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Abstract

In studying the influence of water waves on constructions such as dikes, wave
breakers and offshore constructions, on ships but also on natural processes such
as sediment transport and changes in bottom topography, more and more use
is made of numerical models. An important class of such models consists of
models in which the flow is described by potential theory. On the one hand the
assumptions made in potential theory are valid in many studies, on the other
hand the description - its field equation is Laplace’s equation for the velocity
potential - offers many possibilities for finding solutions with numerical models.

The panel method is a numerical method which makes use of a boundary
integral formulation for Laplace’s equation, so that only the boundaries of the
fluid domain have to be covered with grid points. Moreover this enables a nat-
ural description of the movement of the free surface in the time domain, which
is determined by nonlinear dynamical and kinematical boundary conditions.
Nonlinearity of the free-surface boundary conditions is often of importance in
studying the influence of waves in coastal and ocean engineering.

In this thesis a two-dimensional and three-dimensional numerical model are
studied, based on a panel method, for the description of nonlinear water waves.
The focus is on two important aspects: firstly the dependence of the computa-
tional effort on the number of grid points and secondly some specific numerical
difficulties which arise when the method is used in application-like computa-
tions. With respect to the former aspect, a domain decomposition technique is
studied. The latter aspect is studied for some examples and the suitability and
limitations of some parts of the method for these examples are investigated.

In more detail the contents of this thesis is as follows. For the domain de-
composition technique, an iterative method is chosen in which the domain is
divided in the horizontal direction. The length-to-height ratios of the subdo-
mains, among other things, determine the convergence of the iterative method.
Because the domains in problems involving water waves generally have large
length-to-height ratios, relatively many subdomains can be chosen with a lim-
ited loss of convergence. As a consequence the panel method can be applied
much more efficiently with domain decomposition. In the case of subdomains
with fixed length-to-height ratios, the computational costs per time step depend
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vi Abstract

at most linearly on the length of the domain.
Furthermore the approriateness of the numerical model is studied for three

types of problems. Firstly the use of the model for the simulation of waves
generated by a translating or rotating wavemaker is studied. An important
improvement for such computations is the use of descriptions in the physical
domain rather than in the computational domain for extrapolations towards
lateral boundaries such as the wavemaker boundary. Secondly the propagation
of wave groups is simulated and the use of various formulations of the wave
group signal is studied. The domain decomposition technique proves to be a
succesful method for these computations. Thirdly the approriateness of the nu-
merical model for the simulation of waves diffracting around a surface-piercing
construction is studied. Because of the large differences in horizontal veloci-
ties on the free surface, the use of a mixed Eulerian-Lagrangian description is
necessary.



Samenvatting

Bij de bestudering van de invloed van golven op constructies zoals dijken,
golfbrekers en offshoreconstructies, op schepen maar ook op natuurlijke pro-
cessen zoals sedimenttransport en bodemvervorming, wordt steeds meer gebruik
gemaakt van numeriek wiskundige modellen. Een belangrijke klasse van zulke
modellen wordt gevormd door modellen waarbij de waterbeweging onder in-
vloed van golven wordt beschreven door een potentiaalstroming. Enerzijds zijn
de aannamen die voor een potentiaalstroming gemaakt worden in veel situaties
gerechtvaardigd, anderzijds biedt de beschrijving - een Laplace-vergelijking voor
de snelheidspotentiaal in het vloeistofgebied - veel mogelijkheden tot het vinden
van oplossingen met numerieke modellen.

De panelenmethode is een numerieke methode die gebruikt maakt van een
randintegraalformulering voor de Laplace-vergelijking zodat alleen de rand van
het vloeistofgebied belegd hoeft te worden met rekenpunten. Daardoor is boven-
dien een natuurlijke beschrijving van de beweging van het vrije oppervlak in
het tijdsdomein mogelijk, welke bepaald is door niet-lineaire dynamische en
kinematische randvoorwaarden. Deze niet-lineariteit is vaak belangrijk bij de
bestudering van de invloed van golven.

In dit proefschrift worden een tweedimensionaal en een driedimensionaal nu-
meriek model bestudeerd, gebaseerd op een panelenmethode, voor de beschrij-
ving van niet-lineaire golven op water. Speciale aandacht is er voor twee as-
pecten: de relatie tussen aantal rekenpunten en benodigde rekeninspanning, en
enkele specifieke numerieke moeilijkheden die optreden bij toepassingsgerichte
berekeningen. Met betrekking tot het eerstgenoemde aspect wordt een domein-
decompositie techniek bestudeerd. Het laatstgenoemde aspect wordt bestudeerd
aan de hand van een aantal voorbeelden. Daarmee worden de geschiktheid en de
beperkingen van een aantal onderdelen van het numerieke model aangetoond.

Meer concreet laat de inhoud van dit proefschrift zich als volgt beschrij-
ven. Voor de domeindecompositietechniek is een iteratieve methode gekozen
waarbij het rekengebied in de horizontale richting wordt opgedeeld. De con-
vergentie van de iteratieve methode wordt onder meer bepaald door de lengte-
hoogteverhouding van de subdomeinen. Aangezien het rekengebied bij golf-
problemen in het algemeen een grote lengte-hoogteverhouding heeft kunnen
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relatief veel subdomeinen genomen worden met slechts een gering verlies aan
convergentie. Voor de panelenmethode betekent dit dat door het gebruik van
domeindecompositie aanzienlijke rekenwinsten geboekt kunnen worden. Wan-
neer subdomeinen met een vaste lengte-hoogte verhouding gebruikt worden,
hangen de rekenkosten per tijdsstap hoogstens lineair af van de lengte van het
rekengebied.

In een aantal toepassingen wordt verder naar de geschiktheid van het nu-
merieke model voor dit soort problemen gekeken. Ten eerste betreft dit het ge-
bruik van het model voor de simulatie van golven opgewekt door een translerend
of een roterend golfschot. Hierbij blijkt dat een beschrijving in het fysische
domein meer geschikt is dan een beschrijving in het rekendomein voor extra-
polaties naar zijranden, zoals de rand gevormd door een golfschot. Ten tweede
wordt de voortplanting van golfgroepen gesimuleerd voor verschillende formu-
leringen van het golfgroepsignaal. Het gebruik van de domeindecompositietech-
niek is daarbij zeer voordelig. Ten derde wordt de geschiktheid voor de simu-
latie van golven rond een constructie bestudeerd, welke door het vrije oppervlak
heen steekt. Door de grote verschillen in horizontale snelheden van het vrije
oppervlak is het gebruik van een gemengd Eulers-Lagrangiaanse beschrijving
noodzakelijk.



Chapter 1

Introduction

1.1 Context of the work

In the field of ocean and coastal engineering much attention is paid to the
description and prediction of water waves. The water motion induced by waves
is of importance for e.g. the run-up and forces on coastal structures, forces on
and motion of offshore structures and ships and for the transport of sediment.
Knowledge about the structure of the wave field and the associated flow field is
often used as input for studies related to these problems.

Different approaches can be distinguished towards solving an engineering
problem involving water waves. A first approach is the use of a physical model.
The subject of interest is built (on scale) in the laboratory and examined by
generating waves with machine-driven wavemakers for a number of different
wave conditions. An advantage of physical modelling is that many aspects of
the problem can be taken into account. Difficulties lie in the proper scaling
of the problem and doing accurate measurements of certain properties. Only
point measurements can be made and one has to avoid disturbances due to the
instruments. Moreover, physical modelling has become relatively expensive.

A second approach is the use of mathematical models. Based on funda-
mental conservation laws of physics, equations can be derived that describe the
motion of water for the problem under consideration. By simplifying the equa-
tions and/or approximating the solution of these equations, information can
be obtained. The description of waves is a classical subject of mathematical
physics and has been studied since the 17th century. Since then the mathe-
matical theory has developed enormously but only for a small number of water
wave problems satisfactory solutions can be obtained directly from mathemat-
ical formulations.

A third approach, which is applied often in engineering problems, is the use
of numerical models to solve the equations describing the problem. Mathemat-
ical models can be solved numerically for some specific wave conditions and
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2 Chapter 1

configurations, providing answers which are very hard or impossible to obtain
with analytical methods. Numerical models have become more and more popu-
lar because of the growth of computational power and the advance of numerical
techniques.

An important aspect of the description of water waves is its nonlinear char-
acter. For high or steep waves nonlinear effects become important. Up to the
seventies, these waves were mainly described using perturbation series. With
the rise of powerful computers it has also become possible to choose a numer-
ical approach for nonlinear models. An important class of numerical models
for nonlinear waves is based on boundary integral equation methods. In these
models, the fully nonlinear boundary conditions for the free surface are used
and the field equation for a potential flow is solved using a method for a corre-
sponding boundary integral equation. In these methods only grid points on the
boundaries of the fluid domain are needed.

In this thesis a particular numerical model involving a boundary integral
equation method is studied. It is able to describe three-dimensional potential
flow using the fully nonlinear free-surface conditions in problems with varying
bottom topography. At present its use is mainly limited by the large compu-
tational demands still involved with the model. Also the limited experience
and verification of problems other than standard theoretical problems prevent
its use in practical engineering. We will pay attention to both aspects in this
thesis.

1.2 Models for nonlinear waves

We make a distinction between two different interests in the use of nonlinear
models. Firstly, the interest in the prediction of wave propagation influenced by
wave-wave, wave-bottom, wave-wind or wave-current interaction. Secondly, the
interest in water motion in nonlinear waves locally near structures and ships.
The use of numerical models in both fields of interest is discussed next.

In the field of models for wave propagation, a first classification can be
made based on which area is studied: oceans, offshore or nearshore seas or
harbours. Furthermore it is important to identify which physical processes are
important. For an overview of this matter see Battjes [4]. Especially in the
nearshore region and in harbours there is a large class of problems for which
the assumption of potential flow can be made and attention is paid to the effect
of the nonlinear free-surface boundary conditions on the characteristics of the
wave field. Various models have been developed for this purpose. Here we
mention the mild-slope equation and the Boussinesq models. There have been
important developments in these methods during the last few decades, both in
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the mathematical formulation and in the numerical implementation.
In the field of models for local water motion near structures or around ships,

there is a large diversity of models with respect to the assumptions made about
the flow. Viscosity or turbulence may be taken into account which has large
implications on which numerical technique has to be used. If the characteristic
dimension of an object is of the order of the wave length, viscous effects can
be neglected for the bulk area of the domain and the oscillatory part of the
motion. For this type of problems, boundary integral equation methods are
often used. If viscosity is important, other methods have to be used such as finite
volume methods or marker-and-cell methods. These methods demand much
more computational effort and therefore very few three-dimensional methods
have been reported so far, see e.g. Alessandrini [2]. Also the treatment of the
moving free surface is more complicated in these methods.

The role of the present potential flow model for both types of problems can
be indicated as follows. For wave propagation it can provide the verification of
other models with more assumptions and approximations such as Boussinesq-
type models because it uses the fully nonlinear free-surface conditions. For local
water motion the model is valid for a certain class of problems. For problems
outside this class it can provide boundary conditions for models which are more
appropriate. Examples of such problems are shown in this thesis.

1.3 Developments

The model which is studied in this thesis has been developed by Romate [58]
and Broeze [13] since the beginning of 1983. As mentioned before, it concerns
a three-dimensional model in which also arbitrary bottom topographies can be
used. Moreover the method is suitable for computing the motion of floating
bodies as shown by van Daalen [18]. A large number of applications can be
handled by the model of which a few are discussed in this thesis.

Comparisons with developments elsewhere show that the model has always
been competitive on an international level. A short review of present day mod-
els is given by Kim [42]. To place the present work in relation to the preceding
work on the model, a short overview is given of the work by Romate, Broeze
and van Daalen.

Romate [58] investigated the choice of a numerical method for nonlinear
free-surface waves and built the model on which the present model is based.
Studies on accuracy and stability and on aspects such as absorbing boundary
conditions were performed. The model was shown to perform well for mildly
nonlinear waves.

Broeze [13] continued the studies on accuracy and stability and improved
these up to a level at which highly nonlinear waves could be simulated over a
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number of wave periods. Also computations in more complex domains with un-
even bottoms were presented including the computation of a plunging breaking
wave in three dimensions.

Van Daalen [18] constructed the model for the simulation of floating bod-
ies in water and showed results of computations with circular and rectangular
cylinders in two dimensions. The three-dimensional version has been developed
by Berkvens who showed that it can simulate motions of an ellipsoid floating in
a free surface [9].

Although considerable progress has been made, little attention has yet been
paid to applications. An important reason for this is the large computation
time associated with such simulations. Also the lack of acquaintance with the
accuracy and stability for problems other than model problems is related to this
(although Broeze [13] has made some comparisons with experiments). In this
thesis the focus is on these two aspects and especially on domain decomposition
as a means to reduce computational costs.

An important goal which is kept in sight, now and in the near future, is the
possibility to simulate the motion of ships moored in a harbour or sailing at
sea. It is obvious that, although the preceding work includes some important
steps in that direction, still a lot of work remains to be done.

1.4 Outline of the thesis

This thesis can be divided into three parts. The first part describes the model
developed by Romate and Broeze and features of the numerical method are
investigated closer and improved. The second part describes the domain de-
composition method which is shown to improve the efficiency of the model.
The third part contains three studies in which the model is applied to relevant
nonlinear wave problems. The division into chapters is as follows:

In Chapter 2 the mathematical formulation for nonlinear waves is described
which is solved in the numerical model. First and second-order Stokes’ wave
theory is discussed to provide reference for later chapters. In Chapter 3 the
numerical method is described and some important features are pointed out.
The accuracy and stability of the method is examined in Chapter 4.

The second part, about domain decomposition, starts with an introduction
in Chapter 5. In Chapter 6 convergence results are derived for the domain
decomposition method chosen for solving Laplace’s equation. Next, in Chapter
7, the implementation into the time-domain numerical method is described and
effects on accuracy and stability are discussed. Results on efficiency are shown
using approximative formulas and some examples. In Chapter 8 it is shown
that the domain decomposition method can easily be implemented on a parallel
system and results on parallel efficiency are presented for two systems.
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Finally the extensions described previously are applied in typical water wave
problems which show the present capabilities of the method. In Chapter 9 com-
putations of the two-dimensional model are discussed which show the usefulness
of the model as a verification tool. In Chapter 10 the simulation of propagating
two-dimensional wave groups over large distances is presented. Emphasis is on
the use of domain decomposition and on the stability of wave signals. Chapter
11 describes the three-dimensional simulation of waves around a surface pierc-
ing cylinder. Special attention is paid to stability. In Chapter 12 the main
conclusions are given and recommendations for future investigations are stated.
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Mathematical formulation

2.1 Introduction

The mathematical formulation of the nonlinear water wave problem is derived
from fundamental conservation laws. It consists of equations which are valid
in the fluid domain and of equations which are valid on the boundaries only.
Together they define the nonlinear wave problem in which the nonlinearity
comes from the free-surface boundary condition.

Exact solutions of these equations for general wave problems are impossible
to obtain and therefore approximative equations are often used. Many different
wave theories have been developed in the past, each with its own range of
validity. The solutions and properties of the equations used in these wave
theories can provide valuable insight in the solution of the fully nonlinear wave
problem. Especially the linearized wave problem is important because it forms
the basis of many other wave theories.

The numerical solution of the nonlinear wave problem which is described
in this thesis, is based on the use of an integral equation involving only the
boundary of the fluid domain, instead of Laplace’s equation for the total fluid
domain. With this formulation it is possible to use grid points on the boundary
only.

This chapter is divided as follows. First we formulate the equations for the
nonlinear wave problem in Sections 2.2 and 2.3. Then some wave theories are
discussed in Section 2.4 and solutions of these wave theories are described. The
formulation in terms of an integral equation is described in Section 2.5.

2.2 Potential flow

Models for propagating nonlinear free-surface gravity waves are usually based
on the potential-flow model. In these models the fluid is assumed to be in-
compressible and inviscid and the flow irrotational. In this section we briefly

7
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show how the equations describing a potential flow are related to fundamental
conservation laws.

In a Cartesian coordinate system fixed in space with coordinates (x, y, z),
the local fluid velocity is denoted by v = (u, v, w)T . The continuity equation
for an incompressible fluid expressing the conservation of mass is given by

∇ · v = 0, (2.1)

in which ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z

)T . The conservation of momentum is expressed by the
Navier-Stokes equations. For a homogeneous inviscid fluid they simplify to the
Euler equations which read

Dv

Dt
=
∂v

∂t
+ (v · ∇)v = −1

ρ
∇p− gez. (2.2)

ρ is the fluid mass density, p the pressure, g the gravitational acceleration and
D
Dt

denotes the material derivative. ez denotes the unit vector in the positive
vertical direction.

We now assume that the fluid flow is irrotational at some time t = t0. i.e.

∇ × v = 0. (2.3)

From the Euler equations it can be deduced that, if no vorticity is transferred
into the fluid domain through the boundaries, the flow will remain irrotational.
Because ∇ × v = 0, the velocity v can be written as the gradient of a scalar
potential φ:

v = ∇φ. (2.4)

The continuity equation (2.1) reduces to Laplace’s equation for the velocity
potential:

∆φ := ∇2φ = 0, (2.5)

and the Euler equations can be rewritten and integrated giving

∂φ

∂t
+

1

2
∇φ · ∇φ = −p− p0

ρ
− gz +B(t). (2.6)

p0 is an arbitrary constant and B(t) is a function of time t which are usually
omitted by redefining φ, without affecting the velocity field. Equation (2.6) is
called Bernoulli’s equation.

We see that the potential flow is governed by the potential φ satisfying
Laplace’s equation. If φ is known throughout the fluid, the physical quantities
v and p can be obtained from definition (2.4) and Bernoulli’s equation (2.6).

To solve these equations for a specific problem, we need initial conditions
as well as boundary conditions for the elliptic equation (2.5). The boundary
conditions depend on the type of boundary under consideration. In the next
section we describe some boundary types and formulate appropriate boundary
conditions.
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2.3 Boundary conditions

In nonlinear wave problems several boundaries can be distinguished, the free
surface being the most obvious one. Depending on the type of problem also
the influence of bottom and structures can be considered. Artificial lateral
boundaries come in through the truncation of the fluid domain to the domain of
interest for a specific problem. Figure 2.1 illustrates all these types of boundaries
in a schematic illustration of a ship near a quay.

Ω
−h

x

Sf

Sb

Sb

Smb

S in S out

yz

O

Figure 2.1 Schematic illustration of the fluid domain and some boundaries

2.3.1 Free surface

Because the free surface is a moving boundary, we need more than one condition
to complete the potential flow model. The first condition is called the kinematic
condition and states that fluid particles at the free surface remain at the free
surface:

Dxf

Dt
= v = ∇φ, xf ∈ Sf . (2.7)

The second (dynamic) condition is derived from Bernoulli’s equation. By as-
suming that the atmospheric pressure p at the free surface is zero, the following
so called dynamic boundary condition is obtained:

Dφ

Dt
=

1

2
(∇φ)2 − gz, on Sf . (2.8)
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2.3.2 Bottom and structures

The condition that is normally used on the bottom and on structures is that of
impermeability. On solid fixed boundaries such as the bottom or a quay, the
normal component of the velocity is zero:

∂φ

∂n
= v · n = 0, on Sb. (2.9)

n is the unit vector normal to the boundary and is chosen to point inside the fluid
domain here. On moving boundaries such as a wavemaker, the normal velocity
of the fluid coincides with the velocity of the body vmb in that direction:

∂φ

∂n
= vmb · n, on Smb. (2.10)

For floating bodies, the same condition can be formulated, but now the body
motion is a part of the problem itself. The motion of the body is governed by
the forces exerted on the body. The equations of motion of the body have to
be solved simultaneously with the potential flow equations. We refer to van
Daalen [18] for a further description and a numerical approach to solve this
problem. See also Tanizawa [68] and Berkvens [9].

2.3.3 Artificial lateral boundaries

For wave problems in which the fluid domain extends to infinity, an additional
condition is required to make the problem well-posed. Moreover we need to
truncate the fluid domain Ω in the present numerical model at some distance
from the area of interest. Also, when comparing with experiments or in mod-
elling practical problems, we want to consider only a finite part of the fluid
domain. Hence, artificial lateral boundaries are needed and artificial boundary
conditions have to be imposed there.

We can distinguish two types of boundary conditions for these artificial
lateral boundaries. At inflow boundaries, conditions should be formulated cor-
responding to a desired wave field. An example is the velocity field due to the
motion of a wavemaker but more general velocity profiles can be prescribed
here. In Section 2.4 we discuss solutions of wave problems over horizontal bot-
toms which can be used to formulate the inflow boundary condition. In these
cases we can formulate expressions for the potential itself:

φ = F (x(t), t), x(t) ∈ Sin. (2.11)

Note that the position of the inflow boundary itself in this formulation is allowed
to vary, as in the case of real wavemakers.

At outflow boundaries, conditions should be formulated such that the ex-
cluded part of the fluid domain is simulated. The motion due to outgoing waves
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(entering this excluded part) should be simulated here. Because the properties
of the outgoing waves are in general unknown, finding an acceptable absorbing
boundary condition can be very difficult. An example is Higdon’s condition
([35], [36]),

∂φ

∂t
=

c

cos(α)

∂φ

∂n
, x ∈ Sout (2.12)

which reduces to the well-known Sommerfeld’s radiation condition if α = 0 is
chosen. The values of c and α should be good estimates for the phase velocity
and the angle between the normal direction of the boundary and the direction
of propagation, respectively. In cases in which reflections occur, inflow bound-
aries should also be considered as outflow boundaries. A combined boundary
condition should be formulated then.

Another possibility to simulate an infinite outer field near the outflow bound-
aries, is the use of artificial damping. In such methods an artificial dissipative
term is added to the equations in a damping zone near the outflow boundaries
of the truncated domain. An example of such a dissipative term was given by
Betts and Mohamad [10] who only added it to the dynamic boundary condition:

Dφ

Dt
=

1

2
(∇φ)2 − gz − νφ, on Sf . (2.13)

The parameter ν is specified by increasing it from zero at the beginning of
the damping zone to a given positive value at the end of the zone. Reflection
properties depend on ν and on the length of the damping zone.

In the past much attention has been paid to the suitability of absorbing
boundary conditions for free-surface wave problems and for the use in numer-
ical methods. In Romate [60] and Broeze and Romate [12] a number of such
conditions are studied. See also Givoli [29] for an extensive overview of non-
reflecting boundary conditions. We do not pay much attention to the suitability
of absorbing boundary conditions here although the proper use can be very prof-
itable in practical simulations.

We return to the conditions for inflow boundaries later on. In Chapter 9 we
will study the suitability of several types of wavemaker motion for the generation
of a desired wave field.

2.4 Wave theories

At present no analytical solutions are known for the nonlinear wave problem.
To obtain useful formulations, models that approximate the nonlinear model
have been developed. The solutions of these approximative models give insight
into the propagation of waves and can provide answers to certain problems.
Good sources of information on wave theories are for instance Sarpkaya and
Isaacson [62], Mei [52], Whitham [70], Lamb [44] and Dingemans [23].
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The linear approach in which wave fields are split up into separate wave
components is a good example of a useful approximative model. Spectral for-
mulations, in which this splitting is used, are the basis for many studies on wave
propagation.

In the numerical model described here, approximations to solutions of the
fully nonlinear equations are of importance. In the simulation of propagating
waves, the characteristics of the wave field come in through the inflow boundary,
so a specification is needed there. In the following this is illustrated by con-
sidering Stokes’ first and second-order theory to obtain approximate solutions
of the nonlinear model which can be used as inflow boundary conditions in the
numerical model. Furthermore it is shown that spurious waves may enter the
domain if approximate solutions are used.

We only consider solutions of wave theories for a horizontal bottom. In
general the inflow boundary of a model (either theoretical, numerical or ex-
perimental) marks the beginning of an area in which we are interested in the
disturbance of a wave field as a result of a bottom topography, interaction with
structures or interaction between waves. The wave conditions at the inflow
boundary therefore have to correspond to the local depth and since we are
interested in the changes of the wave field, we usually want to formulate con-
ditions that correspond to waves which in a way propagate undisturbed over a
horizontal bottom. In this section we derive some of these conditions.

It is to be noted that the numerical model does not necessarily requires the
use of inflow conditions which are periodic or stationary in one or the other way.
Because of the time-dependent simulation of the wave field, any time series can
be used. For example in simulations in which the fluid is in rest initially, the
inflow conditions can be increased gradually until the desired conditions have
been reached. Inflow conditions composed of random signals can also be used.

2.4.1 Linear theory

As mentioned before, the linear approach is the basis of many studies on wave
propagation. In this approach the free-surface conditions are linearized and
solutions of the linearized problem are split into separate components which
propagate independently. It is alternatively referred to as small amplitude wave
theory, sinusoidal wave theory or as Airy theory. In this section we formulate
the linear problem and derive its solution following the very readable account in
Sarpkaya and Isaacson [62]. First we formulate the governing equations and the
solution to these equations. Next the formulation of inflow boundary conditions
based on the solution is considered.
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Linearizing the free-surface conditions (2.7) and (2.8) around z = 0 we find

∂φ

∂z
− ∂η

∂t
= 0, at z = 0 (2.14)

and
∂φ

∂t
+ gη = 0, at z = 0, (2.15)

which can also be combined as

∂2φ

∂t2
+ g

∂φ

∂z
= 0, at z = 0 (2.16)

and

η = −1

g

(

∂φ

∂t

)

z=0

. (2.17)

We want to find the solution of the linearized problem for a propagating periodic
wave in water of constant depth and we consider the two-dimensional situation
with waves propagating in x-direction with phase velocity c, see Figure 2.2.

O

h λ

H
η(x, t)

x

z

x0

Figure 2.2 Definition of some characteristic quantities for a periodic wave.

A solution of the Laplace equation (2.5) can be found by writing φ as

φ(x, z, t) = Z(z)Φ(x − ct) (2.18)

and using separation of variables to derive ordinary differential equations for
both Z and Φ. By choosing the time level t = 0 as a time level at which a wave
top is at the line x = 0 and by using (2.9) we find the periodic solution

φ(x, z, t) = A
g

ω

cosh(k(z + h))

cosh(kh)
sin(k(x− ct)) (2.19)

with wave number k = 2π
λ

and frequency ω = ck. From condition (2.17) we find

η(x, t) = A cos(k(x− ct)). (2.20)
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which defines A as the wave amplitude. Boundary condition (2.16) expresses ω
(or c = ω/k) in k and results in the dispersion relation for linearized free-surface
waves

ω2 = gk tanh(kh). (2.21)

Using this relation, equation (2.19) can also be written as

φ(x, z, t) = A
ω

k

cosh(k(z + h))

sinh(kh)
sin(k(x− ct)). (2.22)

From this solution of the linearized problem many interesting properties of
water waves and of the motion of water itself can already be derived. The reader
is referred to Sarpkaya and Isaacson [62] for an overview of this matter. In this
section we concentrate on the mathematical formulation of solutions of the wave
problem. In Chapters 9, 10 and 11 the physical meaning of these expressions
will become more apparent.

For the formulation of inflow boundary conditions using equation (2.22) we
now consider the semi-finite domain which is bounded in negative x-direction
by an inflow boundary x = x0. On this boundary we formulate as a boundary
condition the evaluation of solution (2.22) at x = x0:

φ(x0, z, t) = A
ω

k

cosh(k(z + h))

sinh(kh)
sin(k(x0 − ct)) =: F (z, t;ω,A). (2.23)

In the definition of F the value of k is implicitly determined by the dispersion
relation (2.21).

The solution of this linear boundary value problem is obviously given by
(2.22) and is as such not interesting. We will, however, use the above to con-
sider solutions of the boundary value problem in cases in which the boundary
condition on x = x0 is not equal to F (z, t;ω,A).

As a first example we take as an inflow boundary condition

φ(z, t) = F (z, t;ω1, A1) + F (z, t;ω2, A2). (2.24)

Because of the linearity of the boundary value problem, the solution is given
as the sum of the right-hand side of equation (2.22) with (ω,A) = (ω1, A1) and
with (ω,A) = (ω2, A2). Both components propagate independently and their
phase velocities are determined by the dispersion relation (2.21).

As a second example we now consider a boundary condition corresponding
to the linearized motion of a translating wavemaker with position X(t) = x0 +
X0 sinωt. For this motion the most appropriate condition is in terms of the
velocity U(t) = φx(x, z, t)|x=x0:

U(t) =
dX

dt
(t) = ωX0 cosωt. (2.25)
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Contrary to the function F (z, t;ω,A), this boundary condition is independent
of z. The solution of this boundary value problem is found to be (taking x0 = 0)

φ(x, z, t) = X0c0
ω

k

cosh(k(z + h))

sinh(kh)
sin(k(x− ct))

−X0
g

ω

∞
∑

j=0

cj
cos(kj(z + h))

cos(kjh)
e−kjx cos(ωt) (2.26)

and

η(x, t) = X0c0 cos(k(x− ct)) −X0

∞
∑

j=0

cj
cos(kj(z + h))

cos(kjh)
e−kjx sin(ωt). (2.27)

with kj the positive solutions of the dispersion relation −ω2 = gkj tan(kjh) and
cj certain coefficients. See Schäffer [63] for a discussion of this boundary value
problem and a description of an efficient way to determine the coefficients cj .

The first term in (2.27) describes a propagating wave and the second term
describes the so-called evanescent modes for which the fluid motion away from
the wavemaker decays exponentially. See Schäffer [63] for a discussion of this
boundary value problem.

In the next section we will see that in nonlinear models spurious waves which
do not vanish for large x can occur when solutions of the linear approach are
prescribed on the inflow boundary.

2.4.2 Second-order theory

As an example of a nonlinear theory we discuss Stokes’ second-order theory
here, see e.g. Sarpkaya and Isaacson [62]. In Stokes’ higher-order theory φ and
η are written as perturbation series of the following form:

φ = ǫφ1 + ǫ2φ2 + ǫ3φ3 + . . . (2.28)

and similarly for η. The perturbation parameter ǫ expresses the nonlinearity,
for example in terms of the wave slope. The perturbation series are substituted
in Laplace’s equation and the boundary conditions, after which terms of the
same order in ǫ are collected. Laplace’s equation and the bottom boundary
condition result in:

∂2φn
∂x2

+
∂2φn
∂z2

= 0, for n = 1, 2, . . . (2.29)

and
∂φn
∂z

= 0, for n = 1, 2, . . . , at z = −h. (2.30)
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In first and second order in ǫ we find for the free-surface boundary conditions:

∂2φ1

∂t2
+ g

∂φ1

∂z
= 0, at z = 0 (2.31)

η1 = −1

g

(

∂φ1

∂t

)

z=0

(2.32)

and

∂2φ2

∂t2
+ g

∂φ2

∂z
= −η1

∂

∂z

[

∂2φ1

∂t2
+ g

∂φ1

∂z

]

− ∂

∂t





(

∂φ1

∂x

)2

+

(

∂φ1

∂z

)2


 , at z = 0 (2.33)

η2 = −1

g





∂φ2

∂t
+ η1

∂φ1

∂z∂t
+

1

2

(

∂φ1

∂x

)2

+
1

2

(

∂φ1

∂z

)2




z=0

(2.34)

respectively. The equations of the first-order problem are equal to those of the
linearized problem. The equations of the second-order problem are similar to
those of the first-order problem except for the extra terms in the right-hand
sides of (2.33) and (2.34). These extra terms contain quadratic expressions in
φ1 and η1. A solution up to second order can be found by considering a first-
order solution and determining the second-order part by using equations (2.33)
and (2.34).

Given the first-order solution (2.20) and (2.22), the right-hand side of equa-
tion (2.33) will only contain terms with phase function 2k(x − ct) and the
second-order part of the solution can be found similarly to the determination of
the first-order solution itself. The expressions for φ and η then are (see Sarpkaya
and Isaacson [62]):

φ(x, z, t) = ǫφ1(x, z, t) + ǫ2φ2(x, z, t) (2.35)

= A
ω

k

cosh(k(z + h))

sinh(kh)
sin(k(x− ct))

+
3

8
A2ω

cosh(2k(z + h))

sinh4(kh)
sin(2k(x− ct)) (2.36)

and

η(x, t) = ǫη1(x, t) + ǫ2η2(x, t) (2.37)

= A cos(k(x− ct))

+
1

4
A2k

cosh(kh)

sinh3(kh)
[2 + cosh(2kh)] cos(2k(x− ct)). (2.38)
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The vertical structure and the phase function of the second-order solution do
not correspond to those of a first-order solution. The phase function contains
the double wave number 2k but propagates with the same phase velocity c, its
angular frequency being equal to 2kc = 2ω. Therefore this second-order solu-
tion is called the bound second harmonic. Its frequency and wave number do
not satisfy the dispersion relation (2.21). It differs from the so-called free second
harmonic which is to be considered as a separate first-order solution and which
propagates with its own phase velocity cf = 2ω

kf
with kf given by the dispersion

relation (2.21): (2ω)2 = gkf tanh(kfh). Free second harmonic waves occur as
spurious waves when the second-order part of (2.36) is not taken into account
in the inflow boundary condition. We will clarify this in the following.

We again consider the semi-finite problem with the inflow boundary at
x = x0 for both the first-order and the second-order problem. If we take the
first term in equation (2.36) evaluated in x = x0 (defined here as F1(z, t;ω,A)
) for the first-order problem and the second term (defined as F2(z, t;ω,A) ) for
the second-order problem, we again find (2.36) as the solution of the complete
problem for φ = ǫφ1 + ǫ2φ2 and η = ǫη1 + ǫ2η2.

If the term F2(z, t;ω,A) is omitted in the inflow boundary condition for the
second-order problem, then the semi-finite problem formulated as above has a
different solution. If we consider the corresponding situation in the physical
system then the 2ω motion induced on the inflow boundary by the first-order
signal has to be compensated by an opposite 2ω motion. In second-order the-
ory this motion is expressed by a solution containing a free second harmonic
and a series of evanescent modes, see Schäffer [63]. The propagating free sec-
ond harmonic disturbs the first-order signal and the wave field is not periodic
anymore.

In physical tests in which periodic waves are required, one wants to avoid the
occurrence of free higher harmonics. This implies that higher-order harmonic
motions of certain amplitude and phase have to be imposed on the first-order
motion of the wavemaker. In the case of irregular waves, higher-order contribu-
tions are also needed to obtain a well-defined wave field. In Chapter 9 we will
see that the numerical model is capable of simulating the water motion induced
by a wavemaker. In this way it is possible to determine whether higher-order
motions of wavemakers are able to suppress spurious waves.

Second-order theory can also provide insight into the development of free
waves with smaller frequencies, so-called subharmonics. They can arise as spu-
rious waves because of difference frequencies when using two or more different
first-order signals. The importance of the identification of signals with low
frequencies is indicated in Chapter 10.

We again consider the infinite problem of Figure 2.2 with as first-order com-
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ponent

φ1(x, z, t) = An
ωn
kn

cosh(kn(z + h))

sinh(knh)
sin(kn(x− cnt))

+Am
ωm
km

cosh(km(z + h))

sinh(kmh)
sin(km(x− cmt)). (2.39)

This bichromatic wave signal describes a wave group, an example of which is
illustrated in Figure 2.3 by the full line.

Figure 2.3 First-order wave group signal (−) with subharmonics (−·) and
superharmonics (−−).

In equation (2.33) of the second-order problem, the right-hand side now
contains terms with phase functions



















θ+
nn := 2knx− 2ωnt,
θ+
mm := 2kmx− 2ωmt,
θ+
nm := (kn + km)x− (ωn + ωm)t,
θ−

nm := (kn − km)x− (ωn − ωm)t.

(2.40)

The solution of the second-order problem will therefore contain three super-
harmonic waves with frequencies 2ωn, 2ωm and ωn + ωm and one subharmonic
wave with frequency |ωn − ωm|. Note that these four waves all have different
phase velocities. Because they travel along with and are determined by the
frequencies and by the wave lengths of the first-order components, these waves
are also called ‘bound waves’.

The second-order surface elevation η2 can be expressed in terms of the first-
order amplitudes An and Am by means of a transfer function G±

nm as

η2 = G+
nnAnAn cos(2θn) +G+

mmAmAm cos(2θm)

+G+
nmAnAm cos(θn + θm) +G−

nmAnAm cos(θn − θm). (2.41)

Expressions for G±

nm can be found in Schäffer [63]. The function G−

nm corre-
sponding with the subharmonic is always negative. From this fact it can be
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derived that wave groups formed by two first-order signals have a bound sub-
harmonic which induces a suppression of the mean water level below the high
waves and a rise below the small waves, see Figure 2.3. This is related to the
variation of the short-wave averaged momentum flux along a wave group, also
known as radiation stress, see Longuet-Higgins and Stewart ([47], [48]). Expres-
sions for G±

nm have also been found for three-dimensional problems in which the
two first-order solutions propagate in different directions (indicated by phase
functions kn ·x−ωnt and km ·x−ωmt), see Sharma [65] or Dean and Sharma [21].

If we consider a situation of an inflow boundary x = x0 on which only
the bichromatic first-order signal (2.39) is given without the induced second-
order signal, then again free super- and subharmonic waves will occur with
frequencies 2ωn, 2ωm, ωn + ωm and |ωn − ωm|. In the frame work of second-
order theory, their wave lengths and phase velocities are determined by the
dispersion relation (2.21).

2.4.3 Fully nonlinear theory for periodic waves

As mentioned in the introduction, the fully nonlinear theory has no known ana-
lytical solutions. Although many theories may yield very good approximations,
care has to be taken with respect to the range of validity of these approxima-
tions. For example second-order Stokes’ theory will show a bump in the trough
of a periodic wave when the second-order terms become too large.

