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Abstract. Microfluidic biochips are biochemical labo-
ratories on the microscale that are used for genotyping
and sequencing in genomics, protein profiling in pro-
teomics, and cytometry cell analysis. There are basically
two classes of such biochips: active devices, where the
solute transport on a network of channels on the chip
surface is realized by external forces, and passive chips,
where this is done using a specific design of the geometry
of the channel network. Among the active biochips, cur-
rent interest focuses on devices whose operational prin-
ciple is based on piezoelectrically driven surface acoustic
waves generated by interdigital transducers placed on
the chip surface.

In this paper, we are concerned with the numeri-
cal simulation of such piezoelectrically agitated surface
acoustic waves relying on a mathematical model that
describes the coupling of the underlying piezoelectric
and elastomechanical phenomena. Since the interdigital
transducers usually operate at a fixed frequency, we fo-
cus on the time-harmonic case. Its variational formula-
tion gives rise to a generalized saddle point problem for
which a Fredholm alternative is shown to hold true.

The discretization of time-harmonic surface acoustic
wave equations is taken care of by continuous, piecewise
polynomial finite elements with respect to a nested hi-
erarchy of simplicial triangulations of the computational
domain. The resulting algebraic saddle point problems
are solved by block-diagonally preconditioned iterative
solvers with preconditioners of BPX-type. Numerical re-
sults are given both for a test problem documenting the
performance of the iterative solution process and for a re-
alistic surface acoustic wave device illustrating the prop-
erties of surface acoustic wave propagation on piezoelec-
tric materials.

⋆ The first, second and fourth author have been supported
by the DFG within the Collaborative Research Center SFB
438. The second author acknowledges further support by the
NSF under Grant No. DMS-0411403 and Grant No. DMS-
0412267

1 Introduction

Biochips, of the microarray type, are fast becoming the
default tool for combinatorial chemical and biological
analysis in environmental and medical studies. Program-
mable biochips are miniaturized biochemical labs that
are physically and/or electronically controllable. This
technology combines digital photolithography, microflu-
idics and chemistry. The precise positioning of the sam-
ples (e.g., DNA solutes or proteins) on the surface of the
chip in pico- to nano-liter volumes can be done either by
means of external forces (active devices) or by specific
geometric patterns (passive devices).

During the last couple of years, such biochips have
attracted a considerable amount of interest, since phar-
macology, molecular biology, and clinical diagnostics re-
quire the precise handling of precious, tiny samples and
costly reagents in amounts of nano-liters. Biochips can
transport such volumes and perform biochemical anal-
ysis of the samples. Microfluidic biochips and microar-
rays are used in pharmaceutical, medical and forensic
applications as well as in academic research and develop-
ment for high throughput screening, genotyping and se-
quencing by hybridization in genomics, protein profiling
in proteomics, and cytometry in cell analysis [42]. Tra-
ditional technologies rely on fluorescent dyes, radioac-
tive markers, or nano-scale gold-beads based on pos-
itive hybridization processes. However, these methods
only allow a relatively small number of DNA probes
per assay, and they only yield endpoint results and do
not provide information about the kinetics of the pro-
cesses. With the need for better sensitivity, flexibility,
cost-effectiveness and a significant speed-up of hybridiza-
tion, the current technological trend is obtained by the
integration of the microfluidics on the chips itself. Very
recent and novel devices are surface acoustic wave driven
microfluidic biochips whose operational mode is based
on piezoelectrically actuated surface acoustic waves on
the surface of a chip which transport the droplet con-
taining probe along a lithographically produced network
to marker molecules placed at pre-specified surface lo-
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Fig. 1. Working principle of an SAW biochip

cations (cf., e.g., [8,43,54–57]). By changing the surface
chemistry appropriately, a fluidic network is produced on
the chip: Without mechanical tools the chip is equipped
with paths on which samples (and reagents) propagate
as if on tracks. This is done lithographically by a lat-
eral modulation of the wetting properties of the sur-
face which leads to pronounced hydrophilic and super-
hydrophobic regions with significantly different wetting
angles. Small amounts of reagents are confined to these
tracks in contrast to mechanical barriers used in conven-
tional microfluidics.

The core of the technology are nano-pumps featur-
ing surface acoustic waves generated by electric pulses
of high frequency. These waves propagate like a minia-
turized earthquake (nano-scale earthquake) and in this
way transport liquids along the surface of the chip (cf.
Figure 1). Figure 2 below gives an illustration of a nano
titration chip. On the fluidic network a small portion of
titrate solution (middle) is separated from a larger vol-
ume (right). Surface acoustic waves transport this quan-
tity towards the analyte (left) at the reaction site. Once
a critical concentration is attained, it can be either de-
tected by a change of the color of the analyte or a change
of the conductivity. In the latter case, this can be eas-
ily measured by a sensor that is integrated on the same
chip. Surface Acoustic Waves (SAW) have been used for

Fig. 2. Fluidic network on the surface of the chip

a long time in high frequency applications (cf., e.g., [13,
36,40] and [58]). Using SAW-principles, it is now possi-
ble to combine microelectronics and biochemistry. Mod-
ern semiconductor technology enables the cost-effective
production of devices that unify biological functionality,

sensors and pumps for the transport of samples. These
devices can be easily integrated in electronic systems like
those that are used in point-of-care diagnostics (see [4,
9,45,46,51]).

The nano-pump consists of a piezoelectric substrate
which is equipped with so-called interdigital transduc-
ers on the surface. Radio-frequency signals are fed into
those transducers and are converted to a deformation
of the crystal underground. In this way, a mechanical
wave is launched across the surface with wavelengths in
the range of a few microns and amplitudes about only
a nano-meter. Liquids on the surface are subject to the
vibrating force and absorb parts of the energy. The ab-
sorption of energy for various frequencies depends on the
density and viscosity. These properties are ultimately de-
termined by the atomic composition, molecular structure
and dynamics of the fluid.

Surface acoustic waves of larger amplitudes move liq-
uid droplets as a whole whereas low power surface acous-
tic waves induce some sort of internal streaming. The
latter case enables the construction of surface acoustic
wave based nano-mixers. If the frequency of the surface
acoustic wave is changed, different streaming patterns
are induced and superimposed within the droplet that
leads to a homogeneous blend of the water and the probe
much faster than by more conventional diffusion type mi-
crofluidic mixing techniques.

Figure 3 illustrates the effect of nano-mixing in case
of the dissolution of a fluorescent dye deposited on the
chip surface with agitation (acoustically induced mix-
ing) and without agitation. By using surface acoustic

Fig. 3. Surface acoustic wave nano-mixer; with agitation
(top), without agitation (below)

wave nano-pumps, different reagents can be efficiently
mixed, separated or moved to different reaction sites on
the chip. Compared with conventional micro titer plates,
the respective volumes are reduced by several orders of
magnitudes.

