady state is reached. 

(The flow field continues to fluctuate slightly, but the ampli­

tude of the fluctuations is so small that they are visually 

indistinguishable.) Figure 2 shows velocity vectors for the 

optically thick case, and Fig. 3 shows velocity vectors with 

correct directions but logarithmically scaled lengths so that 

the entrainment of ambient argon can be seen. Figure 4 
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FIG. 3. Log-scale velocity vectors for optically thick case. 

shows the corresponding heavy particle temperature field. 

The electron temperature field is visually indistinguishable 

from Fig. 4, indicating that the plasma is essentially in ther­

mal equilibrium. The velocity vectors and temperature fields 

for the optically thin case are very similar. 

Heavy particle and electron temperatures along the cen­

terline of the jet in the two cases are shown in Figs. 5 and 6. 

As expected, thermal equilibrium prevails in the jet core for 

the optically thick case shown in Fig. 5. In the optically thin 

FIG. 4. Heavy particle temperature field for optically thick case. 
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FIG. 5. Heavy particle and electron temperatures along the centerline for 
optically thick case. 

case shown in Fig. 6, the electron temperature is seen to be 

lower than the heavy particle temperature in some parts of 

the plasma. In this case, resonance radiation escapes from the 

plasma, thereby enhancing radiative decay of the excited 

state and reducing its population. This in tum enhances col­

lisional excitation by electrons, the energy for which is sup­

plied by the electrons, thereby reducing their temperature. 

Figures 7 and 8 show the degree of nonequilibrium for 

each reaction and the electron number density along the cen­

terline. The degrees of nonequilibrium are defined as 

[Arp] 
Cps=[Ar]K ' 

s ps 

[Ar+][e-] 

Ccs= [Ar]K ' 
s cs 

[Ar+][e-] 

Ccp [Ar]K ' 
p cp 

(28) 

(29) 

(30) 

where [Xl is the molar concentration of species X in the 

plasma, and K ps ' K cs ' and K cp ' respectively, represent the 

15000.0 

g 10000.0 

I 
I 5000.0 

, , 
, 

, , , 

2 

T 

-------- T.,. 

4 6 8 

Axial Distance (em) 

FIG. 6. Heavy particle and electron temperatures along the centerline for 
optically thin case. 
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FIG, 7. Degree of nonequilibrium and electron density along the centerline 

for optically thick case. 

eqUilibrium constants for excitation, and for ionization from 

the ground and excited states, evaluated at the electron tem­

perature. Values ,> I represent overpopUlation of products or 

underpopulation of reactants. while ~ < 1 represents the op­

posite. As temperature and electron density decrease, ioniza­

tion and excitation depart from eqUilibrium as expected for 

both cases, resulting in overpopUlation of excited and ionized 

species. In the optically thick case shown in Fig. 7, ioniza­

tion from the excited state stays close to equilibrium, con­

firming previous observations 11,13 of PLTE of excited states 

with electrons at the electron temperature, In the optically 

thin case shown in Fig. 8, underpopulation of excited and 

ionized species relative to the ground state is observed for 

0<z::52.5 cm, and this reduces the electron temperature as 

previously discussed and illustrated in Fig. 6. 

Previous theoretical and experimental studies neglecting 

excited state kinetics3
-

5 have found that the core region of 

argon plasmas at atmospheric pressure is generally in ioniza­

tion eqUilibrium. This is consistent with the present optically 

thick results in the region 0<z$3 cm, as shown in Fig. 7. 
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FIG. 8. Degree of nonequilibrium and electron density along the centerline 

for optically thin case. 
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FIG. 9. Radial profiles of heavy particle and electron temperatures at z =2 
em for optically thick case. 