A numerical approach which is valid for all water depths and up to very
high waves, is a Fourier approximation method after Rienecker and Fenton [57]
based on the stream function theory by Dean [20]. The velocity potential and
surface elevation of a periodic wave travelling over a horizontal bottom are
expressed in Fourier series. The solution satisfies the nonlinear free-surface
conditions exactly at a number of equidistantly distributed x-coordinates xm
over one wave length. In this way the error in the solution is determined by the
truncation error of the Fourier series only. The wave elevation is written as

η(x, t) =
a0

2
+

N
∑

j=1

aj cos(jk(x− x0 − ct)), (2.42)

and the potential as

φ(x, z, t) = (c+B0)(x− x0)

+
N
∑

j=1

Bj
cosh(jk(z + h))

cosh(jkh)
sin(jk(x− x0 − ct)) + b(t). (2.43)

for some coefficients aj andBj found by substitution of equations (2.42) and (2.43)
into the nonlinear free-surface conditions. The latter term b(t) comes in by
choosing B(t) = 0 in the dynamical boundary condition (2.6) and is equal to
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−(g(R− h) − 1
2
c2)t with R some constant. The wave crest is located at x = x0

at t = 0 and the wave travels with speed c in positive x-direction.
A case which is frequently taken as a model problem in this thesis, is a wave

on water of intermediate depth. The wave length λ for this case is 60 m on a
depth h of 10 m. In contrast to waves in linear theory, the wave frequency ω
depends on the waveheight H. From the solution of the Fourier approximation
method, c and hence ω and the wave period T can be obtained. For wave
heights H = 2.5 m and H = 5.0 m we find c = 8.7058 m/s and 9.1618 m/s and
T = 6.8920 s and 6.5489 s respectively. These waves are shown in Figure 2.4.

0 20 40 60 80 100 120
−2

−1

0

1

2

3

4

x (m)

η
(m

)

Figure 2.4 Nonlinear wave profiles. H = 5.0 m (−) and H = 2.5 m (−·).

A typical feature of nonlinear waves (which can already be observed from
second-order theory) is that wave tops are sharpened and wave troughs are
flattened with increasing wave height. Another typical feature is that, contrary
to linear waves, the particle paths are not closed in general. In the absence
of a background flow, water particles experience a period-averaged drift in the
propagation direction of the waves. This is of importance for the numerical
method because in a Lagrangian description of the grid-point motion on the
free surface, the grid points will drift as well.

2.5 Boundary integral equation methods

In this section we describe the approach that has been implemented numerically
to solve the equations for nonlinear wave problems including problems with
uneven bottoms and general inflow and outflow conditions. This approach is
based on the possibility to transform Laplace’s equation to a boundary integral
equation.

In Section 2.5.1 we show how a boundary integral equation can be derived
from Laplace’s equation. Finally, in Section 2.5.2 we give a survey of numerical
methods that can be used to solve this boundary integral equation.
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2.5.1 Boundary integral equation for Laplace’s equa-
tion

The derivation of the boundary integral equation is based on Green’s theorem
which states that for two arbitrary scalar fields u and w which are C2-continuous
throughout a domain Ω

∫∫∫

Ω
[u∆w − w∆u] dV =

∫∫

∂Ω

[

w
∂u

∂nξ
− u

∂w

∂nξ

]

dSξ (2.44)

With ∂Ω we indicate the boundary of Ω. ξ is the integration variable and nξ is
the normal unit vector pointing inward at ξ on ∂Ω.

For a fixed point x ∈ Ω ∪ ∂Ω we now replace u by the unknown potential
φ(y), satisfying ∆φ = 0 and w by the fundamental solution

G(x;y) =
−1

4π|x − y| . (2.45)

Fundamental solutions are solutions of Laplace’s equation outside the point x.
In the point x the fundamental solution is singular and the Laplace operator
can be expressed in terms of the Dirac delta function δ:

∆yG(x;y) = δ(x − y), x,y ∈ IR3. (2.46)

In two-dimensions we use the fundamental solution G(x;y) = ln(|x − y|)/2π.
For field points x ∈ Ω (i.e. in the interior of Ω ∪ ∂Ω) we find

φ(x) =
∫∫

∂Ω

[

∂φ

∂nξ
(ξ)G(x; ξ) − φ(ξ)

∂G

∂nξ
(x; ξ)

]

dSξ. (2.47)

The potential is expressed in values on the boundary only.
For field points x ∈ ∂Ω on the boundary, the right-hand side of (2.47) is

a singular integral due to the presence of the fundamental solution. It can be
evaluated using the concept of finite part of an integral. We then find

ϑ(x)

4π
φ(x) = −

∫

−
∫

∂Ω

[

∂φ

∂nξ
(ξ)G(x; ξ) − φ(ξ)

∂G

∂nξ
(x; ξ)

]

dSξ. (2.48)

The symbol −∫−∫ denotes the finite part of the integral in the sense of Hadamard.
ϑ(x) is the interior angle of ∂Ω at x; if x is on a smooth part of ∂Ω, ϑ(x) = 2π.
See Jaswon and Symm [38] for an extensive treatment of integral equations and
potential problems.

The boundary integral equation (2.48) is now expressed completely in terms
of values of φ and ∂φ

∂n
on the boundary. It is this equation which is solved nu-

merically in the panel method.
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Boundary integral equations (2.47) and (2.48) can be interpreted physically
by considering the boundary to be covered with a source and a dipole distri-
bution. Every point ξ induces a fluid flow by the presence of a source and a
dipole. For example, the potential φs,ξ due to a source of strength q is given by
φs,ξ(x) = −q/(4π|x − ξ|). A similar expression can be given for the potential
φd,ξ due to a dipole in ξ. In a point x ∈ Ω the flow due to all sources and dipoles
on the boundary ∂Ω can now be expressed by the integral (2.47). In a point
x ∈ Ω on the boundary itself a factor ϑ(x)/4π has to be taken into account
because of the presence of the singular integral, see for example [38].

It is also possible to derive integral equations which contain only a source
or a dipole distribution or to use a formulation for ∇φ instead of φ. See Ro-
mate [58] for a summary of possible integral equations and a discussion of the
appropriateness of these integral equations for the numerical implementation
for the simulation of nonlinear waves. Another approach leading to an integral
equation, also briefly described by Romate, is to consider the free surface as a
vortex sheet. Finally it is remarked that the use of Cauchy’s integral equation
is another way to arrive at an integral equation for the velocity potential φ.
This approach has been succesfully used in a number of methods but since it
is based on complex variables its use is restricted to two-dimensional domains.
For an extensive treatment of the derivation of integral equations (and their
numerical treatment), the reader is referred to Hackbusch [34].

2.5.2 Numerical approaches to the boundary integral
equation

The panel method which is used to solve integral equation (2.48) is described
in detail in Section 3.2. The description is an enumeration of the parts of the
algorithm to find a numerical solution. Here we place the panel method in an
overview of more general methods for integral equations.

In boundary element methods the approximate solution of the integral equa-
tion is formulated using the method of weighted residuals. For an operator
equation

Lu = f, x ∈ ∂Ω (2.49)

the solution u is approximated by

ũ(x) =
N
∑

i=1

ciui(x) (2.50)

where the ui(x) are known local basis functions, e.g. lower order polynomials,
and where the constants ci are to be determined. In the weighted residual
method, N weighting functions wj(x) (j = 1, . . . , N) are introduced and the
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following N weighted integrals of the residual

R(ũ) = Lũ− f (2.51)

are set equal to zero:

(wj, R(ũ)) =
∫

∂Ω
wjR(ũ)dS = 0, j = 1, . . . , N. (2.52)

From these N algebraic equations the cj’s can be determined. Different choices
for wj lead to different methods. Most commonly functions with local support
are chosen. This method is also applied in finite element methods (FEM) for
the direct approximation of partial differential equations and therefore its coun-
terpart in the approximation of integral equations is called boundary element
methods (BEM).

Two important types of boundary element methods are point collocation
and Galerkin. In point collocation Dirac delta functions are used for the weight
functions wj whereas in Galerkin the basis functions ui(x) are used.

In panel methods an approach is followed resembling the discretization used
in finite difference methods. Based on the positions of a number of colloca-
tion points xj a discretization of the boundary ∂Ω by panels is chosen and the
collocation points are used as expansion points for Taylor series expansions for
the functions (source and dipole distributions) and the panel geometry. The
derivatives in the expansions are approximated by finite differences using the
function values in neighbouring collocation points. A further distinction can be
made based on the order of the finite difference schemes employed.

The lower order panel method, with constant sources, dipoles and flat panel
approximations is the same as the lower order point collocation method in the
weighted residual class mentioned above. See further Romate [58], Section 8.1,
and Hackbusch [34].
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Chapter 3

Numerical method

3.1 Introduction

The mathematical model for nonlinear water waves can be divided into two
parts. On the one hand we have boundary conditions describing the evolution of
the boundaries and the potential on the boundaries in time. On the other hand
we have an elliptic problem (Laplace’s equation) in a domain whose boundaries
change in time. These two parts are handled alternately by the numerical model
using a method of lines approach.

In this approach the boundary conditions (2.7) and (2.8) are integrated in
time with a higher order Runge-Kutta method. To determine the time deriva-
tives in these equations, the spatial derivatives in the right-hand sides have to
be determined. This can be done with the solution of the Laplace problem.
The Laplace problem is solved using a panel method for the boundary integral
equation (2.48).

In more detail it can be described as follows. At t = 0 we have an initial
configuration described by a domain Ω0 and initial conditions for φ or ∂φ

∂n
on

the boundary ∂Ω0 of the domain. For the free surface we specify φ and for the
bottom we specify ∂φ

∂n
(= 0). All other boundaries are also initialized.

Then Laplace’s equation is solved in this domain in which all parts of the
boundary can be specified as either a Dirichlet boundary (if φ is specified) or
a Neumann boundary (if ∂φ

∂n
is specified). The solution of this equation (ob-

tained with the panel method) provides ∂φ
∂n

on the free surface and therefore
also the spatial derivatives which are needed in the free-surface boundary con-
ditions (2.8) and (2.7). By integrating these boundary conditions in time, a
new position is found for the free-surface boundary and values for the potential
φ on this boundary on the next time level are determined. These are then again
used to formulate a new Laplace problem and in this way the time marching
scheme proceeds.

The time integration also applies to other boundaries but its use depends

25
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on the type of boundary. The position of the grid on the boundaries adjacent
to the free-surface boundary, is integrated such that it follows the motion of the
grid on the free surface boundary. The values of φ or ∂φ

∂n
on these boundaries

do not have to be integrated in time when they are specified explicitly as func-
tion of place and time on for example the bottom or an inflow boundary with
specified velocities. On an outflow boundary where Sommerfeld’s condition is
used, equation (2.12) provides values for the potential φ on the next time level
in the same way as for the free surface.

Summarizing, the numerical model for nonlinear water waves consists of a
repetition of the following sequence of operations.
Panel method:

1. calculation of the variables describing the geometry based on positions of
the collocation points on the boundary of the fluid domain

2. calculation of the source and dipole coefficients which represent the source
and dipole distribution in the boundary integral equations

3. substitution of φ for Dirichlet boundaries and ∂φ
∂n

for Neumann boundaries
at time level tn

4. solution of the discretized boundary integral equations at time level tn,
giving ∂φ

∂n
for Dirichlet boundaries and φ for Neumann boundaries

5. calculation of the tangential velocities at time level tn from φ using finite
differences

6. calculation of the boundary velocity ∇φ at time level tn from the tangen-
tial and normal velocities

Time marching scheme:

7. integration of the time dependent boundary conditions, giving the collo-
cation point positions, φ for Dirichlet boundaries and ∂φ

∂n
for Neumann

boundaries at time level tn+1

Because the choice of the grid is determined mainly by the use of the panel
method, we describe the panel method first in Section 3.2. In Section 3.3 the
time marching scheme based on the Runge-Kutta method is described. Some
important features of the numerical model are discussed in Section 3.4. In
Section 3.5 we summarize the computational results of Broeze [13]. They serve
as a starting point for the investigations in this work.
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3.2 Panel method

3.2.1 Geometric description

The panel method is used to solve the boundary integral equation (2.48). In
the discretization of this equation, the boundary ∂Ω is divided into subsurfaces
∂Ωp in such a way that they can be covered by a structured grid with Mp by
Np panels. Such a grid is called a network. Figure 3.1 shows some examples. If

Figure 3.1 Domain boundaries divided into networks.

a network edge has more than one adjacent network, this edge is divided into
edge parts accordingly. Figure 3.1 shows examples of configurations with some
networks connecting to three other networks on one edge.

Every panel is represented by one collocation point which is located near
the centre of the panel. The collocation points are also used as the computa-
tional points in the time marching scheme and therefore constitute the basic
description of the numerical model.

The geometry of the panels is described by using the positions of the col-
location points. For the description a parametrization is needed which cor-
responds to coordinates in a computational domain and a mapping from the
computational to the physical domain. This mapping is also used to determine
derivatives of the flow variables and the geometry.

The parametrization of a network is based on a rectangular grid in the
computational domain. The collocation points correspond to the points with
coordinates (u, v) = (i− 1

2
, j − 1

2
), where (i, j) ∈ {1, . . . ,Mp}×{1, . . . , Np}, see

Figure 3.2.
First- and second-order derivatives of the flow variables and the geometry in

a collocation point are determined using nine-point molecules. The collocation
point is located in the centre of the molecule if its corresponding panel is not
located at an edge of the network. Central difference schemes can be used then.
If the panel is located at an edge of the network, the collocation point is on
the edge of the molecule as well, as shown in Figure 3.2. One-sided difference
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u

v

0 Mp
0

Np

Figure 3.2 Computational molecules on a network.

schemes are used for these molecules. No use is made of information beyond
the edges of the network.

The finite difference schemes are only applied to the collocation points and
not to the panel vertices. Although the panel vertices can be associated with the
points (u, v) = (i, j) ∈ {0, . . . ,Mp} ×{0, . . . , Np} in the computational domain,
they are not given by these coordinates in the parametrization. Therefore the
edges of a network in the physical domain do not necessarilly correspond to the
edges of the rectangle in the computational domain. The edges are determined
by a special algorithm to which we come back in Section 4.2. In the following
this is indicated by using the verb ‘to associate’ instead of the verb ‘to corre-
spond’ for the panel vertices.

The relation between discrete derivatives in the computational domain (which
are easy to determine) and the discrete derivatives in the physical domain is
determined by Taylor expansions of functions in the computational domain
using tangential coordinates in the physical domain. We clarify this with a
two-dimensional example.

In the two-dimensional case a network corresponds to a straight line in
the computational domain and three-point molecules are used for the discrete
derivatives. For a collocation point with computational coordinate u0, the value
of a function f in the neighbouring points with coordinates u1 = u0 + 1 and
u−1 = u0 − 1 can be written as

f(u1) = f(u0) + (s1 − s0)fs +
1

2
(s1 − s0)

2fss + . . . (3.1)

f(u−1) = f(u0) − (s0 − s−1)fs +
1

2
(s0 − s−1)

2fss − . . . (3.2)

The variable s corresponds with a tangential coordinate along the surface in the
physical domain and the subscripts 1, 0 and -1 correspond to the collocation
points with coordinates u1, u0 and u−1 resp. in the computational domain.



Numerical method 29

By using the standard difference schemes for the derivatives fu and fuu in the
computational domain (in this case a central scheme) we find, neglecting ∆s3,
∆s4, etc.

(

f̃u
f̃uu

)

= T

(

f̃s
f̃ss

)

(3.3)

with

T :=

(

1
2
((s1 − s0) + (s0 − s−1))

1
4
((s1 − s0)

2 − (s0 − s−1)
2)

((s1 − s0) − (s0 − s−1))
1
2
((s1 − s0)

2 + (s0 − s−1)
2)

)

. (3.4)

For each collocation point, the discrete derivatives f̃u and f̃uu are expressed by
difference weights in the computational domain. The inverse of the matrix T
transforms these difference weights to the difference weights in the physical
domain.

3.2.2 Intersections

The panel vertices at the edges of the networks describe the intersections be-
tween the networks. Panels on both sides of the intersection have these panel
vertices in common which implies that the resolution of adjacent networks along
their intersection has to be the same. Lines through the collocation points in the
directions normal to the intersection therefore approximately intersect and this
property is used to determine the so-called intersection points, see Figure 3.3.

Figure 3.3 Location of intersection points (o) and collocation points (x).

The intersection points are obtained by an iterative algorithm which is dis-
cussed in Section 4.2. They can be associated with the points (u, v) = (0, j− 1

2
),
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(Mp, j− 1
2
), (i− 1

2
, 0) and (i− 1

2
, Np) where i ∈ {1, . . . ,Mp} and j ∈ {1, . . . , Np}

in the computational domain. The panel vertices on the edge of a network are
determined from the intersection points. Each edge consists of a number of
edge parts equal to the number of networks adjacent to this edge. On each edge
part there are two panel vertices at the end points of the edge part which are
indicated as outer panel vertices. The other panel vertices on the edge part are
referred to as inner panel vertices.

The outer panel vertices are determined with an iterative algorithm using
the positions of the intersection points. This iterative algorithm is similar to
that for the intersection points themselves. Note that outer panel vertices can
be on the edge of more than two different networks. The inner panel vertices are
determined by the evaluation of a cubic spline through the intersection points
based on distances 1

2
in the computational domain between intersection points

and panel vertices.
Once again it is remarked that for each network the description of the physi-

cal domain as function of the coordinates in the computational domain is based
on the coordinates of the collocation points and is independent from the descrip-
tion of other networks. So, intersections (in the physical domain) of networks
in general do not correspond to sets of prescribed points in the computational
domain of one network (such as the points on the edges of the rectangle of
size Mp by Np in Figure 3.2), since they are also dependent on the description
of the other networks. In 3-D it may even be the case that the lines which
are used for the determination of the intersection points do not intersect in the
physical domain. Because the intersection points need to be uniquely defined,
they are determined as close as possible to both lines.

3.2.3 Geometric variables

In the discretization of the boundary integral, geometric variables are needed
such as the lengths of the panel sides and the surfaces of the panels. They are
related to the positions of the panel vertices. For the stability of the method
it is important that the panels mutually connect, which implies that their joint
panel vertices are uniquely defined. See Broeze [13]. In the description of the
determination of the intersections, we already saw that the panel vertices on
the edges of the networks are determined such that on the intersections panels
indeed connect. The panel vertices which are not on the edge of a network
have to be vertices of four panels because of the rectangular structure of the
networks.

These panel vertices are determined by the four collocation points of the
panels involved. For each of these collocation points the quadratic description
of the geometry is evaluated in the point (u, v) in the computational domain
that is associated with the panel vertex. Because local descriptions are used, the
four evaluations will be different in general for curved surfaces and the position
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of the panel vertex is determined by averaging them. The geometric variables
are determined from the positions of the panel vertices.

3.2.4 Discretization of the boundary integral equation

The next step in the discretization of the boundary integral equation (2.48) is
the computation of the integral over every separate panel Sj for all collocation
points xi. We write the discretized integrals as

1

2
φ(xi) =

N
∑

j=1

−
∫

−
∫

Sj

(

∂φ

∂n
(ξ)G(xi; ξ) − φ(ξ)

∂G

∂n
(xi; ξ)

)

dSξ, i = 1, . . . , N. (3.5)

Higher order approximations of φ(ξ) and ∂φ
∂n

(ξ) are obtained by using Taylor
expansions in the collocation points xj of the panels Sj . All derivatives of φ and
∂φ
∂n

in xj can be expressed in terms of the values of φ and ∂φ
∂n

in the collocation
points of the nine-point molecule of xj . Therefore the discretized equations
(3.5) can be written as

N
∑

j=1

[

Cs(i, j)
∂φ

∂n
(xj) + Cd(i, j)φ(xj)

]

= 0, i = 1, . . . , N. (3.6)

The coefficients Cs(i, j) and Cd(i, j) are called source and dipole coefficients
respectively. Together they are called influence coefficients. Expressions for the
influence coefficients can be found in Broeze [13].

The N discretized equations (3.6) contain 2N variables. For the solution
of the Laplace problem, every network is identified as either a Dirichlet or a
Neumann boundary. In every collocation point either φ or ∂φ

∂n
is known. The

number of unknowns therefore equals N and equation (3.6) can be written as
a system of N linear equations:

Ax = b. (3.7)

3.2.5 Solution of the discretized problem

The above system of equations can be solved either by a direct method or by
an iterative method. In general, the matrix A is full, and neither symmetric
nor positive definite. Thus little can be said about the convergence of iterative
methods. In our method we have used both Gaussian elimination and a Conju-
gate Gradients Squared method, as proposed by Sonneveld [66]. This method
belongs to the class of conjugate gradient type solvers. We refer to Romate [61]
for an investigation of several solvers in this class applied to boundary integral
equation methods.
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3.2.6 Order of the panel method

Romate [58] studied the accuracy of the panel method as a function of the order
of approximation of the source and dipole distributions and of the geometry.
In the present numerical method a linear approximation is used for the source
distribution and a quadratic approximation for both the dipole distribution and
the geometry, giving a local truncation error of order O(∆x3). Near the edges
of the networks, the geometry is approximated one order lower. The global
truncation error is determined by the occurrence of non-smooth boundaries. In
the problems we consider, the boundary is composed of a number of networks
so that the global truncation order equals O(∆x2).

3.3 Time marching scheme

3.3.1 Runge-Kutta method

The evolution of the free surface and of the potential on the free surface are
computed with a Runge-Kutta method. The evolution equations (the boundary
conditions (2.7) and (2.8)) can be written as

ut =
du

dt
= f (u,∇φ) , (3.8)

with u = (xf , yf , zf , φ)T . Also the Sommerfeld radiation condition can be
written in this form.

Classical higher order Runge-Kutta methods require the use of a number of
intermediate time levels at which the right-hand side of the differential equation
(in this case (3.8)) has to be evaluated. These methods are based on the first-
order approximation

u(t+ ∆t) = u(t) + ut(t)∆t+O(∆t2). (3.9)

The time stepping method that was used by Romate is the classical fourth-
order Runge-Kutta method. Important features of the method are that it has a
high-order accuracy and that the stability region is reasonably large. A draw-
back of the method in combination with the panel method is that at every time
step the Laplace problem has to be solved on the intermediate time levels as
well. This implies that the panel method is applied four times per time step. At
each time level the geometry and therefore also the influence coefficients have
to be computed which is relatively expensive.

Because of this drawback Broeze studied a fourth-order Runge-Kutta method
that also uses second-order time derivatives of u and therefore needs only one
intermediate time level to obtain the same order of accuracy. This so-called
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two-stage two-derivative method is based on the approximation

u(t+ ∆t) = u(t) + ut(t)∆t+
1

2
utt(t)∆t

2 +O(∆t3). (3.10)

For the evaluation of the term utt on the right-hand side, second-order evolution
equations are required. For the free surface these can be obtained from the first-
order dynamic and kinematic boundary conditions. We come back to these
second-order time derivatives in Sections 4.4.2 and 4.4.3. The two-stage two-
derivative method is described in more detail in Appendix A.

3.3.2 Grid motion

Two main possibilities can be distinguished when integrating the free-surface
grid in time.

Firstly, using an Eulerian description in which the free-surface elevation
η(x, y, t) is considered a function of time and fixed horizontal coordinates only
and is integrated according to

∂η

∂t
=
∂φ

∂z
− ∂φ

∂x

∂η

∂x
− ∂φ

∂y

∂η

∂y
. (3.11)

Secondly, according to a Lagrangian description in which the position of a
material fluid particle on the free surface is followed.

Dxf

Dt
= ∇φ. (3.12)

It is not possible to describe breaking waves with the Eulerian approach because
the surface elevation η is not single-valued at the position of the breaker. When
adopting the Lagrangian approach on the other hand, a deformation of the
grid will occur when drift velocities vary in the horizontal directions due to
diffraction, refraction or reflection. For example when waves approach a surface
piercing object, the water particles in front of the object stagnate whereas the
water particles beside the object drift along the object.

In the present method the Lagrangian description has been adopted because,
besides permitting the simulation of breaking waves, it was also noted that in-
stabilities develop near the inflow boundaries when the Eulerian description is
used, see Broeze [13]. The disadvantages of a Lagrangian description can be
removed up to a certain level by using a grid correction algorithm.

In this grid correction algorithm, not the flow velocity v =
Dxf

Dt
= ∇φ

and acceleration a =
D2xf

Dt2
are used for the time integration of the collocation

points xi, but a grid velocity vg and a grid acceleration ag. The determination
of the new position of a collocation point is based on

xi(t+ ∆t) = xi(t) + vg∆t+
1

2
ag∆t

2 +O(∆t3). (3.13)
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The determination of the potential on the new time level uses the material
derivative

D̃φ

D̃t
:=

∂φ

∂t
+ vg · ∇φ (3.14)

following the grid point, instead of the material derivative Dφ
Dt

following the ma-
terial point. The grid velocity vg is determined as follows.

For every collocation point xi, the grid velocity vg consists of the material
velocity v, an alignment velocity va and a correction velocity vc:

vg = v + va + vc. (3.15)

The alignment velocity va is only used for the collocation points on the lateral
boundaries and on the bottom. It is applied in such a way that the networks
on these boundaries follow the motion of the networks on the free surface. In
Section 4.3 we consider the determination and application of va in more detail.

The correction velocity vc is a velocity tangential to the boundary which is
used to avoid a too large distortion of the grid on the individual networks. This
algorithm is studied in Section 4.4.

The grid correction algorithm is capable of controlling the grid sufficiently.
A nice example was shown in the simulation of a plunging breaking wave in the
work of Broeze [13]. The velocity field in this situation varies enormously. Still
it was possible to continue this simulation up to an advanced stage of breaking
without a large deformation of the grid. However, the use of correction velocities
that are not related to the velocities of the fluid particles has some disadvantages
which is discussed in Section 4.4.

3.4 Features and properties of the method

The numerical method has some features and properties which become impor-
tant in complex computations. In this section we consider some of them and
point out some difficulties which may arise from them. Such considerations are
important in the process of developing the method.

3.4.1 Network structure

An important characteristic of the method is the structuring of the grid into
rectangular subgrids called networks. In problems with a structure or body
intersecting the free surface, the free surface has to be built up of multiple
networks in order to keep a sufficient resolution away from the structure or
body. It may also be required that multiple networks have to be used on the
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free surface to be able to cover it with the rectangular structured networks. An
example of such a case is shown in Figure 3.1.

3.4.2 Grid motion

As described in Section 3.3.2, the Lagrangian description is used for the move-
ment of the collocation points on the free surface together with a tangential
velocity correction to maintain a good grid quality. Because the resolution on
adjacent networks has to be the same near the intersections, algorithms are
used to move the networks on lateral boundaries along with the free-surface
networks. The networks can be moved in a normal direction and in a tangential
direction. Depending on the type of boundary condition on the lateral bound-
aries either the use of regridding or the use of correction velocities as described
in Section 3.3.2 can be considered.

For an outflow boundary where Sommerfeld’s radiation condition is imposed,
the formulation in terms of the material derivative has to be used and correction
velocities which move this boundary along with the free surface can be employed.
If however a regridding algorithm would be used instead of correction velocities,
grid velocities vg would have to be determined from the grid position on the
old and the new time level. So far only the first approach has been used.

For lateral boundaries where the boundary conditions are not integrated in
time but are prescribed explicitly at every time level, regridding algorithms can
be used. Examples are boundaries with the impermeability condition or inflow
boundaries with an explicit formulation for φ or ∂φ

∂n
as e.g. in equation (2.43).

3.4.3 Midpoint description

The collocation points, which are used for both the panel method and the time
integration method, are located near the panel centers. Towards the panel
vertices, values of φ, ∂φ

∂n
, velocities and geometry are obtained from the infor-

mation in the collocation points to which we refer as the midpoint description.
These values will generally be less accurate near the panel vertices and there
are some specific parts of the numerical method which are strongly affected by
the midpoint description and that become important in applying the method.

1. The intersection between two adjacent networks is defined by the panel
vertices at the edges of the networks. The geometry description there is
obtained from collocation points located away from the intersection and
is more inaccurate when the networks connect under an angle. When
networks connect smoothly, information from both sides can be combined
to obtain the same accuracy as inside the networks.

2. The nine-point molecule for discretizing derivatives in a collocation point xi
lies completely in the network to which xi belongs to. Therefore the de-
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scription of the derivatives becomes less accurate near the edges of the
networks. Also here accuracy can be improved for smoothly connected
networks if information is taken from both networks and the computa-
tional molecules are allowed to cross the intersection.

3. Another consequence of the molecules being restricted to one network
only, is that in the outer collocation points one-sided discretisations are
used for the derivatives. As shown in Broeze [13], Section 6.3.2, this
may cause instabilities in the time marching scheme near intersections of
free-surface networks with lateral networks. They can be avoided by ex-
trapolating information from the lateral network towards the intersection.
If networks connect smoothly, similar to the previous remark, two-sided
discretisations can be computed from computational molecules crossing
the network intersection.

3.5 Computational results obtained with the

method

In the work of Broeze special attention was paid to the improvement of the
accuracy and stability of the method developed by Romate. In this section
we discuss the most important computational results which were achieved with
Broeze’s method.

3.5.1 Verification on periodic waves

To test the numerical model on a consistent and stable approximation of the
fully non-linear free-surface problem the results from the Fourier approach by
Rienecker and Fenton [57] (see Section 2.4.3) can be used to compare with.
To exclude starting effects, the periodic solution is imposed as initial condition
in the numerical method. This is done by putting the collocation points at
time level t = t0 on the prescribed surface z = η(x, y, t0) and by initializing
the potential in those points with the values of the solution of the Fourier
approach. Also on the lateral boundaries these values are imposed, either as
Dirichlet condition or as Neumann condition.

In the computation the solution is prescribed on the lateral boundaries and
the bottom at every time level and the solution on the free surface is obtained
by the panel method and the time marching scheme. At every time step the
numerical solution obtained in this way can be compared with the Fourier ap-
proach.

Broeze verified his results using configurations with different time and spa-
tial resolutions, different domain sizes, different algorithms for the grid motion
and with different directions of propagation of the solution with regard to the
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orientation of the grid. Also the use of Higdon’s radiation condition was tested.
We summarize the result of the verification as follows:

• The numerical method gives stable and accurate results for both mildly
and highly nonlinear waves. The resolution was taken the same in both
cases, so for mildly nonlinear waves the geometry description was more
accurate than for highly nonlinear waves. Therefore, errors were smaller
in the former case.

• Higdon’s radiation condition gives smaller errors than prescribing the so-
lution from the Fourier approach on the outflow boundary. This is due
to the fact that numerical errors are reflected more in the latter case. An
important source of numerical errors can be the numerical dispersion of
the finite difference scheme. This topic has been investigated by Romate
in [58].

• The lateral boundaries in the direction of the propagating wave have a
negligible effect on the accuracy. Changing the waves’ direction of prop-
agation relative to the grid lines hardly influences the accuracy.

• Computations with highly nonlinear waves generate numerical cross waves
at the outflow boundaries. This instability can be removed by adding
an extra (consistent) term to the dynamic free-surface condition for the
collocation points near the outflow edge of the free-surface network.

3.5.2 Verification on experiments

Results obtained with the numerical model have also been compared with ex-
periments carried out in a wave flume. The two-dimensional model was applied
to a configuration including a bar on an even bottom. The computations showed
good agreement with the measured data. The three-dimensional model was ap-
plied to a bottom topography with an elliptic shoal on a slope. It was concluded
that the computational results agreed fairly well with the measured data. Er-
rors were observed due to poorly absorbed waves near the outflow boundaries
and due to the coarse mesh which had to be used. Both computations will be
shown as examples for the application of domain decomposition in Chapter 7.
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Chapter 4

Further study and verification

4.1 Introduction

In the work of Broeze [13], the numerical method for nonlinear water waves has
been verified for a number of test problems. Most of the computations were
performed over a limited number of wave periods, at most six, and it was shown
that the test problems could be solved in a stable way. In the studies described
here, attention is shifted towards applicability and therefore we have investi-
gated the robustness of the method in problems with large simulation times.
It appears that in such simulations, some parts of the method are important
for stability of the computations and these parts are studied in this chapter.
On the one hand it concerns the grid correction algorithm that has to prevent
large grid deformations. On the other hand it concerns algorithms which are
sensitive to deformed grids and these are studied in Sections 4.2 and 4.3.

An approach for the problem of grid deformation, is the use of a mixed
Eulerian-Lagrangian description for the grid motion on the free surface. When
the deformation of the grid would be large (for example due to large local spatial
variations in velocities), a relatively large Eulerian contribution is desired, thus
counteracting the deformation. When flexibility of the grid is required (for
example in breaking waves or near moving objects), the Lagrangian contribution
should constitute the largest part. The Eulerian description is related to the use
of tangential velocities. This description and the determination of second-order
time derivatives are described in Section 4.4.

At the end of this chapter in Section 4.5 the solutions for the stability
problems are verified with numerical experiments. It is shown that, with the
improvements, it is possible to do accurate and stable simulations over many
wave periods.

39
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4.2 Intersection algorithm

For the description of the intersection algorithm developed by Broeze, we con-
sider the two-dimensional case of two networks connecting under an angle as
illustrated in Figure 4.1. The networks in 2-D in this illustration correspond to

x1,1
x1,2 x1,3

xex1,k x2,1

x2,2

x2,3

xex2,k

Figure 4.1 Collocation points used to determine the intersection of two
networks in the 2-D-method.

the grid lines in 3-D through the collocation points in the direction normal to
the edges although in general these grid lines will not be in one plane.

The iterative procedure for the determination of the intersection point con-
sists of the following steps:

0. Choose distances ξ1,k = ξ2,k = 1/2, (k = 0) in the computational domain
for extrapolation from network 1 and 2.

1. Determine higher order accurate extrapolations xex1,k and xex2,k beyond the
networks, at distances ξ1,k and ξ2,k in the computational domain from the
outmost collocation points x1,1 and x2,1 respectively.

2. Approximate the surface near the extrapolated point by a straight line
through the outmost collocation point and the extrapolated point for both
networks.

3. Determine the intersection point xI,k of both lines.

4. Determine a better approximation for the extrapolation distances ξ1,k and
ξ2,k from the ratio of the distances between xI,k and the outmost collo-
cation point, and the distance between xex1,k resp. xex2,k and the outmost
collocation point.

Repeat steps 1 to 4 (k := k+1) until an accurate approximation has been
found.

We analyze the convergence of this algorithm for a configuration in which the
second network is vertical. This simplifies the analysis considerably because the
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extrapolation from the second network is of no further importance anymore and
the iterative algorithm can be described solely in terms of the iterands ξ1,k. For
convenience of notation the second network is described by the vertical x = 0.

Given an extrapolation distance ξ1,k and using an extrapolation formula
expressed by the functions f1, f2 and f3, we find:

xex1,k = f1(ξ1,k)x1,1 + f2(ξ1,k)x1,2 + f3(ξ1,k)x1,3. (4.1)

The z-coordinate of the intersection point xI,k is found by intersecting the
second network x = 0 with the line

lk : x(α) = x1,1 +
α

ξ1,k
(xex1,k − x1,1), α ∈ IR. (4.2)

The parameter α is normalized such that it corresponds to the distance in the
computational domain. Intersection of lk with x = 0 then yields:

ξ1,k+1 = ξ1,k
x1,1

x1,1 − xex1,k
. (4.3)

Using Lagrangian interpolation polynomials for f1, f2 and f3 we find

ξ1,k+1 =
x1,1

ξ1,k(−1
2
x1,1 + x1,2 − 1

2
x1,3) + (−3

2
x1,1 + 2x1,2 − 1

2
x1,3)

=:
a

bξ1,k + c
=: ϕ(ξ1,k) (4.4)

Note that this formula is independent from the z-coordinates and depends only
on the distribution of the collocation points along the x-direction. It can be
shown that for some irregular distributions of the grid with |x3 −x2| > |x2 −x1|
the description in the computational domain describes a curve which does not
intersect the line x = 0 and the iterative algorithm does not converge in these
cases. For grids with |x3 − x2| < |x2 − x1| it can be shown that the iterative
algorithm does converge.

This iterative algorithm has been replaced by the direct evaluation of a La-
grangian interpolation polynomial defined by the positions of the free-surface
collocation points in the physical domain. It was shown that simulations using
this evaluation can be continued over a longer simulation time than simula-
tions using the iterative algorithm. However, the original iterative algorithm by
Broeze was developed to deal with cases when both boundaries are curved and
may still prove to be valuable, for example when simulating (curved) objects
moving in waves. It is clear that adjustments have to be made then.
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4.3 Grid alignment algorithm

In the time-marching scheme the (vertical) lateral boundaries follow the free-
surface boundary. This is not done by constructing the networks of these bound-
aries anew every time step, but by using an alignment velocity that corresponds
to the velocity of the intersection of the free surface with the lateral boundary.
This enables the use of boundary conditions on the lateral boundaries involving
an integration in time, as for example Sommerfeld’s radiation condition. For
the integration the material derivative D̃

D̃t
as defined in Section 3.3.2 is used, see

Figure 4.2.

Figure 4.2 The grid alignment algorithm applied to the inflow boundary.
The solid arrows indicate v and the dashed arrows indicate vg. Note that the
horizontal component of vg is equal for all collocation points on the inflow
boundary.

Broeze developed an algorithm in which the horizontal component of the
alignment velocity is uniform over the lateral boundary. In this way the lateral
boundaries are kept vertical and drift along with the edges of the free surface. A
tangential alignment velocity is used to move the bottom networks along with
the movement of the lateral boundaries. Because the boundary condition for
the bottom networks involves no time integration, an explicit regridding is also
an option for these networks.

The alignment velocity of the lateral boundaries is found by extrapolating
the material velocities of the collocation points of these boundaries to the inter-
section of the free-surface network with the lateral boundary. The extrapolation
is based on distances in the computational domain with the intersection point
at distance 1

2
from the most nearby collocation point. Because the intersection

point does not correspond to the ‘computational’ point at distance 1
2

in general,
a certain error is introduced. See also Section 4.2 where extrapolation is ap-
plied to the free-surface network. It was observed in time-domain simulations
that the extrapolated value of the material velocity for the inflow boundary,
averaged over a wave period, was too large. In these simulations the inflow
boundary overtook the first collocation point on the free surface despite the use
of the grid correction algorithm and these computations broke down.
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The use of a Lagrangian interpolation polynomial based on distances in the
physical domain gives better values for the alignment velocity. It was shown that
simulations can be prolonged using this approach and that the grid distribution
near the inflow and outflow boundaries is stabilized.