In this article we focus on the excitation of surface
acoustic waves by interdigital transducers. The paper is
organized as follows: In Section 2, we give a brief outline
of the theory of piezoelectricity. In Section 3, we deal
with the physical modeling of piezoelectrically driven
surface acoustic waves followed by the formulation and
analysis of a mathematical solution theory in a varia-
tional framework which is provided in Section 4. Section
5 is devoted to the finite element discretization of the
time-harmonic surface acoustic wave equations, and Sec-
tion 6 describes the numerical solution of the resulting
algebraic saddle point problem and the associated Schur
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complement system by preconditioned iterative solvers
with block-diagonal multilevel preconditioners of BPX-
type. Finally, in Section 7 we provide a detailed doc-
umentation of numerical results illustrating the perfor-
mance of the iterative solvers as well as the properties
of surface acoustic wave propagation on a realistic piezo-
electrical SAW device.

2 The theory of piezoelectricity

In piezoelectric materials, the mechanical stress σ de-
pends linearly on the electric field E, in contrast to non-
piezoelectric materials where the effect is quadratic.

Fig. 4. Polar axis of a piezoelectric crystal

Piezoelectric materials also show the reverse effect to
generate an electric field when subjected to mechanical
stress. These properties are called the piezoelectric effect
and the inverse piezoelectric effect, respectively. The ori-
gin of the piezoelectric effect is related to an asymmetry
in the unit cell of a piezoelectric crystal and can be ob-
served only in materials with a polar axis, i.e., in face
of a rotational symmetry around this axis there are dif-
ferences in the two directions of this axis (cf. Figure 4).
Crystallographers recognize thirty-two classes of crystals
of which twenty exhibit the piezoelectric effect. Figure 5
(right) shows a traditional ”PZT” piezoelectric material
consisting of a small, tetravalent metal ion, usually tita-
nium or zirconium, in a lattice of larger divalent metal
ions, usually lead or barium, and O2-ions. Such materials
show a simple cubic symmetry above the Curie temper-
ature and are thus isotropic before poling. After poling,
they exhibit a tetragonal symmetry below the Curie tem-
perature (see Figure 5 (right). Above this temperature,
they lose the piezoelectric properties again.
Although the magnitudes of piezoelectric voltages, move-
ments, or forces are small, and often require amplifi-
cation (for instance, a typical disc of piezoelectric ce-
ramic will increase or decrease in thickness by only a
small fraction of a millimeter), piezoelectric materials
have been adapted to a wide range of applications: The
piezoelectric effect is used in sensing applications, such as
in force or displacement sensors. The inverse piezoelec-
tric effect is used in actuation applications, for instance
in motors and devices that precisely control positioning,
and in generating sonic and ultrasonic signals. Typical
piezoelectric materials are quartz (SiO2), lithium niobate
(LiNbO3) or barium titanate (BaTiO3).

Fig. 5. Crystallographic structure of a ”PZT” material: Tem-
perature above (left) and below (right) the Curie point

In the sequel, we consider a linear model for piezo-
electricity in which the elastic, piezoelectric and dielec-
tric coefficients are treated as constants independent of
the magnitude and frequency of the applied mechanical
stresses and electric fields. The model is macroscopic,
i.e., only mean values of the relevant physical magnitudes
are incorporated. Real materials involve microscopic ef-
fects as well as mechanical and electric dissipation and
nonlinear behavior. For further reference on piezoelectric
problems we refer to [18,35] and the references therein.

Denoting by Ω ⊂ Rd, d = 2 or d = 3 a Lipschitz do-
main and by [0, T ] ⊂ R+ a time interval, the mechanical
displacement u = u(x, t) of a piezoelectric material, oc-
cupying Ω and being exposed to a volume force b, is
described by the wave equation

ρ
∂2u

∂t2
− ∇ · σ = b in Q := Ω × [0, T ] . (1)

Here, ρ is the density and σ = (σij) stands for stress ten-
sor. The stress tensor is related to the linearized strain
tensor ε = 1

2 (∇u+(∇u)T ) by the constitutive equation
(generalized Hooke’s law)

σij(u,E) = cijklεkl(u) − ekijEk . (2)

Here, E = (Ek) denotes the electric field, c = (cijkl)
is the symmetric, positive definite forth-order elasticity
tensor and e = (ekij) refers to the symmetric third-order
piezoelectric tensor. Note that here and in the sequel we
adopt Einstein’s summation convention.

In piezoelectric materials, the frequency of the occur-
ring electric field wave is considered sufficiently small so
that the coupling of electromagnetic waves and elastic
waves can be neglected. This means that local perturba-
tions in the electromagnetic field are felt almost instanta-
neously throughout the domain, so that the electric field
can be treated as quasi-static. Practically, this can be
achieved by setting the magnetic permeability to zero,
corresponding to an infinite speed of the electromag-
netic wave. Maxwell’s second equation then reduces to
∇×E = 0, i.e., the electric field is irrotational and thus
can be represented as the gradient of an electric scalar
potential Φ according to E = −∇Φ. When the electric
field E is known, the magnetic field H can be obtained
from Maxwell’s first equation. However, the magnetic
field is usually not of interest in piezoelectric computa-
tions and is therefore not considered further. Moreover,
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piezoelectric substrates are nearly perfect isolators, i.e.,
the density of the free electric charges and the current
density can be completely neglected. Consequently, the
only relevant Maxwell equation is ∇ · D = 0, where
D = D(x, t) is the electric displacement that is related
to the electric field E by the constitutive equation

Di = ǫijEj + Pi .

Here, P = (Pi) is the electric polarization and ǫ = (ǫij)
stands for the symmetric, positive definite permittivity
tensor.

Fig. 6. The formation of an electric dipole by pressure

Figure 6 shows a schematic explanation for the forma-
tion of a polarization P in an atomic structure when sub-
jected to external stress: In both cases one can see six
”point charges”, ”red” indicating positive and ”green”
negative charges. In a relaxed state with no forces act-
ing on them, they are arranged at the vertices of an
hexagon. In some distance, the positive and negative ar-
ray of charges will cancel each other out and the poten-
tial Φ will be zero. If a compressive force is applied to
the hexagon, the array is distorted in such a way as to
bring two of the positive charges closer together at one
end and the negative charges at the other. This forms
a dipole where one end of the array is positive and the
other one is negative. One can easily imagine a crystal
structure made up of these hexagonal arrangements of
ions.