For z~3 cm, the ions and excited state are no longer in 

equilibrium with the ground state, but the excited state con­

tinues to be in PLTE with the ions at the electron tempera­

ture. This too is consistent with the results of a previous 

study.13 In contrast, the optically thin results of Fig. 8 show 

large departures from ionization equilibrium with both the 

ground and excited states. These departures occur both up­

stream, where the electron density is high, and downstream 

to an increasing degree. Thus although the optically thin re­

sults show some interesting under- and overpopUlation be­

havior, the closer agreement of the optically thick results 

with experimental observations for similar plasma tempera­

tures and densities 13 strongly indicates that the plasma is in 

fact optically thick to resonance radiation, and that self­

absorption of resonance radiation is indeed an important ef­

fect. 

Radial profiles of heavy particle and electron tempera­

tures at z =2 cm are shown in Figs. 9 and 10 for both cases. 

In both cases, small departures from thermal equilibrium re­

sult from electron heating due to collisional recombination 
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FIG. 10. Radial profiles of heavy particle and electron temperatures at z =2 
cm for optically thin case. 
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FIG. II. Radial profiles of degree of nonequilibrium and electron density at 

z=2 cm for optically thick case. 

processes. In the optically thin case shown in Fig. 10, how­

ever, T e < T near the symmetry axis resulted from the reso­

nance radiation escape as explained above. This effect also 

reduces T e in the fringes, thereby bringing T e down closer to 

T than it is in the optically thick case (Fig. 9). 

Figures II and 12 show radial profiles of degrees of 

nonequi1ibrium and ne at the same axial location. As ex­

pected, overpopUlation of electrons and excited species oc­

curs at the fringes of the jet, due to an insufficient separation 

between the chemical (collisional) and fluid dynamical time 

scales, as discussed below. In the optically thick case (Fig. 

II), these overpopulations are further enhanced by absorp­

tion of resonance radiation. In the optically thin case (Fig. 

12), the calculation showed underpopu1ation of excited and 

ionized species in the core part of the jet, also as expected. 

The optically thick case, Fig. 11, also shows that PLTE exists 

in much of the jet core. However, significant departures from 

PLTE are predicted around ne = 1015 cm -3 in contrast to Fig. 

7, where PLTE is predicted at the same electron density. This 
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FIG. 12. Radial profiles of degree of nonequilibrium and electron density at 

z =2 em for optically thin case. 
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illustrates the important point that ne itself has no absolute 

significance; what is really relevant are the time scales. 

It is apparent that the relative size of the various time 

scales plays a decisive role in all of these nonequilibrium 

effects, since the thermodynamic state of the plasma is de­

termined by competing physical effects with different time 

scales. The correspondence between PLTE and relative time 

scales can be analyzed in a semiquantitative way by plotting 

the time scales for the various processes as functions of po­

sition. This analysis will be limited to the optically thick 

case. 

The appropriate reference frame for time scale consider­

ations is a local Lagrangian frame moving with the plasma. 

(The plasma velocity relative to the laboratory frame is irrel­

evant, since the equations are invariant to Galilean transfor­

mations.) Fluid dynamical processes produce deviations 

from chemical equilibrium in a Lagrangian fluid element by 

changing the species densities and temperature. The tempera­

ture changes usually dominate, since eqUilibrium constants 

depend very strongly on temperature. The time scale for spe­

cies density changes due to fluid expansion or contraction is 

7e =IV ,ul- I
, while that due to diffusion of species k is 

7d=PkIV·Jkrl. The local fluid dynamical time scales corre­

sponding to temperature changes are the times over which 

these changes significantly alter the equilibrium constant K 
of the reaction under consideration; i.e., 

r=KIDKlDtI-I=I(d In KldT)DTlDtr l, where DlDt 

= al at +u· V is the convective derivative. We shall restrict 

attention to the effects of fluid expansion (e) and heat con­

duction (q), for which DTIDt~TV·u and (pcu)-IV'q, re­

spectively. 