4.4 Grid correction algorithm

The grid correction algorithm as developed by Broeze has proved to be essential
for the stable computation of highly nonlinear waves where large distortions of
the grid may occur. It is based on the use of tangential correction velocities
which are determined from:

• local variations in resolutions

• local variations in velocities

• local curvature of the boundary

• curvature of the grid lines along the boundary

• connection with the grid lines on adjacent boundaries

Closer examination of this algorithm shows that its use in combination with
the two-stage two-derivative Runge-Kutta scheme introduces some additional
difficulties in determining second-order quantities. These are particularly im-
portant for the free-surface boundary because the integration of the Dirichlet
boundary condition and the integration of the position of the collocation point,
using the dynamic and the kinematic boundary condition respectively, have to
be consistent with each other. On boundaries where the boundary condition
is a function of the position of the collocation point only, this consistency is
automatically fulfilled because the new boundary condition automatically cor-
responds to the new position of the collocation point.

We discuss some of these difficulties in the following and indicate their effect
on the accuracy of the method. First the relation with the Eulerian description
is explained in Section 4.4.1. In Sections 4.4.2 and 4.4.3 the determination of
the second-order time derivatives is described.

4.4.1 Use of tangential velocities

The use of the tangential correction velocities introduces a certain error which
can be indicated in 2-D as follows. Consider a point x0 on the free surface
at a certain time level t = t0 and let l be the tangent at x0, see Figure 4.3.
Let s be the distance along l to x0 and s and n the tangential and normal
unit-vectors at x0 respectively. Locally the surface can be approximated as
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x(t)
x(t+ ∆t)

v

vc

l

Figure 4.3 Error in time integration for a curved free surface using a grid
correction velocity. Indicated are the free-surface at time levels t (solid line)
and t+∆t (dashed line), the material velocity v and the tangential correction
velocity vc.

x = x0 + s · s + 1
2
ηss · s2n +O(s3). Using a tangential correction velocity vc the

error in approximating the free-surface location at time level t0 + ∆t then is of
order O(s2) = O((|vc|∆t)2). If x0(t) is integrated using formula (3.13) up to
and including terms of order ∆t, i.e. x0(t+ ∆t) = x0(t) + ∆t(v +vc), the error
is still of the same order. The order of time stepping methods which only use
the first-order time derivative is therefore not affected, although the truncation
error can be expected to be larger.

If the point is integrated using formula (3.13) up to and including terms of
order (∆t)2, i.e. x0(t + ∆t) = x0(t) + ∆t(v + vc) + 1

2
(∆t)2(a + ac), the order

of the error is reduced to (∆t)2. Only if ac is determined such that it accounts
for the curvature of the boundary and for the gradient in velocity along the
boundary, the (∆t)3-order of the error is maintained. We discuss this matter in
Section 4.4.2 and 4.4.3.

The effect of an error in the determination of the free surface can be in-
terpreted as follows. The dynamic boundary condition is applied to a small
deviation from the true free surface. Because the dynamic boundary condition
assumes the atmospheric pressure to be zero on the surface on which it is ap-
plied, it consequently imposes a (small non-zero) pressure field on the true free
surface.

Although the truncation error will remain of the same order when used in the
classical fourth-order Runge-Kutta scheme, it is mentioned that for large time
steps its effect may become important when the tangential correction velocity
is relatively large. This is the case when an Eulerian description is used. The
relation between the use of tangential velocities and the Eulerian description is
described next.
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The Eulerian description is usually derived using the function

F (x, y, z, t) = z − η(x, y, t), x = (x, y, z) ∈ IR3. (4.5)

This defines the free-surface elevation η implicitly by F (x, y, z, t) = 0. By taking
the material derivative we find

DF

Dt
=
∂F

∂t
+ v · ∇F = −∂η

∂t
+ v ·







−∂η
∂x

−∂η
∂y

1





 . (4.6)

For material points on the free surface we have DF
Dt

= 0 and we find

∂η

∂t
= w − u

∂η

∂x
− v

∂η

∂y
, v = (u, v, w). (4.7)

The relation with the tangential velocity can be understood more easily by

considering the material derivative D̂η

D̂t
using a displacement velocity (û, v̂) in

the horizontal plane instead of the flow velocity (u, v). For (û, v̂) the projection
of the grid velocity vg on the horizontal plane can be taken. We find

D̂η

D̂t
=
∂η

∂t
+

(

û
v̂

)

·
(

ηx
ηy

)

= w − (u− û)
∂η

∂x
− (v − v̂)

∂η

∂y
. (4.8)

If (û, v̂) = (0, 0), we obtain the Eulerian description. If (û, v̂) = (u, v), we obtain

the Lagrangian description and D̂η

D̂t
= w. Expression (4.8) can be referred to as

a mixed Eulerian-Lagrangian description as it (linearly) interpolates between
the Lagrangian and the Eulerian description. 1 Such a description was also
used by Kim et al. [43] in order to describe the run-up and run-down along
a shoreline. They used a formulation in which the Eulerian description was
adapted by rotating the coordinate system. Rotation was increased towards
the shoreline such that close to the shoreline the rotated z∗-axis was almost
parallel to the shoreline.

In the study on wave diffraction by a surface-piercing cylinder, presented in
Chapter 11, we will use the mixed Eulerian-Lagrangian description to control
the grid around the cylinder.

4.4.2 Determination of the grid acceleration

In the integration of the collocation points in the two-stage two-derivative
Runge-Kutta scheme, a grid velocity vg and a grid acceleration ag are used

1The term mixed Eulerian-Lagrangian description (MEL) is often used in literature when
higher-order time integration formulae are used as in equation (3.10). So in these cases its
meaning is different from the meaning given to mixed Eulerian-Lagrangian here.
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instead of the material velocities v and a. Using a material derivative D̃
D̃t

(see
definition (3.14)) they are related as

ag =
D̃

D̃t
{vg} =

∂vg
∂t

+ vg · ∇vg

=
∂v

∂t
+
∂(vg − v)

∂t
+ v · ∇v + v · ∇(vg − v)

+ (vg − v) · ∇v + (vg − v) · ∇(vg − v)

= a +
∂(va + vc)

∂t
+ vg · ∇(va + vc) + (va + vc) · ∇v, (4.9)

assuming a differentiable flow field vg = v+va+vc. The contribution va+vc to
the grid velocity is, however, determined by the grid distribution using extrapo-
lations and grid dependent variations and approximate methods have to be used
to determine its derivatives. This can be rather complicated, especially for the
time derivative ∂(va+vc)

∂t
. Instead of using equation (4.9) directly, Broeze chose

to determine ag using the algorithm for vg. This approach and its suitability
are indicated next.

The grid alignment velocity va is determined from extrapolations. It is ex-
pressed as a linear combination (determined by the grid distribution) of material
velocities v in three collocation points. For the acceleration aa the same ex-
trapolation is used of accelerations a in the same collocation points. The error
in aa determined in this way can be expected to be of the same order as the
error made in va as an approximation to the velocity in the intersection point.

The grid correction velocity vc is determined as a function of grid distribu-
tion, geometry etc. which can be indicated as vc = F ({xi|i = 1 . . .N}, ∂Ω, . . .).
The acceleration ac is determined in exactly the same way (i.e. ac = F ({xi|i =
1 . . .N}, ∂Ω, . . .)) instead of being determined from the acceleration of a point
moving along the surface and therefore an error in the motion of the free sur-
face can be expected to arise from this. This error is related to the O((|vc|∆t)2)
term mentioned before.

4.4.3 Determination of the second-order material deriva-
tive

In the two-stage two-derivative Runge-Kutta scheme also a second-order time
derivative of the potential is used. An expression for this derivative has already
been given by Broeze [13]. A new expression is derived here and compared with
Broeze’s expression. We start the derivation from Bernoulli’s equation

Dφ

Dt
− 1

2
v · ∇φ+ gz +

p

ρ
= 0, x ∈ Ω. (4.10)



Further study and verification 47

Because D̃φ

D̃t
= Dφ

Dt
+ (vg − v) · ∇φ, we have

− p

ρ
=
D̃φ

D̃t
+ (1

2
v − vg)∇φ+ gz, x ∈ Ω. (4.11)

The grid velocity vg is chosen such that grid points remain on the free surface.
Therefore the material derivative of the pressure term equals zero and we have

D̃

D̃t

{

−p

ρ

}

=
D̃

D̃t

{

D̃φ

D̃t
+ (1

2
v − vg)∇φ+ gz

}

= 0, x ∈ ∂ΩFS. (4.12)

The second-order material derivative of φ can thus be written as

D̃2φ

D̃t2
=

D̃

D̃t

{

(vg − 1
2
v)∇φ− gz

}

=
D̃

D̃t

{

−1
2
∇φ · ∇φ− gz + vg · ∇φ

}

. (4.13)

In Broeze [13] this equation is worked out further by applying the usual product
rule for differentiation. Here we analyze under which conditions the use of the
product rule is valid for D̃

D̃t
in this equation. We again assume that vg is a

differentiable function in time and space.
We consider D̃

D̃t
{vg ·∇φ} and apply the definition of material derivative first

and then apply the product rule which is valid for ∂
∂t

and the spatial derivatives.
Working out these derivatives we find

D̃

D̃t
{vg · ∇φ} =

D̃

D̃t
{vg} · ∇φ+ vg · D̃

D̃t
{∇φ} (4.14)

+ (vg · (∇vg · ∇φ) − (vg · ∇vg) · ∇φ)

in which ∇vg = (∇ug,∇vg,∇wg)T , and the inner product with vg or ∇φ is
taken on all components separately. So the product rule is valid when the term
(vg · (∇vg · ∇φ) − (vg · ∇vg) · ∇φ) equals zero. In general

a · ((b1,b2,b3)
T · c) = (a · (b1,b2,b3)

T ) · c) (4.15)

if b1,y = b2,x, b1,z = b3,x and b2,z = b3,y, i.e. interchanging the index of
(b1,b2,b3)

T and the index of the coordinate gives the same value. Because
(b1,b2,b3)

T = (∇ug,∇vg,∇wg)T this condition is equivalent with ∂ug

∂y
= ∂vg

∂x
,

∂ug

∂z
= ∂wg

∂x
and ∂vg

∂z
= ∂wg

∂y
.

This is true for an irrotational velocity field in which ∇ × v = 0. But for
the grid velocity vg it is not clear whether it is irrotational. Because it has no
relation with the physics of the problem but is determined on the basis of the
discretization it can be expected that ∇×vg 6= 0. This implies that the product
rule as applied by Broeze in equation (4.13) is valid for the term ∇φ · ∇φ but
not for the term vg · ∇φ.
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4.5 Verification

The accuracy and stability of the numerical method in simulations over many
wave periods can be tested by simulating the nonlinear periodic wave given by
the method of Rienecker and Fenton [57] as already explained in Section 3.5.1.
Broeze [13] found that if the solution according to this method is used as bound-
ary condition on the outflow boundary, reflections arise which spoil the solution
within a few wave periods. Instead Higdon’s radiation condition was used. For
the model problem of a 5 m high wave of length 60 m on 10 m waterdepth (see
Section 2.4.3), it was shown that both in two and in three dimensions this wave
can be simulated over about 5 wave periods in a stable way.

The same wave conditions are used in the present verification to test the
accuracy and stability when simulating over many more wave periods. Because
of the large computation time involved with the three-dimensional model and
the length of the simulation we only tested the two-dimensional model.

The more accurate algorithms described in Sections 4.2 and 4.3, are used in
the computations presented here. The second-order time derivatives are deter-
mined using the algorithms developed by Broeze. By comparing computations
with and without the use of these time derivatives, its effects are investigated.
To that purpose we first consider the use of Sommerfeld’s radiation condition.

4.5.1 Sommerfeld’s radiation condition

A difficulty associated with the use of Higdon’s radiation condition is that in
its traditional formulation, derived from Sommerfeld’s condition, it is not con-
sistent with the dynamic free-surface boundary condition (2.8). The solution
given in equation (2.43) satisfies the dynamic boundary condition but does not
satisfy Sommerfeld’s condition because of the term −(g(R−h)− 1

2
c2)t. For Som-

merfeld’s condition to be consistent with the dynamic boundary condition (2.8)
and solution (2.43) an extra term has to be added:

∂φ

∂t
= c

∂φ

∂n
−
(

g(R− h) − 1

2
c2
)

, x ∈ Sout. (4.16)

The omission of this term causes the generation of an extra current on the
outflow boundary. In the simulation with the numerical method this is noticed
by a stretching of the domain and consequently a decrease of the mean water
level, see Figure 4.4. Averaged over the domain the computed surface elevation
ηc without the extra term is approximately 0.04 m below the surface elevation
ηe as given by equation (2.42). Because of the decrease of the mean water-level
in the simulation, the phase velocity of the simulated wave becomes smaller
causing a phase error, which explains the large error in surface elevation near
the second wave top.
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Figure 4.4 Computed free-surface elevation ηc (−−) and the error
10(ηc − ηe) (−) at t = 30 s in the computation without (left figure) and
with (right figure) the extra term g(R − h) − 1

2c2 in Sommerfeld’s radiation
condition.

This error cannot be noticed in the results shown by Broeze because these
results are presented in a way which is too coarse to identify the error. In the
verification studies to follow we use the corrected Sommerfeld’s condition on
the outflow boundary. It is remarked that for simulations of waves in more
practical problems it is important to have good indications of phase speed and
direction of propagation. Reflections generated by omitting the extra term are
probably negligible compared with reflections due to the use of incorrect values
for the latter quantities.

4.5.2 Second-order time derivatives

To examine the effect of the second-order time derivatives we have used three
variants, a, b and c, of the 2-stage-2-derivative method (RK-2-2) with decreasing
contributions of the second-order time derivative. The coefficients used in these
methods are given by Broeze [13], Section 6.1.3, and are repeated in Appendix
A. Also the classical fourth-order Runge-Kutta method (RK-4) has been used.

The domain in this test is 120 m long and consists of 50 panels on the free
surface, 30 on the bottom and 10 panels on the inflow and outflow boundaries.
Computations have been done for waveheights H = 5.0 m (T ≈ 6.55 s) and
H = 5.5 m (T ≈ 6.46 s) which is almost 92 % of the highest wave that is
physically stable.

In Table 4.1 at page 50, the duration of the computation is given in terms
of the number of wave periods that can be simulated before the computation
breaks down.

The breakdown of the computations is caused by slowly growing 2∆x-
instabilities. Figure 4.5 shows the maximum absolute error in the computed
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Table 4.1 Stability of the method for two wave conditions and for different
Runge-Kutta time stepping methods expressed in terms of numbers of wave
periods that can be run.

H = 5.0 m H = 5.5 m

RK-2-2-a 134.05 s ≈ 20.5 T 40.85 s ≈ 6.3 T

RK-2-2-b 192.00 s ≈ 29.3 T 85.70 s ≈ 13.3 T

RK-2-2-c 228.85 s ≈ 34.9 T 85.85 s ≈ 13.3 T

RK-4 1074.60 s ≈ 164.1 T 638.80 s ≈ 98.8 T

free-surface elevation for the computations using RK-2-2-c and RK-4. In Fig-
ure 4.6 the error in the computed free-surface elevation is shown at 4 time levels
for the computation using the classical Runge-Kutta method RK-4.

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

t (s)

m
ax

|η
c
−
η e

|(
m

)

Figure 4.5 Maximum absolute error in free-surface elevation during the
time interval [0, 200] s, for the computations using RK-2-2-c (thick line) and
RK-4 (thin line).

4.6 Conclusions

In this chapter we have examined parts of the numerical method and considered
accuracy and stability of these parts in time-domain computations.

The description of position and movement of intersections between networks
is improved with the use of distances in the physical domain instead of distances
in the computational domain.

The use of a grid velocity different from the material velocity and the ma-
terial derivative related to this grid velocity complicates the determination of
second-order quantities as used in the two-stage two-derivative Runge-Kutta
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Figure 4.6 Computed free-surface elevation ηc (−−) and the error
10(ηc − ηe) (−) at t = 300 s (upper left), t = 600 s (upper right), t = 900 s
(lower left) and t = 1070 s (lower right).

method. It is shown that the present determination introduces errors in the
grid acceleration and the second-order material derivative of φ. Numerical ex-
periments using highly nonlinear waves over many wave periods reveal that
computations using the two-stage two-derivative Runge-Kutta method are less
stable than computations using the classical Runge-Kutta method. This may
be related to the loss of accuracy in the former method.

The standard Sommerfeld’s radiation condition does not apply to the po-
tential in the case of nonlinear waves. It imposes an additional current on the
outflow boundary. In computations with the numerical model this manifests
itself by stretching of the domain and a decrease of the mean water-level. By
adding an extra term to the standard Sommerfeld’s condition the accuracy of
the computations can largely be improved.

It is shown that stable computations over many wave periods can be carried
out. Eventually computations are spoiled by slowly growing 2∆x-instabilities.
Closer study is needed to identify the cause of this instability.
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Domain decomposition

5.1 Introduction

As we have seen in the previous chapters, computations are often restricted to
small domains and short simulation times due to limited computational power.
But even though computer capacity is growing extremely fast during the last
decades, there is another aspect which needs to be paid attention to if one wants
to enlarge simulations with the present numerical method. This aspect is the
superlinear dependence of the computational costs on the number of collocation
points used.

The superlinear dependence of the computational costs is obtained when the
boundary integral equation method is applied without using any information
from the problem on hand, which can be used to decrease the computational
costs. For example, for pairs of panels and field points that are far enough
apart, the corresponding influence coefficients can be neglected and do not have
to be calculated. The question is, however, how and to which degree such
refinements of the boundary integral equation method can be applied in order
to obtain a more favourable relation between computational costs and number
of collocation points.

A promising approach towards this problem is the use of a domain decom-
position method. The domain is divided into subdomains and the boundary
integral equation method is applied to the separate subdomains. The compu-
tational effort per subdomain is much smaller. The efficiency of the domain
decomposition method is determined by the extra computational effort which
is required to reach equivalence of the decomposed problem with the original
problem.

Since the early 1980’s domain decomposition methods have received much
attention, especially from people working with field discretization techniques.
The most important motive in these studies is to increase the efficiency of
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solvers, which is one of the aspects of importance in boundary integral equation
methods as well. Other important motives, also valid for boundary integral
equation methods, are the use of parallel computers and the wish to decom-
pose problems in mathematical physics into subproblems of simplified geometry
and/or simplified mathematical description. This interest resulted in a series of
yearly conferences on domain decomposition methods reported of in [30], [15]
and following.

In the field of boundary integral equation methods, theory of domain de-
composition techniques has been developed by [37]. Application to time-domain
methods for nonlinear water waves in two dimensions was presented by Wang
et al. [69] and by Wu and Eatock Taylor [71]. However, no details about the
efficiency of the methods are presented there. A somewhat different succesful
approach using subdomains in both two and three dimensions has been proposed
by Fenton and Kennedy [25] who employ a local polynomial approximation in
all subdomains.

In this thesis we focus on a particular domain decomposition method and
we outline the abilities of this method for present and future applications. The
domain decomposition method that we describe here consists of a division of the
computational domain into subdomains and of an iterative (coupling) procedure
which generates a sequence of boundary conditions on the interfaces between
the subdomains. This sequence converges to conditions corresponding to the
solution of the original problem. The solution of the decomposed problem then
converges to the solution of the original problem.

The remainder of this chapter is divided as follows. In Section 5.2 the domain
decomposition method for Laplace’s equation is described. In Section 5.3 the
relation of the method with previous work in the field of domain decomposition
is described.

5.2 Description

We consider Laplace’s equation on a domain Ω with prescribed boundary con-
ditions. As illustrated in Figure 5.1, we decompose Ω into the subdomains Ω1

and Ω2 which are separated by an interface Γ. To obtain a unique definition of
the normal derivative on the interface we choose

n(x) = n2(x) = −n1(x), x ∈ Γ. (5.1)

Boundary conditions on the interface for Laplace’s equation in the separate
subdomains are not known beforehand, and as an initial guess a Dirichlet con-
dition ϕ on Γ is imposed. If ϕ equals the exact solution of Laplace’s equation
on the original domain at the interface location (ϕ = φ|Γ), then the solutions φ1

and φ2 in the respective subdomains equal the solution φ of the original domain.
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Ω1 Ω2

n1 n2

Γ

Figure 5.1 Decomposed domain.

Also the gradients ∇φ1 and ∇φ2 will then be continuous over the interface. Be-
cause of the uniqueness of the solution of Laplace’s equation any other Dirichlet
condition on the interface leads to a discontinuity in the gradient on the inter-
face. In the same way will any Neumann condition imposed on the interface
and different from ψ = ∇φ|Γ · n, lead to a discontinuity in the potential itself
over the interface.

This criterium can be formulated using the Steklov-Poincaré operator T
defined as

T : ϕ → ∇φ1|Γ · n − ∇φ2|Γ · n. (5.2)

The boundary condition ϕ of the solution φ of the original, one-domain problem,
satisfies the equation

Tϕ = 0. (5.3)

See Agoshkov [1] and the references therein for more information about this
operator.

The correct boundary conditions can be found by generating a sequence
of boundary conditions such that the discontinuity in the computed variable
(∇φ1|Γ · n − ∇φ2|Γ · n if a Dirichlet condition is imposed and φ1|Γ − φ2|Γ if a
Neumann condition is imposed) converges to zero. There are different ways to
construct such a sequence and the procedure which will be used in this thesis
is the following scheme, referred to as the D/D-N/N-scheme. For shorthand we

define
∂φ

(k)
i

∂n
= ∇φ(k)

i |Γ · n.

0. Choose an initial Dirichlet condition ϕ(k), (k = 0).

1. Solve ∆φ
(k)
1 = 0 in Ω1 and ∆φ

(k)
2 = 0 in Ω2 with Dirichlet condition

φ
(k)
1 = φ

(k)
2 = ϕ(k) on Γ (D/D). This yields

∂φ
(k)
1

∂n
and

∂φ
(k)
2

∂n
.

2. Formulate a Neumann condition ψ(k+1) by taking a weighted average of
the computed solutions for some weighting factor ω

(k)
N :

ψ(k+1) = ω
(k)
N

∂φ
(k)
1

∂n
+ (1 − ω

(k)
N )

∂φ
(k)
2

∂n
. (5.4)
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3. Solve ∆φ
(k+1)
1 = 0 in Ω1 and ∆φ

(k+1)
2 = 0 in Ω2 with Neumann condition

∂φ
(k+1)
1

∂n
=

∂φ
(k+1)
2

∂n
= ψ(k+1) on Γ (N/N). This yields φ

(k+1)
1 and φ

(k+1)
2 .

4. Formulate a Dirichlet condition ϕ(k+2) by taking a weighted average of the
computed solutions for some weighting factor ω

(k)
D :

ϕ(k+2) = ω
(k+1)
D φ

(k+1)
1 |Γ + (1 − ω

(k+1)
D )φ

(k+1)
2 |Γ. (5.5)

5. Repeat procedure steps 1 to 4 (k := k + 2) till convergence is reached.

In the case of more subdomains (and thus more interfaces) the scheme can be
generalized by performing each step in the scheme on all subdomains and for all
interfaces simultaneously respectively. The exchange of information on every
interface concerns only the neighbouring subdomains.

In the numerical approach the Laplace problems are solved with the panel
method in all subdomains separately. Anticipating the quantative description
in Chapter 7, the following implications with respect to efficiency can be given:

• By introducing the interfaces, extra panels are needed in the panel method.
However, because the memory required per subdomain depends quadra-
tically on the number of panels in the considered subdomain, the total
required memory can be reduced considerably, depending on the number
of interfaces.

• A similar reasoning can be given for the required computation time to
determine the source and dipole coefficients. These coefficients have to
be determined only at the beginning of the iterative procedure, since the
geometry does not change during the iterative process. Because of the
quadratic dependence of the required computation time on the number of
collocation points per subdomain, the total costs over all subdomains can
be considerably smaller.

• There is a similar reduction of required computation time for solving the
linear system of equations for one iteration step. However, because now
this has to be done every step of the iterative procedure, the total costs
for this part of the method depend also on the convergence of the iterative
procedure.

We have formulated the scheme for Laplace’s equation with inhomogeneous
boundary conditions on the outer boundaries. It is, however, important to
realize that we only generate a sequence of boundary conditions on the interface
and that the conditions on the outer boundaries are fixed during the iteration
process. We can therefore simplify the description in the following way.
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Because of the linearity of Laplace’s equation, the convergence of the solution
of the Laplace problems with inhomogeneous boundary conditions is equivalent
with the convergence of the solution of the Laplace problems for the error func-
tions φ̃

(k)
i = φ|Ωi

−φ
(k)
i , i = 1, 2, with homogeneous boundary conditions on the

outer boundaries:















∆φ̃
(k)
i = 0 in Ωi

φ̃
(k)
i = 0 on ∂Ωi\Γ

φ̃
(k)
i = ϕ̃(k) on Γ

, i = 1, 2. (5.6)

For these problems the interface boundary conditions have to converge to 0.
The convergence of the iterative procedure is the subject of Chapter 6.

5.3 Relation to previous work

The earliest known iterative domain decomposition technique was proposed
in the pioneering work of H.A. Schwarz in 1870 [64] to prove the existence
of harmonic functions on irregular regions which are the union of overlapping
subregions. Variants of Schwarz’s method were later studied by Sobolev (1936),
Morgenstern (1956) and Babus̆ka (1957). See also Courant and Hilbert (1962).
In Schwarz’ approach, the technique is applied directly to the partial differential
equation, like the description in Section 5.2.

The domain decomposition technique can also be applied to discretizations of
the differential equations. In both approaches suitable continuity requirements
between adjacent subproblems have to be enforced. The resulting matrix of
the system of linear equations can be written as a block-structured matrix.
In most studies on domain decomposition techniques for these problems, the
focus is on finding suitable iterative methods, particularly on the formulation
of proper preconditioners for these methods. The idea behind this approach is
that if discretized equations for grid points which are close together, are strongly
related, it is better to solve these equations (to a large degree) locally, i.e. in
the blocks.

Contrary to the resulting matrix in a field discretization method, the subma-
trices corresponding to the subdomain problems are full. In fact, the approach
described in Section 5.2 can be represented by a block-structured matrix after
discretization. In our approach, however, we do not consider the matrix formu-
lation for the total problem. Instead, the subdomain problems are formulated
on the continuous level and the numerical solution is sought for the subdomains
separately. It is open to determine which solver is used for which subdomain
problem. The use of a block-structured matrix to represent the total system
of linear equations for all subdomains, in connection with a boundary integral
equation method, is described by e.g. Wang et al. [69].
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An important distinction which is made in field discretization techniques
is the use of either overlapping or non-overlapping subdomains. The use of
overlapping subdomains does not seem to be very useful for boundary integral
equation methods because the boundaries of the overlap between two subdo-
mains are not shared by both subdomains in the discretization. See Figure 5.2.

Γ1 Γ2
Ω1 Ω2

Figure 5.2 Overlapping subdomains. Note that Γ1 is not a boundary of
subdomain Ω1 and Γ2 is not a boundary of subdomain Ω2.

The implementation of the D/D-N/N scheme into a field discretization tech-
nique is also known as a Neumann-Neumann preconditioner, see e.g. [45]. Other
coupling schemes are possible as well. The following scheme (referred to as D/*-
*/N) is known as the Neumann-Dirichlet preconditioner.

0. Choose an initial Dirichlet condition ϕ(k), (k = 0).

1. Solve ∆φ
(k)
1 = 0 in Ω1 with Dirichlet condition φ

(k)
1 = ϕ(k) on Γ (D/*).

This yields
∂φ

(k)
1

∂n
.

2. Formulate this solution as a Neumann condition ψ(k+1):

ψ(k+1) =
∂φ(k)

1

∂n
. (5.7)

3. Solve ∆φ
(k+1)
2 = 0 in Ω2 with Neumann condition

∂φ
(k+1)
2

∂n
= ψ(k+1) on Γ

(*/N). This yields φ
(k+1)
2 .

4. Formulate a Dirichlet condition ϕ(k+2) by taking a weighted average of the
computed solutions for some weighting factor ω

(k+1)
D :

ϕ(k+2) = ω
(k+1)
D φ

(k+1)
2 |Γ + (1 − ω

(k+1)
D )ϕ(k). (5.8)

5. Repeat procedure steps 1 to 4 (k := k + 2) till convergence is reached.

The generalization of this scheme to the case of more than two subdomains is
not as straightforward as in the D/D-N/N-scheme. Interfaces may be character-
ized as either Dirichlet boundaries or Neumann boundaries for the various steps
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in the iteration procedure. In both schemes care has to be taken that problems
may become indeterminate when only Neumann conditions are imposed in a
subdomain. Convergence properties as well as computational implementations
are different for both schemes. We will discuss these aspects in Chapters 6
and 7.

In the schemes mentioned, the coupling between subdomains is performed
locally. An important topic in domain decomposition is the use of global cou-
pling which can be essential to obtain convergence in the case of many non-
overlapping subdomains. The need to have a global coupling in the application
to Laplace’s equation and with the subdivisions used will be discussed in Chap-
ter 6.

The investigations on domain decomposition in this thesis are especially
aimed at application of the method in time-domain computations of nonlinear
water waves. Therefore the domains which are studied are generally domains
with large length-to-height ratios and only subdivisions in the horizontal direc-
tion with vertical interfaces are considered. For rectangular subdomains, the
iterative process is studied using a Fourier mode analysis. Such an analysis has
been given by Funaro et al. [27] for the D/*-*/N scheme for two subdomains in
2-D. Emphasis in this study was on the optimal choice of the weighting factor ω.
In this thesis, in Chapter 6, the D/D-N/N scheme is studied and formulations
are developed for the multi-subdomain case and for 3-D problems.

Furthermore the iterative scheme is studied for non-rectangular subdomains
which occur in time-domain computations with wave disturbances at the free
surface and uneven bottoms. Large parts of the studies presented in Chapters 6
and 7 have been reported in [32].
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Chapter 6

Convergence studies

6.1 Introduction

As the efficiency of the domain decomposition method is determined by the
convergence of the iterative procedure, knowledge about the convergence is of
great importance. In this chapter the convergence of the iterative procedure for
Laplace’s equation as it occurs in our wave problems is analyzed for a number of
simplified geometries. The results are presented as a function of the geometry
of the domain.

The subdivisions of the domain considered here are restricted to subdivi-
sions in horizontal directions. In general the water-wave problems of interest to
us have horizontal scales which are much larger than the vertical scale. Also in
deep water, the fluid motion due to waves is restricted to the upper part. From
the criterium for deep water (h/λ > 1

2
) the relevant vertical scale can be ap-

proximated as 1
2
λ. Subdivisions in the horizontal directions lead to subdomains

with smaller length-to-height ratios and the introduction of vertical interfaces
which are small relative to the horizontal scale. It is remarked here that in
three-dimensional problems involving objects and complex geometries, one may
want to subdivide the domain in a more general way. An example is the area
between a ship and a quay where the distance between ship and quay can be
smaller than the water depth.

This chapter is organized as follows. First, in Section 6.2, we consider rect-
angular subdomains. These geometries allow an analytical description of the
convergence behaviour and the notions used to describe convergence are intro-
duced here. In Section 6.3 results of numerical experiments are presented for
subdomains representing a horizontal bottom and a free surface with a wave-like
disturbance. In Section 6.4 the geometry related to more general water wave
problems with uneven bottoms is considered.
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6.2 Results for rectangular domains

As a first simplification of the domain, we consider a rectangular domain di-
vided into a number of subdomains in the horizontal direction. In the case
of rectangular subdomains we can solve the Laplace problems analytically and
the convergence of the iterative process can be study fairly simply through a
Fourier mode analysis. See also Funaro et al. [27] who applied the Fourier mode
analysis to the D/*-*/N scheme for the two-subdomain problem.

To simplify notation we consider only problems with (homogeneous) Dirich-
let conditions on the outer boundaries. The Laplace problems originating from
water wave problems have a Neumann condition on the bottom. For problems
with a horizontal bottom we can, however, reflect the homogeneous Laplace
problem in the bottom to obtain a Laplace problem with only Dirichlet con-
ditions. The height of the domain is of course twice that of the original one
then.

6.2.1 Two subdomains

We investigate the convergence of the D/D-N/N scheme for a Dirichlet problem
with two subdomains characterized by the dimensions given in Figure 6.1:

ΩI ΩII

x = −a x = 0 x = b

z = −h

z = 0
ϕ̃

Figure 6.1 Definition of the domain.

In the iterative process according to the D/D-N/N-scheme, two types of
Laplace problems are defined in the subdomains. One with Dirichlet conditions
on the interface (procedure step 1) and one with Neumann conditions on the
interface (procedure step 3). The solutions of these two problems can easily be
obtained by separation of variables. The convergence of the iterative procedure
can then be expressed in terms of the consecutive solutions.

We first formulate the solutions on both subdomains with a Dirichlet con-
dition on the interface Γ = {(x, z) ∈ Ω|x = 0}. The original homogeneous
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Dirichlet problem
{

∆φ̃ = 0 in Ω

φ̃ = 0 on ∂Ω
(6.1)

is decomposed into problems with the initial Dirichlet boundary condition ϕ̃ on
the interface Γ:











∆φ̃i = 0 in Ωi

φ̃i = 0 on ∂Ωi\Γ

φ̃i = ϕ̃ on Γ

, i = 1, 2. (6.2)

We represent the boundary condition on the interface by the Fourier series

ϕ̃(z) =
∞
∑

n=1

cn sin
(

nπ

h
z
)

. (6.3)

The solution in ΩI then equals

φ̃1(x, z) =
∞
∑

n=1

cn
sinh

(

nπ
h

(x+ a)
)

sinh
(

nπ
h
a
) sin

(

nπ

h
z
)

, (6.4)

and we have a similar expression for the solution in ΩII . This leads to the

following expression for ∂φ̃1

∂x
on the interface:

∂φ̃1

∂x

∣

∣

∣

∣

∣

Γ

=
∞
∑

n=1

cn
nπ

h

(

tanh
(

nπ

h
a
))−1

sin
(

nπ

h
z
)

=:
∞
∑

n=1

α1,ncn sin
(

nπ

h
z
)

.

(6.5)

and a similar one for ∂φ̃2

∂x
on the interface. In these expressions each separate

Fourier mode cn sin
(

nπ
h
z
)

is multiplied by a factor α1,n and α2,n respectively,
which is independent of the Fourier coefficients cn.

To arrive at a Neumann boundary condition ψ̃ we take a weighted average

ωN
∂φ̃1

∂x
|Γ + (1 − ωN)∂φ̃2

∂x
|Γ of both solutions. An important observation is that

the averaging formula can be applied to the separate Fourier modes of ∂φ̃i

∂x
|Γ.

Therefore, we can represent this step in the iterative procedure for each Fourier
mode ϕ̃n separately by the following diagram:

ϕ̃n := cn sin
(

nπ
h
z
)

ւ ց
∂φ̃1

∂x
|Γ = α1,nϕ̃n

∂φ̃2

∂x
|Γ = α2,nϕ̃n

ց ւ
ψ̃n = ωN

∂φ̃1

∂x
|Γ + (1 − ωN)∂φ̃2

∂x
|Γ

= (ωNα1,n + (1 − ωN)α2,n)ϕ̃n

In the odd steps of the iterative procedure a Neumann condition is imposed
on the interface. The solution process of these steps can be represented by a
similar diagram as above:
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ψ̃n := c′n sin
(

nπ
h
z
)

ւ ց
φ̃1|Γ = β1,nψ̃n φ̃2|Γ = β2,nψ̃n

ց ւ
ϕ̃n = ωDφ̃1|Γ + (1 − ωD)φ̃2|Γ
= (ωDβ1,n + (1 − ωD)β2,n)ψ̃n

The coefficients β1,n and β2,n are equal to α−1
1,n and α−1

2,n respectively: calculating
∂φ̃i

∂x
|Γ for a given φ̃i|Γ is the inverse operation of calculating φ̃i|Γ for a given ∂φ̃i

∂x
|Γ.

Now that we have formulated the solutions of all the Laplace problems
that occur during the iterative process, we can express the rate of convergence
in terms of the aforementioned parameters. The D/D-N/N scheme can be
represented as:

ϕ̃(0) → ψ̃(1) → ϕ̃(2) → ψ̃(3) → ϕ̃(4) → ψ̃(5) → . . . (6.6)

The change in the interface values of the potential from step k to step k+2 can
be expressed per Fourier mode φ̃(k)

n = c(k)n sin
(

nπ
h
z
)

through

c(k+2)
n = ǫ(k)n c(k)n , k ≥ 0, k even (6.7)

with

ǫ(k)n := (ω
(k+1)
D β1,n + (1 − ω

(k+1)
D )β2,n)(ω

(k)
N α1,n + (1 − ω

(k)
N )α2,n), k ≥ 0, k even.

(6.8)

If we take ω
(k)
N = ω

(k+1)
D = ω for all iteration steps k, k even, then ǫn = ǫ(k)n

is independent of k and the convergence process can be characterized by this
parameter. We call ǫn the amplification factor of the n-th Fourier mode. In
this case the Fourier coefficients c(k)n can be expressed in terms of the Fourier
coefficients c(0)n of the starting value ϕ̃(0):

c(k)n = ǫnc
(k−2)
n = ǫk/2n c(0)n , k ≥ 2, k even. (6.9)

If |ǫn| < 1 then the iterative procedure is convergent for the n-th Fourier mode.
Working out equation (6.8) we find for the D/D-N/N scheme

ǫn = (2 + γn)ω
2 − (2 + γn)ω + 1 = 1 − (2 + γn)ω(1 − ω), (6.10)

where

γn =
tanh

(

nπ
h
b
)

tanh
(

nπ
h
a
) +

tanh
(

nπ
h
a
)

tanh
(

nπ
h
b
) . (6.11)

In the analysis of this expression we make the distinction between the case of
subdomains of equal length (a = b) and the case of subdomains of unequal
length (a 6= b).
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If a = b we have γn = 2 and ǫn = 4(ω − 1
2
)2. So the amplification factor

ǫn is independent of n. If we choose ω = 1
2

we find ǫn = 0. Thus the exact
result is found after one iteration step. This can be explained by considering the
geometry of the domain; because of the symmetry we find opposed horizontal
derivatives on the interface, which by averaging (ω = 1

2
) directly leads to the

correct Neumann boundary condition ψ̃(0) = 0.
If a 6= b then different Fourier modes have different amplification factors.

For a given geometry the range of γn as function of n is limited. Therefore also
the range of the amplification factors ǫn is limited: ǫn is an increasing function
of n with lower bound ǫ1 = 1−(2+γ1)ω(1−ω) and upper bound ǫ∞ = 4(ω− 1

2
)2.

Notice that if the values of a and b are exchanged, γn and consequently ǫn do
not change. This contrary to the amplification factor for the D/*-*/N worked
out in Appendix B.