In piezoelectric materials, the polarization according
to external strain is linear. In analogy to the inverse ef-
fect (2), we set

Di(u,E) = eiklεkl(u) + ǫijEj . (3)

Summarizing, the linear field equations of piezoelectric-
ity are given by

ρ
∂2ui

∂t2
− cijkl uk,lj − ekij Φ,kj = bi in Q , (4)

eikl uk,li − ǫij Φ,ji = 0 in Q . (5)

and the constitutive equations

σij(u, Φ) = cijklεkl(u) + ekijΦ,k , (6)

Di(u, Φ) = eiklεkl(u) − ǫijΦ,j . (7)

The boundary ∂Ω is partitioned into two disjoint sets
according to

∂Ω = Γu ∪ Γσ , Γσ = ∂Ω \ Γu ,

∂Ω = ΓΦ ∪ ΓD , ΓD = ∂Ω \ ΓΦ ,

where the Dirichlet boundaries Γu and ΓΦ are assumed
to be closed and with non-vanishing (d− 1)-dimensional
measure. The piezoelectric equations are supplemented
by the decoupled boundary conditions

u|Γu
= uΓ ,

σ · n|Γσ
= σn ,

where ∂Ω = Γu ∪ Γσ , (8)

Φ|ΓΦ
= ΦΓ ,

D · n|ΓD
= Dn ,

where ∂Ω = ΓΦ ∪ ΓD , (9)

and by the initial conditions

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = u1(x) . (10)

Sometimes, it is useful to adopt a compressed nota-
tion for the piezoelectric moduli, the Voigt notation (see,
e.g., [18,35,61]). By utilizing the symmetry properties of
the third- and forth-order tensors they can be reduced to
higher dimensional second-order matrices. To this end,
we use the identification I = (ij), where

(ij) (11) (22) (33) (23) (13) (12)
I 1 2 3 4 5 6

i.e., cIK = cijkl , eiK = eikl and ǫI = ǫij . With this no-
tation, the characteristic properties of a linear piezoelec-
tric substrate are completely determined by the material
matrix

„
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The matrices cIK and ǫij are symmetric with respect to
the main diagonal and hence, there are 21 + 18 + 6 = 45
independent moduli for the most general piezoelectric
substrates.

3 Piezoelectrically driven surface acoustic waves

3.1 Surface Acoustic Wave Devices

Surface acoustic waves (SAWs) are modes of elastic en-
ergy propagating at the surface of a solid body. Being the
nano-meter size analogon of earthquakes, they have been
made available to industrial applications during the last
two decades. The underlying technique is relatively new,
although the first theoretical treatments on the propa-
gation of surface acoustic waves at the free surface of
a homogenous isotropic elastic solid date back approxi-
mately 150 years (cf. [44]). But it was not before White
and Voltmer [53] succeeded in the production of SAWs
on the surface of a piezoelectric substrate that the use
of this technology became clear. Nowadays, piezoelectric
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SAW devices are very popular in signal-processing ap-
plications (see, e.g., [13,20,30,36]), which is mostly due
to the fact that on homogenous substrates the velocity
of SAWs is independent of their frequency.

SAWs are easily excited on piezoelectric solids, be-
cause substrates deform due to the application of an elec-
tric field. Rapid changes of these electric fields are effi-
ciently converted into a real ’nano-quake on a chip’. Such
rapid changes can be generated by a metallic electrode
comb structure, called interdigital transducer (IDT), de-
posited on the surface of the piezoelectric material (see
Figure 7). By applying an alternating voltage to the IDT,

Fig. 7. Interdigital transducer

a surface acoustic wave is excited [39]. Typical frequen-
cies range in the hundred MHz regime, typical wave-
lengths of SAW are micrometers. Since the SAW compo-
nents can be manufactured using advanced photolitho-
graphic techniques, they meet the requirements of small
size and weight. This is also the reason why SAW devices
can be mass produced using the same techniques as in
semiconductor microfabrication. They receive outstand-
ing response characteristics, especially in filter applica-
tions.

Unfortunately, the excitation of an IDT on a piezo-
electric substrate can also lead to the generation of bulk
acoustic waves (BAWs) as well as surface waves. In most
applications, such BAWs are certainly undesirable, e.g.,
in signal processing applications they seriously degrade
the filter response. In most analytical treatments, BAWs
are neglected.

The typical dimensions of an SAW chip are only a
few millimeters, depending on the operating frequency.
A wide range of piezoelectric materials are used for the
production of SAW devices, among them lithium nio-
bate (LiNbO3), lithium tantalate (LiTaO3), and quartz
(SiO2) monocrystals.

3.2 Physical Modeling of Rayleigh Waves

The type of surface waves considered here are so-called
Rayleigh waves (see, e.g., [3,34]), i.e., these are waves po-
larized in the sagittal plane and propagating at the free
surface at a speed less than that of volume shear elastic
waves. These waves usually are considered in a semi-
infinite, isotropic and homogenous linear elastic space,
which will be fixed as in Figure 8 (left).

Fig. 8. Modeling of surface acoustic waves. Coordinate sys-
tem (left) and Rayleigh wave (right)

The sagittal plane is the plane spanned by the real wave-
vector k and the unit surface normal, i.e., the (x1, x3)-
plane in Figure 8 (left). SAWs are strictly confined to the
limiting surface of the piezoelectric substrate and practi-
cally nil outside a relatively narrow zone. To be precise,
the amplitude of the displacement u decays exponen-
tially with depth into the substrate [35]. In true Rayleigh
waves, most of the energy (90%) is concentrated within
one wavelength from the surface. Thus, both the mechan-
ical displacements u and the electric potential Φ should
vanish as x3 → ∞. Moreover, since x1 is the direction
of propagation of the wave solutions, there is no depen-
dence of u and Φ on the x2 coordinate, since here the
surface is assumed to be infinite.

We note that in the physical modeling of surface
acoustic waves the assumption of an x2-independence is
extremely simplifying, since piezoelectric materials are
in general anisotropic and pure Rayleigh surface acous-
tic waves can be observed only in rare crystal cuts.

The two wave motions in the x1- and x3-direction
are 90o out of phase in the time domain: if one wave
component is at its maximum for a given instant, the
other will be zero. Moreover, the displacement in the
x3-direction will be larger than that in the x1-direction.
These considerations give rise to

ui(x1, x3, t) = αi exp(−βkx3) exp(i(ωt− kx1)) ,

Φ(x1, x3, t) = α4 exp(−βkx3) exp(i(ωt− kx1)) ,

with Re(β) > 0. Hereafter, i denotes the imaginary unit
and k the modulus of the wave-vector k. In some sense
the factor β measures the rate of exponential decay into
the substrate. We insert these functions into the piezo-
electric equations by

ρ
∂2ui

∂t2
− cijkl

∂2uk

∂xl∂xj

− ekij

∂2Φ

∂xk∂xj

= 0 ,

eikl

∂2uk

∂xl∂xi

− ǫij
∂2Φ

∂xj∂xi

= 0 .

This leads to a linear system for the coefficients αi of the
form

M α = 0 .

Here, α = (αi) ∈ C4, M = (Mkl) ∈ C4×4, and the
coefficients Mkl are quadratic functions in β. For the
existence of nontrivial solutions, we have to require that
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detM = 0. Accounting for Re(β) > 0, we get 4 possible
values for β. For each such β, there is an eigenvector α.

The general solution is then obtained as a linear com-
bination of these solutions

ui(x1, x3, t) = exp(i(ωt− kx1))·
4
∑

m=1

c(m)α
(m)
i u

0(m)
i exp(−β(m)kx3),

Φ(x1, x3, t) = exp(i(ωt− kx1))·
4
∑

m=1

c(m)α
(m)
4 Φ0(m) exp(−β(m)kx3).

We note that the weighting factors c(m), representing the
value of the phase velocity, have to be chosen according
to the boundary conditions.

The use of anisotropic materials causes many differ-
ences in detail even though the occurring surface waves
share many features. For instance, the waves are still el-
liptically polarized at each depth and the displacement
amplitude decays exponentially into the substrate. But
in anisotropic materials, the phase velocity depends on
the direction of propagation and in general, the vector
of energy flow is not parallel to the wave vector. More-
over, the plane of the elliptical polarization of the dis-
placement does not necessarily correspond to the sagittal
plane, but even when it does, the principal axes of the
ellipse are not necessarily x1 and x3.