These various fluid dynamical time scales are then to be 

compared with the local chemical time scale for the reaction 

c under consideration; i.e., 7c = Pkl pic 11- I, where species k is 

the participating species of smallest concentration, and pZ I is 

the unidirectional (i.e., forward or backward, not net) chemi­

cal rate of change of Pk . In the present context, the species of 

smallest concentration is the excited state p, and we shall 

therefore evaluate both 7(' and Td for k= p. The fluid dynami­

cal and chemical time scales for deexcitation (c = x) are 

therefore given by 

1 Id In Kpsi 
7

ex 
= dT

e 
TeIV,ul, (31) 

1 Id In Kpsl 1 -= -IV·ql 
7qx dTe pCv ' 

(32) 

1 1 
-;;= P l(p~l)xl. (33) 

x p 

while those for recombination to the excited state (c = r) are 

1 Id In KepI 
Tn = dT

e 
Tel V ,ul, (34) 

(35) 

(36) 
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FIG. 13. Time scales for deexcitation along the centerline. 

(37) 

where subscript rr represents optically thin radiative recom­

bination. The time scales 7 .. and 7d are of course common to 

both deexcitation and recombination. 

Figures 13 and 14 show the various time scales along the 

centerline for deexcitation and recombination, respectively. 

The sharp peaks in the expansion time scales near z=O are 

due to the fact that there is a transition from compression to 

expansion there, so that V·u changes sign and passes 

through zero. The peaks in 7d are similarly due to sign 

changes in V .Jp • The time scales Te and 7d are seen to be 

longer than the time scales associated with temperature 

changes, confirming that the temperature changes are indeed 

dominant. Comparison of Figs. 7 and 13 shows that depar­

tures from excitation equilibrium occur when the chemical 

deexcitation time scale 7x approaches within two orders of 

magnitude of the time scales 7ex and 7qx' which occurs for 

z;<::3 cm. (It might appear surprising that such a large sepa­

ration of time scales is required for equilibrium, but the pre-
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FIG. 14. Time scales for recombination to the excited state along the cen­

terline. 
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FIG. 15. Radial profiles of time scales for deexcitation at z=2 cm. 

cise magnitude of this separation should not be taken too 

seriously; it depends on the definitions of the time scales, 

which are inherently imprecise quantities.) Comparison of 

Figs. 7 and 14 shows that recombination behaves similarly: 

when the chemical recombination time scale Tr approaches 

within two orders of magnitude of Ter and Tqr , which occurs 

at z =6 cm, departures from PLTE are observed. Notice that 

the radiative recombination time scale Trr is considerably 

slower than Ter and Tqr except in the immediate vicinity of 

z =0. Radiative recombination therefore does not contribute 

significantly to the departures from eqUilibrium. 

Similar correlations are observed in the radial direction. 

Figures 15 and 16 are radial plots of the various time scales 

at z = 2 cm, which show that Te, Td, and Tr r are again gen­

erally slower than the other time scales and therefore do not 

play a significant role in the departures from equilibrium. 

(The peaks in these plots are again associated with sign 

changes in V ·u, V·q, and V .Jp.) Once again, when the 

chemical time scales Tx and Tr approach within two orders of 

magnitude of Tex, Tqx, Ten and Tqr (which occurs at r;::0.2 

cm for deexcitation, and at r;::0.5 cm for recombination), 
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FIG. 16. Radial profiles of time scales for recombination to the excited state 

at z=2 cm. 

Phys. Plasmas, Vol. 1, No. 11, November 1994 

10
12 

1.0E17 

10" , , 

10" l;,.. I 

, 9.0E16 
, 

J 
10" 

--------
~ 

, 
8.0E16 I 

10' -'-'-'-'-'-'-'-' I;., 
, , , 7.0E16 

;:J 10' , , 
n, , 

1 10' .. , , 6.0E16 .r , 
10' , , 5.0E16 ! , 

'S 10' , , d' , 
4.0E16 

~ 10' 
,. , 

g 10' 
.................. 3.0E16 

10' --' 
2.0E16 

10· 
10,1 1.0E16 

10'2 O.OEO 
0 2 4 6 8 

Axial Distance (em) 

FIG. 17. Degree of nonequilibrium and electron density along the centerline 

in the low power case. 