More information about the relation between convergence and geometry can
be obtained when we express γn in terms of the length-to-height ratios of the
subdomains. We take

â =
a

h
and b̂ =

b

h
. (6.12)

Then we can express γn as

γn =
tanhnπb̂

tanhnπâ
+

tanhnπâ

tanhnπb̂
. (6.13)

For a fixed value of ω and varying values of â and b̂ the contour plots in Figure 6.2
indicate the amplification factor ǫ1 for different geometrical configurations. No-
tice that by taking the multiples (nâ, nb̂), we can find the amplification factors
ǫn of the consecutive Fourier modes, i.e. ǫn(â, b̂) = ǫ1(nâ, nb̂).

Figure 6.2 indicates the following. For a large set of geometrical configura-
tions the iterative procedure is convergent for all Fourier modes if ω = 0.50.
For very small length-to-height ratios in one of the subdomains the D/D-N/N
scheme does not converge for the first modes. When the length-to-height ratio
is larger than 2 for both subdomains, the iterative procedure converges very
fast for all Fourier modes. The jump |φ̃(k)

1 − φ̃(k)
2 | is reduced by a factor smaller

than 10−10 going from iteration step k to k + 2.
We can also see that the set of geometrical configurations for which the it-

erative procedure is convergent for ω = 0.49 is approximately the same as for
ω = 0.5. However, for large length-to-height ratios the amplification factors of
all Fourier modes are approximately equal to the upper bound ǫ∞ = 0.0004.
The 0-contour line indicates the set of geometrical configurations for which the
amplification factor of the first Fourier mode equals 0. Nevertheless, the ampli-
fication factors of the higher modes in the same configuration have a positive
value and converge much more slowly.

These results can be interpreted as follows. For subdomains with equal
length, the solutions generated in the iterative procedure are symmetric with
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Figure 6.2 Contour plots for ǫ1; left graph: ω = 0.50, right graph: ω = 0.49.
Because of the symmetry of the plot - see the previous remark about inter-
changing the values of a and b - the values of the amplification factors for
the contourlines in the upper left parts have not been indicated.

respect to the boundary condition on the interface. A symmetric averaging
(ω = 1

2
) annihilates the error made in the initial boundary condition.

For subdomains with unequal lengths, the solutions generated in the itera-
tive procedure are asymmetric. However, this asymmetry is hardly noticeable
when the length-to-height ratios â and b̂ are large, especially for the higher
Fourier modes. Taking ω = 1

2
then also leads to very fast convergence.

So far the two-subdomain problem has been analyzed for problems with
homogeneous Dirichlet conditions, also on the vertical boundaries z = −a
and z = b. In the case of Neumann conditions on either one or both of
these boundaries, the subdomain solutions have a slightly different form which
results in a different expression for γn. In the case of a Neumann bound-
ary at x = −a and a Dirichlet boundary at x = b for example, we have
γn = tanh(nπâ) tanh(nπb̂)+ (tanh(nπâ) tanh(nπb̂))−1. Because of the fast con-
vergence of the tanh-function to 1, the contour plots for ǫ1 as shown in Figure 6.2
for this case are only different for very small length-to-height ratios.

6.2.2 Three or more subdomains

The iterative process in the multi-subdomain problem can be described similarly
to the iterative process of the 2-subdomain problem in the previous subsection.
We formulate and analyze it for the 3-subdomain problem first. Consider the
domain shown in Figure 6.3.

In procedure step 1 (see Section 5.2) Dirichlet boundary conditions are im-
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ΩI ΩII ΩIII

ϕ̃1 ϕ̃2

x = x0 x = x1 x = x2

(Γ1) (Γ2)
x = x3

z = −h

z = 0

Figure 6.3 Definition of a domain with three subdomains.

posed on the interfaces and Neumann conditions are imposed in procedure step
3. We can again compute the solution of both types of problems in all sub-
domains. A difference with the 2-subdomain problem is now that the inner
subdomain has two inhomogeneous boundary conditions instead of one. The
solution there is the sum of the Laplace problem with ϕ̃1 (or ψ̃1) as bound-
ary condition on Γ1 and homogenous boundary conditions elsewhere plus the
Laplace problem with ϕ̃2 (or ψ̃2) as boundary condition on Γ2 with otherwise
homogenous boundary conditions. Laplace problems with only one inhomo-
geneous boundary condition have already been discussed in Section 6.2.1 and
expressions for the solutions in all subdomains can be expressed in terms of the
solutions given there. A more detailed description is given in Appendix B.

Again, the iterative process for each Fourier mode can be described sepa-
rately. The transformation of the n-th Fourier-mode ϕ̃

(k)
1,n = c

(k)
1,n sin(nπ

h
z) on

interface Γ1 and ϕ̃
(k)
2,n = c

(k)
2,n sin(nπ

h
z) on interface Γ2 during the iterative process

can be represented by the following transformation matrix A(k)
n :

(

c
(k+2)
1,n

c
(k+2)
2,n

)

=

(

A
(k)
11,n A

(k)
12,n

A
(k)
21,n A

(k)
22,n

)(

c
(k)
1,n

c
(k)
2,n

)

=: A(k)
n

(

c
(k)
1,n

c
(k)
2,n

)

(6.14)

The matrix A(k)
n can be expressed in terms of coefficients similar to αi,n and

βi,n in the 2-subdomain problem and the weighting factors ω(k)
i,D and ω(k)

i,N , see
Appendix B. In this way the iterative process is expressed by a system of
homogeneous linear difference equations. For an initial condition c(0)

n and fixed
weighting factors, the solution of this difference equation can be expressed as

c(k)
n = Aknc

(o)
n . (6.15)

If and only if all eigenvalues lie inside the unit-circle, then the solution converges
to zero, see e.g. Kelley and Peterson [39]. So if both eigenvalues ǫ1,n and ǫ2,n lay
inside the unit-circle then the iterative process converges for the n-th Fourier
mode.
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For a general geometric configuration, the expressions for the eigenvalues
are very complicated and involve too many parameters to be analyzed easily.
Therefore we restrict ourselves to the case of subdomains of equal length l and
ω = 1

2
. The matrix An then has two eigenvalues ǫ1,n and ǫ2,n equal to:

ǫ1,n = − 1

4C(C + 1)
, (6.16)

and

ǫ2,n = − 1

4C(C − 1)
, (6.17)

with C = cosh(nπ
h
l), see Appendix B. The first Fourier-mode (n = 1) exhibits

the slowest convergence. The condition |ǫ1| < 1 gives the following condition
on the ratio l

h
:

l

h
> π−1arccosh

(

1

2
+

1

2

√
2
)

≈ 0.2. (6.18)

Contrary to the 2-subdomain problem with subdomains of equal length, the
amplification factor is not equal to zero. The condition for convergence is some-
what stronger than the condition for the 2-subdomain problem with subdomains
of unequal lengths.

When the subdomains are not of equal length, the eigenvalues can be de-
termined for some given parameters. For large length-to-height ratio of all
subdomains the choice of ω = 1

2
leads to very fast convergence on both inter-

faces for all Fourier modes. The symmetry argument used in the 2-subdomain
case can be used here as well: Because of the large length-to-height ratio the
solutions that are generated during the iterative process are determined mainly
locally, i.e. they are hardly influenced by the boundary conditions on other in-
terfaces. The solutions on either side of each interface are almost symmetric
which explains the fast convergence.

The matrix representation can also be used in the case of a decomposition
into four or more subdomains. For a decomposition into M subdomains, M − 1
interfaces are present and M − 1 independent initial Dirichlet conditions must
be formulated. During the iteration process they are transformed and the trans-
formation can be represented by a M − 1 by M − 1 matrix An for each Fourier
mode.

The parameters in this matrix involve the M subdomain lengths and the
weighting factor ω. To be able to say something about the convergence, we again
consider the case of subdomains of equal length l and ω = 1

2
. The matrix An is

a five-diagonal matrix and upper bounds for its eigenvalues ǫi,n, i = 1, . . .M−1
can be found using Gershgorin’s theorem, see Appendix B. We have

|ǫi,n| <
1

4
S−2, i = 1, . . . ,M − 1. (6.19)
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We have 1
4
S−2 < 1 for all n if

l

h
> π−1arcsinh

(

1

2

)

≈ 0.15. (6.20)

These results again show very fast convergence for a large length-to-height ratio.

6.2.3 Three-dimensional problems

The analysis and results are also applicable to Laplace problems in three di-
mensions. If we consider a block-shaped three-dimensional domain with height
h and width w with interfaces parallel to the y-z-plane, then we have to deal
with Fourier series of the form

ϕ̃(y, z) =
∞
∑

m=1

∞
∑

n=1

cm,n sin
(

mπ

w
y
)

· sin
(

nπ

h
z
)

. (6.21)

The expressions describing the iterative process in three dimensions are the
same as those in two dimensions with

nπ

h
replaced by

(

(

m

w

)2

+
(

n

h

)2
)

1
2

π. (6.22)

This applies to equation (6.11) and to the expressions for the eigenvalues in the
multi-subdomain case. Therefore the convergence results for the 2-subdomain
problem can be translated directly to three-dimensional problems: convergence
occurs when either the length-to-height or the length-to-width ratio is large.
The convergence is determined by the largest ratio.

This result is somewhat suprising: Consider a two-dimensional problem
which does not converge due to small length-to-height ratios and a three-
dimensional problem with the same length-to-height ratios. If the width of the
three-dimensional problem is taken small enough, then it converges, although
it resembles the two-dimensional problem then more than in the case of large
width.

These convergence properties give the opportunity to handle large three-
dimensional problems. Assuming that the length-to-height ratios are not too
small, the convergence is not affected by a small length-to-width ratio (large
width) . Still the subdomains in this kind of problems can be very large due to
a large width. In this case the domain decomposition method can be applied
again in the separate subdomains, which are then subdivided further in the
y-direction, see Figure 6.4, page 70.

In this way a checkerboard of subdomains is created in which the actual
solution of the Laplace problems is generated in the cells of this checkerboard.
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Figure 6.4 Two-dimensional subdivision of a 3-D domain. First the domain
is divided by the interfaces indicated by double solid lines. Each subdomain
is then divided further by interfaces indicated by the dashed lines.

The required number of iterations is at most the maximum number for the
division in one direction times the maximum number for the other direction.

In this thesis we do not study the two-dimensional subdivision mentioned
above any further. We only remark here that the iteration process which al-
ternately iterates in x- and in y-direction is not efficient. There is no need to
have a converged solution in the y-direction if the boundary conditions gener-
ated by the iteration in the x-direction are still far from the solution. A more
general coupling in which no distinction is made between the two directions of
the subdivision seems to be more efficient. (For example the D/D-N/N-scheme
on all subdomains of the checkerboard simultaneously.) Convergence in such a
two-dimensional subdivision has to be studied further.

6.2.4 Global coupling

An important result of the analysis in this section is that for a fixed length-
to-height ratio of the subdomains which is not too small, the iteration process
is convergent independent of the number of subdomains. This result seems
to contradict the fact that in elliptic problems the domain of dependence is
global. In the field of domain decomposition techniques, global dependence is
an important issue. We discuss the aforementioned result by considering the
following Laplace problem.

x = 0 x = 1 x = 2 x = M − 1 x = M

φ = 0 φ = M

Figure 6.5 Domain subdivided in M subdomains.

If the problem has a homogeneous Neumann condition (i.e. ∂φ
∂n

= 0) on
the two horizontal boundaries then this problem is essentially one-dimensional
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and its solution is given by φ = x. Convergence is dependent on the initial
boundary condition on the interfaces. For example with φ = 0 on all interfaces
the information on the right outer boundary has to travel all the way to the left
thereby travelling only one interface per iteration step. If the problem is solved
with less or with no subdomains at all, i.e. global coupling, then information is
passed on much faster.

If the problem has Dirichlet conditions on the two horizontal boundaries
corresponding to the same solution, i.e. φ = x, then information about the
solution is located near all interfaces and convergence is independent from the
number of subdomains, under the assumption that length-to-height ratios are
not too small. Global coupling is not needed in this case.

The convergence for problems with a fixed length-to-height ratio of the orig-
inal domain is of course not independent of the number of subdomains M .
Increasing M leads to smaller length-to-height ratios of the subdomains. An-
other way of considering the convergence process for subdomains with small
length-to-height ratios is that for these problems the convergence on one inter-
face is not independent of the boundary conditions on the nearest interfaces
and thus of the convergence on these interfaces.

We do not address the problem of global coupling to solve the latter problem
any further. We remark that global coupling is obtained by using coarser grids
extending over several subdomains. We refer to Hackbusch [34] in which tech-
niques as panel clustering and multigrid for boundary integral equation methods
are described.

6.3 Results for domains with even bottoms

In the simulation of nonlinear water waves over an even bottom, the domain in
which Laplace’s equation has to be solved deviates from the rectangular form
because of the disturbed free-surface boundary. Therefore, we introduce one
complication to the rectangular domain, namely a localized disturbance of the
free surface near an interface. We suppose that the length-to height ratios are
large enough to have no noticable influence of the lengths of the subdomains on
the solutions on the interface.

An analysis in which exact or approximate expressions for solutions are used
to characterize the iterative process is very difficult now. It is however clear
that the asymmetry near the interface leads to an asymmetry in the solutions on
both sides of the interfaces. This can be explained by expressing the solutions
in terms of Fourier modes again.

Consider a Laplace problem on a domain with a wave-like disturbance of the
upper horizontal boundary and divided by a vertical interface, see Figure 6.6.

Homogeneous boundary conditions are imposed at the outer boundaries and
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Γ1 Γ2

φ̃ 6= 0
φ̃ = 0

φ̃ = ϕ̃

z = 0

z = −h

Figure 6.6 Computational domain with a local disturbance near the inter-
face.

an inhomogenous one, say ϕ̃n = cn sin(nπ
h
z), at the interface. If we consider

the rectangular subdomains with the undisturbed horizontal boundary z = 0
then the equivalent boundary value problem in these subdomains must have an
inhomogeneous boundary condition, say χ̃ =

∑

∞

m=1 dm sin(mπ
l
x), on z = 0. For

this problem, the solution in both subdomains is not only expressed in terms of
the Fourier mode sin(nπ

h
z) in the vertical direction, but also in terms of Fourier

modes sin(mπ
l
x), (m = 1, 2, . . .) in the horizontal direction. Necessarily the

derivatives ∂φ̃1

∂x
and ∂φ̃2

∂x
on the interface contain contributions of other Fourier

modes than just sin(nπ
h
z). Therefore the Fourier modes sin(nπ

h
z), (n = 1, 2, . . .)

can not be treated separately.

Furthermore, because the inhomogeneous boundary condition χ̃ at z = 0
is given implicitly as a function of the boundary condition ϕ̃ at the interface,
amplification factors can not be found as easily as in the analysis of Section 6.2.
The previous consideration shows that because of the asymmetry of the domain
the subdomain problems can be expected to have solutions which are differently.

The coefficients α1,n and α2,n which express the Fourier modes of ∂φ̃1

∂x
and ∂φ̃2

∂x

respectively, in terms of the Fourier modes of ϕ are not equal and the use of the
weighting factor ω = 1

2
does not annihilate the error made in the initial bound-

ary condition. In this case a different value of ω, which takes the asymmetry in
the solutions into account, may lead to a larger reduction of the error.

Because of the difficulty of describing the convergence analytically, we have
performed some numerical experiments with the panel method to get an in-
dication of the sensitivity of the iterative process for this asymmetry. These
experiments are described next. The implementation of the domain decomposi-
tion method into the complete numerical method will be described in Chapter 7.
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6.3.1 Two subdomains

In Section 6.2 the amplification factor ǫn is defined as the ratio of the Fourier
coefficients of two consecutive Fourier modes in the iterative process, that is
c(k+2)
n = ǫnc

(k)
n , see equation (6.7). In the numerical experiments to follow we do

not consider single Fourier modes and we define the amplification factors ǫ
(k)
D and

ǫ
(k)
N as the amplification of the jump over the interface in φ and ∂φ

∂n
respectively

going from in iteration step k to iteration step k + 2. In the numerical method
this is translated into

ǫ
(k)
D =

maxi |φ(k+2)
1 (xi) − φ

(k+2)
2 (xi)|

maxi |φ(k)
1 (xi) − φ(k)

2 (xi)|
, xi ∈ Γ, k ≥ 0, k even (6.23)

and similarly for ǫ
(k)
N with φ replaced by ∂φ

∂n
and k ≥ 1, k odd. The subindices

1 and 2 of φ refer to the subdomains. These amplification factors indicate the
convergence of the iteration process. For rectangular domains, ǫ

(k)
D and ǫ

(k)
N are

equivalent to the amplification factors defined in Section 6.2.1 for single Fourier
modes.

The iterative process in the numerical experiments is stopped if the jump
over the interface in either φ (which is maxi |φ(k)

1 (xi)−φ(k)
2 (xi)|), or ∂φ

∂n
(similarly

with φ replaced by ∂φ
∂n

) is below a certain stop criterion.
In the following we look at Laplace problems originating from one specific

nonlinear wave problem and investigate the relationship between the angle be-
tween free surface and interface and an average of the amplification factors for
this geometry.

We consider the domain given in Figure 6.7. The free-surface shape corre-
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Figure 6.7 Domain with a disturbance near the interface.

sponds to a waveprofile of a nonlinear propagating periodic wave and is calcu-
lated according to the method of Rienecker and Fenton [57]. The wave condi-
tions for this wave are: depth h = 0.50 m, wave period T = 1.44 s, wave height
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H = 0.185 m and wave length λ = 2.82 m. The wave is mildly nonlinear; its
height is equal to 60 % of the maximum wave height.

In the numerical experiments the interface has been placed at different loca-
tions compared with the positions of the wavetops in order to obtain different
values of the slope of the free surface at the interface. For these wave conditions
the maximum slope is obtained when the wavetop is shifted approximately 1

8
λ

from the position of the interface. The starting boundary condition ϕ(0) for the
iteration process is taken uniform and equal to 2.0 which is much larger than
the absolute value of the solution φ at the interface position in all computations.
Therefore the error in ϕ(0), i.e. ϕ̃(0) contains contributions of all Fourier modes
sin(nπ/h), so far as they can be represented on the grid.

Two different grid distributions have been taken on the interface, both with
5 collocation points. An equidistant grid (I) and a non-equidistant grid (II)
clustering near the free surface. In Figure 6.8 the results of the computations
are plotted. The average amplification factor ǭ is defined as (ǫ

(1)
D + ǫ

(2)
N )/2.
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Figure 6.8 Average amplification factor as a function of the position of
the interface. The dashed line indicates the elevation of the upper boundary
near the interface at the specified position.

The following observations are made:

• The amplification factor ǭ increases when the slope α of the free surface at
the interface increases. In fact the amplification factor ǭ is approximately
quadratic in α.

• The amplification factor ǭ is smaller for the non-equidistant grid. Exami-
nation of both subdomain solutions indicates that it is determined by the
jump in the computed unknown (either φ or ∂φ

∂n
) in the upper collocation

point.

• The amplification factor ǭ and the individual amplification factors ǫ
(k)
D
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and ǫ
(k)
N are very small. Only a few iterations are needed to achieve the

discretization accuracy.

We conclude that the iterative process in the numerical method converges well
for this geometry. Its convergence rate depends on the discretization. The opti-
mal convergence rate is achieved with the most accurate solution near the local
asymmetry of the interface. For a given domain corresponding to a nonlinear
wave problem, the best choice of a vertical interface with respect to convergence
rate is, as can be expected, perpendicular to the free surface.

The influence of the weighting factor ω has been studied with the same
configuration. It was seen that convergence can be improved if the solution
obtained in the subdomain in which the upper boundary makes a sharp angle
with the interface (the left subdomain in Figure 6.6) is given a larger weight
than the solution obtained in the subdomain on the other side of the interface.
The largest amplification factor shown in Figure 6.8 was reduced with a factor
of order 7 with the use of ω = 0.45. The relation between the optimal weighting
factor ω and the slope of the upper boundary has not been studied further. The
use of a more appropriate weighting factor may especially be profitable in cases
where the iteration process does not converge for ω = 1

2
.

Finally it is noted that a way to find a better weighting factor is to relate
the solutions generated on either side of the interface to the boundary condition
on the upper boundary which is fixed during the iteration process. For example
the solutions φ

(k+1)
1 and φ

(k+1)
2 at the (k+1)-th iteration step should be averaged

such that the new boundary condition ϕ(k+2) matches the boundary condition
φ at the intersection xI,FS of the interface with the upper boundary. That is,
determine ω such that φ = ωφ1+(1−ω)φ2 at x = xI,FS. Similarly the solutions
∂φ

(k)
1

∂x
and

∂φ
(k)
2

∂x
should be averaged such that the new boundary condition ψ(k+1)

matches the horizontal derivative ∂φ
∂x

(which can be approximated by using the
tangential derivative of φ) at the same point xI,FS.

Using such a procedure the notation introduced at the beginning of Sec-
tion 6.2, i.e. ω

(k)
D and ω

(k)
N becomes appropriate again. Numerically these weight-

ing factors can be found by extrapolating the values of the solutions in the
interface collocation points to the intersection point xI,FS. Preliminary compu-
tations with this algorithm did not give appropriate values for ω in all configu-
rations. This is probably due to the large gradients near xI,FS which makes the
extrapolation rather sensitive to the truncation error of the panel method. This
aspect should be studied further if a more robust algorithm is to be obtained.
It is furthermore remarked that also the use of derivatives tangential to the
interface can be employed, as advocated by Tan [67].
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6.3.2 Three or more subdomains

Similar to the discussion in Section 6.2.4 we make a distinction between prob-
lems which have fixed length-to-height ratios of the subdomains and problems
with a fixed length-to-height ratio of the original domain and study the effect
of increasing the number of subdomains on the convergence.

Convergence at each interface is influenced by the local asymmetry and is a
function of local asymmetry only if the length-to-height ratios are not too small.
In the latter case we saw that for rectangular subdomains of fixed length-to-
height ratio and of equal size, the convergence rate is independent of the number
of subdomains. To check if the same is true for a general wave problem with
an even bottom we considered the geometry of a nonlinear periodic wave as
in the previous section. For computations with 12, 20 and 100 subdomains of
fixed size, it is seen that with the use of more subdomains, more iterations are
required, but that the number of required iterations does not exceed a certain
limit. This limit is determined by the iterative process on the interface with
the slowest convergence which corresponds with the maximum slope for a given
wave problem at the interface.

From this observation we conclude that indeed convergence at each interface
is a function of local asymmetry only. In fact, in subdomains bounded by inter-
faces on which the iterative process has already converged, the iteration process
can be stopped and there is no need to solve Laplace’s equation there any more.
This is especially profitable when doing a computation in which large parts of
the domain are not disturbed by waves (yet), for example when starting from
rest.

In the case of a domain of fixed size, increasing the number of subdomains
decreases the length-to-height ratios of the individual subdomains. For length-
to-height ratios smaller than a certain threshold, convergence on different in-
terfaces is not independent any more. This is illustrated with a time-dependent
computation in Chapter 7, Section 7.5.1.

6.3.3 Three-dimensional problems

In wave problems in three dimensions the slope of the free surface at the inter-
section with the interface varies along the interface in general. Also for regular
waves not travelling in the direction in which the domain has been subdivided,
i.e. normal to the interface, this slope varies. The question arises how the iter-
ative process is influenced by the presence of this geometrical variation.

To get an indication of the influence on the convergence rate, we have per-
formed some numerical experiments with regular waves in which the propaga-
tion direction of the waves was varied relative to the normal direction of the
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interface. See Figure 6.9 for an example of the configuration used. The wave
conditions are the same as for the model problem also used in Chapter 4 with
wave height H = 5.0 m, water depth h = 10.0 m and wave length λ = 60.0 m.
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Figure 6.9 Domain of the configuration used in the numerical experiments
(lower figure) and the corresponding undivided one (upper figure) for β = 30o

and x0 = 60 m.

Because of the limited width of 60 meter of the domain the variation of
the slope along the interface is restricted to a certain range which depends on
the location of the wave crest relative to the interface. This is indicated by
the coordinate x0 which corresponds to the x-coordinate of the wave crest in
the plane y = 0 and by the coordinate x′

0 = x0 + 60 tanβ which corresponds
to the x-coordinate of the wave crest in the plane y = −60. In the numerical
experiments these coordinates have been varied as well.

The results of the numerical experiments are given in Table 6.1. The average
amplification factor ǭ is again defined as (ǫ

(1)
D + ǫ

(1)
N )/2. The columns with the

headings ηmax, ηmin,
∂η
∂xmax

and ∂η
∂xmin

indicate the maximum and minimum values
of the elevation and the slope in the positive x-direction on the intersection with
the interface.

From these results we conclude the following:
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Table 6.1 Average amplification factor ǭ for a number of configurations
indicated by the wave crest coordinate (x0, 0) and the angle β between the
propagation direction of the wave and the normal vector on the interface.

x0 x′

0 ηmax ηmin
∂η
∂x max

∂η
∂x min

ǭ (·10−3)

β = 0o

60.0 60.0 3.354 3.354 0.000 0.000 0.0
62.5 62.5 2.933 2.933 0.296 0.296 16.6
65.0 65.0 2.081 2.081 0.358 0.358 24.9
70.0 70.0 0.471 0.471 0.271 0.271 19.1
80.0 80.0 -1.238 1.238 0.090 0.090 2.46
90.0 90.0 -1.646 1.646 0.000 0.000 0.0

β = 10o

60.0 70.58 3.354 0.360 0.353 0.000 21.3
65.0 75.58 2.109 -0.666 0.353 0.157 17.7
70.0 80.58 0.513 -1.262 0.270 0.085 9.48
80.0 90.58 -1.210 -1.646 0.092 -0.001 1.20
90.0 100.58 -1.242 -1.646 0.003 -0.088 1.09

β = 30o

60.0 90.0 3.354 -1.646 0.310 0.000 9.38
70.0 100.0 0.854 -1.646 0.261 -0.064 5.79
80.0 110.0 -0.174 -1.646 0.110 -0.183 2.79
90.0 120.0 2.431 -1.646 0.026 -0.310 9.49

β = 63.4o

60.0 180.0 3.354 -1.646 0.160 -0.155 2.26
80.0 200.0 3.354 -1.646 0.135 -0.160 1.89

β = 90.0o

−∞ ∞ 3.354 -1.646 0.000 0.000 0.0

• The configurations which are symmetrical in the interface, that is with
β = 0o and β = 900, again show very fast convergence.

• For each angle β the rate of convergence decreases with an increase of
the most extreme value |∂η

∂x
|max of the slope of the upper boundary in the

direction of the normal to the interface.

• These results do not show a one-to-one relation between |∂η
∂x

|max and ǭ
which is valid for all configurations.

In comparison with the two-dimensional experiments, the corresponding re-
sults for β = 0 show faster convergence. At this point it is not clear whether in
general three-dimensional computations in which the slope varies along the in-
terface and reaches the maximum value |ηx|max, convergence is also better than
in the two-dimensional one with slope |ηx|max at the intersection of the upper
boundary with the interface.
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6.4 Results for domains with uneven bottoms

Finally we consider the convergence of the iterative procedure for geometries
related to wave problems which include a bottom topography. The difference
with the problems studied in the previous section, is that the geometry has an
additional asymmetry near the intersection of the interface with the bottom.
Because the bottom is a Neumann boundary in the formulation of the Laplace
problem, the interface boundary conditions can not be represented with Fourier
modes in the same way as in the previous sections, as is explained next.

Consider Figure 6.10 in which the (two-dimensional) geometries are illus-
trated that have been discussed so far. The geometry with the uneven bottom
is illustrated with no wave disturbance at the free surface. For the problems

z = 0

z = −h

z = 0

z = −h

z = 0

z = −h

Figure 6.10 Illustration of the geometries discussed in Sections 6.2, 6.3
and 6.4 respectively. The solid curved lines in each figure represent the
largest Fourier mode of the boundary condition ϕ̃ on the interface and the

dashed lines indicate possible corresponding solutions ∂φ̃i

∂x in the respective
subdomains.

with even bottoms, the largest Fourier mode of the boundary condition ϕ̃ on
the interface [−h, 0] is represented by c1 sin( π

2h
z). Note that due to the Neu-

mann condition ∂φ̃
∂n

= 0, the z-coordinate is scaled with π
2h

instead of π
h
. The

corresponding curves in Figure 6.10, left two figures, connect perpendicular to
the bottom illustrating the property ∂ϕ̃

∂z
= 0 at z = −h.

For the problem with the uneven bottom, any boundary condition ϕ̃ imposed
on the interface in order to solve the Laplace problems in both subdomains, can
not satisfy ∂ϕ̃

∂z
= 0 at z = −h because the normal direction does not coincide

with the z-direction. It is therefore not possible to represent ϕ̃ in terms of
Fourier modes cn sin(nπ

2h
z). In Figure 6.10, right figure, this has been illustrated

by curves that do not connect perpendicular to the bottom. Maybe a represen-
tation in terms of a sum of Fourier modes with a vertical scale different from
2h is possible, but it is not clear how the solution of the Laplace problems then
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can be expressed in terms of these modes.

With numerical experiments it may still be possible to find a relation be-
tween slope of the bottom near the interface with the amplification factor of the
iterative procedure. For a clear analysis such experiments should be carried out
first for geometries without geometrical wave disturbances at the free surface
(such as in linear wave problems). At present, however, it is not clear what the
validity of the results would be, since it is unknown what the relevant vertical
scale is and how the sequence of boundary conditions on the interface should
be represented. We have not performed such experiments.

The effect of uneven bottoms on the iterative process is illustrated with some
time-domain computations in the next chapter. Although not quantified, it is
seen that the presence of the uneven bottom deteriorates the convergence of the
iterative process.

6.5 Conclusions

We have examined the convergence behaviour of the D/D-N/N scheme for
Laplace’s equation in a number of geometrically simplified domains related to
the simulation of water waves. Convergence is expressed in terms of an am-
plification factor which indicates the amplification of the jump in the potential
made across an interface.

For rectangular domains it was found that convergence is obtained almost
immediately if the length-to-height ratio of all subdomains is not too small.
This implies that in order to have convergence, the number in which the domain
can be divided is limited. Moreover, it is seen that in this case convergence is
independent of the number of subdomains if the length-to-height ratio of the
subdomains is fixed.

For domains in which the upper boundary is formed by a wave-like dis-
turbance as in the simulation of nonlinear waves over an even bottom, it was
found that the asymmetry of the upper boundary in the intersection with the
interfaces decreases the rate of convergence. For geometries related to nonlinear
wave problems, convergence is always obtained since the slope of the surface of
(non-breaking) water waves is limited. In the case of more than two subdomains
and for length-to-height ratios which are not too small, the number of required
iterations and the related amplification factors are small.
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Application of domain
decomposition to time-domain
computations

7.1 Introduction

In the application of the domain decomposition method to the numerical method
for nonlinear water waves, a number of aspects related to the discretization have
to be considered.

On the smallest scale this involves choices about how to construct compu-
tational molecules near and on interfaces. On the largest scale this involves
the splitting of the method into the solution of the time-independent problem
(Laplace’s equation) and the time-integration. One can either apply the do-
main decomposition method only to the time-independent part and treat the
time-integration as before, or extend the domain decomposition also to the
time-integration so that subdomains, apart from the coupling procedure, are
treated as separate one-domain problems. These and other choices affect the
performance of the method as a whole. Furthermore of course the efficiency
of the application of the domain decomposition method itself is of importance.
These aspects will be discussed in this chapter.

In Section 7.2 we discuss the implementation of the domain decomposition
method into the numerical method. In Section 7.3 the effect of the domain
decomposition method on accuracy and stability in time-domain simulations is
studied. In Section 7.4 models are presented which can be used to predict re-
quired memory and required CPU-time for a given subdivision. Several aspects
of efficiency are discussed here. These results are illustrated with examples in
Section 7.5. In Section 7.6 the results are discussed in relation to more general
computations and with respect to the usefulness of the domain decomposition
technique. Finally, in Section 7.7 conclusions are given.

81
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7.2 Implementation

So far we have investigated the domain decomposition method for Laplace prob-
lems for a fixed geometrical configuration. In the time-domain computation of
propagating nonlinear water waves, the domain changes in time and Laplace’s
equation for φ has to be solved at every time level. The choice of the subdivi-
sion of the domain at every time level is of importance for the convergence rate.
Furthermore the subdivision has some important implications for the numerical
properties of the algorithm. Both aspects are discussed in this section.

7.2.1 Subdivisions

For the solution of Laplace’s equation one is free to choose the position of the in-
terfaces. With respect to convergence rates, the analysis of the previous chapter
implies that for vertical interfaces the optimum choice is perpendicular to the
free surface. In 3-D computations it is almost impossible to meet this condition.
But also in 2-D computations this condition has some serious drawbacks. The
choice of perpendicularly connecting interfaces necessarily leads to a reorgani-
zation of data from one subdomain to the other as the time-marching scheme
proceeds. We clarify this in the following.

In an Eulerian description of the movement of the grid of the free surface, the
collocation points only move in the vertical direction. To have an organization
of data into subdomains which is fixed in time, the interfaces then have to be
located at fixed horizontal positions. The propagating water waves will then
”move through” the interfaces and the free surface will not be perpendicular to
the interface but its slope will vary from a minimum value to a maximum value.

In a Lagrangian description the collocation points move along with the water
particles. In this case no reorganization of data is required if (and only if) the
interfaces drift along with the free-surface collocation points representing the
water particles on the free surface. Still, the waves will propagate through the
interfaces because the phase speed of the waves is larger than the velocity of
the water particles. Also with the mixed Eulerian-Lagrangian method the phase
speed is larger than the velocity of the free-surface collocation points.

In the present implementation of the domain decomposition method this
choice (interfaces that drift along with the free-surface collocation points) has
been made. It implies a loss of efficiency with respect to the convergence rate
of the domain decomposition method compared with the optimum subdivision.
On the other hand, this implementation in which data do not have to be re-
organized is relatively easy and furthermore it has two important advantages
with respect to parallel computing. First of all the computational load can be
divided equally over all subdomains and secondly the transfer of data between
different processors from one time-level to the other is minimal. The efficiency
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of the domain decomposition method in combination with parallel computing
will be studied further in Chapter 8.

7.2.2 Numerical aspects

Every subdivision has to satisfy the following demand on the numerical im-
plementation. The outer boundaries such as the free surface and the bottom
boundaries have to be split up into separate networks such that every network is
assigned to only one subdomain. These networks are not allowed to extend be-
yond an interface because the computational molecules near the interface then
would be divided over two different subdomains. The computation of influence
coefficients in one subdomain would then depend on the geometry of the other
subdomain and the subdomain problems would not be solved independently
anymore. Necessarily one-sided discretizations are used on the free-surface and
bottom networks near the interfaces in the numerical solution of Laplace’s equa-
tion.

The actual implementation of the domain decomposition method in the
time-domain method is based on the use of the original implementation de-
scribed in Chapter 3, for all subdomains separately. The interfaces are treated
as inflow and outflow boundaries with respect to grid organization and grid
motion and therefore move along with the free-surface collocation points as
already discussed in Section 7.2.1. Each interface is represented by two net-
works, one for each connecting subdomain. It is ensured that the coordinates
of corresponding collocation points and grid points on the two networks are
identical. Furthermore every subdomain is built up from a separate set of net-
works and subdomains are separated by network edges, see Figure 7.1. This
satisfies the demand mentioned above. Details and numerical properties of this
implementation are described next.

Intersections with interfaces

For each interface, the intersections of the connecting networks with the two
interface networks are determined for both interface networks separately first.
The interface network assigned to the ‘left’ connecting subdomain is intersected
with the connecting networks of the ‘left’ subdomain and the interface network
assigned to the ‘right’ connecting subdomain is intersected with the connect-
ing networks of the ‘right’ subdomain. These intersections are determined in
the same way as the intersections with the networks of the inflow and outflow
boundary. Because both interface networks have to represent the same set of
panels, the answers for each intersection point are averaged to obtain unique
coordinates for the panel vertices.
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Figure 7.1 Subdivision of the domain into separate networks for the model
problem in 2-D (upper plot) and in 3-D (lower plot). In this example every
subdomain of the 2-D problem consists of 4 networks. Every subdomain of
the 3-D problem consists of 6 networks. The networks in the front lateral
boundary are not shown.

It is remarked that the intersection points can also be determined from the
networks on the outer boundaries only. These networks connect smoothly and
only an interpolation at the horizontal coordinates of the interface is needed.
In both ways information from both sides of the interface is used.

Grid motion

The treatment of the interfaces with respect to grid motion is also the same as
the treatment of the inflow and outflow boundaries. As already mentioned in
Section 7.2.1, the interfaces drift along with the free-surface collocation points
by using velocities extrapolated to the free surface. A difficulty associated
with this approach is that at t = 0, the interface positions have to be chosen
at a certain distance from network intersections connected with objects and
changes in bottom geometry, see e.g. Figure 7.7. The bar consists of three
bottom networks. This difficulty also applies to the outer lateral boundaries
but as interfaces are usually chosen closer to the middle of the domain, special
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attention has to be paid to this.
Actually, the grid motion of the interfaces is not necessarily required in

the time marching scheme since the interfaces are only used for the solution
of Laplace’s equation. But then interfaces have to be constructed anew every
time level based on the positions of the (moving) collocation points of the outer
boundaries. This is not an easy task because it requires more control over these
collocation points. In the present implementation the motion of the grid is
controled on the subdomain level.

Related to this, is the discretization of the tangential derivatives needed in
the time integration of the free-surface collocation points. Because of the net-
work structure, one-sided discretizations are used for the collocation points near
the interfaces. For these points two-sided information for the tangential deriva-
tives is available from the collocation points at the other side of the interfaces,
similar to the information required for the determination of the intersection
points. The use of two-sided discretizations is not necessarily better in this case,
because other computational molecules would be used for the time integration
than for the solution of Laplace’s equation. It is believed that consistency in
discretization of the various parts of the numerical method is important for
the stability of the method. Closer study of this aspect is recommended since,
generally, two-sided discretizations are prefered over one-sided discretizations.

A last remark is made about the boundary conditions on the interfaces. In
the present implementation the solution from the previous time level is saved
and used as an initial guess for the boundary conditions on the interfaces. It
may be useful to integrate φ on the interfaces with for example a Sommerfeld
condition to obtain a better approximation on the next time level. The material
derivative based on the grid velocity for the interface collocation points can be
used.