4 Mathematical theory of piezoelectric SAWs

Surface acoustic waves are usually excited by a source
interdigital transducer located at ΓΦ and operating at
a fixed frequency ω > 0. We treat the excitation as a
Dirichlet boundary condition for the electric potential
Φ and assume that there is no further volume force b.
Consequently, the piezoelectric equations reduce to

ρ
∂2ui

∂t2
− cijkl

∂2uk

∂xl∂xj

− ekij

∂2Φ

∂xk∂xj

= 0 , (11)

eikl

∂2uk

∂xl∂xi

− ǫij
∂2Φ

∂xj∂xi

= 0. (12)

Hereafter, we use without loss of generality ρ = 1. We
are now looking for time harmonic solutions

u(x, t) = Re ( u(x) exp(−iωt) ) , (13)

Φ(x, t) = Re (Φ(x) exp(−iωt) ) , (14)

where the functions u and Φ are complex valued. The
boundary conditions are assumed to be of the same form

u(x, t) = Re (uΓ (x) exp(−iωt) ) , (15a)

σ(x, t) · n = Re (σn(x) exp(−iωt) ) , (15b)

Φ(x, t) = Re (ΦΓ (x) exp(−iωt) ) , (15c)

D(x, t) · n|ΓD
= Re (Dn(x) exp(−iωt) ) . (15d)

For the variational formulation of (11),(12), (15a)-(15d)
we adopt standard notation of Lebesgue and Sobolev
space theory (cf., e.g., [1,21,37]). We denote by L2(Ω)
and L2(Ω) the Lebesgue of square integrable complex
valued functions respectively vector fields on Ω with in-
ner product (·, ·)0,Ω and norm ‖ · ‖0,Ω. We use Hk(Ω),

Hk(Ω) for the Sobolev space of complex valued square
integrable functions/vector fields having square integrable
weak derivatives up to order k ∈ N with inner product
(·, ·)k,Ω and norm ‖ · ‖k,Ω . For Γ ′ ⊆ ∂Ω, we refer to

H
1
2 (Γ ′) and H

1
2 (Γ ′) as the trace space associated with

H1(Ω) and H1(Ω). The subspaces H1
0,Γ ′(Ω), H1

0,Γ ′(Ω)

stand for the subspaces of functions/vector fields on Ω
with vanishing trace on Γ ′ (omitting the subindex Γ ′,

if Γ ′ = ∂Ω). We denote by H
1
2
00(Γ

′) ⊂ H
1
2 (Γ ′) and

H
1
2
00(Γ

′) ⊂ H
1
2 (Γ ′) the subspaces of functions/vector

fields whose extension by zero to all of ∂Ω belongs to

H
1
2 (∂Ω) (H

1
2 (∂Ω)) and defines a bounded linear op-

erator. The associated dual spaces are referred to as

H− 1
2 (Γ ′) and H− 1

2 (Γ ′).

For the ease of notation, we set V := H1
0;Γu

(Ω),

W := H1
0;ΓΦ

(Ω), and we denote by V ∗ and W ∗ the as-
sociated dual spaces. As far as the elastic and electric
Dirichlet boundary data are concerned, we assume uΓ ∈
H

1
2 (Γu) as well as ΦΓ ∈ H

1
2 (ΓΦ). We denote by EΓu

:

H
1
2 (Γu) → H1(Ω) and by EΓΦ

: H
1
2 (ΓΦ) → H1(Ω) the

harmonic extension operators with EΓu
(uΓ )|Γu

= uΓ

and EΓΦ
(ΦΓ )|ΓΦ

= ΦΓ , and we introduce the subspaces

V Γu
:= V + EΓu

(uΓ ) , (16a)

WΓΦ
:= W + EΓΦ

(ΦΓ ) . (16b)

For the elastic and electric Neumann boundary data we

suppose that σn ∈ H− 1
2 (Γσ) and Dn ∈ H− 1

2 (ΓD). We

refer to RΓσ
: H1(Ω) → H− 1

2 (Γσ) and RΓD
: H1(Ω) →

H− 1
2 (ΓD) as the trace operators with RΓσ

(u) = (σ(u) ·
n)|Γσ

and RΓD
(Φ) = (∇Φ ·n)|ΓD

. We further introduce
the sesquilinear forms

a(v,w) :=

∫

Ω

cijkl εkl(v) εij(w) dx ,

b(ϕ,v) :=

∫

Ω

ekij

∂ϕ

∂xk

εij(v) dx ,

c(ϕ, ψ) :=

∫

Ω

ǫij
∂ϕ

∂xi

∂ψ

∂xj

dx ,

where v,w ∈ H1(Ω) and ϕ, ψ ∈ H1(Ω) with w and ψ
denoting the complex conjugation.

The variational formulation of the problem of piezo-
electrically driven surface acoustic waves then reads:

Find u ∈ V Γu
and Φ ∈ WΓΦ

such that for all v ∈ V
and ψ ∈W

a(u,v) + b(Φ,v) − ω2(u,v)0,Ω = 〈σn,v〉 , (18a)

b(ψ,u) − c(Φ,ψ) = 〈Dn, ψ〉 . (18b)
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Hereafter, 〈·, ·〉 stands both for the dual pairing between

H− 1
2 (Γσ) and H

1
2
00(Γσ) and for the dual pairing between

H− 1
2 (ΓD) and H

1
2
00(ΓD).

The above sesquilinear forms define linear operators
A : H1(Ω) → V ∗, B : H1(Ω) → V ∗ and C : H1(Ω) →
W ∗ so that (18a),(18b) can be written in operator form
as:

Find u ∈ V and Φ ∈W such that

(A − ω2I)u + BΦ = f , (19a)

B∗u − CΦ = g , (19b)

where I stands for the injection I : V → V ∗ and the
right-hand sides f ∈ V ∗, g ∈ W ∗ are given by

f := R∗
Γσ

(σn) − (A − ω2I)EΓu
(uΓ ) − BEΓΦ

(ΦΓ ) ,

g := R∗
ΓD

(Dn) − B∗EΓu
(uΓ ) + CEΓΦ

(ΦΓ ) .

Lemma 4.1. The operators A, B and C are bounded
linear operators. Moreover, the operator A is symmetric
and V -elliptic, and the operator C is symmetric and W -
elliptic.