Fig. 11 shows departures from excitation equilibrium or 

PLTE in the same locations. These comparisons clearly show 

that the thermodynamic state of the plasma relative to equi­

librium is determined by the relative time scales of compet­

ing physical and chemical processes, just as one would intu­

itively expect. These time scales are in turn determined by a 

variety of other variables and their gradients, including tem­

perature, plasma velocity, and concentrations. Thus electron 

number density alone cannot and does not characterize or 

determine the LTE or PLTE status of a plasma. 

For purposes of comparison, we also performed a similar 

optically thick simulation with lower values of the torch 

power and argon mass flow rate, using the same reduced grid 

as in the preceding optically thin calculation. The parameter 

values for this simulation were P=1.2 kW and W=O.148 

gis, resulting in vo=106.14 rn/s and To=12 506 K with n=3 

and m =5. Since Vo is much slower than in the previous high 

speed case, one might have expected the plasma to be closer 

to LTE or PLTE. However, plasma velocity alone does not 

define a relevant time scale, and significant departures from 

ionization and excitation equilibrium still occur. Figure 17 

shows electron density and degree of nonequilibrium in this 

case, while the relevant time scales are shown in Figs. 18 and 

19. The correspondence between PLTE and time scale ratios 

is seen to be generally similar to that in the high-speed case. 

V. CONCLUDING REMARKS 

Upper excited states are not included in the present 

study. Extrapolating from the behavior of the first excited 

state, however, we anticipate that PLTE of upper excited 

states may well occur in some regions where departures from 

PLTE of the lower excited states occur. It would be neces­

sary, however, to include more excited states in the model to 

confirm this conjecture and to predict the behavior of spec­

troscopic measurements as well as the relationship between 

the excited state kinetics and ionization reactions. 

Previous studies 13.14 have often discussed PLTE in terms 

of plasma electron density. While this is not unreasonable in 

a quiescent plasma, it can be very misleading in a flowing 
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case. 

plasma. The essential condition required for LTE or PLTE is 

that the relevant chemical time scales be much shorter than 

the competing fluid dynamical time scales. The electron den­

sity itself has no absolute significance (nor do fluid param­

eters such as flow velocity, as our low-speed simulation il­

lustrates). 

We have shown that complete simulations of the plasma 

flow and excited state kinetics permit a detailed analysis of 

LTE and PLTE effects, and that these effects may be inter­

preted in terms of the local time scale ratios existing in dif­

ferent parts of the plasma. In the present simulations, an 

insufficient separation between chemical and fluid dynamical 

time scales drives the plasma away from thermal and ioniza­

tion equilibrium in spite of the fact that complete LTE has 

been assumed at the inflow boundary. Recent experimental 

observations of a free burning arc29 using direct temperature 

measurement techniques30 indicate that significant departures 

:3 

~ 

10" 

10.5 

10" 

10.7 

10" 

10.9 

10.10 

...... ------------
" ~~ 't. , ... 

..... '" - - - - - - - - 'tqt 

..",. ..... ",..".;' ------- 't
r 

_ ..... "".-" " .......... " 't. 

•.•.•.•.•.•.•.•• 'tel 

10.11 '-'-'--'--'--'--'-.......... -'-'-'--'--'-.... -~ .. -_.-.J..--__'_ .... -_'_''I',,_'_' 

02468 

Axial Distance (em) 

FIG. 19. Time scales for recombination to the excited state along the cen­

terline in the low power case. 
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from thermal equilibrium occur in the core of the arc, 

thereby providing a further source of nonequiIibrium effects 

in plasma plumes generated by electric arcs. The nonequilib­

rium behavior of plasma jets utilizing experimentally deter­

mined nonequilibrium boundary conditions is currently un­

der investigation, and will be reported in due course. 
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