Stop criterium

The stop criterium for the iterative process in the domain decomposition method
is based on the jump in the boundary conditions over the interfaces. The it-
erative process is stopped if the differences of φ and ∂φ

∂n
over each interface are

smaller than certain values δD and δN respectively. (Because at each iteration
step either φ or ∂φ

∂n
is given the same value at both sides of the interfaces, only

the jump in the variable to be solved needs inspection.) The values of δD and
δN have to be chosen of the same order of accuracy as the local discretization
error of the numerical method. If they are chosen too small, even the numeri-
cal solution of the converged boundary value problem will not satisfy the stop
criterium. The most critical part of the numerical method with respect to the
stop criterium is the accuracy of the solver of the system of linear equations. It
was found that in all computations considered in this thesis a residual of order
10−7 for the solution of the system of linear equations is sufficient when using a
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maximum jump of 10−7 in the boundary conditions over all interfaces. Better
guide-lines should be formulated taking into account spatial resolution and the
order of magnitude of φ and ∂φ

∂n
.

Due to the treatment of the interface networks similar to the treatment of
lateral networks in a one-domain problem, the actual coding of this implementa-
tion is rather easy. It resembles the original code with the following differences:

• Subroutines called for a problem on the subdomain level, such as the
determination of all influence coefficients of a subdomain or the solution
of the system of linear equation, are called in a loop over all subdomains.

• Extra information is needed to determine how subdomains connect.

• Synchronization points are introduced for the updating of the boundary
conditions in the domain decomposition process and to make sure that
geometrical data of the two networks of every interface are identical.

The coding of the program will be described in more detail in Chapter 8 in
relation with implementations for parallel systems.

7.3 Accuracy and stability

As was already shown by Romate [58], the accuracy of the panel method is lower
near the network edges. By introducing subdomains, new network edges are
introduced and the question is how they affect local as well as global accuracy.
Another property which is sensible to the use of network edges is the stability of
the method. Broeze has paid attention to stability properties of the numerical
method. In Chapter 4 we have extended these studies by considering two-
dimensional computations over large simulation times. Attention was paid to
the intersection with and the motion of the lateral boundaries.

With the use of the domain decomposition method extra vertical bound-
aries are introduced and accuracy is decreased near the interfaces. Therefore
the stability of the method is reconsidered here for computations with the use of
domain decomposition. The stability of three-dimensional computations using
domain decomposition is not studied in this section, but will be demonstrated
with some examples in Section 7.5. As also mentioned in Chapter 4, similar
computations in three dimensions at present require too much CPU-time to be
analyzed easily.

For examination of the stability of the two-dimensional method using do-
main decomposition we use the same configuration as in Section 4.5 and again



Application of domain decomposition 87

examine the simulation time that can be reached. The results therefore corre-
spond to the ones tabulated in Table 4.1. In the computations presented here
the classical fourth-order Runge-Kutta method is used.

In Table 7.1 results on the following configurations are tabulated. The rows
labelled by ‘1 SD’ and ‘2 SD’ contain the results for one and two subdomains
respectively. The row labelled by ‘2 SD, FG’ contains the results of the two-
subdomain computation with a resolution on the free surface twice as high.
Finally in row ‘1 SD, 5 NW’ the result for a configuration consisting of one
(sub)domain and with the free surface consisting of two networks is given. With
this configuration the effect of using one-sided discretizations in the absence of
interfaces is examined.

Table 7.1 Stability of the method for configurations consisting of one and
two subdomains

H = 5.0 m H = 5.5 m

1 SD 1074.60 s ≈ 164.1 T 638.80 s ≈ 98.8 T

2 SD 222.05 s ≈ 33.9 T 107.95 s ≈ 16.7 T

2 SD, FG 863.75 s ≈ 131.9 T 248.55 s ≈ 38.4 T

1 SD, 5 NW 41.00 s ≈ 6.26 T 40.95 s ≈ 6.33 T

From Table 7.1 it is clear that the stability of the computation is affected
by using domain decomposition. Still the number of wave periods that can be
simulated is reasonably large for this highly nonlinear wave. The break-down
of the computation using two subdomains is caused by the irregular geometry
which occurs as the error in computed free-surface elevation slowly grows in
time. This growth is illustrated in Figure 7.2, page 88. Using a finer grid the
computation is more accurate and much more stable.

Remarkably the computation in one domain using two networks at the free
surface is much less stable. Closer observation shows that the Laplace problem
with domain decomposition is solved more accurately than the Laplace problem
using two networks at the free surface. Therefore the latter computation is less
stable as is argued next.

The conclusiveness of the results of Table 7.1 with respect to accuracy and
stability for more general computations is rather small because the results only
involves two-dimensional computations with only two subdomains. It should be
noted though, that the investigated model problem is highly nonlinear which
puts high demands on robustness. Still the number of wave periods over which
the computation can be continued accurately is reasonably large. The meaning
of this result for more general computations strongly depends on the cause of
the reduction of accuracy and stability when using subdomains. The following
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Figure 7.2 Maximum absolute error in computed free-surface elevation for
H = 5.0 m during the time interval [0, 200] for the computations 1 SD (thin
line), 2 SD (thick line), 2 SD, FG (thin dashed line) and 1 SD, 5 NW (thick
dashed line).

hypothesis is put forward.

The use of subdomains introduces relatively large truncation errors near the
interfaces in both the solution of the Laplace problem and the time-marching
scheme due to the one-sided discretizations. Also an error due to the (finite) stop
criterium of the iterative process is introduced. This error is negligible compared
with the truncation error for the problem discussed here. The truncation errors
are generated at every time level, propagate through the domain and are only
partially absorbed at the lateral boundaries. The maximum absolute error
therefore slowly grows in time until the free surface is disturbed to a level
where no stable computation is possible.

When using many subdomains, every interface is a source for the generation
of errors. The maximum absolute error in a domain of fixed length can therefore
be expected to be approximately proportional to the number of subdomains. If
this is the case, then there is a maximum to the number of subdomains which
can be used if one has to obtain a certain specified accuracy. This number also
depends on the length of the simulation. An example of the dependence between
generated error and number of subdomains will be shown in Chapter 10.

The hypothesis that errors are mainly generated locally near the interfaces
can be investigated by increasing the resolution locally around the interfaces,
so that the truncation error is equally large over the total domain. A prob-
lem with the present implementation is that due to the Lagrangian movement
of the free-surface collocation point, this higher resolution is smeared out in
the time-domain through the use of the grid correction algorithm. A mixed
Eulerian-Lagrangian description is needed then to control the grid near the
interfaces. An indication that locally increasing the resolution stabilizes com-
putations with domain decomposition can be deduced from the computation
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with an overall finer grid.

In three-dimensional computations an additional difficulty lies in the move-
ment of the interfaces. In regions where the velocity varies in the horizontal
directions, the free-surface grid distorts. Examples are shown in Figures 7.6
and 7.10. The interfaces, which are connected with the free-surface grid, can
be chosen to move with a uniform velocity over the total interface or with ve-
locities uniform over each vertical row of panels. In the former case the proper
connection with the free-surface grid is lost. In the latter case the interface
itself distorts as well, which influences the iterative process. Examples will be
shown in Section 7.5.

The grid on the outer boundaries distorts in the same way as the grid on
the interfaces. But since the largest variations normally occur in the middle of
the domain, the distortion will be larger on the interfaces.

7.4 Efficiency

The efficiency of domain decomposition depends on many factors and is there-
fore not easy to predict in advance. From one point of view the relation between
the number of subdomains and computational costs is rather simple and that is
when all subdomains have a fixed constant length and a fixed number of panels
per subdomain. The length of the total domain is proportional to the number
of subdomains then, so that also the required memory is proportional to the
length of the domain. If the interfaces are not too close together, the iterative
processes on the various interfaces are independent. The number of required
iterations then increases with increasing number of subdomains but converges
to a fixed value. This implies that the computational effort for the solution
of Laplace’s equation per subdomain has an upper limit independent from the
number of subdomains used.

The computational effort per subdomain for other algorithms, such as the
time integration, is independent from the convergence of the iterative process.
So the total required CPU-time per time step per subdomain also has an upper
limit independent from the number of subdomains used. Therefore the required
CPU-time per time step is proportional to the number of subdomains and com-
putational costs of the numerical method for nonlinear water waves increase
only linearly with an increase of the length of the domain. Note that on larger
domains a computation is continued over larger time intervals generally.

From a more practical point of view, domain decomposition is applied to
a domain of given size and the question is what the relation is between com-
putational costs and number of subdomains. If this is clear then an optimum
subdivision can be chosen, with respect to some relevant criteria. In this section
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we follow this approach.
As already mentioned in Chapter 5 several aspects are of importance for

the efficiency of the domain decomposition method. On the one hand extra
panels are required and Laplace’s equation has to be solved more than once.
On the other hand the computational costs of some important parts of the
method depend superlinearly on the number of panels per subdomain, which
favours the use of small subdomains. Computational costs in terms of required
CPU-time and required memory are described by appropriate models.

The model described here involves only those parts of the method for which
simple dependencies of the computational costs on the number of panels can
be determined. For example for the solution of the system of linear equations
with Gaussian elimination there is a cubic dependence between the number of
floating point operations and the number of unknowns. With the use of iterative
solvers the required number of floating-point operations strongly depends on the
problem, the solver, stop criteria, etc., see Romate [61]. Thus iterative solvers
are therefore not considered in the model. Also other parts of the method which
have been optimized with respect to efficiency but for which the dependence
is very hard to determine are not considered in the model. The effect of these
optimizations and of the use of iterative solvers is described qualitatively in
Section 7.4.3.

Furthermore do CPU-times of course depend on the type of computing sys-
tem and the performance of the system. With the models presented here it is
still possible to obtain some insight into the efficiency of the domain decompo-
sition method.

7.4.1 Model for required memory

The required memory is mainly determined by two-dimensional arrays con-
taining the influence coefficients. In our numerical method we use three such
arrays; one for the dipole coefficients, one for the source coefficients and one
to store the system matrix A. The size of these arrays for subdomain m is
equal to N2

m in which Nm is the number of panels in subdomain m. Also K
= 225 one-dimensional arrays with size Nm are needed per subdomain in the
three-dimensional method to store other variables and workspace. For the two-
dimensional method this number can be reduced to a value K = 117. Besides
the arrays of size Nm there are a number of variables and small arrays which
only form a small contribution and which are not taken into account. The to-
tal number of required real variables in subdomain m is therefore estimated as
3N2

m +KNm.

In the following we start by considering a one-domain problem and we derive
a formula for the required memory as a function of the number of subdomains
assuming that the subdomains are of the same size. The geometry of the do-
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main is similar to those of the model problems considered so far. We make the
distinction between networks which are directed along the direction of the sub-
division (free-surface and bottom networks in 2-D and additionally some lateral
boundaries in 3-D) and networks which are perpendicular to the direction of the
subdivision (inflow and outflow networks in 2-D respectively remaining lateral
boundaries in 3-D and of course interface networks).

Let Ns be the total number of panels on the networks along the direction
of the subdivision and Nn the total number of panels in the other direction for
the one-domain problem. Let M be the number of subdomains. Under the
assumption that Ns can be divided by M we find that the number of panels per
subdomain NSD = Nm, m = 1 . . .M , equals

NSD = Ns/M +Nn. (7.1)

The number of required real variables in the arrays mentioned above per subdo-
main then equals 3N2

SD +KNSD and the total number of real variables equals

M(3N2
SD +KNSD) = 3N2

s /M + (6Nn +K)Ns + (3Nn +K)NnM. (7.2)

Because in general Ns ≫ Nn, the number of subdomains giving a minimum
number of required real variables is rather large.

7.4.2 Model for required CPU-time

We model the required CPU-time for the three most time-consuming parts of
the numerical method.

1. Computation of influence coefficients.

The number of influence coefficients is quadratic in the number of panels.
We assume that the computation of each coefficient requires the same
amount of CPU time. The total required CPU-time per subdomain then
equals αIN

2
SD for some coefficient αI .

2. Solution of the matrix problem.

The required CPU-time to solve a system of linear equations strongly
depends on the solver used. Here we model the use of Gaussian elimination
which requires an amount of CPU-time that is cubic in the number of
panels. Therefore it equals αSN

3
SD for some coefficient αS.

3. Parts of the method for which the number of floating-point operations
depend linearly on the number of panels.

Most parts of the method depend only linearly on the number of panels
such as the determination of geometric quantities and the time integration.
The required CPU-time per time step of these parts can be gathered in
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one expression. Again we assume that the computation of such a part
of the method requires the same amount of CPU-time for each panel.
The total required CPU-time per subdomain for these parts then equals
αLNSD for some coefficient αL.

The coefficients αI , αS and αL depend on the hardware that is used and have to
be estimated from measurements. The coefficients αI and αL are much larger
for the three-dimensional method than for the two-dimensional method because
more floating-point operations are required per panel.

The required CPU-time furthermore depends on the number of time levels
p per time step and of course on the number of iterations k of the iterative
process, added over all time levels. The total required CPU-time per time step
then equals

M(p · αIN2
SD + k · αSN3

SD + αLNSD) =
1

M2
(kαSN

3
s )

+
1

M
(pαIN

2
s + 3kαSN

2
sNn) + (2pαINsNn + 3kαSNsN

2
n + αLNs)

+M(pαIN
2
n + kαSN

3
n + αLNn). (7.3)

7.4.3 Remarks on efficiency

Some parts of the method need a more elaborate modelling than in the model
described above. Because the required CPU-time for these parts strongly de-
pends on the configuration used it is not very useful to try to extend the model
for required CPU-time. But since it mostly involves parts which are more effi-
cient than the ones described above a closer observation of the effect of using
domain decomposition is needed. In the following only a qualitative description
is given for these parts.

Number of iterations

As the studies in Chapter 6 show, the number of required iterations for the
iterative process increases with the number of subdomains. The variable k in
equation (7.3) therefore depends on the number of subdomains. It also depends
on the boundary conditions which are used as initial guess for the iterative
process. As initial guess the boundary conditions on the last time level can
be taken or boundary conditions which have been integrated according to, for
example, Sommerfelds condition.

Inverse matrix

Another direct way of solving which may be more efficient than Gaussian elemi-
nation is the use of inverse matrices to solve the equations. For a single iteration
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process we denote the subsequent matrix systems as A(l)x(l) = b(l), l = 1 . . . k
with k the number of required iterations. Because the influence coefficients only
depend on geometry only two type of matrices occur in the iteration process of
the D/D-N/N-scheme: a matrix AD when on all interfaces Dirichlet conditions
are imposed and a matrix AN when on all interfaces Neumann conditions are
imposed. The inverse matrices A−1

D and A−1
N can be used on all odd and even

steps of the iteration process respectively and therefore need to be computed
just once. The solution x(l) can be found by just performing a simple matrix-
vector multiplication. Similarly a LU-decomposition of the matrices A−1

D and
A−1
N can be employed. Especially if many iterations are needed this may be

profitable.
A drawback is that at least two extra two-dimensional arrays are needed

to store the inverse matrices. But as we shall see, memory requirements when
using domain decomposition are generally not so high so that the use of inverse
matrices is a feasible option.

Iterative solvers

For the solution of a system of linear equations many iterative solvers can be
used. Their efficiency is generally much higher than the efficiency of Gaussian
elimination, especially for large problems. For the systems of linear equations
occurring in water wave problems and solved with the panel method using the
Conjugate Gradient Squared method by Sonneveld [66], we find that it becomes
more efficient than Gaussian elimination for problems larger than about 400
panels. If the matrix system is badly conditioned, however, convergence is
not always ensured and special techniques, such as multigrid, may be required.
Domain decomposition methods also are able to improve the condition number.
In our application of domain decomposition we actually avoid the problem of
badly conditioned matrices for problems with large length-to-height ratios, by
subdividing the domain and solving the matrix system to a large extent locally
in the subdomains.

The efficiency of iterative solvers for the subdomain problems is influenced
by the use of domain decomposition in several ways. When using an iterative
solver for the system equation A(l)x(l) = b(l), the number of iterations which is
needed by the solver depends on the begin estimate for the solution x(l). This
begin estimate becomes better and better as the iterative process of the domain
decomposition method proceeds, i.e. as l increases. Therefore the number of
iterations required in the iterative solver decreases every step of the iterative
process of the domain decomposition method. The average number of itera-
tions over all steps of the iterative process is much smaller than the number
of iterations at the first step. When using Gaussian elimination the required
CPU-time for solving the system of linear equations remains constant during
the iterative process.
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There is another way in which efficiency can be gained by the use of iterative
solvers. In the first few steps of the iterative process there is no need to have
a fully converged solution of the system equation before one moves to the next
step of the iterative process. In this way a considerable number of iterations
of the iterative solver may be saved although the iterative process itself may
take more iterations. Such an approach has been studied by Tan [67] where it
is referred to as ‘inexact domain decomposition’.

Computation influence coefficients

The computation of the influence coefficients itself is a relatively expensive op-
eration because it involves the integration of complex quantities over curved
panels. If the field point xi and the panel Sj are close together it is very impor-
tant to have an accurate computation of the (nearly) singular integrals and an-
alytic expressions are used for the influence coefficients. If xi and Sj are further
apart, these analytic expressions can be approximated sufficiently by Gaussian
quadrature formulas which require much less CPU-time. The assumption that
the computation of each influence coefficient requires the same amount of time
is not valid anymore then. Broeze [13] found that the required CPU-time for
computing influence coefficients, thereby also using Gaussian quadrature, is ap-
proximately proportional to N1.5

SD. This of course depends on the criteria for
the use of Gaussian quadrature and on matters as for example geometry and
resolution.

Undisturbed subdomains

An important way of obtaining a higher efficiency, is the possibility to treat
subdomains where no or only small wave disturbances are present, separately.
This can be especially important in problems where the simulation is started
from water in rest. There are several ways to reduce CPU-times of computations
in such subdomains. We only mention two:

1. In subdomains where the geometry does not change or only changes slowly,
it is possible to use so-called ‘frozen coefficients’. With this term is meant
that the influence coefficients are not re-evaluated over a certain time in-
terval. The technique was used by Romate [58] by only evaluating the in-
fluence coefficients once per time step in the classical fourth-order Runge-
Kutta method. Broeze [13] showed that this leads to a loss of volume
and consequently to a loss of accuracy. However, if the geometry of a
subdomain only changes slowly, frozen coefficients can be used over some
specific time interval with a negligible effect on accuracy.

2. ‘Freezing’ information of course also applies to other parts of the algo-
rithm but is especially profitable for the solution of the system of linear
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equations. Profits are obtained automatically if an iterative solver is used:
In slowly changing subdomains, the solution from the previously solved
Laplace problem almost satisfies the present Laplace problem and very few
iterations are needed. Direct solvers, however, require the same amount
of CPU-time regardless of the quality of the begin estimate. A way of
reducing CPU-time then, is to pause the computation of the solution of
the system of linear equations during the iterative process, if the iterative
process has converged on the adjacent interfaces of the subdomain and
boundary conditions have not changed.

Hardware dependencies

In the model described above it is assumed that the required CPU-time for
a certain algorithm is proportional to the number of floating-point operations
required for this algorithm. In general CPU-times are influenced by other mat-
ters as for example the efficiency of adressing memory or the efficiency of vector
processing which may again depend on the problem size. In terms of the model
formulations given above this has to be accounted for by a dependence of the
coefficients αI , αS and αL, not only on the type of hardware but additionally
on the size of NSD itself. We have not done such detailed modelling here but
one has to keep in mind the dependence of the efficiency of a computing system
on the problem size.

7.5 Examples

In this section, four examples are given in which the aspects mentioned above are
studied. The first two examples show the efficiency of the domain decomposition
method, both in 2-D and in 3-D, for the model problem. Because we want to
make a comparison with the model described in Section 7.4.2 we use Gaussian
elimination and exact computation of the influence coefficients for these two
problems. Additionally the effect of the use of an iterative solver on required
CPU-time is considered.

The other two examples show the application of domain decomposition to
problems for which experimental results are available, again one in 2-D and one
in 3-D. These problems involve a specified bottom topography and therefore
also complement Chapter 6 with respect to convergence of the iterative process
in geometries with an uneven bottom.

7.5.1 Model problem in 2-D

The model problem which we consider here is the same one as discussed in
Section 7.3. But as we are now interested in applying subdivisons with many
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subdomains on the same problem, we take a domain with 256 panels on the free
surface and 128 panels on the bottom boundary allowing divisions into 2, 4, 8,
16 and 32 subdomains of equal size. Taking the same resolution of 25 panels per
wave length we obtain a domain of length 614.4 m = 10.24λ. See Figure 7.1,
upper plot, which shows the configuration with 32 subdomains.

For the number of subdomains given above, computations are performed
over 200 timesteps up to the time level t=10.0 s. The total number of iterations
per time step (including those needed on the 3 intermediate time levels) for
these computations is shown in Figure 7.3. The figure shows some remarkable
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Figure 7.3 Number of iterations k required per timestep during the compu-
tation over the time interval [0, 10] for the model problem in 2-D (upper plot)
and the model problem in 3-D (lower plot) using different number of subdo-
mains. The thickness of the lines decreases as more subdomains are used,
that is 2, 4, 8, 16 and 32 subdomains in 2-D and 2, 4 and 8 subdomains in 3-
D. The solid lines in the lower plot correspond to waveheight H = 2.5 m and
the dashed line corresponds to the 8-subdomain computation with H = 5.0
m.

features. Firstly the required number of iterations k shows a variation in time
which is seen most clearly for the problem using 2 subdomains. The variation
shows a minimum around the time levels t = 0.7, t = 4.3 and t = 8.0 s. At
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these time instances the interface is almost perpendicular to the free surface
giving the fastest convergence. In between maximum values are reached when
the free surface has a maximum slope at the intersection with the interface.
The periodicity in the time levels at which these extremes are reached and in
which the geometry of the domain is repeated again, is not equal to the wave
period T because the domain drifts in the propagation direction of the waves.
It therefore takes a time interval T̃ ≈ 7.3 s > T to obtain the same geometry of
the domain again. The variation in k is smaller for the subdivisions into more
than two subdomains because in these cases more often there are interfaces with
large slopes at their intersections with the free surface. The overall convergence
is determined by the interface with the slowest local convergence.

Secondly the figure shows an increase of the required number of iterations
at each time step with an increasing number of subdomains. This number
converges to a level of around 46 iterations using 16 subdomains but then shows
a large increase for the 32-subdomain problem. This is most probably due to the
very small length-to-height ratios for this problem. At time instances at which
the interfaces are evenly divided (for example at the initial time level t = 0) the
overall convergence is comparable with the 16, 8 and 4 subdomain division. In
between the interfaces group together because the free-surface collocation points
cluster near the wave tops. This leads to very small length-to-height ratios -
see Figure 7.4 - which shows the domain at time level t = 10 s. For these
small length-to-height ratios, convergence on the interfaces is not independent
anymore.
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Figure 7.4 Domain of the model problem in 2-D at time level t = 10 s
using 32 subdomains. The smallest subdomains have a length of around
10 m instead of the initial length of 19.2 m.

The required CPU-time for the computation as a function of the number
of subdomains is shown in Figure 7.5. Measured CPU-times are compared
with predictions from the model described in Section 7.4.2. The coefficients αI ,
αS and αL are determined from measurements on required CPU times of the
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corresponding parts of the method for the one-domain problem. The parameter
k is taken equal to the average number of iterations over the time interval
[0, T̃ ]. Because the performance of the computer system is strongly influenced
by the number of subdomains, also CPU-times are indicated which have been
corrected for the (average) performance of the system. These corrected CPU-
times are determined such that they correspond to the measured performance
of the computer system for the one-subdomain problem using the same solver.
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Figure 7.5 Measured CPU-times over the time interval [0, T̃ ] using 1, 2, 4,
8, 16 and 32 subdomains in the model problem in 2-D and 1, 2, 4 and 8 sub-
domains in the model problem in 3-D. Crosses indicate computations using
Gaussian elimination and circles indicate computations using CGS. Symbols
which are printed thinly indicate CPU-times that are corrected for the per-
formance of the computing system. The solid lines indicate the required
memory and the dashed lines indicate the prediction for required CPU-time
based on the model. In cases in which the thin symbols can not be observed,
the thin and the thick symbols coincide.

The following observations are made:

• The CPU-times for the one-domain problem are almost the same when
using Gaussian elimination and CGS. Closer observation of the measured
CPU-times shows that both solvers take the same amount of CPU-time
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and that the computation using CGS reaches a higher performance than
the computation using Gaussian elimination for this number of panels.

• For the computations using Gaussian elimination, the CPU-times for the
subdivisions are larger than the CPU-time for the original one-domain
problem. This is partially due to the relatively poor performance of the
computer system when using domain decomposition. If the results are
corrected for the performance of the system, CPU-times are found which
are smaller than for the one-domain problem, except for the two-domain
problem. The corrected results are close to the predicted CPU-times.

The relatively poor performance is related to the many memory references
which have to be made in the two-dimensional arrays representing the
source and dipole coefficients when using domain decomposition. In the
present implementation these arrays are read every iteration step.

• For the computations using CGS, reductions in CPU-time are obtained
when using 4, 8 and 16 subdomains. For all subdivisions, except the two-
subdomain problem, the performance of the system is again smaller than
for the one-domain problem.

• The computations using CGS require less CPU-time than the correspond-
ing computations using Gaussian elimination with the same number of
subdomains. The corrected results, however, only show small differences.
Because the corrected results for the computations using CGS are related
to a higher performance than the corrected results for the computations
using Gaussian elimination, this may imply that less floating point oper-
ations are required for the computations using Gaussian elimination.

• The memory required for these computations is largely decreased when
using domain decomposition.

This model problem is not representative. for more general wave problems.
In a way it is a worst-case example with respect to required CPU-time because
the domain is relatively small. In Chapter 10 a problem will be presented in
which the domain is about one hundred wave lengths long. Also the computed
wave is highly nonlinear which requires many iterations. Furthermore waves
are present in all subdomains. In subdomains with only small disturbances less
iterations of an iterative solver are required. Finally it is remarked that the
resolution is moderately low. With a higher resolution reductions in required
CPU-time when using subdomains are larger.

7.5.2 Model problem in 3-D

The model problem in 3-D that is treated next is similar to the model problem
in 2-D described in Section 7.5.1. Except for the waveheight the same wave
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conditions are used. Because the three-dimensional model requires much more
CPU-time than the two-dimensional one, a domain with a smaller length has
been chosen which is only one quarter of the length of the domain of the model
problem in two dimensions, allowing up to 8 subdomains. The configuration
used here furthermore differs on the following points.

• The same resolution of 25 panels per wave length has been chosen on the
free-surface network in both directions. Because grid lines have to connect
in the three-dimensional model the resolution on the connecting lateral
boundaries and on the bottom is the same as on the free surface. The
resolution in the z-direction has been reduced from 10 to 5 panels.

• The time over which is simulated is again taken equal to 10 s but the time
step is increased to 0.25 s in order to reduce computational costs. On the
lateral boundaries the analytical solution is imposed because it allows a
larger timestep than Sommerfeld’s radiation condition.

• The waveheight has been taken equal to 2.5 m instead of 5.0 m in order to
reduce the total computational costs. For the investigation of the number
of iterations the waveheight H = 5.0 m is only used for the 8-subdomain
problem. The direction of propagation is under an angle of 30o with the
x-direction.

The number of required iterations is shown in the lower plot of Figure 7.3.
It shows the same characteristics as the upper plot. For the 2- and 4-subdomain
problem the number of required iterations is approximately equal to the corre-
sponding numbers in 2-D although the minimum numbers for the 2-subdomain
problem are smaller in 2-D.

The number of required iterations is significantly larger for the 8-subdomain
problem with H = 2.5 m compared with the 2- and 4-subdomain problem.
For H = 5.0 m almost the same number of iterations are needed as in the 2-
D computation with 32 subdomains. This seems to contradict the observation
made in Section 6.3.3 that convergence is better if waves propagate more oblique
to the interface. But since the interfaces move along with the free-surface grid,
the interfaces distort which influences the convergence negatively. See Figure 7.6
in which the domain at t = 10.0 s is shown.

Figure 7.5, right plot, shows required CPU-time and required memory to-
gether with predictions based on the models of Sections 7.4.1 and 7.4.2 for the
present three-dimensional computations. The following observations are made:

• The CPU-time for the one-domain problem is much smaller when using
CGS then when using Gaussian elimination due to the large number of
panels (4090) for this three-dimensional problem even though the perfor-
mance of the Gaussian elimination solver is much higher than the perfor-
mance of CGS. This latter statement is also true for the number of panels
used in the subdivisions although differences are smaller there.
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Figure 7.6 Domain of the model problem in 3-D at time level t = 10 s
using 8 subdomains. Again the networks of the front lateral boundary are
not shown.

• For the computations using Gaussian elimination, the CPU-times for the
subdivisions are smaller than the CPU-time for the original one-domain
problem. Contrary to the two-dimensional results the performance for
these computations increases, because for the large number of panels used
here, the performance of the Gaussian elimination solver is better than of
the other operations. Using domain decomposition it is called many times.
If the results are corrected for the performance of the system, CPU-times
are found which are more in line with the prediction. Still less CPU-time
is required except for the two-subdomain problem.

• For the computations using CGS, reductions in CPU-time are obtained
in all cases up to a factor 3 when using 8 subdomains. The performance
is hardly affected so that it can be concluded that the number of floating
point operations is decreased.

• The memory required for these computations is largely decreased when
using domain decomposition.

The remarks made in Section 7.5.1 on the implications of the results for this
model problem for more general problems in two dimensions also apply to the
results presented here.

7.5.3 Waves propagating over a bar in 2-D

As a first example of applying domain decomposition in a time-domain computa-
tion with an uneven bottom we consider the simulation represented in Figure 7.7
which includes an underwater bar. The point of interest with respect to wave
propagation is the generation of higher frequency components of the incoming
wave by the underwater bar. This configuration was also used by Broeze [13]
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who compared his results with experimental results reported by Beji and Bat-
tjes in [5]. Here we first discuss the application of domain decomposition. Only
a small remark about the comparison with experiments, repeated by Luth [49],
is made thereafter. In the present study computations were done using 1, 2, 4
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Figure 7.7 Domain for the simulation of waves over an underwater bar at
t = 16.0 s.

and 8 subdomains. At the start of the computation interfaces are distributed
evenly over the domain which implies that the 2 subdomain problem has an
interface located at x = 15.0 m on the downstream slope (1:10) and the prob-
lems using more subdomains additionally have interfaces on the upstream slope
(1:20). The drift in the simulated wave is small so that during the computation
the interfaces do not drift far away from their initial position.

The 1-domain problem has a total of 593 panels. The subdivisions have
approximately the same amount of panels on the outer boundaries and 8 pan-
els for each interface network. The computations have been done using the
CGS-solver and the algorithm using both analytical expressions and Gaussian
quadrature to compute the influence coefficients. Therefore no comparison is
made with the model for required CPU-time. The computations were also done
on a Pentium/90 PC under DOS.

We first consider the number of required iterations. For the divisions into
2, 4 and 8 subdomains we have plotted the index of the time step against the
number of required iterations per time step, see Figure 7.8.

It can be seen that as waves enter the domain, the number of iterations
increases, which is due to the increased asymmetry near the interfaces. The
increase in the case of 8 subdomains becomes so large that it exceeds the im-
posed maximum of 20 iterations for a single Laplace problem after 234 time
steps. The variation in the case of 2 subdomains is larger than in the case of 4
subdomains.

Results on required CPU-time and memory are given in Table 7.2.
A considerable speed-up can be noticed when using a PC in the case of 4 sub-

domains. For the Cray-computer the speed-up is not so spectacular. Again this
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Figure 7.8 Number of required iterations k during the simulation using 2,
4 and 8 subdomains.

is related to the relatively slower performance of the Cray on memory references
in two-dimensional arrays representing the source and dipole coefficients.

Finally some remarks can be made on the accuracy of the results. Firstly it
is remarked that the computed wave heights at the positions were measurements
were taken, up to x = 23.0 m, are hardly affected by the application of domain
decomposition. The results of the 4-subdomain problem show only a small phase
error compared with the results of the 1-domain problem. The corresponding
time signals of both computations are therefore hardly discernible.

In the experiment by Beji and Battjes [5] the depth decreases from x = 18.95
m onwards with a 1:25 slope, whereas in his computations, Broeze [13] used a
flat bottom there. Therefore no comparisons were made by Broeze for stations
beyond x = 17.3 m. In the experiment by Luth [49] this part of the bottom is
flat and comparisons can be made there as well. Results of these comparisons
are reported by Dingemans [23], Section 5.9. It was found that the agreement
between computation and experiment as shown by Broeze for the stations x =
5.7, 12.5, 14.5 m and 17.3 m, is comparable with the agreement found in the
present computations for the stations x = 19.0, 21.0 and 23.0 m. In comparison
with a number of Boussinesq models and a Hamiltonian model it was found
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Table 7.2 Computational requirements for different number of
subdomains.

No. of CPU-time CPU-time Required memory
subdomains on PC (h) on C98 (min) (MWord)

1 21.51 22.00 1.729
2 19.51 20.16 1.289
4 7.84 13.60 1.088
8 − − 1.049

that the present results are closer to the experiment.

7.5.4 Waves propagating over a shoal in 3-D

In the last example of this chapter the domain decomposition method is applied
to a three-dimensional configuration already used by Broeze [13] (Section 11.2),
with an uneven bottom. The configuration consists of a 1:50 slope on which
a bank is situated, see Figure 7.9. Waves fall in under an angle of 20o with
the slope. The wave period is 1 s and the wave height near the wavemaker
is 4.64 cm. The configuration originates from experiments performed at Delft
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Figure 7.9 Domain of the shoal-problem at t = 9.26 s in the computation
using 4 subdomains. The networks in the front lateral boundary are not
shown. Waves enter the domain from the right.

Hydraulics described by Berkhoff et al. [7], see also Dingemans [23]. As waves
propagate over the shoal, refraction effects emerge and waves focus behind the
shoal.

In the computations presented here we only consider subdivisions into 4
subdomains in the y-direction (as shown above) and the x-direction. The rela-
tion between number of subdomains and convergence of the iterative process or
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efficiency is not studied here. The computations are only discussed with respect
to stability.

The computation with the subdivision in the y-direction and the interfaces
perpendicular to the initial propagation direction of the waves breaks down
after 9.26 s. At this time level the iterative process diverges on the interfaces
located near y = 13.1 m and y = 16.5 m. The increase in jump in the computed
value of φ over the interface per iteration step is largest on the interface behind
the shoal (amplification factor ǫD ≈ 1.28).

It is not clear what causes the divergence of the Laplace problem at this time
level. Most probably it is related to the distortion of the grid on the interfaces,
especially on the interface near y = 13.1 m. Due to the large variation of wave
height in the region behind the shoal, the variation in horizontal velocities of
the free-surface grid is large which causes the grid to distort. As a consequence
the interface located behind the shoal distorts as well.

The distortion of the grid on the interfaces is much smaller in the compu-
tation with the subdivision in the x-direction and the interfaces parallel to the
initial propagation direction of the waves. This computation can be continued
over the total time interval [0, 16]. The number of required iterations varies
only slightly and does not exceed 8. The free-surface grid of this computation
at t = 16.0 s is shown in Figure 7.10.
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Figure 7.10 Free-surface grid of the shoal-problem at t = 16.0 s in the
computation using a subdivision in the x-direction into 4 subdomains. Light
coloring indicates positive elevation, dark coloring indicates negative eleva-
tion.

In conclusion it can be said that the iterative process of the domain de-
composition method needs further study for cases with uneven bottoms. An
appropriate approach to these problems is the use of an Eulerian description
to avoid the distortion of the grid on the interfaces. For the case presented
here it is nevertheless possible to successfully apply the domain decomposition
method.
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7.6 Discussion

So far in this chapter, we have studied different aspects of applying domain
decomposition in the time-domain numerical method for nonlinear water waves.
The example presented in Section 7.5.3, shows that domain decomposition can
be succesfully applied because it reduces computational costs without affecting
accuracy. A more general statement about the usefulness of the implemented
domain decomposition technique is however required. Therefore we discuss the
several aspects in their mutual connection and in relation to more practical
computations in this section.

The usefulness of applying domain decomposition can be considered in sev-
eral ways. One can either have the purpose of minimizing computational costs
for a given water wave problem or have the purpose of enlarging the range
of water wave problems that can be handled. Another purpose may be to be
able to use a larger resolution for a given water wave problem. These different
approaches are discussed in the following.

7.6.1 Minimizing computational costs

In all the examples presented so far computational costs were considered as
a function of the number of subdomains for a given water wave problem. It
was shown in these examples that an optimum subdivision exists for which the
required CPU-time is minimal. Another example of minimizing computational
costs for a given water wave problem is shown in Chapter 9. We formulate some
criteria that can be followed consecutively on which to determine the optimum
number of subdomains for a general water wave problem.

1. The relation between the number of subdomains and required memory can
be determined fairly easily. It indicates the range of possible subdivisions
for a given available memory capacity.

2. The relation with required CPU-time is much harder to determine. First
based on the geometry of the domain an estimation has to be made on the
number of required iterations per time step as a function of the number
of subdomains. There is a minimum length-to-height ratio of the subdo-
mains for which convergence on the interfaces is mutually independent.
Subdivisions for which convergence on separate interfaces is not indepen-
dent may lead to a diverging iterative process and should be avoided.

3. The minimum length-to-height ratio of the subdomains is related to the
maximum drift of the interfaces and to the degree of asymmetry around
the interfaces and thus to the wave conditions of the simulated wave field.
For waves propagating over an even bottom only the maximum slope of
the free surface is of importance. The example in Section 7.5.1 shows
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that the minimal length-to-height ratio should be around 2 for the almost
highest wave. The dependence of this minimum on other wave conditions
and bottom geometry has to be investigated further.

4. Next the relation between number of subdomains and the mean value of
the required number of iterations has to be determined. Again this is
related to wave conditions and bottom geometry.

5. Based on an estimation of the required number of iterations and on an
estimation of the parameters αI , αS and αG predictions can be made
on required CPU-time using the model in Section 7.4.2. This does not,
however, give a prediction when using parts of the algorithm which may
be more efficient than the modelled ones.