Proof. The continuity of A,B and C follows readily by
applying the Cauchy Schwarz inequality. The symmetry
of A results from the symmetry of the elasticity tensor
c, whereas the V -ellipticity of A is a direct consequence
of the positive definiteness of c and Korn’s inequality.
Likewise, the symmetry of C follows from the symmetry
of the piezoelectric tensor ǫ and the W -ellipticity can be
deduced from the positive definiteness of ǫ. ⊓⊔
The invertibility of C allows us to eliminate Φ from
(19a),(19b) which results in the Schur complement sys-
tem

Su − ω2Iu = F . (21)

Here, the Schur complement operator S : V → V ∗ and
the right-hand side F are given by

S := A + BC−1B∗ , (22)

F := f + BC−1g . (23)

Lemma 4.2. The derived Schur complement operator S
is a bounded, symmetric and V -elliptic linear operator.
Denoting by γA and γC the ellipticity constants of A and
C, respectively, for the ellipticity constant γS of S and
the norm ‖S‖ we have the estimates

‖S‖ ≤ ‖A‖ +
‖B‖2

γC

, γS ≥ γA. (24)

Proof. The symmetry of S follows immediately from the
symmetry of A and C. Moreover, for v,w ∈ V we have

〈Sv,w〉 = 〈Av,w〉 + 〈C−1B∗v,B∗w〉

≤
(

‖A‖ + ‖C−1‖‖B‖2
)

‖v‖1,Ω‖w‖1,Ω .

Hence, taking ‖C−1‖ ≤ γ−1
C into account, this gives the

upper bound for ‖S‖ in (24). The lower bound for γS

can be readily deduced from

〈Sv,v〉 = 〈Av,v〉 + 〈C−1B∗v,B∗v〉 ≥ γA ‖v‖2
1,Ω . ⊓⊔

The Riesz Schauder theory of compact, self-adjoint lin-
ear operators is not directly applicable to (21), since the
Schur complement operator S is not a self-adjoint endo-
morphism. Nevertheless, the Fredholm alternative holds
true for (21), as can be seen by introducing the operator
S−1

R : L2(Ω) → V ⊂ L2(Ω) according to

S−1
R v := S−1v , v ∈ L2(Ω) . (25)

Then, (21) can be rewritten as

Su − ω2u = −ω2S
(

S−1
R − ω−2

)

u = F , (26)

and we obtain the following result:

Theorem 4.1. (Fredholm Alternative)

a) For ω2 ∈ R, exactly one of the following alternatives
holds true:
(1) u = 0 is the only solution of the eigenvalue prob-

lem Su = ω2Iu. In this case, for every F ∈ V ∗

the equation (S − ω2I)u = F admits a unique
solution u ∈ V depending continuously on F .

(2) There is a finite number M of linear indepen-
dent eigenfunctions u1, . . .uM satisfying Sum =
ω2Ium. In this case, if u solves (S −ω2I)u = F
(i.e., if the equation is solvable), the general solu-
tion can be obtained with arbitrary αm ∈ R by

u = u +
M
∑

m=1

αmum .

b) The spectrum of S consists of a sequence of countably
many real eigenvalues 0 < ω2

1 < ω2
2 < . . . tending to

infinity, i.e., limj→∞ ω2
j = ∞.

c) If ω2 ∈ R is an eigenvalue of S, the equation (S −
ω2I)u = F is solvable if and only if F ∈ (S −
ω2I)(V ), i.e., iff F ∈ Ker(S − ω2I)0 where

Ker(S − ω2I)0 :=

{v∗ ∈ V ∗ | 〈v∗,v〉 = 0 , v ∈ Ker(S − ω2I)} .

Proof. The operator S−1
R as given by (25) is symmetric

in L2(Ω). Indeed, using the symmetry of S, for v,w ∈
L2(Ω) we obtain

(S−1
R v,w)0,Ω = (S−1

R v,SS−1
R w)0,Ω

= (SS−1
R v,S−1

R w)0,Ω = (v,S−1
R w)0,Ω .

It is bounded, since for v ∈ L2(Ω):

γS‖S−1
R v‖2

0,Ω ≤ γS‖S−1
R v‖2

1;Ω ≤ 〈SS−1
R v,S−1

R v〉
= (v,S−1

R v)0,Ω ≤ ‖v‖0,Ω‖S−1
R v‖0,Ω.

Moreover, for a generalized eigenvalue ω2 6= 0 and a
corresponding eigenfunction u ∈ V of S, the operator
S−1

R satisfies the inverse eigenvalue problem

S−1
R u =

1

ω2
u . (27)
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On the other hand, if u ∈ L2(Ω) satisfies (27), then u ∈
V (since S−1

R (L2(Ω)) ⊂ V ) and u is an eigenfunction of

S. The operator S−1
R is compact, since the embedding

V ⊂ L2(Ω) is compact. Consequently, S−1
R is a compact

self-adjoint endomorphism on L2(Ω) and hence, in view
of (26), the assertions can be deduced from the Hilbert-
Schmidt theory and the Fredholm alternative (cf., e.g.,
[60]). ⊓⊔

Theorem 4.1 tells us that the solvability of the Schur
complement system (21) is guaranteed for almost all
ω2 ∈ R. If ω2 is a generalized eigenvalue of S, the solv-
ability condition c) is in fact a condition on the boundary
data, since F = f + BC−1g and by (20),

F = R∗
Γσ

(σn) + BC−1R∗
ΓD
Dn − (S − ω2I)EΓu

(uΓ ) .

Remark 4.1 (A 2.5 D Model). SAWs propagate along the
surface of a substrate. To be more precise, the ampli-
tude of the displacement u decays exponentially with
the depth of the penetration into the substrate [35]. In
true Rayleigh waves, most of the energy (90%) is con-
centrated within one wavelength from the surface. If h
is the height of the substrate with the surface located at
x3 = 0, this leads to the definition

H(x3) :=
1 − e

α(x3+h)
h

1 − eα
. (28)

We reduce the dependency on x3 to exponential decay:

u(x) = H(x3)u(x1, x2) , (29)

Φ(x) = H(x3)Φ(x1, x2) . (30)

The factor α measures the rapidity of the exponential
decay. A good guess for this parameter can be obtained
from 2D calculations.

5 Finite element approximation of the surface
acoustic wave equations

We now restrict ourselves to the case where the com-
putational domain Ω ⊂ R

d is a polygonal resp. poly-
hedral domain. We provide a simplicial triangulation
Th(Ω) of Ω that aligns with Γu and Γφ and denote by

S
(k)
0,Γ ′(Ω; Th(Ω)), k ∈ N, Γ ′ = Γu or Γ ′ = ΓΦ the finite

element space of continuous functions vh : Ω → C van-
ishing on Γ ′ and satisfying vh|T ∈ Pk(T ), T ∈ Th(Ω),
where Pk(T ) stands for the linear space of complex val-
ued polynomials of degree k on T ∈ Th(Ω). We approxi-
mate the space V of displacements and the space W of
electric potentials by

V h := S
(k)
0,Γu

(Ω; Th(Ω))d, (31a)

Wh := S
(k)
0,ΓΦ

(Ω; Th(Ω)). (31b)

We refer to Ah : V h → V ∗
h,Bh : Wh → V ∗

h and Ch :
Wh → W ∗

h as the operators associated with the sesquilin-
ear forms a(·, ·), b(·, ·) and c(·, ·) when restricted to the

respective finite dimensional subspaces, i.e., a|V h×V h
,

b|Wh×V h
, and c|Wh×Wh

. We note that these operators
inherit their properties from its continuous counterparts.
In particular, Ah,Bh and Ch are bounded linear oper-
ators. Moreover, the operator Ah is symmetric and V h-
elliptic, whereas Ch is symmetric and Wh-elliptic having
the same ellipticity constants γA and γC . We further de-
fine fh ∈ V ∗

h and gh ∈ W ∗
h by 〈fh,uh〉 := 〈f ,uh〉,uh ∈

V h, and 〈gh, Φh〉 := 〈g, Φh〉, Φh ∈ Wh.
The finite element approximation of (19) amounts

now to the computation of uh ∈ V h and Φh ∈ Wh such
that

(Ah − ω2Ih)uh + BhΦh = fh,

B∗
huh − ChΦh = gh,

(32)

where Ih is the injection Ih : V h → V ∗
h.

Again, static condensation of Φh yields the discrete
Schur complement system

(Sh − ω2Ih)uh = F h (33)

with F h := fh + BhC−1
h gh and the discrete Schur com-

plement operator Sh given by

Sh := Ah + BhC−1
h B∗

h . (34)

It is an easy exercise to show that Sh as given by (34)
is indeed the Galerkin approximation of S, i.e.,

〈Shvh,wh〉 = 〈Svh,wh〉 ,vh,wh ∈ V h.

If ω ∈ R is such that (21) is solvable, then it is well-
known that the operator Sω := S − ω2I satisfies the
inf-sup condition (cf., e.g., [12])

inf
0 6=v∈V

sup
0 6=w∈V

|〈Sωv,w〉|
‖v‖1,Ω‖w‖1,Ω

≥ β > 0 . (35)

As has been shown in [31], for sufficiently small h a dis-
crete inf-sup condition holds true as well:

Theorem 5.1. Let Sh be given by (34) and assume that
for some ω ∈ R the operator Sω satisfies the inf-sup
condition (35). Then, there exist h0 > 0 and βmin > 0
such that for all h ≤ h0 the operator Sh,ω := Sh −ω2Ih

satisfies the discrete inf-sup condition

inf
0 6=vh∈V h

sup
0 6=wh∈V h

|〈Sh,ωvh,wh〉|
‖vh‖1,Ω‖wh‖1,Ω

≥ βh ≥ βmin .

Proof. We give the proof for completeness and assume
without restriction of generality that ω 6= 0. We intro-
duce bounded linear operators S−1 : V → V and S−1

h :

V h → V h by S(S−1v) = Iv,v ∈ V , and Sh(S−1
h vh) =

Ihvh,vh ∈ V h. Taking (35) into account, for v ∈ V we
then get

β‖v‖1;Ω ≤ sup
0 6=w∈V

|〈Sωv,w〉|
‖w‖1;Ω

=

= sup
0 6=w∈V

|〈S(v − ω2S−1v,w〉|
‖w‖1;Ω

≤ ‖S‖ ‖v − ω2S−1v‖1;Ω .
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Hence, in view of the V h-ellipticity of Sh for vh ∈ V h

we obtain

sup
0 6=wh∈V h

|〈Sh,ωvh,wh〉|
‖wh‖1;Ω

=

= sup
0 6=wh∈V h

|〈Sh(vh − ω2S−1
h vh),wh〉|

‖wh‖1;Ω

≥ |〈Sh(vh − ω2S−1
h vh),vh − ω2S−1

h vh〉|
‖vh − ω2S−1

h vh‖1;Ω

≥ γS‖vh − ω2S−1
h vh‖1;Ω

≥ γS‖vh − ω2S−1vh‖1;Ω − ω2γS‖(S−1
h − S−1)vh‖1;Ω

≥
(

βγS

‖S‖ − ω2γS‖S−1
h − S−1‖

)

‖vh‖1;Ω

whence

βh ≥ βγS

‖S‖ − ω2γS‖S−1
h − S−1‖ .

Since ‖S−1
h − S−1‖ → 0 as h→ 0, we conclude. ⊓⊔

6 Multilevel preconditioned iterative solution of
the saddle point system

The discrete system (32) represents an algebraic saddle
point problem of the form

(

A B

BT −C

)(

u
Φ

)

=

(

f
g

)

or ZU = ℓ. (36)

Here, A ∈ Rn×n and C ∈ Rm×m are symmetric, positive
definite matrices satisfying

γ1v
T v ≤ vT Av ≤ Γ1v

T v, v ∈ R
n, (37a)

γ2Φ
T Φ ≤ ΦT CΦ ≤ Γ2Φ

T Φ, Φ ∈ R
m (37b)

with constants 0 < γi ≤ Γi, 1 ≤ i ≤ 2. Moreover, B ∈
Rn×m and f ∈ Rn, g ∈ Rm whence Z ∈ RN×N , ℓ ∈ RN

where N := n+m. We further assume that Z satisfies

inf
U 6=0

sup
V 6=0

|V T ZU |
‖U‖‖V ‖ ≥ γZ > 0 , (38)

where ‖ · ‖ stands for the Euclidean norm in RN .
Generalized saddle point problems such as (36) arise

in many applications as, for instance, in the framework
of stabilized Stokes systems [49,50] or in mixed finite
element approximations of boundary value problems for
elliptic equations and systems [12]. We refer to [7,15,
38] and to the references therein for basic results and
to [5,10,14,17,25,26,31,32] for efficient iterative solution
techniques including multilevel preconditioning.

In the sequel, we closely follow [32,50] and consider
block-diagonal preconditioners of the form

P−1 :=

(

Ã 0

0 C̃

)

, (39)

where we assume that Ã ∈ Rn×n and C̃ ∈ Rm×m are
symmetric, positive definite matrices satisfying

γ̃1v
T v ≤ vT Ãv ≤ Γ̃1v

T v, v ∈ R
n, (40a)

γ̃2Φ
T Φ ≤ ΦT C̃Φ ≤ Γ̃2Φ

T Φ, Φ ∈ R
m (40b)

with constants 0 < γ̃i ≤ Γ̃i, 1 ≤ i ≤ 2.
As an easy consequence from (40) we deduce that

P−1 is positive definite with

Γ−1
P zT z ≤ zT P−1z ≤ γ−1

P zT z, z ∈ R
N , (41)

where γ−1
P := max(Γ̃1, Γ̃2) and Γ−1

P := 1/(min(γ̃1, γ̃2).
Using (38) and (41), we can readily derive lower and

upper bounds for the spectrum of the preconditioned

matrix P
1
2 ZP

1
2 :

Theorem 6.1. Suppose that (38) and (41) are satisfied
for Z and P −1, respectively. Then, for V ∈ R

N there
holds

γPZ V T V ≤ V T P
1
2 ZP

1
2 V ≤ ΓPZ V T V , (42)

where γPZ := γP γZ and ΓPZ := ΓP ‖Z‖.
Proof. Straightforward computations yield

inf
W 6=0

sup
V 6=0

V T P
1
2 ZP

1
2 W

‖V ‖‖W‖ =

= inf
W̃ 6=0

sup
Ṽ 6=0

Ṽ
T
ZW̃

(Ṽ
T
P−1Ṽ )

1
2 (W̃

T
P−1W̃ )

1
2

≥

≥ γP inf
W̃ 6=0

sup
Ṽ 6=0

Ṽ
T
ZW̃

‖Ṽ ‖‖W̃‖
≥ γP γZ .