6. A number of parameters mentioned so far, required for this prediction are
quite uncertain. Better estimates can be obtained by executing computa-
tions over only a few time steps.

7. Next it has to be determined which subdivisions do not lead to an un-
acceptable loss of accuracy. Loss of accuracy is related to the number of
subdomains and the duration of the simulation.

8. These subdivisions may become acceptable after increasing the resolution.
This may be an option if the loss of accuracy can be avoided by locally
increasing the resolution. Predictions on required CPU-time then have to
be corrected for the increase of the number of panels per subdomain.

From these criteria we see that many aspects of the efficiency of domain de-
composition are not clear yet. Still it may be helpfull to determine an efficient
subdivision based on the criteria mentioned above. Comparison with similar
computations done before may further improve the predicted CPU-times.

7.6.2 Enlarging the domain

Another way of considering the usefulness of domain decomposition is from
the viewpoint of enlarging the domain. This way of applying the domain de-
composition technique has already been discussed in Section 7.4 consedering
subdomains of fixed length-to-height ratio. It was argued that in this case the
computational costs for many subdomains increase at most linearly as a function
of the number of subdomains. determined for moderately small numbers

Enlarging the domain, by adding subdomains of fixed length-to-height ra-
tio, we obtain the linear dependence between computational costs and number
of collocation points which was sought for in the problem statement in Sec-
tion 5.1. From a more general perspective the domain decomposition method
can be viewed as a way to use the observation that in water wave problems with



108 Chapter 7

domains with large length-to-height ratios, the information on one side of the
domain is hardly related to the information on the other side of the domain.
This observation applies to both the computation of the influence coefficients
and the solution of the system of linear equations for the one-domain problem.
With respect to the computation of the influence coefficients, the domain de-
composition method automatically avoids the computation of those coefficients
which can be neglected. With respect to the solution of the system of linear
equations, the domain decomposition method implicitly rewrites the system of
linear equations into a block-structured matrix with a much better condition
number.

7.6.3 Increasing the resolution

If computations for a given water wave problem with a fixed subdivision are en-
hanced by increasing the resolution then convergence characteristics of the iter-
ative process are hardly influenced. But as the computational costs of required
memory and CPU-time per subdomain depend superlinearly on the number of
panels per subdomain, the total of these computational costs will also increase
superlinearly. Other techniques are needed then to efficiently solve the subdo-
main problems, especially the part in which the system of linear equations is
solved.

7.6.4 Cutting up irregular geometries

An important objective of domain decomposition methods frequently stressed in
literature, is to reduce the geometrical complexity of a domain by cutting it up in
regular geometries. The subdomain problems may be easier to solve or specific
numerical methods can be applied like spectral methods. This aspect has not
been discussed in the present application so far because the domains which have
been discussed up to now, only involve singly connected domains with relatively
large length-to-height ratio. An interesting example of a configuration in which
the domain is different to this respect, is a configuration with a ship near a
quay. The motion of the water between ship and quay has great influence
on the motion of the ship. This area, however, only forms a small part of
the domain and has a small length-to-height ratio. Such areas require special
treatment when applying domain decomposition.

7.7 Conclusions

In this chapter we have studied the application of the domain decomposition
method for Laplace’s equation to the numerical method for nonlinear water
waves. Because we require that Laplace’s equation be solved independently
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in each subdomain, the networks are not allowed to belong to more than one
subdomain in the time-independent part. By adopting the original one-domain
implementation for each subdomain in both the time-independent and the time-
dependent part, this constraint is met and the organization into networks is the
same throughout the total numerical method.

As a consequence one-sided discretizations are used near the interfaces,
which affects accuracy and stability. With the use of domain decomposition the
maximum error in free-surface elevation slowly grows in time which is believed
to be caused by the relatively large local truncation error near the interface.
Numerical tests have been performed to examine this hypothesis. In three-
dimensional problems an additional difficulty lies in the distortion of interfaces
when the velocity has a large variation along the interfaces.

The efficiency of the domain decomposition method for a given problem is
easily determined for the required memory but it is hard to predict required
CPU-times. By considering some examples in both 2-D as in 3-D it was shown
that large reductions in computational requirements can be achieved when using
domain decomposition. Although clear guide-lines are not given it is expected
that reductions can be substantial, especially for large problems.

With the domain decomposition method, the computational costs of the
panel method and consequently of the numerical method for nonlinear water
waves per time step, can be made to depend linearly on the number of colloca-
tion points by using subdomains of fixed size.
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Parallel computing

8.1 Introduction

The domain decomposition method as described in Chapter 7 introduces a sub-
division of the computational work which is very suitable for parallel computing.
The computation of the influence coefficients in each subdomain is independent
of the computation of the influence coefficients in other subdomains. Also the
solution of the systems of linear equations in each subdomain can be determined
independently at each iteration step. These algorithms require almost all of the
computational effort and therefore a high efficiency can be expected from the
use of a parallel system.

The problem, however, with employing a system of parallel processors lies in
those parts of the computational model which can not be done independently.
This, in general, decreases the efficiency of the system. An obvious example
here is the updating of the boundary conditions on the interface for which
information from neighbouring subdomains is needed. Also some algorithms
of the time-dependent part of the numerical method, such as the movement of
the interfaces along with the free-surface collocation points, require data from
neighbouring subdomains.

In this chapter we study some ways in which the numerical method can be
parallelized and we show results of several parallel systems for some nonlinear
wave problems. The aspects of parallelizability and efficiency are studied in rela-
tion to the number of subdomains. The parallel computation of the subdomain
problems is a rather coarse grained parallelization in contrast to for example the
parallel computation of the influence coefficients or the parallel solution of the
system of linear equations for one subdomain. Such a parallelization may very
well lead to a speed-up but since emphasis is on the use of domain decomposition
we only consider the parallelization based on the subdomain division.

This chapter is divided as follows. In the continuation of this section first
a small outline is given of the purpose of parallel computing in general and
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some types of parallel systems. In Section 8.2 we present some parallel imple-
mentations of the numerical method. In Section 8.3 results are presented of
computations on a SGI Power Challenge with 8 processors and a cluster of 5
HP workstations. Finally in Section 8.4 the results are summarized.

8.1.1 Purposes of parallel computing

In contrast to the domain decomposition method itself, parallel computing does
not in general reduce the number of required floating point operations. Using a
parallel system of processors the floating point operations are divided over the
processors. For a given problem the number of floating point operations may
even be increased to obtain an efficient use of the parallel system. But then
what are the purposes of parallel computing?

The purpose of parallel computing is related to the aspect of computational
costs and these again can be defined in several ways depending on the wishes
of the user or the provider of the available computing system. We distinguish
the following purposes:

• From the viewpoint of the user the purpose can be to have results as
quickly as possible. This is generally indicated by the wall-clock time
which is the duration of the computation from the beginning to the end.
In our present study this boils down to finding the optimal number of
subdomains and the optimal number of processors to have a minimum
wall-clock time for a given water wave problem.

• From the viewpoint of the provider of a parallel system the purpose can
be to have a minimum load of the system such that it is available to as
many users as possible. This can be expressed, for example, in terms of
the user time which is the time a processor is not available to other users.
For our problems the purpose would then be to find the optimal number of
subdomains and the optimal number of processors to achieve a minimum
total user time over all processors.

• From the viewpoint of both the user and the provider the purpose can be
to have a minimal memory load of the system.

• Other purposes can be expressed in minimizing a cost function which
involves both wall-clock time and total user time and memory load. Also
other costs can be incorporated as for example costs for hard disk storage.

The study in this chapter is mainly aimed at determining the user time overhead
and finding the minimum wall-clock time for a given water wave problem.
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8.1.2 Parallel systems

Parallel systems of processors can be divided into two important classes of sys-
tems: ‘shared memory systems’ and ‘distributed memory systems’. In a shared
memory system all processors address the same physical memory whereas in a
distributed memory system every processor has its own memory banks. It is ob-
vious that in a shared memory system synchronization of processes is especially
important because the (shared) memory can be adressed by multiple processors
at the same time. On the other hand it is clear that communication between
processors is an important issue for distributed memory systems. Therefore
these systems are sometimes also referred to as ‘message passing systems’.

Another characterization of parallel systems of processors can be made in
terms of the number of processors. In shared memory systems the number of
processors is limited due to the physical restrictions in connecting the processors
to one central memory. In distributed memory systems the number of processors
is unlimited in principle. But because for a practical system the communication
lines between processors have to be limited as well, there is a certain limit
to the number of processors of these systems as well. At present the largest
shared memory sytems suitable for computational fluid dynamics consist of 64
processors, whereas the largest distributed memory systems hold up to 16384
processors.

The programming of a code for a parallel system can also be quite different
for both systems. For a shared memory system it is most natural to have
one program in which parts that can be performed in parallel are indicated
explicitly. For a distributed memory system it is most natural to have (copies of)
programs running on all processors, with built-in message passing instructions.
Both types of parallel programming are strongly in development and become
more and more easy to use. Next we consider the strategy which is normally
followed to parallelize a code and we discuss some tools for actually doing this.
In Section 8.2.2 we then discuss some parallel implementations of the numerical
model for nonlinear water waves.

8.1.3 Parallelization strategy

A natural approach towards parallelization is to search for those parts of the
algorithm which can be performed independently from each other and which
are performed sequentially. Most often these parts are coded within loops and
for an efficient parallelization the largest work loops are searched for first. If not
all of the computational work is parallelized then the efficiency of the parallel
system with respect to wall-clock time is strongly affected. We quantify this in
the following.

With Tp we indicate the wall-clock time which is needed to run a computa-
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tion on p processors. The speed-up Sp is then defined as

Sp =
T1

Tp
(8.1)

and the efficiency Ep as the speed-up per processor

Ep =
Sp
p
. (8.2)

If f is the fraction of the program that can be performed in parallel then
Tp = fT1/p+ (1 − f)T1 and speed-up and efficiency can be expressed as

Sp =
p

f + (1 − f)p
and Ep =

1

f + (1 − f)p
. (8.3)

This can be considered as the parallel version of Amdahl’s law. It indicates the
maximum speed-up which is to be expected for a given number of processors.
For a given fraction f the maximum speed-up equals 1/(1 − f).

With the definitions given in Section 7.4.2 it is possible to express f in terms
of total number of panels and number of subdomains under the assumptions
made there. In Section 8.3.1 measured required numbers of floating-point op-
erations will be used to determine f for the example presented there and the
corresponding maximum attainable speed-up will be computed for this case.

The actual parallelization of the loops can be done in different ways. Next
we consider some common approaches towards parallelization.

Shared memory systems; Compiler directives

Most shared memory systems are provided with compilers that support compiler
directives which indicate which parts of a code can be executed in parallel.
Three different levels for parallel execution can be distinguished: Parallellism
on job-level, on subroutine-level and on DO-loop level. On all these levels
compiler directives can be used. The presence of compiler directives forces the
compiler to write additional code to handle the parallel execution. The efficiency
of this extra code strongly depends on the ability of the compiler to reduce the
overhead to a minimum. By writing more explicit compiler directives the code
can be optimized in this respect.

Distributed and shared memory systems; Message passing

Since the 80’s message-passing libraries have been developed which contain in-
structions to transfer data from one processor to another. Two popular message-
passing libraries are PVM (Parallel Virtual Machine, [28]) and MPI (Message
Passing Interface, [53]). Both libraries can be used on many different systems.
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This is an important advantage because coding based on these libraries can
easily be transfered from one system to the other.

Message-passing instructions are used whenever processes have to be syn-
chronized. In general the use of message passing requires a careful analysis
of the data flow and is considered to be less easy than the use of compiler
directives.

8.2 Present implementations

As mentioned in the beginning of this chapter some important parts of the nu-
merical method for nonlinear waves are performed independently in the subdo-
mains and therefore a logical approach is to parallelize the method based on the
subdomain division. The implementation of the domain decomposition method
itself has already been discussed in Section 7.2.2. It was mentioned there that
numerically all subdomains can be considered as separate one-domain problems,
apart from the coupling over the interfaces and the positioning of the interfaces.
First we describe the coding of the sequential implementation in more detail.
Next we describe some possible parallel implementations.

8.2.1 Sequential implementation

The data is organized in subdomains which consist of separate sets of networks.
The subdomains are ordered following the direction of the subdomain division
and the networks are ordered per subdomain so that the networks of subdomain
1 are treated first, then those of subdomain 2 and so on. For some algorithms
only the interface networks are needed which are then treated in the same order.
The structuring of the networks themselves into panels is not relevant for the
subdomain division and is not discussed here.

Each time step of the numerical method consists of a number of intermediate
time steps which all contain the same algorithms. The order in which they are
executed is the following:

1. Determination of network intersections.

Based on the positions of the collocation points the intersection of all
networks with adjacent networks (in the same subdomain) is determined.
(DO-loop over all networks)

2. Synchronization of network intersections.

Intersections between two adjacent subdomains are represented by inter-
sections between networks in both subdomains. Because they are com-
puted independently in both subdomains the results from both network
intersections have to be averaged to obtain unique coordinates for the
intersection points. (DO-loop over all interface networks)
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3. Determination of geometric quantities.

Based on the positions of the collocation points and of the intersection
points, geometric quantities such as panel size, direction cosines and dis-
cretization weights are determined. (DO-loop over all networks)

4. Computation of influence coefficients.

(DO-loop over all subdomains with per subdomain a DO-loop over the
subdomain networks)

5. The iterative procedure of the domain decomposition.

Over a number of iteration steps the Laplace problems in the separate
subdomains are solved and coupled:

(a) Solution of the matrix problems.

Each subdomain has its own Laplace’s equation to be solved. (DO-
loop over all subdomains)

(b) Coupling of the boundary conditions over the interfaces.

(DO-loop over all interface networks)

6. Time stepping.

The time integration of the time-dependent variables consists of several
parts, but are treated as one here. (DO-loops over all networks)

This implementation is illustrated for both a one-domain problem and a subdi-
vided problem in Figure 8.1.

8.2.2 Parallel implementations

In this section we describe four parallel implementations. In the first two only
the computation of the influence coefficients and the solution of the system of
linear equations are parallelized. Both compiler directives and message passing
have been used so that a comparison with respect to introduced overhead is
possible. In the other two the complete numerical method is parallelized using
message passing.

Using compiler directives

As is clear from the overview of the sequential implementation given in Sec-
tion 8.2.1 there are many DO-loops in which the computations in the separate
subdomains are performed independently and can be executed in parallel. By
simply adding compiler directives at the call of the DO-loop the compiler takes
care of the parallel execution of the particular DO-loop.
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Figure 8.1 Illustration of the algorithms called consecutively in one inter-
mediate time step for a undivided problem (left figure) and a 3-subdomain
problem (middle and right figure). In the right figure the use of 3 proces-
sors, one for each subdomain, is indicated by separating the computations by
dashed lines. The size of the rectangels indicate the amount of computational
work.

In the implementation presented here we have only parallelized the com-
putation of the influence coefficients and the solution of the system of linear
equations as these are the parts in which most of the computational work is
done. The degree of parallelization can be increased by using compiler direc-
tives in more parts of the coding.

Because overhead is introduced by the use of compiler directives, it is inter-
esting to compare this implementation with an implementation using message
passing in which the same two DO-loops are parallelized. Implementations
using message passing are described next.

Using message passing

In the message-passing implementation a single program-multiple data approach
has been employed, where each processor performs the computations needed
in the subdomains that have been assigned to it. A master process is started
which then starts a number of slave processes on the processors in use. Message-
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passing instructions are used only at the synchronization points. Implementa-
tions differ on which processors handle which subdomains and on which (local)
synchronization points have been coded with message-passing instructions.

We repeat here that global synchronization points occur in monitoring the
convergence of the overall iterative process of the domain decomposition method
and the determination of the (adaptive) time-step size. Local synchroniza-
tion points occur for updating the interface boundary conditions in the domain
decomposition process. Because time-stepping is performed separately in all
subdomains another local synchronization point is needed to make sure that
geometrical data of corresponding panels of the two networks of every interface
are identical.

Three different implementations have been developed.

1. Partial parallelization.

In order to compare the use of message passing with the use of compiler
directives described above, a message-passing implementation has been
developed in which the same two DO-loops are parallelized as in the ap-
proach using compiler directives. In this implementation the program is
run on each processor but these two DO-loops are performed only for
the subdomains assigned to it. The computations in the other parts are
performed for all subdomains on all processors.

2. Full parallelization.

In this implementation all computations required in a subdomain are exe-
cuted only on the processor to which this subdomain is assigned. Within
this approach two different implementations can be distinguished.

(a) Message-passing instructions for the local synchronization points are
only called for subdomains that connect to subdomains assigned to
other processors (data per processor). For local synchronization of
data of adjacent subdomains assigned to the same processor, the cod-
ing of the sequential program is used. Therefore the coding of this
approach is essentially the same as the coding of the sequential imple-
mentation. This implementation has been used in the computations
presented in Section 8.3.1.

(b) Message-passing instructions for the local synchronization points are
called for all subdomains, also when they are assigned to the same
processor (data per subdomain). The coding of this approach is es-
sentially the same as the coding of the original sequential implemen-
tation without the domain decomposition technique. Compared with
the data-per-processor implementation this involves more message-
passing instructions especially when using many subdomains and few
processors. This implementation has been developed first and has
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been used in the computations presented in Section 8.3.2 where the
number of subdomains is quite modest.

Finally we remark that the implementation of the three-dimensional code is
as straightforward as the two-dimensional code because the data structure of
subdomains and networks is the same. Only the bookkeeping of the panels on
each network is more complicated. In this thesis only examples of the parallel
implementation of the two-dimensional model will be presented. But, when size
and convergence behaviour of three-dimensional problems are comparable, we
expect the results of the two-dimensional examples to be transferable to the
three-dimensional problems.

8.3 Results

In this section we present results of the use of two different parallel systems. The
wave problems which are used to study the parallel performance are chosen in
accordance with the speed of the parallel system. In Section 8.3.1 we will study
the performance of a SGI Power Challenge computer with 8 processors. The
wave problem studied involves the propagation of a wavegroup in a domain of
length 5 kilometer and with the use of up to 200 subdomains. In Section 8.3.2
a heterogeneous cluster of 5 HP workstations is studied. The wave problem
under consideration involves the simulation of waves generated by a translating
wavemaker. This problem is much smaller and involves at most 16 subdomains.

Results on parallel performance are given mainly in terms of required wall-
clock time. Its constituents like required CPU-time, user time, synchronization
time and communication time are hard to measure and are therefore not iden-
tified much further. On the other hand, the origins of the results on parallel
performance are obscured when the system is heterogeneous, not dedicated or
when the computational problem has a load unbalance. The examples are pre-
sented in order of increasing heterogeneousness of the parallel system and the
computations.

8.3.1 Homogeneous shared memory system: SGI Power
Challenge

The wave problem which is used in this section involves a propating wave group
over an even bottom and is described as an application of the numerical model
in Chapter 10. It is described in more detail there. The most important char-
acteristics with respect to the study in this chapter are the following:

• The length of the domain is large (5000 m, built up of 1600 panels on the
free surface and 800 panels on the bottom in the one-domain problem)
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and has a very small length-to-height ratio (the waterdepth is 12 m with
6 panels on the vertical boundaries).

• The resolution is chosen such that subdivisions are allowed into 25, 32,
40, 50, 80, 100, 160 and 200 equally sized subdomains.

• An initial disturbance is imposed on the free surface and the convergence
of the iterative process does not change much during the simulation. For
the studies on parallel performance the first 20 timesteps are taken which
corresponds to one wave period of the carrier wave of the wave group.

• In order to make the differences in computational load between different
subdomains as small as possible, Gaussian elimination and exact compu-
tation of the influence coefficients is used so that the computational effort
for these two algorithms is independent from the presence of the distur-
bance in a subdomain. The problem can therefore considered to be load
balanced over all subdomains.

First we consider the partially parallelized implementations and compare the
introduced overhead using compiler directives and message passing. Figures 8.2
and 8.3 show total user time and speed-up for all subdomain divisions using 1,
2, 4, 6 and 8 processors for these two implementations. Before discussing these
results we first describe how the presented quantities are obtained.

In the computations with the implementation using compiler directives, the
UNIX command ‘time’ is used to register user time and wall-clock time. The
user time indicates the sum of the user times of all processors. The user time of
a single processor includes time passed by during non-parallelized parts in which
the considered processor is not used and time passed by in which the considered
processor is not used due to a load inbalance. This is of importance when during
these times the processors are not available to other users. The wall-clock time
indicates the real time from the start to the end of the computation and does
not significantly differ from the user time divided by the number of processors.

In the computations with the implementation using message passing, also
the UNIX command ‘time’ is used for which the wall-clock time contains the
same information as mentioned above. This command, however, only registers
the user time of the master process and not the user times of the slave pro-
cesses. Therefore, user time is measured instead by explicit FORTRAN com-
mands which indicate user times between start point and end point for each
process, and then adding them. The user time obtained this way includes the
user times of non-parallelized parts which are performed on all used processors.
Notice that the same times are included in the user time of the implementation
using compiler directives. But it does not include wall-clock times of processors
which are not used in parallelized parts, when a load inbalance occurs. In the
implementation using message passing these processors are then available to
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other users. In this respect the parallel system is used more efficiently using
message passing than using compiler directives.
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Figure 8.2 User time and speed-up using compiler directives with P pro-
cessors and M subdomains. Left figure: Total required user time. Right fig-
ure: Corresponding speed-up on wall-clock time relative to the one-processor
run. The dashed line indicates the maximum attainable speed-up for the
8-processor runs based on equation (8.3) with measured values for f .
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Figure 8.3 User time and speed-up using message passing. Legend as in
Figure 8.2.

Firstly it can be seen that differences between the results of both implemen-
tations are small. Using 1 processor the required user times are almost identical
and show an optimum for 100 subdomains. For both implementations the to-
tal required user time increases when using more processors and the increase
is largest for the 200-subdomain problem. The largest difference between the
implementation using compiler directives and the one using message passing
occurs for the 25-subdomain problem using 8 processors. This computation
has the largest relative load inbalance (7 processors handling 3 subdomains and
1 processor handling 4 subdomains) and therefore the introduced overhead is
larger for the former implementation.
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Secondly we consider the results on speed-up. For the runs which have no
load inbalance the speed-up using message passing is larger than the speed-up
using compiler directives. Apparently more overhead is introduced using the
latter implementation. The runs with a load inbalance clearly show a loss of
speed-up compared with the load balanced runs.

With respect to the indicated line of maximum attainable speed-up we re-
mark the following.
The maximum attainable speed-up is determined from the fraction f which is
determined by counting the number of floating-point operations in the routines
that compute the influence coefficients and solve the system of linear equations.
The parallelized part, however, not only contains those two routines, but also
contains a search algorithm that identifies which networks belong to which sub-
domains. When using many subdomains this search algorithm has a noticable
contribution to the total number of floating point operations and for these cases
the true fraction f of the 8-processor runs presented here is larger than the one
used to determine the maximum attainable speed-up. This line should therefore
be positioned a bit higher in the plot, especially for the computations with many
subdomains. This explains why for the 200-subdomain problem the presented
results exceed the predicted maximum attainable speed-up.

Finally we show the results for the full parallelization using message-passing
in Figure 8.4.
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Figure 8.4 Speed-up on wall-clock time relative to the use of 1 processor
using full parallelization.

Superlinear speed-up is achieved for all subdomain divisions except for the
25-subdomain problem and the 32-subdomain problem run on 2 and 6 pro-
cessors. Closer observation of the coding shows that the superlinear speed-up
originates from the use of search algorithms, such as the one mentioned above,
which for each processor run over all networks of the subdomains assigned to
this processor only, instead of over all subdomains. The required CPU-time
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for this search algorithm is quadratic in the number of networks and therefore
savings are obtained when more processors are used and fewer subdomains are
assigned per processor. The search algorithm can be coded in such a way that
the required CPU-time only depends linearly on the number of networks. Con-
sidering this it can be argued that the results presented in Figure 8.4 do not
show the true parallel speed-up. On the other hand it shows that paralleliza-
tion is able to reveal inefficient algorithms and at the same time that parallel
computations may not suffer much from such inefficiencies. Furthermore it can
again be observed that speed-up is lost when a run is load inbalanced. This
is seen most clearly for the 25- and the 32-subdomain and the 6-processor and
8-processor runs.

8.3.2 Hetereogeneous distributed memory system: HP
cluster

In this section we consider the efficiency of a heterogeneous cluster of 5 HP work-
stations which are connected by ethernet. Typically, the efficiency of a parallel
implementation is defined as the ratio of the measured speed-up (as compared
with single-CPU performance) to the theoretical, optimal speed-up, as in (8.2).
In order to calculate the latter quantity, considering a full parallelization, we
now have to take the inhomogeneity of the cluster into account.

Suppose we have a cluster of P workstations, and a decomposition of the
domain into M (equal) subdomains. For processor p = 1, . . . , P , define cp as
the relative computational speed of processor p, as compared with processor 1.
Throughout this section we assume that this is also the fastest workstation in
the cluster. The cluster is used optimally if processor p performs the calculations
for a number of subdomains Mp equal to

Mp =
cp
P
∑

p=1

cp

M. (8.4)

Here we have assumed that the single-CPU wall-clock time is proportional to
the number of subdomains assigned to that processor. For a given distribution
D = {M1, . . . ,Mp} of the subdomains over the workstations we denote by TD

the wall-clock time of the parallel execution. By T1 we again denote the wall-
clock time for the case that all subdomains are assigned to processor 1. Ideally,
for the optimal distribution Do as given by (8.4),

TDo =
1

∑

cp
T1. (8.5)

In general however, if D is not the optimal distribution, TD will be larger. The
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efficiency ηD is therefore defined as

ηD := TDo/TD =

(

T1
∑

cp

)

/TD. (8.6)

Notice that ηD ≤ 1. In Table 8.1 we give the relative speeds cp of the separate
processors used in the computations. The wave problem which is used here

Table 8.1 Relative processing speeds of the workstations in the cluster.
The results are accurate up to about 5%.

processor cp
p1 1.00
p2 0.78
p3 0.82
p4 0.63
p5 0.62

is discussed in Chapter 9. It involves the simulation of waves generated by
a translating wavemaker. The domain is much smaller than the one in the
previous section and contains only 256 panels at the free surface and 128 at the
bottom. Subdivisions into 2, 4, 8, 12 and 16 subdomains have been chosen, but
since the latter subdomain division does not converge at a certain time level, it
has not been used in the parallel computations presented here.

For the measurements we have chosen to simulate only the last 20 time
steps. During this part of the simulation the wave is present in almost the entire
computational domain and the required number of iterations has reached a level
that may be considered representative for simulations over larger time intervals.
We remark that in contrary to the computations presented in Section 8.3.1
the variation of the number of iterations during the considered time interval
is reasonably large for the 2- and 4-subdomain problem and that the average
number of iterations is different for the different subdivisions.

To represent practical simulations, the iterative solver CGS has been cho-
sen for these computations. This implies that the number of floating point
operations is not equal in all subdomains and a (small) load inbalance between
different subdomains is introduced.

The aim of the investigations presented here is to assess the parallel efficiency
of different distributions D of processors for a given domain decomposition.
As mentioned in Section 8.2.2 these computations were done using the full
parallelization with the data organized per subdomain. In Table 8.2 we give
the speed-up and efficiency for various choices of the distribution D of the
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subdomains over the processors. This speed-up is measured with respect to the
wall-clock time for the case that all subdomains are allocated on the fastest
processor. During the tests the cluster was not in use by other users.

Table 8.2 Speed-up and efficiency for various numbers of subdomains and
some choices of the distribution of the subdomains over the processors.

N processors D Speed-up ηD

2 p1, p2 {1, 1} 1.54 0.87
p2, p3 {1, 1} 1.54 0.96

4 p1, p2, p3, p4 {1, 1, 1, 1} 2.35 0.74
p1, p2, p3 {2, 1, 1} 1.95 0.88

8 p1, p2, p3, p4, p5 {2, 2, 2, 1, 1} 2.40 0.63
p1, p2, p3, p4, p5 {3, 2, 1, 1, 1} 2.24 0.59

12 p1, p2, p3, p4, p5 {3, 3, 2, 2, 2} 2.61 0.66
p1, p2, p3, p4, p5 {4, 2, 2, 2, 2} 2.36 0.60

From the results in Table 8.2 we see that the achieved efficiencies are not
close to 1 (with one exception). The main reason is that in the definition of
efficiency (i.e. (8.4)), in fact the domain is allowed to be partitioned in a non-
integer number of subdomains. It is very unlikely that the integer partitions as
considered in the experiments are optimal. It is better to allow the subdomains
to be of unequal size as will be shown next for the 2-subdomain problem. The
test with only the processors p2 and p3 achieves an efficiency of almost 1, due
to the small difference in computational speed.

In studying the effect of choosing the decomposition of the domain in re-
lation to the computational speed of the processors we only consider the two-
subdomain problem run on the processors p1 and p2. Even for such a small
number of subdomains an optimal subdivision can not be found because the
computational work of different algorithms of the method depends differently
on the number of panels per subdomain. If a subdivision of the domain is chosen
for which one algorithm requires equal CPU-times in both subdomains, then
most probably other algorithms require CPU-times that are not equal in both
subdomains. As an example we consider a subdivision in which the number
of panels in the two subdomains is given by p2

1/p
2
2 = c1/c2. In this case the

speed-up increases to 1.64 and the efficiency equals 0.92.

8.4 Conclusions

In this chapter we have considered some parallel implementations of the nu-
merical method for nonlinear water waves based on the division into subdo-
mains. Both the use of compiler directives for parallel execution as the use of
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message-passing libraries can be implemented easily due to the subdivision of
the computational work per subdomain.

The parallel computation of two DO-loops containing the largest part of the
computational work has been implemented by using compiler directives and
message passing and the efficiency of both implementations has been compared
on a homogeneous shared memory system. The former implementation intro-
duces a larger overhead in user time for runs which are load unbalanced. For
load balanced runs hardly no difference is observed in overhead but speed-up
with respect to wall-clock time is larger for the implementation using message
passing.

A full parallelization has been developed using message passing and almost
all runs with this implementation show a superlinear speed-up on the homoge-
neous system. Especially for many subdomains the speed-up is influenced by
a search algorithm which is executed more efficient when more processors are
used. Load unbalanced runs again show some loss in speed-up relative to the
load balanced runs.

Computations with the fully parallelized implementation have also been per-
formed on a heterogeneous distributed memory system. Due to the heterogene-
ity of the system the efficiency of the system is relatively small. It can be
increased by using subdomains of unequal size for which the amounts of com-
putational work correspond more to the computational speed of the processors
to which these subdomains are assigned.



Chapter 9

Validation and design studies
involving wavemakers

9.1 Introduction

In studies carried out in a experimental wave flume, the considered problem
is usually investigated for a number of wave conditions. This often involves
periodic propagating waves, but also irregular waves with certain prescribed
characteristics are used. Because wavemakers are used to generate these wave
fields, design and use of wavemakers is an important aspect of using such model
facilities.

For the generation of a certain wave field, the velocity of the wavemaker
should resemble the velocity field of the desired wave field locally as much as
possible. The velocity field can be characterized in terms of the vertical ve-
locity profile and in accordance with this profile a translational or a rotational
wavemaker is preferred. Another characterization is based on the wave-induced
frequency of the water motion. This is especially important in nonlinear waves
because, besides the carrier-wave frequencies, also super- and subharmonic fre-
quencies are present.

The design and use of wavemakers is usually studied with potential flow
models using Laplace’s equation in the fluid domain and with the velocity of the
wavemaker as boundary condition on the inflow boundary. Analytical solutions
of these boundary value problems are hard to find because the velocity field has
to be imposed on the actual position of the wavemaker which varies in time.
Therefore higher-order theories are developed in which the inflow boundary
condition is approximated as a perturbation series around the mean wavemaker
position. An example of such a boundary value problem is the one discussed in
Section 2.4.1 in which the linearized inflow condition (2.25) is used together with
the linearized free-surface condition. Wavemaker theories can be distinguished
on the basis of the approximation technique and on the basis of the order of
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approximation.
In the numerical model for nonlinear water waves, the free surface is mod-

elled by collocation points which move along with the free surface. The free-
surface boundary conditions are imposed at the exact position of these collo-
cation points. The inflow boundary condition of a moving wavemaker can be
modelled similarly by collocation points following the position of the wavemaker
in time and imposing the velocity of the wavemaker at its position. In this way,
the boundary value problems associated with a certain wavemaker can be inves-
tigated numerically. It offers the possibility to verify wavemaker theory without
having to resort to a physical wave flume.

In this chapter we examine the suitability of the numerical model to simulate
waves generated by wavemakers. For the examination of accuracy and stability
of such computations, we discussed computations of the highly nonlinear model
problem in Chapter 4. It was shown that to a large extent this problem can
be computed accurately and stable with the two-dimensional model. This gives
great confidence in computations of more general problems. But since accuracy
and stability are strongly related to the motion of the grid and because no
special conditions are imposed on the motion of the lateral boundaries and the
bottom in the model problem, some validation is needed to prove the usefulness
of the present model.

The difficulty of grid motion in combination with lateral boundaries is as-
sociated with the Lagrangian motion of the grid. This is most apparent when
doing computations with fixed lateral boundaries such as surface piercing struc-
tures. On the other hand the Lagrangian approach is necessary when structures
move along with the water or in the case of run-up on a shoreline. A mixed
Eulerian-Lagrangian description such as the one discussed in Section 4.4.1, then
is the most flexible approach to general wave problems.

The use of a mixed Eulerian-Lagrangian description will not be studied until
Chapter 11. In this chapter we describe two studies with the two-dimensional
model in which the motion of a wavemaker is simulated on the inflow boundary.
In both studies the wavemaker has a fixed mean position and the Lagrangian
description is used for the grid on the free surface. Therefore these studies
show how Lagrangian motion and fixed lateral boundaries can be combined.
In Section 9.2 computations are described in which the motion of a translating
wavemaker, as measured in experiments in a physical wave flume, is imposed
as inflow boundary condition in the model. In this way direct comparison
is possible between experiment and computation. Additionally an example is
shown in which theoretically developed wave signals for a translating wavemaker
are tested on their correctness. In Section 9.3 some computations are presented
which are performed to test the suitability of a design of a rotating wavemaker.
No comparison is made with experiments. The results are only discussed in
relation to stability and qualitative characteristics of the generated wave field.
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9.2 Waves generated by a translating wave-

maker

In this section we discuss two different studies involving the simulation of waves
generated by a translating wavemaker. In the first study, described in Sec-
tion 9.2.2, the results of computations are described in which the motion of a
translating wavemaker, as measured in experiments in a physical wave flume, is
imposed as inflow boundary condition in the model. The wave height measured
at several positions in the wave flume is compared with the computed wave
height at the same positions and is shown to agree very well. This gives great
confidence in the use of the model to verify wavemaker theory and an example
of such a verification is shown in the second study described in Section 9.2.3.

The implementation of the inflow boundary conditions is the same for the
computations of both studies and is shortly described next.

9.2.1 Implementation

For the simulation of a translating wavemaker in the numerical model for nonlin-
ear water waves, its position is required to prescribe the positions of the colloca-
tion points on the wavemaker in time and its velocity is required to prescribe the
inflow boundary condition. If the position of a material point on the wavemaker
is described by X(t) = (X(t), Z) then its velocity V(t) = (V (t), 0) and accel-

eration A(t) = (A(t), 0) are given by V (t) = DX(t)
Dt

and A(t) = DV (t)
Dt

= D2X(t)
Dt2

respectively, see Figure 9.1.

(X(t), Z)

z = 0

z = −h

Figure 9.1 Configuration for the simulation of waves generated by a trans-
lating wavemaker.

The boundary conditions for the Laplace problems ∆φ = 0 and ∆φt = 0 are
given by

∂φ

∂n
= V · n = Ẋ, x = X(t) (9.1)



130 Chapter 9

and

∂φt
∂n

=
∂

∂t
{∇φ} · n =

(

D

Dt
{∇φ} − V · ∇(∇φ)

)

· n
= A− V φxx, x = X(t) (9.2)

respectively. The term φxx is related to φzz through Laplace’s equation, i.e.
φxx = −φzz and φzz is determined from discrete derivatives of φz along the
wavemaker.

With respect to grid motion, most of the algorithms described in Chapter 4
are applied to this problem as well. This includes the Lagrangian motion of the
free-surface collocation points, the determination of the intersection point of
the free surface with the wavemaker and the (vertical) motion of the collocation
points on the (wetted part of the) wavemaker. Because the horizontal motion is
prescribed explicitly, no use is made of an alignment velocity to move the inflow
boundary along with the free-surface collocation points. In the computations
the free-surface collocation points drift away from the inflow boundary as time
proceeds. Therefore extrapolations from the free surface to the inflow boundary
are taken over increasing physical distances but no problems were observed in
the computations in the simulated time interval.

9.2.2 Validation study

In order to validate the numerical model, comparison is made with experiments
in a wave flume. These experiments were carried out to test an active wave
absorption system and are reported by Luth [50]. To exclude differences due to
different incoming wave signals, the measured position X(t) of the wavemaker
is taken and the corresponding velocity V (t) and acceleration A(t) are deter-
mined. These data are used to formulate time series of values for the boundary
conditions ∂φ

∂n
and ∂φt

∂n
on the (exact position of the) wavemaker.

The waterdepth equals 0.50 m and comparison is made for four experiments.
Three experiments involve periodic waves with wave period T = 0.90, 1.37 and
2.40 s respectively and one experiment involves bichromatic waves with carrier
wave periods 33/16 ≈ 2.06 s and 33/11 = 3.00 s. In the experiments the
waveheight is measured at several locations in the waveflume with a sampling
rate of 25 Hz. Comparison with the computations is made at locations x = 5.0,
10.0 and 14.2 m behind the position of the wavemaker in rest.

We first discuss the results for the periodic wave with wave periodT = 1.37 s.
Figure 9.2 shows measured and computed elevation and the difference between
both signals.
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Figure 9.2 Measured (−−) and computed (−·) free-surface elevation at
locations x = 5.0, 10.0 and 14.2 m for T = 1.37 s. The difference between
both signals is indicated with a solid line.

The maximum difference between measured and computed free-surface elevation
over the time interval [0,20] s at the three locations is equal to 0.0048, 0.0056
and 0.0058 m respectively, which is approximately 6 % of the crest surface
elevation. Note that the difference signal is quite regular at locations x = 10.0
and 14.2 m but is more irregular at x = 5.0 m. To investigate if the regular
difference signals are due to phase differences caused by numerical dispersion,
the spatial resolution is doubled. As a result the maximum difference between
measured and computed elevation at locations x = 10.0 and 14.2 m decreases
to 0.0032 and 0.0044 m respectively. The maximum difference at x = 5.0 m
increases to 0.0055 m. This indicates that the observed difference at x = 5.0 m
is not caused by numerical dispersion.

Since the irregularity for location x = 5.0 m is most apparent after t = 10 s,
it may be the case that the difference is due to spurious waves with smaller
propagation velocity. At location x = 10.0 m some irregularities can be observed
around t = 19.0 s. Maybe spurious waves not modelled in the computations,
like cross waves or currents due to leakage at the wavemaker, are the cause of
these differences, but no explanation has been found yet.

Comparisons between measured and computed free-surface elevation for the
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other wave conditions show differences similar to the difference observed at x =
5.0 m for T = 1.37 s for all locations. The differences can not be decreased by
increasing the resolution. As an example we show the measured and computed
elevation for the bichromatic wave in Figure 9.3.
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Figure 9.3 Measured (−−) and computed (−·) free-surface elevation at
locations x = 5.0, 10.0 and 14.2 m for the bichromatic wave. The difference
between both signals is indicated with a solid line.

9.2.3 Verification study

For the generation of nonlinear periodic waves, the wavemaker motion has to
consist of superharmonic contributions to the carrier wave frequencies as ex-
plained in Chapter 2. Also for bichromatic waves and other irregular wave
fields, the addition of subharmonic and superharmonic contributions is required
when one wants to suppress the generation of spurious waves. The required
wavemaker motion is usually studied with the use of perturbation techniques.
The nonlinearity of the free-surface boundary conditions and of the wavemaker
boundary conditions are accounted for by formulating boundary value problems
of different order in a perturbation parameter ǫ. This, in general, requires much
algebra and verification is desired to check the results and the range of validity.
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Because in the present numerical model the exact positions of the boundaries
are followed and boundary conditions are imposed on these positions, the model
can be used for the verification of wavemaker signals.

In this section we present an example of such a verification. The theory
that is verified is a second-order theory for regular and irregular waves based
on a multiple scales method for a translating wavemaker. It is reported by
Petit e.a. [56] and is developed to find an alternative for the usual frequency
domain approach. In the latter technique, the required computing time for the
generation of irregular waves (correct up to second order) is proportional to the
square of the number of components compared to the time necessary for the
first order signal. For the technique of multiple scales we refer to e.g. Mei [52]
and Nayfeh [54].

As a test-case for the theory we consider a domain with waterdepth h = 0.5 m
and a carrier frequency with period T = 1.87 s for the translating wavemaker.
The position X(t) of the wavemaker is represented as

X(t) = a1 sin(ωt) + a2 sin(2ωt+ φ2) (9.3)

with ω = 2π/T and the following values for the parameters a1, a2 and ϕ2:

Table 9.1 Values of the parameters used in the verification study.

a1 a2 ϕ2

first-order 0.0902 0.0 0.0
second-order 0.0902 0.0061 −0.0607

The wavemaker motion is gradually started by applying a transition coef-
ficient, which increases linearly from 0 to 1 over the time interval [0, 2T ], to
all relevant signals. The results for these wavemaker signals are compared by
considering the free-surface elevation at t = 10T , see Figure 9.4. It is clear
that no periodic wave field is generated with only a first-order signal. At this
time level the wave field in the spatial interval [0, 15] m is disturbed by spurious
2ω-waves. Because these waves travel slower than the waves with frequency ω,
no disturbances are noted beyond x = 15.0 m. The second-order signal provides
the proper wavemaker motion.

9.3 Waves generated by a rotating wavemaker

In this section we discuss computations in which waves are generated by the
motion of a hinged rotating wavemaker. The configuration originates from a
design study in which an important demand of the design was to be able to
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Figure 9.4 Computed free-surface elevation at t = 10.0 s for a first-order
and a second-order wavemaker signal.

generate shallow as well as deep water waves without too much spurious waves.
Because the vertical velocity profile is quite different for both types of waves the
position of the hinge is crucial to the design. Other important questions posed
in the study, concerned the forces on the wavemaker and required power. The
latter two aspects can be considered with the present model due to the possibil-
ity to compute the pressure distribution on the wetted part of the wavemaker
with Bernoulli’s equation.

In the studies presented here the hinge is chosen at a distance d = 1.20 m
below the still water level and a waterdepth h of 3.50 m, see Figure 9.5.
Computations for three different frequencies ω = 2π

T
of the wavemaker mo-

tion have been performed with periods T = 1.8 s, 2.4 s, and 3.0 s. The position
of the wavemaker is described by its angle α with the vertical. The maximum
angular stroke is given by α0:

α(t) = α0 sin(ωt). (9.4)

Usually the wavemaker motion is described in terms of a horizontal stroke S(z).
Its horizontal displacement is then described by X(z, t) = S(z) sin(ωt). See for
example Schäffer [63] and Dean [20]. For the same maximum angular stroke α0,
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α(t) (X(t), Z(t))

z = 0

z = −h

z = −d

Figure 9.5 Configuration for the simulation of waves generated by a rotat-
ing wavemaker.

this description and the description given in equation (9.4), have a difference in

maximum horizontal velocity equal to Lω
α3

0

3
+O(α5

0).
In the present study the amplitude α0 of the wavemaker motion has been

varied in order to show the effect of nonlinearity and to determine the maxi-
mum wavemaker motion for which waves start to break. In the following we
first describe the computational configuration and its demand on the numerical
method. In Section 9.3.2 results of computations are shown.

9.3.1 Implementation

As for the translating wavemaker, the motion of the fluid near the wavemaker
can be described by expressing the normal derivative of the potential φ in terms
of the velocity of the wavemaker itself. The position X(t) of a material point
on the wavemaker is given by

X(t) = X0 + L

(

sinα(t)
cosα(t)

)

= X0 + L · s(t). (9.5)

in which X0 denotes the position of the hinge, L the distance to the hinge
and s(t) and n(t) the tangential and normal unit vector on the wavemaker
respectively, see Figure 9.5. Its velocity V(t) and acceleration A(t) are given
by

V(t) = α̇Ln(t), A(t) = α̈Ln(t) + α̇Lṅ(t) = α̈Ln(t) − α̇2Ls(t). (9.6)

The potential flow problem in the fluid domain then has the following accom-
panying boundary conditions for the Laplace problems ∆φ = 0 and ∆φt = 0:

∂φ

∂n
= V · n = α̇L, x = X(t) (9.7)
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and

∂φt
∂n

=
∂

∂t
{∇φ} · n =

(

D

Dt
{∇φ} − V · ∇(∇φ)

)

· n (9.8)

= (A − V · ∇(∇φ)) · n, x = X(t).

respectively. The latter term involves the second-order spatial derivatives φxx,
φxz, φzx and φzz which can be determined similar to the translating case by using
Laplace’s equation for φ to obtain φxx from φzz and taking discrete derivatives
of the first-order spatial derivatives.

There is, however, an additional difficulty because these boundary condi-
tions are imposed in the collocation points and not in fixed material points.
Because the collocation points on the wavemaker are moved tangentially, an
extra acceleration in the normal direction is introduced due to the rotational
movement of the wavemaker. This acceleration enters boundary condition (9.8)
if it is used for a collocation point moving with velocity Vg. Because at present
no proper formulations for the grid acceleration are used, this boundary condi-
tion is not used for the solution of ∆φt = 0 and the time-marching is performed
using the classical fourth-order Runge-Kutta method. For the computation of
the pressure p, however, φt is required and the above boundary condition is
used. The computed pressure therefore contains errors due to the determina-
tion of the grid acceleration, but since they are small relative to the material
acceleration and enter the computation of the pressure only through the bound-
ary condition, we expect their contributions to be negligible.

Due to the Lagrangian motion, the distance between the first collocation
point on the free surface and the wavemaker increases during the computation.
The extrapolation which is normally used in the algorithm to determine the
tangential component of the grid alignment velocity, described in Section 4.3,
therefore gives unrealistic values when this distance becomes very large. It is
replaced here by an explicit regridding algorithm. The extrapolation used to
determine the intersection point between free surface and wavemaker however
does not give any problems. This extrapolation is done in the coordinate system
fixed to the wavemaker given by the vectors n(t) and s(t). It is clear that
problems may arise from the Lagrangian motion and the midpoint description
when longer simulation times are required.

The accurate integration of the pressure on the wavemaker with the present
Gaussian quadrature formula to obtain the forces and the power on the wave-
maker requires a relative high resolution there. The connecting grid on the free
surface near the wavemaker has been given a high resolution as well: Com-
putations with low resolution show that as the collocation points on the free
surface drift away from the wavemaker, the length of the connecting panel on
the free surface become much larger than those on the wavemaker, leading to
an ill-conditioned matrix and an unstable computation.
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9.3.2 Results

For three frequencies the amplitude α0 has been varied to examine the effect of
nonlinearity. Table 9.2 shows the variation in simulated conditions.

Table 9.2 Used values of α0 in the simulations.

T = 1.8 s T = 2.4 s T = 3.0 s

2.86 2.86 5.73
5.73 5.73 11.46
8.59 8.59 17.19
11.46 11.46 22.92

14.33 28.65

Values printed italized indicate simulations for which the corresponding com-
putation breaks down within 10 wave periods. The break-down in all these cases
is caused by the occurrence of extreme steep waves leading to breaking waves
or to a free surface near the wavemaker almost parallel to the wavemaker itself.

Results are shown for T = 1.8 s, α0 = 8.59o and for T = 3.0 s, α0 = 22.92o.
Figure 9.6 shows the free-surface elevation after 10 wave periods. In both cases
an irregular surface can be observed. A higher wave at the front of the wave
is present due to the gradual start of the wavemaker motion (over two wave
periods) but also spurious waves can be seen. These waves are due to the first-
order motion of the wavemaker, generating free higher harmonics and due to
the velocity profile itself which is represented rather badly due to the restricted
depth of the wavemaker, especially for the more shallow wave. The spurious
waves can also be observed from Figure 9.7 in which free-surface elevations at
positions x = 4.0, 8.0 and 12.0 m have been plotted for the computation with
T = 3.0 s, α0 = 22.92o.
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Figure 9.6 Free-surface elevation at t = 10 T . Upper plot for T = 1.8 s,
α0 = 8.59o, lower plot for T = 3.0 s, α0 = 22.92o.
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Figure 9.7 Free-surface elevation at positions x = 4.0, 8.0 and 12.0 m for
T = 3.0 s, α0 = 22.92o.
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Figure 9.8 shows time-series of the horizontal force Fx and the moment My,H

around the hinge exerted by the water on the wavemaker, and the hydrodynamic
power P and the run-up zr on the wavemaker.
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Figure 9.8 Time-series of some quantities for T = 3.0 s, α0 = 22.92o.

These figures clearly show nonlinear behaviour. The graphs for Fx, My,H and
run-up are not symmetrically around the starting values which correspond to
the still-water level. The hydronamic power P shows negative values when the
wavemaker moves backwards through x = 0 m. Note the higher order variation
in the run-up which grows towards the end of the computation. This was also
seen for T = 1.8 s. This is probably due to inaccuracies in the determination
of the intersection between wavemaker and free surface towards the end of the
computation.

For design considerations the time-series for Fx, My,H and P have to be
corrected for the motion of water at the rear side of the wavemaker and for the
momentum of the wavemaker itself. An assumption which can be made to the
first purpose, is that waves at the rear side can propagate away undisturbed
from the wavemaker. In that case the time-series can be corrected by adding
(for P ) respectively subtracting (for Fx and My,H) the same time-series but
shifted over half a waveperiod. It is noted here that this is only correct for a



140 Chapter 9

symmetric motion of the wavemaker and not when a second-order 2ω-motion is
added.

The mass of the wavemaker can be accounted for by simply adding time-
series of Fx, My,H and P for the motion of the wavemaker itself. In Figure 9.9,
maximum and minimum values of time-series corrected for the above two pur-
poses (for Fx the mass of the wavemaker has not been taken into account), are
plotted for different values of α0 and compared with results of linear theory.
The moment of inertia Iy,H around the hinge has been taken equal to 425 kg
m2/s2 here.

0 5 10 15 20
−6

−4

−2

0

2

4

6

0 5 10 15 20
−4

−2

0

2

4

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

−0.4

−0.2

0

0.2

0.4

α0 (deg.)

F
x

(k
N

)

α0 (deg.)

M
y

(k
N

m
)

α0 (deg.)

P
(k

W
)

α0 (deg.)

z r
(m

)

Figure 9.9 Maximum and minimum values of some quantities as function
of wavemaker amplitude for T = 3.0 s. The dashed lines indicate predictions
from linear theory.

A deviation from the results of linear theory can be observed whereas the results
for T = 1.8 s (not shown here) are identical to those of linear theory.

9.4 Conclusions

With the numerical model for nonlinear water waves it is possible to simulate the
generation of waves due to the motion of a wavemaker. Both for a translational
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and a rotational moving wavemaker, computations have been performed.
The generation of waves in laboratory experiments is simulated by using the

measured motion of a translating wavemaker as inflow boundary condition in
the numerical model. Very good agreement can be found with one experiment,
but not at all measuring locations. In all other cases differences between mea-
sured and computed elevation are small but systematic and show an irregular
behaviour. It is expected that this is due to the occurrence of spurious waves
in the experiments. Furthermore it is shown that the correctness of signals for
higher-order wavemaker motions can be verified for nonlinear periodic waves.

The design of a rotating hinged wavemaker is tested for its suitability to
generate nonlinear periodic waves with a first-order wavemaker signal. The
generation of waves is simulated for a number of frequencies and it is shown
that for this particular case spurious waves are generated, especially for the
lower frequencies.
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Propagation of wave groups

10.1 Introduction

In coastal areas long waves, with typical periods of minutes, are of importance
in several processes such as sediment transport and vessel motion in harbours.
Long-wave motion is usually split up between a bound part which is due to
nonlinear difference interactions between short sea and swell waves and a free
part which are waves that move with their own phase velocity according to an
appropriate dispersion relation. See also Chapter 2. The distinction between
bound and free long waves is of importance in many studies on processes such
as the ones mentioned above, because the kinematics can be quite different in
both kinds of wave motion.

Bound long waves can be transformed into free long waves by the presence of
an uneven bottom. This process has been studied by many people. Because of
the different time- and space-scales involved, often a multiple-scales technique is
used. See for example Nayfeh [54] for an introduction. In this approach an evo-
lution equation for the wave-envelope of a wave-group signal is derived, together
with a wave equation for the long-wave motion. For horizontal depth, this was
given first by Benney and Newell [6] and later by Davey and Stewartson [19],
and for uneven bottom by Chu and Mei [16].

In 1989, Liu and Dingemans [46] reconsidered the problem anew and resolved
some arbitrariness in Chu and Mei’s approach. The third-order evolution equa-
tions derived were later evaluated numerically by Dingemans et al. [22] in a
1D-formulation (2DV fluid motion). An example was shown of a soliton-like
wave group over an underwater bar. This example is used here to illustrate the
possibility to do large-scale computations with the panel method using domain
decomposition.

There is, however, a difficulty in applying the fully nonlinear boundary con-
ditions on signals derived from perturbation techniques such as multiple-scales.
The wave group signal in Dingemans et al. [22] is a solution of fixed form in
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their formulation but it is not clear to what extent it is of fixed form in the
fully nonlinear formulation. Furthermore the influence of applying the domain
decomposition technique on accuracy on large scales is yet unknown. These
aspects are also studied in this chapter.

Before summarizing the contents of this chapter we would like to refer to
another numerical study on propagating wave groups over a bottom topography
performed by Barnes [3]. In part of his study he employs an efficient boundary
element method described in Cooker et al. [17]. See also Dold [24] for a detailed
analysis and optimalization of this method.

In the remainder of this chapter the following is discussed. First, in Sec-
tion 10.2, the formulations for the wave group signal used in the computations
with the fully nonlinear model are presented. Next, in Section 10.3 the results
of these computations are shown and discussed with respect to the suitability
of the formulations. In Section 10.4 the sensitivity of these results to the use
of domain decomposition is analyzed and its efficiency is discussed. Finally we
conclude in Section 10.5.

10.2 Formulations for a wave group signal

In Liu and Dingemans [46] and Dingemans et al. [22] a mathematical model is
described for the wave envelope A of a carrier wave signal. In this model third-
order equations are derived with a multiple-scales technique for a first-order
carrier wave signal given in complex notation by

η1(x, t) =
1

2
(Aeiχ0 + ∗) (10.1)

and

φ1(x, z, t) =
1

2

(

−g cosh(k0(z + h))

ω0 cosh(k0h)
iAeiχ0 + ∗

)

(10.2)

with χ0 = k0x−ω0t, being the phase function of the carrier wave. The ∗-symbol
denotes the complex conjugate of the preceding term.

From solvability conditions of the third-order equations, evolution equations
are derived for the envelope function A. For a horizontal bottom these equations
simplify to a nonlinear Schrödinger (NLS) equation, see also Mei [52]. This
equation admits several steady solutions for A which can be used to create an
initial signal for a simulation.

In our computations we have chosen a soliton-solution described by the
envelope function

A(x, t) = a sech





√

√

√

√

−ν1

∂cg
∂k0

a · (x− cgt)



 exp

{

−iν1a
2

2
t

}

, (10.3)
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in which a and cg are the amplitude and the group velocity of the carrier wave.
ν1 equals

ν1 =

(

ω0k∞cg

2g sinh2 q
+ k0

) k0g2

2ω0
+

ω2
0cg

4 sinh2 q

c2g − gh
+ k2

0ω0κ (10.4)

with

κ =
1

16 sinh4 q

(

cosh 4q + 8 − 2 tanh2 q
)

, (10.5)

k∞ =
ω2

0

g
and q = k0h, (10.6)

see Dingemans et al. [22], p. 364. The parameters have been evaluated for
a = 1 m, ω0 = 2π/6 rad/s and h = 12 m. The corresponding wave length L0

and group velocity cg according to linear theory are equal to 50.73 m and 5.52
m/s respectively. Figure 10.1 shows the free surface elevation for these values.
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Figure 10.1 Free-surface elevation η1 of the soliton solution A.

Changes in |A(x, t)| describe amplitude modulations of the waves. In equa-
tion (10.3) they are determined by the parameters a, ν1 and ∂cg/∂k0. Based on
an elevation 1 · 10−3 times the maximum elevation, the wave group has a length
of approximately 1850 m.

Changes in arg{A(x, t)} describe frequency modulations. For the solution
given by equation (10.3) it is quadratic in a and furthermore it is determined
by ν1. For the values of the parameters given above, ν1 ≈ 1.2 · 10−3 so that the
frequency modulation is negligible.

The wave signal can be used to provide boundary conditions for the numer-
ical method on the inflow boundary as in Chapter 9, but it can also provide an
initial boundary condition for the free-surface boundary. In order to save CPU-
time we have used the latter option. A known elevation η(x, t) is required as the
initial disturbance of the free surface. The panel method furthermore requires
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an initial value of the potential φ on the free surface which imposes the initial
velocity field on the free surface. In the third-order model it is, just as η, given
in terms of the third-order perturbation serie. Because of the large and complex
expressions associated with the series, we have tried a number of alternatives
and have studied the degree in which they describe a signal that propagates
undisturbed over a horizontal bottom. These alternatives will be described
next. The most appropriate signal can then be used as signal for simulation of
a propagating wave group over an uneven bottom in order to study the effect
of the bottom topography. The influence of uneven bottoms is not studied here.

A difficulty of simulating nonlinear wave signals consists of the imposition of
the boundary conditions at the unknown free-surface elevation. In perturbation
techniques, one usually expands free-surface elevation and potential around the
still-water level z = 0 and the potential is evaluated at the still-water level. In
the numerical approach, the grid points are located at z = η so that evaluations
there deviate from those of the perturbation approach. A Taylor expansion for
φ can be used to account for the location of the free surface at z = η:

φ(x, z, t)|z=η = φ(x, 0, t) + η(x, t)
∂φ

∂z
(x, 0, t) +O(η2). (10.7)

Besides the first order expressions given in equations (10.1) and (10.2) we have
used a Stokes’ second-order contribution given by

η2(x, t) =
1

2

(

1

4

k0 cosh(k0h)

sinh3(k0h)
[2 + cosh(2k0h)]A

2e2iχ0 + ∗
)

(10.8)

and

φ2(x, z, t) =
1

2

(

3

8

ω cosh(2k0(z + h))

sinh4(k0h)
iA2e2iχ0 + ∗

)

. (10.9)

and a bound long-wave contribution based on the linearized depth-integrated
mean-flow equations, see Longuet-Higgins and Stewart [47]. The free-surface
elevation ζ and potential φbl of the latter wave are given by

ζ(x, t) =
2cg/c− 1

2

2(c2g − gh)
g
(

|A(x− cgt)|2 −
〈

|A|2
〉)

(10.10)

and

φbl(x, t) =
∫ x

−∞

∂φ

∂x′
dx′ =

∫ x

−∞

u dx′ =
∫ x

−∞

cg
h
ζ dx′ (10.11)

=
2cg/c− 1

2

2(c2g − gh)

cgg

h

∫ x

−∞

(

|A|2 −
〈

|A|2
〉)

dx′. (10.12)

〈|A|2〉 denotes the mean value of |A|2 over a time interval much longer than
the wave group period. For the soliton solution (10.3), 〈|A|2〉 = 0. The con-
tributions of these higher order terms for the wave conditions used here are
illustrated in Figures 10.2 and 10.3.
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Figure 10.2 Contributions to the first-order free-surface elevation η1 (· · ·)
for the initial signal:
η2 (−−), ζ (− ·).
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Figure 10.3 Contributions to the first-order potential φ1 (· · ·) for t = 0:
η1
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∂z (−), φ2 (−−), φbl (− ·). Note that the contribution of η1
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phase with the second-order contribution φ2.

10.3 Results

For our computations we have selected a number of formulations which are
tabulated in Table 1, see page 148.

These initial signals are used in simulations over 60 wave periods in a do-
main with length 5000 m. Free-surface collocation points are distributed over
z = η(x) with equal horizontal distances. The resolution of the computational
configuration is taken the same for all simulations and is given by ∆x = 2.5 m
≈ L0/20 m on the free surface, ∆x = 5.0 m on the bottom and ∆t = T0/20
s. The computations presented in this section are done using 50 subdomains.
Every interface network is covered with 6 collocation points. In Section 10.4 we
consider the sensitivity to and the efficiency of the use of a different number of
subdomains.
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Table 10.1 Initial signal for the various computations.

η φ using formula (10.7)

run 1 η1 φ1 no, φ evaluated at z = η

run 2 η1 φ1 no, φ evaluated at z = 0
run 3 η1 φ1 yes
run 4 η1 + η2 φ1 + φ2 no, φ evaluated at z = 0
run 5 η1 + ζ φ1 + φbl no, φ evaluated at z = 0
run 6 η1 + η2 + ζ φ1 + φ2 + φbl no, φ evaluated at z = 0

The results are illustrated best by showing the free-surface elevation at t = 45T
for the different computations. In Figure 10.4 it is plotted for runs 2, 4, 5 and
6. Run 1 has been shown separately in a larger plot in Figure 10.5 in order to
show the details better. The result of run 3 is similar to that of run 1, because
the vertical profile of φ1 is almost linear in the range −η ≤ z ≤ η. Therefore
the differences between the evaluation of φ1 at z = η (run 1) and the use of
equation (10.7) (run 3) are hardly discernible. Results of run 3 are therefore
not shown here. Only if larger amplitudes are used, the difference between both
contributions will become noticable.
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Figure 10.4 Free-surface elevation at t = 45 T for: run 2 (upper left), run
4 (upper right), run 5 (down left) and run 6 (down right).
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Figure 10.5 Free-surface elevation at t = 0, 15 T, 30 T, 45 T and 60 T

for run 1.

A typical feature common to all computations is the generation of small
left-going signals. In Figure 10.5 and in Figure 10.4 wave groups with carrier
waves with a wave period of approximately 6.0 s (around x = 200 m) and 3.8 s
(around x = 700 m) can be seen. Their group velocities are equal to 4.4 and
3.1 m/s respectively. The left-going signal is smallest in runs 2 and 5. Not
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visible in Figures 10.4 is a small left-going long wave (c = 11.1 m/s) which at
this point of the computation has already left the domain. It can be observed
in Figure 10.5 for t = 15T around x = 550 m. Its amplitude is about 1.5 cm.

There is also a right-going free-long wave (around x = 4400 m) in all com-
putations. The computed phase velocity of this wave equals 11.1 m/s. The
computations with a contribution of ζ and φbl show a reduction of the ampli-
tude of this wave from 6.0 to 2.5 cm.

At the back of the wave group a smaller right-going wave group evolves
consisting of carrier waves with wave period approximately 4.2 s. Its amplitude
is smallest in run 4 and 6 which contain the second-order contribution η2 and φ2.

In summary it can be said that the differences between the computations
presented here can be explained satisfactory by relating them to the contribu-
tions to the initial wave signal. However, the second-order contributions in runs
4, 5 and 6 do not prevent the generation of free waves nor do they prevent the
generation of a left-going wave signal. At this point it is not clear whether this
is due to the imposition of the boundary condition at the actual free surface or
to the restriction to only second-order contributions. The use of formula (10.7)
on the second-order part of the wave signal and the use of more higher-order
contributions may improve the stationary character of the signal. By varying
the amplitude of the carrier wave signal, indications can be obtained to which
order the signal is of fixed form.

10.4 Use of domain decomposition

10.4.1 Effect of domain decomposition on accuracy

In Chapter 7 it was shown for the modelproblem in 2-D that the use of domain
decomposition decreases the stability of the computation. It was argued that
this is due to the larger errors in the solution of Laplace’s equation near each in-
terface because of the one-sided discretizations used there. In the computations
presented in this chapter, the nonlinearity is not that high but because many
subdomains are used the effect of such errors may become noticable. As the
computations can be continued over at least 60 wave periods, stability seems not
to be affected much. However, a closer observation of the accuracy is required
to determine the effect of using subdomains.

To that purpose, and to the purpose of studying efficiency, we have also per-
formed computations with different numbers of subdomains upto 200. Results
on efficiency have been presented in Chapter 8 and only an additional small re-
mark will be made about it in the next subsection. First we consider the effect
on accuracy by comparing results of the 50-subdomain problem with the 200-
subdomain problem. Again this is illustrated best by showing the free-surface
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elevation at t = 45T , see Figure 10.6.
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Figure 10.6 Surface elevation at t = 45T for the 200-subdomain problem
using the initial signal of run 6.

Most clear from Figure 10.6 in comparison with Figure 10.5 is the occurrence
of small periodic waves in the area between x = 0 and x = 2000 m. The wave
length is approximately equal to 50 m which is almost the same as both the
length of the subdomains in this case and the wave length of the carrier wave.
The amplitude of these waves is approximately 2 cm. They do not grow in time.
Waves with the same wave length but an amplitude of approximately 0.4 cm
can be observed in the 50-subdomain computation.

Comparison of time series of free-surface elevations at locations at every
500 m show only minor differences between the 50-subdomain and the 200-
subdomain computation. Wave speed and wave height of all left-going and
right-going waves are the same. The most noticable difference is found in a
set-down of the free surface near the right outflow boundary after the free long
wave has passed. The set-down in the 200-subdomain computation is 0.9 cm
instead of 0.5 cm in the 50-subdomain computation.

From these observations we deduce that at each interface the local trunca-
tion error made there, contributes to the generation of small waves. The wave
length of these waves is not determined by the subdomain length but by the
wave length of the carrier wave because the local truncation error varies in the
same rate as the free surface passing the interface. If more interfaces are present
then also more waves are generated. The generation of these disturbances is not
related to the generation of the free second-order signals. In the 50-subdomain
computation they are small in comparison to the relevant signals. In the 200-
subdomain computation the disturbances are of the same order which makes
this computation not suitable for an analysis of the occurence of spurious waves.

Clearly one should be careful with using many subdomains as the waves
generated near the interfaces may disturb the signals in which one is interested



152 Chapter 10

in, or even interact with them. The number of subdomains but also the spatial
and temporal resolution limits the degree in which signals can be identified.
Variation of these parameters then has to ensure that analysis is not influenced
by the use of the numerical method. With respect to such a study, it would
be very profitable if the accuracy of the numerical model is not sensitive to the
use of domain decomposition. We believe that this can be achieved by locally
increasing the resolution near the interfaces.

10.4.2 Remark on efficiency

In Chapter 8 we have already studied the efficiency of the domain decomposition
method as function of the number of subdomains. The computations were con-
fined to the first 20 timesteps corresponding to 1 wave period of the carrier wave.
To allow many different subdivisions into equally sized subdomains, the resolu-
tion was chosen to consist of 1600 panels at the free surface and 800 panels at
the bottom. The numerical configuration used for the computations presented
in Section 10.3 has a resolution of 2000 panels at the free surface and 1000 at
the bottom. Because required CPU-time per time step and required memory by
approximation depend quadratically on the number of panels per subdomain,
it can be expected that these computational costs are approximately a factor
(3000/2400)2 = 25/16 larger than the ones of the corresponding computations
presented in Chapter 8.

These figures are given to indicate the computational costs of a complete
simulation for different numbers of subdomains. The simulations over 60 wave
periods took about 1.5 hours on a Cray C98 computer at a computational speed
of about 125 Mflop/s. The required memory was approximately 56 MByte. The
use of a single domain for this simulation would have exceeded the capacity of
the Cray computer. Moreover it is questionable whether the system of lin-
ear equations in this case is numerically solvable within the required accuracy.
Therefore the use of the domain decomposition technique is inevitable.

With an eye to larger problems involving a bottom topography it is remarked
again that the computational costs per time step depend at most linearly with
the size of the computational domain. For comparison with the results of Dinge-
mans et al. [22] on a domain with a length of 15 km, this implies three times
as much computational costs per time step. However, a longer simulation time
is required for this domain. The computational costs per simulation will then
be an additional factor larger than those presented in this thesis. On the other
hand we remark that with respect to required CPU-time we expect the use of an
iterative solver to be much more efficient, because there are large areas where
variables change slowly and only a few iterations are needed.
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10.5 Conclusions

By using the domain decomposition method in the numerical model for nonlin-
ear waves, it is possible to simulate the propagation of wave groups over large
simulation times. For the formulation of a propagating wave group of fixed form
it is important to include higher-order contributions. The release of free waves
from the wave group can be related to second-order contributions to the first-
order signal. The question remains, however, how to impose an initial signal to
obtain a propagating wave group of fixed form over a horizontal bottom.

With respect to accuracy it is observed that near the interfaces disturbances
are generated which may disturb the signals. For the computations used here
with the higher resolution, these disturbances are not significant for the identi-
fication of the spurious wave signals.
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Chapter 11

Diffraction by a vertical circular
cylinder

11.1 Introduction

A subject which has received considerable attention in recent years, is the so-
called ‘ringing’ effect on offshore structures like gravity base structures (GBS)
and tension leg platforms (TLP). Ringing manifests itself in high frequency
structural response in the form of transient energetic bursts. The hydrodynamic
load mechanism is not yet fully understood but it is known that nonlinear wave
forces highly contribute to ringing.

Several simplified approaches have been attempted to predict the nonlin-
ear wave force exerted on a structural member by a steep non-breaking wave
such as slender body theories including nonlinear effects due to the free surface
and quasi-analytic second- and third order perturbation solutions. There is,
however, still a need for more accurate numerical predictions based on a fully
nonlinear wave-body interaction formulation. With this objective a compara-
tive study was initiated in 1994 as part of a Joint Industry Project in order to
obtain an overview of existing numerical methods for simulations of nonlinear
waves. A part of this study involved a test-case for diffraction by a surface-
piercing circular cylinder. This test-case is studied in the present chapter.

The results presented in this chapter mainly concern the appropriateness
of the numerical method to handle simulations with surface-piercing objects.
Because part of the present research project is aimed at developing the numerical
method for the simulation of ship motion due to waves, the results can provide
valuable insight for the latter problem. No attention is paid here to studies
involving ringing although such problems are interesting on its own.

The chapter is divided as follows. First, in Section 11.2, we describe the
test-case as it was formulated in the comparative study and the one which
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is used in the computations. In Section 11.3 some possibilities of using the
numerical method are considered and studied on their appropriateness for the
test-case. The most suitable numerical configuration is then used in Section 11.4
for the simulation of the diffraction problem and results of the computations
are discussed. In Section 11.5 some concluding remarks about this study are
made.

11.2 Description of the diffraction problem

The test-case as it was formulated in the comparative study was chosen the
same as the diffraction problem reported by Yang and Ertekin [72]. It involves
the diffraction of a modulated finite depth Stokes’ wave by a bottom-mounted
circular cylinder, see Figure 11.1.

R hL

H

Figure 11.1 Modulated finite depth nonlinear wave incident on a bottom
mounted circular cylinder. Indicated are the wave height H, wave length λ,
water depth h and radius of the cylinder R.

The values of these parameters are given by

H/h = 0.4, h/R = 1.16 and kR = 1.324 (λ/R = 4.746) (11.1)

In the computations the radius R is taken equal to 1.0 m.
The parameters are such that the problem can be classified as belonging to

the so-called diffraction regime, for which the size of the object is of the same
order as the wave length. In this regime the contribution of viscosity to the wave
forces on the object can be neglected (if there is no background current) and
potential theory can be used to accurately determine these forces, see e.g. [62].

A Stokes’ second-order wave signal was used by Yang and Ertekin [72] to-
gether with a modulation function α. This modulation function is formulated
such that the front of the wave signal propagates with a certain (group) veloc-
ity cg and a smooth transition is made near the front of the wave signal, see
Figure 11.1. The modulated free-surface elevation ηα and velocity potential φα



Diffraction by a surface-piercing circular cylinder 157

are expressed by

ηα(x, t) = α(ψ)η(x, t) and φα(x, z, t) = α(ψ)φ(x, z, t), (11.2)

with ψ = ψ(x, t) specified below and η and φ given by equations (2.36) and (2.38)
respectively. The modulation function α is chosen as

α(ψ) =

{

1 − eψ+kR if ψ + kR < 0
0 if ψ + kR ≥ 0

(11.3)

where
ψ(x, t) = k(x− cgt) (11.4)

and

cg =
ω

2k

(

1 +
2kh

sinh(2kh)

)

. (11.5)

The parameters ω and k = 2π/λ are related by the dispersion relation (2.21) for
linear theory and cg expresses the group velocity according to linear theory. The
parameter k = k/2 is only used for defining the spatial variation of the mod-
ulation function α. In the comparative study the maximum non-dimensional
horizontal force F̃ = F

ρgR2A
on the cylinder and the maximum non-dimensional

run-up η̃max = ηmax/A on the front of the cylinder were requested, with A = 1
2
H.

For these wave conditions it is found from the Fourier approximation method
by Rienecker and Fenton [57] that for a periodic steady wave the third and
fourth-order terms significantly contribute to the signal. In terms of the co-
efficients aj in expression (2.42) this can be seen from the ratios a3/a1 and
a4/a1 which equal 0.0776 and 0.0305 respectively for a wave with waveheight
H = 2A. In the computations therefore the signal described by equations (2.42)
and (2.43) is used instead of the second-order quantities (2.36) and (2.38).

In the computations presented in this chapter, also use is made of wave
conditions with the same wave length but with smaller wave heights. These
wave heights are indicated by Hǫ with ǫ indicating the ratio of used wave height
and the wave height given in equation (11.1), (i.e. H100%).

11.3 Use of the numerical method

The diffraction problem with the surface-piercing cylinder requires some spe-
cific numerical treatment within the numerical model for nonlinear water waves.
This especially concerns the use of smoothly connecting networks on the free
surface in 3-D and the use of a mixed Eulerian-Lagrangian description. An-
other subject which requires special consideration is the use of the boundary
conditions on the inflow and outflow boundary. These elements of the numerical
model are discussed in this section. See also Section 3.4 where some important
features of the model have already been discussed.
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11.3.1 Grid motion

When the free-surface collocation points are moved in a Lagrangian way, the
collocation points will drift in the direction of wave propagation and it can
be expected that especially near the cylinder the grid will distort. An Eu-
lerian description would therefore be appropriate. But as already shown by
Broeze [13], the use of the Eulerian description leads to an instability near the
inflow boundary where the midpoint description is not able to accurately de-
scribe the incoming wave field. A solution for these problems is the use of a
mixed Eulerian-Lagrangian description.

In the mixed description used here, the contribution of the Eulerian and the
Lagrangian displacement to the grid velocity varies over the grid. The collo-
cation points near the cylinder are moved almost Eulerian and the collocation
points near the outer boundaries are moved almost Lagrangian. In between a
mixed Eulerian-Lagrangian description is used in which the contribution of the
Eulerian part to the grid motion decreases in favour of the Lagrangian part:
The grid velocity vg = (û, v̂, ŵ) increases from (0, 0, ∂η

∂t
) to the material velocity

(u, v, w). The transition used here is expressed in terms of the position of the
collocation points relative to the cylinder: If a collocation point is on the j-th
grid line in the outward radial direction, then the grid velocity is given by

vg = ωv + (1 − ω)







0
0
∂η
∂t





 (11.6)

with
∂η

∂t
= w − u

∂η

∂x
− v

∂η

∂y
(11.7)

and

ω = 1 − e−
1
10
j2. (11.8)

As already pointed out in Section 4.4 the difficulty associated with using grid
velocities different from the material velocity is the determination of the second-
order time derivatives. Especially near the cylinder where the Lagrangian con-
tribution is small, relatively large errors are made. Therefore it is expected that
the use of two-stage two-derivative Runge-Kutta methods introduces errors. We
compare results for this method with the classical fourth-order Runge-Kutta
method in Section 11.4.

11.3.2 Grid structure

Due to the presence of a surface-piercing object the boundaries of the fluid do-
main can not be covered with single networks as for example in the subdomains
in the problems presented in Chapter 8. The grid is allowed to be curvilinear
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but must have a rectangular structure in each network. Therefore the boundary
of the fluid domain has to be built up from networks with smooth edges and
each edge connecting under an angle with the (two) adjacent edges. For the cir-
cular cylinder this can be done by a division such as the one in Figure 3.1, right
figure. A topview of the networks around the cylinder is shown in Figure 11.2,
left plot.