Similar arguments result in the upper bound in (42). ⊓⊔
We allow the following inf-sup condition for the sesquilin-
ear form b(·, ·) restricted to V h ×Wh:

inf
vh∈V h

sup
ϕh∈Wh

|b(vh, ϕh)|
‖vh‖V ‖ϕh‖W

≥ βh ≥ βmin ≥ 0, (43)

i.e., βmin = 0 is admitted. In this case, the associated
matrix B may have a non-trivial kernel, and we get:

Lemma 6.1. Under the assumptions (37b) and (43),
for v ∈ Rn,v 6= 0 there holds

β2
min

‖C‖ ≤ vT BC−1BT v

vT v
≤ ‖B‖2

γ2
. (44)

Proof. For v ∈ Rn we readily obtain

vT BC−1BT v = sup
Φ 6=0

(ΦT CC−1BT v)2

ΦT CΦ

≥ 1

‖C‖
(ΦT Bv)2

ΦT Φ
≥ β2

min

‖C‖vT v

and

vT BC−1BT v ≤ 1

γ2
‖BT v‖2 ≤ ‖B‖2

γ2
vT v. ⊓⊔
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The preconditioned saddle point system is given by
(

Ã
−1

A Ã
−1

B

C̃
−1

BT −C̃
−1

C

)

(

u
Φ

)

=

(

Ã
−1

f

C̃
−1

g

)

. (45)

A simple computation shows that the Schur complement
matrix of the preconditioned system is given by

S̃ = Ã
−1

S,

thus completely neglecting the dependence on the pre-

conditioner part C̃
−1

. This is immediately clear, since
this preconditioner only speeds up the inner iteration
when solving systems with coefficient matrix C. The

spectrum of Ã
−1

S can be determined from the eigen-

values of Ã
− 1

2 SÃ
− 1

2 .

Theorem 6.2. For the spectrum of S̃ we have the fol-
lowing lower and upper bound

γPS ≤ vT S̃v

‖v‖2
≤ ΓPS , (46)

where

γPS :=
1

‖Ã‖

(

γ1 +
β2

min

‖C‖

)

, (47)

ΓPS :=
1

γ̃1

(

‖A‖ +
‖B‖2

γ2

)

. (48)

Proof. Setting w := Ã
− 1

2 v, we obtain

vT Ã
− 1

2 SÃ
− 1

2 v

vT v
=

=
vT Ã

− 1
2 AÃ

− 1
2 v

vT v
+

vT Ã
− 1

2 BC−1BT Ã
− 1

2 v

vT v

=
wT Aw

wT Ãw
+

wT BC−1BT w

wT Ãw
.

The first term can be estimated by the ellipticity prop-
erties of A and Ã,

γ1

‖Ã‖
≤ wT Aw

wT Ãw
≤ ‖A‖

γ̃1
.

By Lemma 6.1 and the ellipticity property of Ã, for the
second term it follows that

β2
min

‖Ã‖ ‖C‖
≤ wT BC−1BT w

wT Ãw
≤ ‖B‖2

γ̃1 γ2
.

Combining both estimates, gives the assertion. ⊓⊔
We are particularly interested in such preconditioners
where the lower and upper bounds γPZ and ΓPZ for the
spectrum of the preconditioned saddle point matrix P Z
and the corresponding bounds γPS and ΓPS for the spec-

trum of the preconditioned Schur complement Ã
−1

S as

well as the bounds for the spectrum of C̃
−1

C are inde-
pendent of the granularity h of the triangulations. Such
preconditioners are provided by multilevel precondition-
ers of BPX-type with respect to a nested hierarchy of
simplicial triangulations of the computational domain Ω
(cf., e.g., [11,41]).

7 Numerical Results

In this section, we present a documentation of numer-
ical results both for a test problem in order to study
the performance of the block-diagonally preconditioned
iterative solver of the finite element discretized surface
acoustic wave equations and for a realistic surface acous-
tic wave device as it is used on microfluidic biochips. The
solver is implemented within the finite element toolbox
ALBERTA [47,48].

7.1 Test Problem

For the test problem, we assume that, in Voigt notation,
the elasticity tensor c = (cIK) and the piezoelectric ten-
sor e = (eIK) are given by

c =















20 5 7 1 0 0
5 20 7 −1 0 0
7 7 25 0 0 0

−1 −1 0 5 0 0
0 0 0 0 6 1
0 0 0 0 1 7















,

e =





−4 1 1 0 0 0
0 −4 1 0 0 0
1 1 1 1 1 1



 ,

whereas the dielectric tensor ǫ = (ǫij) is chosen accord-
ing to

ǫ =





10 0 0
0 10 0
0 0 5



 .

We note that the material moduli resemble the proper-
ties of a typical piezoelectric material like quartz.

The right-hand sides and boundary data are chosen
in such a way that

u(x) = xT x (1, 2, 3)T , Φ(x) =

3
∑

i=1

sin(πxi) ,

solves the time-harmonic surface acoustic wave equations
(11),(12) and (15) for angular frequencies ω ranging be-
tween ω = 0 and ω = 25.

We apply the iterative solvers GMRES and BICGSTAB

with and without the block-diagonal preconditioners to
the algebraic saddle point problems arising from finite
element discretizations with respect to uniform hierar-
chies of simplicial triangulations of the computational
domain in its non-symmetric formulation

(

Aω B

−BT C

)(

u
Φ

)

=

(

f
−g

)

,

where Aω := A − ω2I. We also consider the iterative
solution of the Schur complement system

Su = (Aω + BC−1B∗)u = F ,

CΦ = Cu − g



11

by the CG method with and without preconditioning
(SC-CG/SC-PCG).

We first consider the results of a 2D simulation where
Ω = (−1,+1)2 and the boundaries Γu, Γσ, ΓΦ and ΓD are
given as follows

Γu := [−1,+1]× {−1} ∪ {+1} × [−1,+1],

Γσ := (−1,+1)× {+1} ∪ {−1} × (−1,+1),

ΓΦ := [−1,+1]× {−1} ∪ {−1} × [−1,+1],

ΓD := (−1,+1)× {+1} ∪ {+1} × (−1,+1).

The stopping criterion for the iterations has been cho-
sen such that the residual gets smaller than 10−6. We list
the number of iterations for SC-CG, GMRES and BICGSTAB

with and without preconditioner. Since the effort for one
iteration step is not directly comparable (there is an
inner iteration in the application of the Schur comple-
ment), we have also measured the CPU-time (in sec-
onds). Table 7.1 and Table 7.1 contain the results with-
out and with the BPX-type preconditioner:

Table 1. Number of iterations and CPU-time (in seconds)
for SC-CG and BICGSTAB/GMRES without preconditioner

Level SC-CG BICGSTAB GMRES

time iter time iter time iter

3 0.15 74 0.10 65 0.14 17
4 1.4 148 0.75 137 1.7 56
5 29 311 7.6 324 32 206
6 440 872 75 678 530 758

Table 2. Number of iterations and CPU-time (in seconds)
for SC-PCG and BICGSTAB/GMRES with preconditioner

Level SC-PCG PBICGSTAB PGMRES

time iter time iter time iter

5 2.5 48 1.1 33 1.2 6
6 12 52 5.2 39 5.9 7
7 70 55 23 41 25 7
8 290 57 92 44 100 8

Using no preconditioning, BICGSTAB has clearly out-
performed SC-CG and GMRES in terms of CPU-time and
iterations. Applying the BPX-type preconditioner, PBI-
CGSTAB and PGMRES perform similarly and both outclass
SC-PCG. We have also performed 3D simulations for the
computational domain Ω = (−1,+1)3 and the bound-
aries Γu, Γσ, ΓΦ, and ΓD specified according to

Γu :=[−1,+1]2 × {−1} , Γσ := ∂Ω \ Γu,

ΓΦ :={−1} × [−1,+1]2, ΓD := ∂Ω \ ΓΦ.