Figure 11.2 Topview of the free-surface networks. Left plot: Cylinder
imbedded in four networks. Right plot: Cylinder imbedded in one network.

For this division the resolution on the four free-surface networks adjacent
to the cylinder coarsens in the direction of the gridlines parallel to the intersec-
tion line. If one wants to enlarge the domain, other networks can be attached
to the free-surface networks with the same resolution at the straight edges op-
posite to the edges of the cylinder. An example of such a grid is shown in
Figure 12.1. In the present implementation one-sided discretizations are used
near the intersection lines between smoothly connecting networks.

An alternative boundary division which has fewer smoothly connecting net-
works is illustrated in Figure 11.2, right plot. In this division there is only
one free-surface network. The four edges for this network are the intersection
with the cylinder, the intersection with the outer boundary and two edges on
both sides of the (straight) intersection of the network with itself. The outer
boundary, the bottom and the cylinder can be built up from one network in
a similar way. Clearly this division does not allow outward connections of the
free-surface networks with other free-surface networks without using a further
coarsening grid.

In Section 11.4 computations using these two boundary divisions are pre-
sented and it appears that the boundary division illustrated in Figure 11.2, left
plot, is not suitable due to the generation of large errors near the intersections
of the free-surface networks. The generation of errors due to one-sided dis-
cretizations can be overcome by constructing computational molecules which
are allowed to cross the intersection lines. This is presently not implemented in
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the numerical method.

11.3.3 Lateral boundaries

In the treatment of the lateral boundaries, the movement and the type of bound-
ary condition are important. With respect to the latter aspect, the lateral
boundaries should ideally function as both inflow and outflow boundaries. The
inflow conditions are specified as function of time and space in Section 11.2 and
propose no problem. For the outflow conditions the use of an efficient absorbing
boundary condition has to be considered. Because the wave field in diffraction
problems can be quite complex, this is not an easy task.

For the use of Sommerfeld’s radiation condition, a certain phase speed c and
an angle of incident α have to be specified for the outgoing waves. Especially a
specification of the latter quantity beforehand is quite uncertain. A disadvan-
tage from using Sommerfelds’ radiation condition is furthermore the restriction
on the size of the time step due to stability requirements. Broeze showed that
for stability the time step ∆t has to satisfy c π

∆z
∆t < 2

√
2 with ∆z the panel

size on the outflow boundary.
Another possible absorbing boundary condition, already mentioned in Chap-

ter 2, is the use of sponge layers. This boundary condition has been used by,
for example, Ferrant [26] in the same diffraction problem. In his approach the
damping term is only applied to that part of the potential different from the
potential defined by the incoming wave field.

In the computations presented here we have followed the quite crude ap-
proach in which the incoming wave field is used to define the boundary condi-
tions on all lateral boundaries and no absorbing boundary condition is imposed.
Therefore the lateral boundaries act as reflecting boundaries for waves different
from the incoming wave. In order to generate periodic signals for wave runup
and horizontal force on the cylinder over a sufficiently long time interval, the
lateral boundaries have to be placed at a sufficiently large distance from the
cylinder. In the computations we have varied the size of the domain to deter-
mine the influence of the lateral boundaries.

With respect to the movement of the lateral boundaries, the usual approach
can be employed in which alignment velocities are determined such that the
lateral boundaries follow the edge of the free surface. In the computations pre-
sented in this chapter, a different approach is followed using explicit regridding
of the lateral boundaries based on the integrated position of the free-surface
collocation points. Also the positions of the collocation points on the bottom
and the cylinder are determined in this way.
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11.4 Results

In this section we present the results of computations in which the options
mentioned in the previous section are tested. This involves the use of the
mixed Eulerian-Lagrangian description and the choice for the square or the
circular free-surface grid. The circular free-surface grid is the most successful
one and is used in computations in which the influence of the lateral boundaries
is investigated and which are used to generate time signals for horizontal force
and run-up.

First we consider the use of the mixed Eulerian-Lagrangian description. In
order to study the effect of the second-order time derivatives in the two-stage
two-derivative method, this method and the classical Runge-Kutta method are
applied both and results are compared. The configuration with the circular free-
surface grid in a domain with radius RD = 7.0 m is taken with the resolution
indicated in Figure 11.2. The waveheight H = H50% = 0.232 m is chosen for
these computations.

The differences in positions of the collocation points of the free surface be-
tween both computations is considered at t = 7.35 s ≈ 4.08 T . It can be
indicated as follows. For all collocation points, the x and y coordinates differ
at most 8 cm and 4 cm respectively. The difference in the z coordinate at this
time level is not larger than 2 cm, but is related to comparing it for differ-
ent horizontal coordinates. The difference in computed horizontal force on the
cylinder and the run-up at the front of the cylinder slowly increases in time
and equals approximately 4% of the maximum value at t = 7.35 s ≈ 4.08T .
These differences are smaller than the variation due to the use of the size of the
domain as will be shown later.

Next we consider the suitability of the square and circular free-surface grid.
For different wave heights we have examined the stability of the numerical
method in a domain with radius RD = 7.0 m and with a resolution as indicated
in Figure 11.2. In these computations we use the mixed Eulerian-Lagrangian
description in combination with the two-stage two-derivative method.

It appears that even for small wave heights (H10%), the computations with
the square free-surface grid break down within half a wave period. Near the
inflow boundary x = -7.0 m, the resolution is low and large truncation errors
are generated near the edges of the free-surface networks.

The computations with the circular free-surface grid can be maintained much
longer. For H = H50% it can be continued over more than 10.050 s ≈ 5.59 T
where as for H = H75% and H = H100% it can be continued over 5.325 s
≈ 3.01 T and 2.775 s ≈ 1.61 T respectively. The latter computations break
down due to large irregularities near the inflow boundary. For the computation
with H = H100%, the free-surface grid and the free-surface elevation at the final
time level are indicated in Figure 11.3 in the upper and down plot respectively.
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It can be seen that the run-up on the front of the cylinder is very large. It equals
0.70 m at this time level whereas the initial crest-surface elevation equals 0.29 m.
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Figure 11.3 Free-surface grid at t = 2.775 s for H = H100%. Light coloring
indicates positive free-surface elevation and dark coloring indicates negative
free-surface elevation.
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For H = H50% the computations can be continued over more than 5 wave
periods using the circular free-surface grid. These computations are used to
analyze the horizontal force on the cylinder and the run-up at the front of the
cylinder as function of time and to determine their maximum values. To inves-
tigate the influence of the lateral boundaries on these time series, computations
are done using domains with radius RD = 7.0, 9.0, 11.0 and 13.0 m. For in-
creasing radius of the domain, the number of panels in the azimuthal direction
is increased from 32 to 40, 52 and 64 respectively in order to maintain the same
resolution on the lateral boundaries. Consequently the computational effort in-
creases superlinearly. For RD = 13.0 m it is more than 8 times larger than for
RD = 7.0 m. Figure 11.4 shows the time series for horizontal force and run-up
for the computations mentioned above.
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Figure 11.4 Time series of horizontal force on the cylinder and the run-up
at the front of the cylinder for RD = 7.0 m (−), RD = 9.0 m (−−), RD =
11.0 m (−·) and RD = 13.0 m (· · ·).

The influence of the lateral boundary can clearly be seen for the smallest
domain. Already after 2.5 T the force signal for RD = 7.0 m deviates from the
other force signals and it looses its periodic character. The differences can not
be explained from the effect of reflected waves which again reflect against the



164 Chapter 11

lateral boundaries: For RD = 11.0 m a distance of 20 m has to be travelled.
The largest group velocity possible for this water depth can be estimated from
linear theory and equals

√
gh = 3.37 m/s which implies that reflected waves

need at least 5.93 T to reach the cylinder again.
The differences may be explained from the presence of the lateral boundaries

influencing the solution of Laplace’s equation. The differences may also be
caused by the use of a modulated wave signal; the modulated signal does not
completely satisfy the nonlinear free-surface conditions and therefore changes
when it enters the domain. In a larger domain the signal changes more before it
reaches the cylinder. It is not clear to which degree these two aspects contribute
to the differences. It is remarked that the computation of the horizontal force
involves the integration of the pressure over the wetted surface of the cylinder
and that resolution is different for domains of different size.

The most periodic signal is found for the largest domain RD = 13.0 m.
From this signal we estimate the maximum dimensionalized horizontal force to
be equal to 2.8 and the maximum dimensionalized run-up to be equal to 2.3.
The free-surface elevation at t = 9.0 s for this domain is shown in Figure 11.5.

11.4.1 Note on the comparitive study

The computations which were performed with the numerical model for the com-
parative study in 1994, were quite limited because only the circular domain with
radius RD = 7.0 m was used over a smaller simulation time. For a wave height
H = H100% the computation broke down after 2 wave periods due to a saw-
tooth instability at the intersection of the free surface with the cylinder. The
requested quantities, i.e. maximum non-dimensional horizontal force F̃ = F

ρgR2A

on the cylinder and the maximum non-dimensional run-up η̃max = ηmax/A on
the front of the cylinder were found for the computation with wave height
H = H50%.

The computations presented in this chapter were performed recently but
showed large differences with the 1994-computation for the same configuration.
The results of 1994 could not be reproduced and it is not clear why. Differences
were observed for the requested quantities but also the stability of the method
was different. As already mentioned in Section 11.4 the computation with
wave height H = H100% broke down due to large irregularities near the inflow
boundary and not because of a sawtooth instability.
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Figure 11.5 Free-surface elevation at t = 9.0 s for RD = 13.0 m.
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With respect to the differences in the requested quantities mentioned above,
we discuss the old and new results in relation to the results reported in the com-
parative study next. It is remarked that the results of the 1994-computation
were obtained for the small domain with RD = 7.0 m and includes the effect
of the presence of the lateral boundaries discussed in Section 11.4. The com-
parative study is reported by Nesteg̊ard [55]. It shows results of computations
of five different numerical models including the present one from 1994. These
results are plotted in Figure 11.6 together with the recent results presented in
this chapter.
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Figure 11.6 Results of five different numerical models for the diffraction
problem as reported in Nesteg̊ard [55]. The results of the numerical model
studied in this thesis are indicated by squares, the recent ones with filled
squares.

From this figure it is clear that the results are quite different. Only for the
run-up a reasonable agreement is found between four models. With respect
to the results of the present numerical model, the maximum horizontal force
computed recently is more in line with the results from other models, but the
maximum run-up is much larger than those of other models where as the re-
sult from the 1994-computation shows much better agreement. Moreover the
present result is for waveheight H = H50%. The computation with waveheight
H = H100% at the time level at which it breaks down, shows an even larger
run-up of 3.0.

From the comparison of the present results with the results reported in the
comparative study, including our 1994-computation, it is hard to conclude what
the most accurate results are. Closer study is needed to validate the results
presented in this chapter.
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11.5 Conclusions

In this chapter we have examined the suitability of the numerical model to
simulate waves diffracting around a circular cylinder. Parts of the method
which need extra attention for this problem are the mixed Eulerian-Lagrangian
description, the grid structure and the lateral boundaries.

With respect to the mixed Eulerian-Lagrangian description it was found
that it can sufficiently control the motion of the grid around the cylinder. When
using the two-stage two-derivative Runge-Kutta method, the determination of
the second-order time derivatives contributes to the generation of errors but for
this problem they are small relative to the influence of the lateral boundaries.

For the structure of the free-surface grid, two possibilities are examined.
The use of a square free-surface grid is not suitable due to the generation of
large errors near the intersection lines of the free-surface networks. With the
use of a circular free-surface grid it is possible to simulate the diffracted wave
field over more than 5 wave periods for a mildly nonlinear wave. For higher
waves the computations break down due to the low resolution near the lateral
boundaries.

Time series of the horizontal force on the cylinder and the run-up at the front
of the cylinder are compared for computations with circular domains of different
radius. For the largest domains the differences in the time series become very
small. The time series become almost periodic and maximum values can be
determined.
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Conclusions and
recommendations

The subject of nonlinear water waves is a subject of both great interest and great
attraction. In the classical mathematical sense, problems involving nonlinear
water waves are hard to solve. Therefore other ways are sought such as the
numerical approach. Nevertheless it is important to take notice of theories in
which the nonlinear water wave problem is simplified because they provide tools
to understand and describe the nonlinear behaviour. The concept of free and
bound waves is an example of a useful description of nonlinear waves and has
been described in Chapter 2.

The numerical solution which is described and studied in this thesis has
been developed by Romate, Broeze, van Daalen and Zandbergen and is based
on a panel method for Laplace’s equation. Furthermore it consists of a time-
dependent part in which the grid points move along with the free surface. These
two parts are suited very well for the task of numerically solving the problem
of nonlinear water waves. The details of the method are described in Chapter
3 and previous results concerning accuracy and stability of the method are
summarized.

In Chapter 4, some specific algorithms of the numerical model are stud-
ied more closely and some inaccuracies are pointed out. These algorithms in-
volve the intersection algorithm and the grid alignment algorithm. Furthermore
the grid correction algorithm was studied, especially when used with second-
order time derivatives. The latter study included a numerical test for a two-
dimensional model problem. In the test an improved Sommerfeld radiation
condition was used. The test shows that the second-order time derivatives in
the present implementation decrease the accuracy. Nevertheless the numerical
method is still accurate and stable over large simulation times for highly non-
linear waves.

Because the computational costs of the numerical model depend superlin-

169



170 Chapter 12

early on the number of panels used in the discretization of the domain, the use
of domain decomposition methods is a promising approach for the reduction of
computational costs. In Chapter 5 the D/D-N/N scheme for the coupling of
subdomain problems is explained and its relation to other methods known from
literature is described. For the efficiency of the method, the convergence of the
iterative process of the scheme is of essential importance. It is studied in Chap-
ter 6 and it is shown there that the convergence is determined by the degree of
asymmetry in the geometry of the domain near the interfaces. If the interfaces
are not too close together, then the convergence on each interface is determined
by the local asymmetry only. For the horizontal subdivision considered in our
wave problems, the global convergence is determined by the interface with the
worst convergence.

In Chapter 7 the use of the domain decomposition method in time-domain
computations of nonlinear wave problems is studied. The method is imple-
mented easily by applying the numerical method for one-domain problems to
the subdomains separately, extended with coupling algorithms for the itera-
tive process and for the determination of joint intersections. Consequently, the
accuracy of solving Laplace’s equation is decreased near the interfaces which af-
fects the global accuracy. The efficiency of applying the domain decomposition
method depends on many parameters, especially on the use of iterative solvers
for the solution of the system of linear equations. Models are formulated to pre-
dict computational costs as function of number of subdomains. Some examples
show that computational costs can be reduced considerably, especially for large
problems.

Because the computations in the separate subdomains are independent to a
large extent, parallel computing can be used easily. An implementation using
compiler directives and an implementation using message-passing are compared
in Chapter 8 and it is shown that the latter implementation is (slightly) more ef-
ficient. A completely distributed implementation using message-passing shows a
superlinear speed-up for large numbers of subdomains on a homogeneous shared
memory system. The efficiency of parallel computing is smaller on heteroge-
neous systems because it is impossible, in general, to choose the subdivision
of the computational load (determined by the subdomain division and the as-
signment of subdomains to processors) in accordance with the heterogeneity of
the system. Still speed-up can be found for heterogeneous distributed memory
systems.

In Chapters 9, 10 and 11 the suitability of the numerical model is studied for
nonlinear wave problems more related to problems originating from engineering
studies. First, in Chapter 9, the use of the method is considered in computations
in which waves generated by translating and rotating wavemakers are simulated.
For both types of wavemakers, computations can be performed stably over
sufficiently long simulation times. For a translating wavemaker, comparison
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is made with experimental results and agreement between computation and
experiment is found to be very good. It shows that nonlinear wave motion can
be simulated accurately for this type of inflow boundary. With an example
it is shown that the method can be used to verify the correctness of higher-
order wavemaker signals. For a rotating wavemaker, the waves generated by a
first-order wavemaker signal are simulated. The computations show the degree
in which spurious waves are generated and give extreme values for forces on
the wavemaker and required power for the wavemaker motion to generate the
waves.

The simulation of a propagating wave group over an even bottom is the
subject of Chapter 10. The effect of adding second-order contributions to the
initial wave signal is studied. It is seen that groups of free waves separate
from the main wave group and that these free waves have smaller waveheights
when second-order contributions are added. For these computations, the use of
domain decomposition is inevitable as already shown in Chapter 9. The decrease
in accuracy because of the use of domain decomposition appears through the
generation of spurious waves at the interfaces with the same wave period as the
passing waves.

In Chapter 11 the possibility of simulating waves in a domain with a surface-
piercing structure is illustrated for a vertical bottom-mounted cylinder. The
use of a mixed Eulerian-Lagrangian description is necessary and provides stable
computations for moderately high nonlinear waves in a circular domain. The
effect of the presence of the lateral boundaries on measured signals on the
cylinder is investigated for increasing radius of the domain. It is shown that
almost periodic force and run-up signals can be obtained.

Recommendations

Recommendations for further study with respect to the investigations described
in this thesis are the following:

• The algorithm for the determination of the intersection of the free sur-
face with connecting boundaries needs further improvement. The orig-
inal iterative method, described in Section 4.2, should be stabilized or
the proposed extrapolation should be extended to deal with two curved
boundaries. The latter remark also applies to the algorithm for the deter-
mination of the grid alignment velocities.

• The use of tangential grid correction velocities is important for the simu-
lation of wave problems with large variations in horizontal velocity. Cor-
rect expressions for the associated second-order time derivatives should
be found in order to improve the accuracy of the two-stage two-derivative
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Runge-Kutta method and of the determination of the pressure. Its ef-
fect on the stability of the two-stage two-derivative Runge-Kutta method
should be studied.

• Related to the use of tangential grid correction velocities, is the use of
mixed Eulerian-Lagrangian methods. They should be used when the free-
surface grid distorts due to large variations in horizontal velocities, for
example in the vicinity of wavemakers. A mixed Eulerian-Lagrangian
method which provides sufficient control over the free-surface grid should
be developed.

• The suitability of absorbing boundary conditions for nonlinear waves should
be investigated further. The relation between reflection coefficients and
phase velocity and propagation direction of outgoing waves should be de-
termined. Also the use of absorbing boundary conditions in combination
with incoming wave signals should be investigated closer.

With respect to the use of domain decomposition, the main recommendations
are the following:

• In this thesis we have only considered subdivisions of the domain in one
direction. For large three-dimensional problems, savings may be obtained
if a bi-directional subdivision is used. An iterative scheme for such a
subdivision has been proposed in Section 6.2.3 but probably more effi-
cient schemes are possible. Related to this is the use of subdomains with
horizontal interfaces, for example for the area between a ship and a quay.

• The relation between the asymmetry of the geometry near interfaces due
to wave disturbances, and the convergence rate of the iterative process,
should be studied further. It may provide insight how to obtain better
coupling of the boundary conditions in order to improve the convergence
rate. Also the effect of bottom geometry on the convergence rate should
be studied further for the same reason.

• With respect to the numerical implementation of the iterative process, the
stop criteria should be formulated in relation to the accuracy of the panel
method and the resolution used. Furthermore it should be investigated
how the domain decomposition method can be applied in time-domain
computations without affecting the global accuracy of the computations.
A possible solution is the use of a locally refined grid near the interfaces.
A way to increase resolution near the interfaces, is to use the grid points
at the intersections of free-surface networks with interface networks as
extra collocation points in the panel method and the time integration.

• The latter recommendation applies even more strongly to intersections
of smoothly connecting free-surface networks within one subdomain. An
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alternative approach for these intersections is to construct computational
molecules which cross these intersection lines, thus avoiding one-sided
discretizations.

In Chapters 9, 10 and 11, many observations were made how the numerical
model for nonlinear water waves should be improved in order to apply it better
in studying the water wave problems discussed in these chapters. The most
important observations have been mentioned in the recommendations given
above. With respect to the studies themselves, it is clear that many interest-
ing questions are still unanswered. Since these questions are not related to the
numerical model itself, they are not mentioned in this list of recommendations.
It is, however, believed that the numerical model for nonlinear water waves can
be a valuable tool in such studies.

Finally we relate the recommendations formulated above to the particu-
lar case of the simulation of ships moving in waves. This is one of the most
important aims of the ongoing research project and therefore we devote some
special attention to such computations. An example of a computation with the
linearized free-surface conditions is used to illustrate this and is described next.

The motion of ships due to the presence of waves can be considered for
various circumstances. With an eye to the possibilities of the numerical model
for nonlinear water waves studied in this thesis, we consider a ship moored
at a quay in a harbour with varying bottom topography. Waves entering the
harbour, propagate towards the ship and cause the ship to move.

This is simulated with the numerical method in a very rough way with the
computation illustrated in Figure 12.1. It shows a configuration in which the
ship is modelled by a fixed sphere and the propagation of waves is computed
using the linearized free-surface conditions. Waves enter at the left and lower
boundary and reflect at the right and upper boundary which are modelled as
solid boundaries.

Important features not modelled in this computation are the nonlinearity of
the free-surface conditions and the motion of the ship due to the exciting wave
forces on the ship’s hull. The numerical method, based on the panel method
described in this thesis, which takes both these features into account will be
described by Berkvens [9]. Furthermore the forces exerted by a mooring system
and the shape of a realistic ship are not modelled here.

The recommendations apply to the simulation of ships moving in nonlinear
waves in the following way. The wetted part of the ship is a boundary of the
fluid domain and is covered by networks. In the time-domain simulation, these
networks have to move along with the changing waterline. This complicates the
determination of the intersections with the free-surface networks. The present
intersection algorithm has to be extended for this purpose.
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Figure 12.1 Domain used in a computation simulating the propagation of
waves towards a sphere. Light coloring indicates positive free-surface eleva-
tion and dark coloring indicates negative free-surface elevation.

Similarly to the simulation of waves diffracting around a surface-piercing
cylinder, a mixed Eulerian-Lagrangian method is needed to control the grid
around the ship. In this method it has to be accounted for that the ship itself
moves as well. With respect to the use of absorbing boundary conditions, it
is important to know to which degree waves reflecting from the ship affect the
accuracy of the computation and what the required size of the domain is.

To be able to model ships moored in a harbour, obviously a large domain is
required. Moreover a relatively high resolution on the ship itself is required to
describe the hull accurately. The domain decomposition technique is therefore
necessary to perform such simulations, but alternative subdivisions than the
ones described in this thesis are needed.

Finally we remark that in simulations with ships or other surface-piercing
objects, the free-surface grid has to be built up from separate networks. From
the experiences with such grids described in this thesis, we infer that develop-
ments like the ones described above are necessary for stable computations.



Appendix A

Two-stage two-derivative
Runge-Kutta method

In this appendix the coefficients used in the two-stage two-derivative Runge-
Kutta method, refered to in Section 4.5.2 are given. Runge-Kutta methods are
integration methods for the solution of the initial value problem

ut :=
du

dt
= f (t, u) , u(0) = u0. (A.1)

See also equation (3.8). The higher order derivatives are expressed as

u(l) :=
dlu

dtl
==

dl−1

dtl−1
{f (t, u)}, l ∈ IN. (A.2)

In Runge-Kutta methods the variable u is integrated at a number of intermedi-
ate levels and these integrated values are combined to give u on the next level.
For the classical fourth-order Runge-Kutta method u(t+∆t) is found from u(t)
through

u(t+ ∆t) = u(t) +
1

6
∆t(k1 + 2k2 + 2k3 + k4) (A.3)

where


















k1 = f(t, u(t))
k2 = f(t+ 1

2
∆t, u(t) + 1

2
∆t k1)

k3 = f(t+ 1
2
∆t, u(t) + 1

2
∆t k2)

k4 = f(t+ ∆t, u(t) + ∆t k3)

(A.4)

In the two-stage two-derivative Runge-Kutta method, the evaluation of the
function f at intermediate time levels is combined with the use of higher-order
time derivatives as in Taylor methods. In Taylor methods a truncated Taylor
expansion for u is used. The n-th order method can be written as

u(t+ ∆t) = u(t) +
n
∑

l=1

(∆t)l

l!

dlu

dtl
(t). (A.5)
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The Runge-Kutta and Taylor methods are combined to the two-stage two-
derivative Runge-Kutta method as follows:

u(t+ ∆t) = u(t) + (γ11∆t k11 + γ12
(∆t)2

2
k12 + γ21∆t k21 + γ22

(∆t)2

2
k22) (A.6)

where






















k11 = f(t, u(t))
k12 = df

dt
(t, u(t))

k21 = f(t+ β∆t, u(t) + β∆t k11 + (β∆t)2

2
k12)

k22 = df
dt

(t+ β∆t, u(t) + β∆t k11 + (β∆t)2

2
k12)

(A.7)

The two-stage two-derivative Runge-Kutta methods considered in Chapter 4
and referred to as RK-2-2-a, RK-2-2-b and RK-2-2-c, have their coefficients
(β, γ11, γ21, γ12, γ22) equal to

a: (1
2
, 1, 0, 1

3
, 2

3
)

b: (2
3
, 13

16
, 3

16
, 6

16
, 6

16
)

c: (1, 5
6
, 1

6
, 3

6
, 1

6
)

(A.8)

respectively. The latter method has the smallest contribution of the second-
order derivatives.
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Convergence analysis for
rectangular subdomains

In Section 6.2 we have analyzed the convergence of the domain decomposition
method for the D/D-N/N scheme for rectangular domains. For the case of two
subdomains it was shown that the convergence can be described in terms of
amplification factors which express the growth of the Fourier modes of the error
in the interface boundary condition. For the case of three or more subdomains
the resulting difference equation for the system of Fourier coefficients on the
set of interfaces was given, without specification of the coefficients involved. In
Section B.1 of this appendix, expressions for these coefficients are derived. In
Section B.2 the eigenvalues determining the convergence of the iterative process
in the multi-subdomain case for subdomains of equal length are derived. The
expressions for the D/*-*/N scheme are worked out in Section B.3.

B.1 Three-subdomain problems

In this section we analyze the D/D-N/N scheme for a 3-subdomain problem.
We refer to Figure 6.3 for the definition of the geometrical quantities for this
problem. The solutions of the Laplace problems are determined by boundary
conditions ϕ̃1 and ϕ̃2 on the interfaces at the even steps and by boundary
conditions ψ̃1 and ψ̃2 at the odd steps. For all subdomains they can be expressed
in the solutions occurring in the 2-subdomain problem as already mentioned in
Section 6.2.2. So for boundary conditions

ϕ̃1(z) =
∞
∑

n=1

c1,n sin
(

nπ

h
z
)

(B.1)

and

ϕ̃2(z) =
∞
∑

n=1

c2,n sin
(

nπ

h
z
)

(B.2)
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the solution φ̃2 in subdomain ΩII equals

φ̃2(x, z) =
∞
∑

n=1

c1,n
sinh

(

nπ
h

(x2 − x)
)

sinh
(

nπ
h

(x2 − x1)
) sin

(

nπ

h
z
)

+
∞
∑

n=1

c2,n
sinh

(

nπ
h

(x− x1)
)

sinh
(

nπ
h

(x2 − x1)
) sin

(

nπ

h
z
)

. (B.3)

Similar expressions can be given for the solutions φ̃1 and φ̃3 in subdomains ΩI

and ΩIII respectively but consisting of only one serie. The horizontal derivatives
of these solutions evaluated on the interfaces can, similarly to Section 6.2.1, be
expressed using transformation coefficients αi,n for the separate Fourier modes.
Because the solution of Laplace’s equation in the inner subdomain is determined
by boundary conditions on two interfaces, the subindex-notation of αi,n needs

further specification for this subdomain as illustrated for ∂φ̃2

∂x
|Γ1 and ∂φ̃2

∂x
|Γ2:

∂φ̃2

∂x

∣

∣

∣

∣

∣

Γ1

=
∞
∑

n=1

α11,nc1,n sin
(

nπ

h
z
)

+
∞
∑

n=1

α12,nc2,n sin
(

nπ

h
z
)

(B.4)

and

∂φ̃2

∂x

∣

∣

∣

∣

∣

Γ2

=
∞
∑

n=1

α21,nc1,n sin
(

nπ

h
z
)

+
∞
∑

n=1

α22,nc2,n sin
(

nπ

h
z
)

. (B.5)

The coefficient αij,n refers to the dependence of the horizontal derivative of the
solution on interface i of the n-th Fourier mode of the (Dirichlet) boundary
condition on interface j. Using equation (B.3) we find for the coefficients































α11,n = −nπ
h

tanh−1
(

nπ
h

(x2 − x1)
)

,

α12,n = nπ
h

sinh−1
(

nπ
h

(x2 − x1)
)

,

α21,n = −nπ
h

sinh−1
(

nπ
h

(x2 − x1)
)

,

α22,n = nπ
h

tanh−1
(

nπ
h

(x2 − x1)
)

.

(B.6)

The solutions in the outer subdomains are determined by only one interface
boundary condition just as in the two-subdomain problems. Therefore the
corresponding transformation coefficients αi,n are equiped with only two indices
and follow from the analysis given in Section 6.2.1:







α1,n = nπ
h

tanh−1
(

nπ
h

(x1 − x0)
)

,

α2,n = −nπ
h

tanh−1
(

nπ
h

(x3 − x2)
)

.
(B.7)

The iterative procedure can be considered for each Fourier mode separately
and the formulation of new boundary conditions can be represented in the dia-
gram shown below.
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ϕ̃1,n := c1,n sin
(

nπ
h
z
)

ւ ց
∂φ̃1

∂x
|Γ1 = α1,nϕ̃1,n

∂φ̃2

∂x
|Γ1 = α11,nϕ̃1,n

+α12,nϕ̃2,n

ց ւ
ψ̃1,n = ω1,N

∂φ̃1

∂x
|Γ1 + (1 − ω1,N)∂φ̃2

∂x
|Γ1

= c′1,n sin
(

nπ
h
z
)

ցւ
ϕ̃2,n := c2,n sin

(

nπ
h
z
)

ւ ց
∂φ̃2

∂x
|Γ2 = α21,nϕ̃1,n

∂φ̃3

∂x
|Γ2 = α2,nϕ̃2,n

+α22,nϕ̃2,n

ց ւ
ψ̃2,n = ω2,N

∂φ̃2

∂x
|Γ2 + (1 − ω2,N)∂φ̃3

∂x
|Γ2

= c′2,n sin
(

nπ
h
z
)

The transformation of the Fourier coefficients ci,n to the coefficients c′i,n can
be expressed in terms of the matrix equation

(

c′1,n
c′2,n

)

= WNDn

(

c1,n
c2,n

)

(B.8)

with

Dn =











α1,n 0
α11,n α12,n

α21,n α22,n

0 α2,n











(B.9)

and

WN =

(

ω1,N 1 − ω1,N 0 0
0 0 ω2,N 1 − ω2,N

)

. (B.10)

In the odd steps of the procedure, Neumann conditions decomposed in
Fourier modes ψ̃1,n and ψ̃2,n, are imposed on the interfaces and the potential
on the interfaces is determined. This part of the iterative procedure can be
represented with a similar diagram

ψ̃1,n := c′1,n sin
(

nπ
h
z
)

ւ ց
φ̃1|Γ1 = β1,nψ̃1,n φ̃2|Γ1 = β11,nψ̃1,n

+β12,nψ̃2,n

ց ւ
ϕ̃1,n = ω1,Dφ̃1|Γ1 + (1 − ω1,D)φ̃2|Γ1

ցւ
ψ̃2,n := c′2,n sin

(

nπ
h
z
) (

nπ
h
z
)

ւ ց
φ̃2|Γ2 = β21,nψ̃1,n φ̃3|Γ2 = β2,nψ̃2,n

+β22,nψ̃2,n

ց ւ
φ̃2,n = ω2,Dφ̃2|Γ2 + (1 − ω2,D)φ̃3|Γ2

Similar to the definition of the matrices Dn and WN we now define the
matrices Nn and WD consisting of the coefficients βij,n and ωi,D respectively.
The transformation can be written as

(

c1,n
c2,n

)

= WDNn

(

c′1,n
c′2,n

)

. (B.11)
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The coefficients βij,n are related by the coefficients αij,n through

(

β11,n β12,n

β21,n β22,n

)

=

(

α11,n α12,n

α21,n α22,n

)−1

(B.12)

because calculating the set of solutions (∂φ̃2

∂x
|Γ1 ,

∂φ̃2

∂x
|Γ2) from the set (φ̃2|Γ1, φ̃2|Γ2)

is the inverse operation of calculating (φ̃2|Γ1 , φ̃2|Γ2) from (∂φ̃2

∂x
|Γ1,

∂φ̃2

∂x
|Γ2.) Work-

ing out the inverse matrix operation yields
(

β11,n β12,n

β21,n β22,n

)

=
(

nπ

h

)−2
(

−α22,n α12,n

α21,n −α11,n

)

. (B.13)

The interface boundary conditions φ̃
(k)
1,n and φ̃

(k)
2,n at the k-th step in the

iterative procedure are transformed by the operations illustrated in the above
two diagrams to new interface boundary conditions φ̃

(k+2)
1,n and φ̃

(k+2)
2,n . This is

expressed by the transformation matrix A(k)
n defined in equation (6.14) which

can be found by writing

A(k)
n = W

(k)
D ·Nn ·W (k)

N ·Dn. (B.14)

If the weighting factors are kept fixed during the iterative process, then the
matrix A(k)

n = An is independent of k and convergence is determined by the
eigenvalues of the matrix An as explained in Section 6.2.2. Expressions for the
eigenvalues can be found by working out the matrix equation (B.14) and include
the subdomain lengths x1−x0, x2−x1 and x3−x2, and the weighting factors ω1,N ,
ω1,D, ω2,N and ω2,D. We illustrate this next for the special case of subdomains
of equal length l and weighting factors ω1,N = ω1,D = ω1,N = ω1,D = 1

2
.

All coefficients Aij,n of the matrix An contain products α∗β∗ in which the
factors nπ

h
and nπ

h
−1 cancel. For the case mentioned above we then find

An =

(

−1
4
S−2 −1

4
S−1T−1 + 1

4
S−1T

−1
4
S−1T−1 + 1

4
S−1T −1

4
S−2

)

= −1

4
S−2

(

1 C−1

C−1 1

)

(B.15)
in which S = sinh(nπ

h
l), T = tanh(nπ

h
l) and C = cosh(nπ

h
l). Two different

eigenvalues ǫ1,n, ǫ2,n can be found, equal to

ǫ1,n = − 1

4C(C + 1)
(B.16)

and

ǫ2,n = − 1

4C(C − 1)
. (B.17)

In order to satisfy both |ǫ1,n| < 1 and |ǫ2,n| < 1, the parameter C has to satisfy

C >
1

2
+

1

2

√
2 (B.18)
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and consequently
l

h
>

1

nπ
arccosh

(

1

2
+

1

2

√
2
)

. (B.19)

In order to have convergence for all Fourier modes, l/h has to satisfy

l

h
> π−1arccosh

(

1

2
+

1

2

√
2
)

≈ 0.2. (B.20)

This condition is given in equation (6.18).

B.2 Multi-subdomain problems

For the case of M subdomains, M > 3, the iterative process can be formulated
similarly to the three-subdomain case. The matrices Dn and Nn have size
2(M−1) by M−1 and the matrices WN andWD have size M−1 by 2(M−1). In
the general case M subdomains lengths and 2M weighting factors are involved.
To simplify the analysis we again consider subdomains of equal length l and
take all weighting factors equal to 1

2
.

We split up the matrix An in Φn = WNDn and Ψn = WDNn. These matrices
are three-diagonal matrices which can be written as

Φn =
1

2
S−1

(

nπ

h

)



















0 1
−1 0 1

. . . . . . . . .

−1 0 1
−1 0



















(B.21)

and

Ψn = −1

2
S−1

(

nπ

h

)−1



















−C−1 1
−1 0 1

. . . . . . . . .

−1 0 1
−1 −C−1



















(B.22)

Therefore the matrix An is a five-diagonal matrix. Upper bounds for its eigen-
values can be found using Gerschgorin’s theorem for the eigenvalues of Φn and
Ψn. All the eigenvalues of Φn are contained in the circle in the complex plane
with center (0, 0) and radius 1

2
S−1

(

nπ
h

)

. Because C−1 ≤ 1 we find the same

circle for the eigenvalues of Ψn but with radius 1
2
S−1

(

nπ
h

)−1
. So, for the eigen-

values ǫi,n of An we find

|ǫi,n| <
1

4
S−2, i = 1, . . . ,M − 1. (B.23)
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We have 1
4
S−2 < 1 if

nl

h
> π−1arcsinh

(

1

2

)

≈ 0.15. (B.24)

This condition is satisfied for all Fourier modes if it is satisified for the largest
Fourier mode (n = 1).

B.3 D/*-*/N scheme

In Chapter 5 the D/*-*/N scheme was mentioned, also known as the Neumann-
Dirichlet preconditioner. The iterative process of this scheme can be analyzed
in the same way as the D/D-N/N scheme.

The Laplace problems in the subdomains are the same as in the D/D-N/N
scheme and therefore the coefficients α and β can be used to describe the D/*-
*/N scheme as well. Only the order in which the Laplace problems are solved
and the way new boundary conditions are formulated is different. We represent
the D/*-*/N scheme by the following diagram for a single Fourier mode:

ϕ̃(k)
n = cn sin

(

nπ
h
z
)

ւ
∂φ̃1

∂x
|Γ = α1ϕ̃

(k)
n *

ց
ψ̃(k+1)
n = α1ϕ̃

(k)
n

ց
* φ̃2|Γ = β2ψ̃

(k+1)
n

ւ
ϕ̃(k+2)
n = ωβ2ψ̃

(k+1)
n + (1 − ω)ϕ̃(k)

n

= (1 − ω(1 − β2α1))ϕ̃
(k)
n

The amplification factor ǫn is found to be

ǫn = 1 − ω



1 +
tanh

(

nπ
h
b
)

tanh
(

nπ
h
a
)



 . (B.25)

If a = b and ω = 1
2

we have ǫn = 0 for all modes and Laplace’s equation is solved
immediately. If a 6= b, ω can be chosen such that for one Fourier mode n̂, the
amplification factor ǫn̂ = 0. Other modes then have a non-zero amplification
factor. For the convergence properties for various configurations see Funaro et
al. [27].
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