Using the same termination criterion, the performance
of SC-CG, BI-CGSTAB and GMRES with and without pre-
conditioning was roughly the same as in the 2D case.

In order to illustrate the dependence of SC-CG and
SC-PCG on the refinement level, Figure 9 displays the
number of iterations as a function of the refinement level
ℓ for SC-CG (blue line) and SC-PCG with the BPX pre-
conditioner (red line). For comparison, the results for
SC-PCG with the hierarchical type preconditioner (cf.,
e.g., [41,59]) are shown as well (green line). The results
clearly show the exponential growth of the condition
number of SC-PCG in ℓ and the level independence of
SC-PCG with the BPX preconditioner at least in 2D (in
the 3D case the asymptotics has not yet been reached).
Likewise, the theoretically predicted growth of the con-
dition number like O((ℓ + 1)2) for d = 2 and like O(2ℓ)
for d = 3 of SC-PCG with the hierarchical type precondi-
tioner is reflected by the numerical results as well.
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Fig. 9. Number of iterations required to reach a fixed tol-
erance TOL = 10−6; 2D simulation (left) and 3D simulation
(right)

7.2 Surface Acoustic Wave Device Simulation

The piezoelectric material used for the SAW chip in our
calculations is lithium niobate (LiNbO3). Usually, one
is interested in very large monocrystals appearing only
randomly in nature. However, sophisticated production
procedures for all technologically relevant materials are
at hand. Depending on the cut used for the special de-
vice the monocrystals are sawed. For details concern-
ing production procedures, natural appearances and the
material constants stated here we refer to [61] and the
references therein.

The material moduli are given here in a way such that
the coordinate x3-axis is identical with the polar axis Z
along which rotatory polarization occurs (the crystal-
lographic Z-axis). By convention, the crystallographic
axes are denoted by X,Y, Z, while the coordinate axes
are denoted x1, x2, x3.

Lithium niobate is an extremely versatile crystal ma-
terial. It possesses a very high Curie temperature and
excellent piezoelectric coupling coefficient making it at-
tractive for ultrasonic device applications. Lithium nio-
bate possesses a number of useful cuts that are exten-
sively used in transducer applications, e.g. Y Z LiNbO3

(i.e. Y -axis crystal cut, Z-axis propagation) or 128◦ ro-
tated Y X LiNbO3. Material moduli are given for room
temperature (20◦C) in the following table:
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Table 3. Material Moduli for 128o rotated Y X LiNbO3 (note
that c11 = c22, c13 = c23, c14 = −c24 = c56, c44 = c55 and
e22 = −e16)

c c11 c12 c13 c14 c33 c44 c66

[1010 N

m2 ] 20.3 5.3 7.5 0.9 24.5 6.0 7.5
e e15 = e24 e22 = −e21 e31 = e32 e33

[ C

m2 ] 3.7 2.5 0.1 1.3
ǫ ǫ11 = ǫ22 ǫ33

[10−12 F

m
] 749.0 253.2

The constants given here are for crystal geometries
coinciding with the coordinate planes. For some techno-
logical reasons, different cuts of crystals are preferred in
practice, i.e. a coordinate transformation is realized by

x̄ = x̄(x) ,

The material moduli in the new coordinate system are
then regained by the tensor transformations

c̄īj̄k̄l̄ = cijkl

∂x̄ī

∂xi

∂xj

∂xj̄

∂x̄k̄

∂xk

∂xl

∂xl̄

, (50)

ēīj̄k̄ = eijk

∂x̄ī

∂xi

∂x̄j̄

∂xj

∂xk

∂xk̄

, (51)

ǭīj̄ = ǫij
∂x̄ī

∂xi

∂xj

∂xj̄

. (52)

Usually, a simple rigid rotation is undertaken, i.e. the co-

ordinate transformation is linear, x̄ = Tx, and ∂x̄ī

∂xi

= Tīi

represent the direction cosines between the two frames
of reference.

In this setting, the relationship between the crystal-
lographic fundamental orthogonal system of axesX,Y, Z
and the coordinate axes x1, x2, x3 must be known. Note,
that there are piezoelectric materials where the orienta-
tions of the crystallographic unit cell axes do not align
with the fundamental coordinate system, but usually
constants are given for the fundamental coordinate sys-
tem and we will not consider such materials anyway.

In transducer design, there is a simple standardized
[27] way to provide this information: Here, the first two
letters (out of X,Y, Z) denote the initial plate orien-
tation, the first indicating the plate thickness, the sec-
ond the plate length before any rotations. The remaining
three symbols (t = thickness, w = width, l = length) are
used to indicate the plate edges used for rotation, fol-
lowed by a list of corresponding angles (see Figure 10
(left) for a Y Z-plate and Figure 10 (right) for a rotated
Y Zw − φ plate).
For the surface acoustic wave device, we have used a
reduced model in the (x1, x3)-plane assuming that all
variables do not depend on x2 and have no impact in
the x2-direction. The piezoelectric material is lithium
niobate (LiNbO3) with density ρ = 4630 kg

m3 . This chip is
operated at room temperature (20◦C). We remark that

X

Y

Z

X

Y

Z

w

l

t

f

X

Y

Z

w

l

t

Fig. 10. Piezoelectric plate in crystallographic X, Y, Z coor-
dinate system; Y Z orientation (left) and Y Zw−φ orientation
(right)

the SAW devices can be cooled efficiently. Hence, the
assumption of a constant operating temperature is jus-
tified. The used crystal cut is Y Xl 128◦ LiNbO3. The
length ℓ and the height h of the SAW chip have been
chosen according to ℓ = 1.2mm and h = 0.6mm so
that Ω = (0, 1.2)× (0, 0.6). The Dirichlet and Neumann
boundary conditions have been specified according to

uΓ (x, t) = 0 on Γu , σn(x, t) = 0 on Γσ,

ΦΓ (x, t) = Φ̂ sin(
2π

λIDT

) sin(ωt) on Γ
(1)
Φ ,

ΦΓ (x, t) = 0 on Γ
(2)
Φ , Dn(x, t) = 0 on ΓD ,

where the Dirichlet boundaries are Γu := [0, 1.2] × {0},
Γ

(1)
Φ := [0.2, 0.4]×{1.2} , Γ (2)

Φ := [0, 1.2]×{0}, whereas

Γσ := ∂Ω \Γu and ΓD = ∂Ω \ (Γ
(1)
Φ ∪Γ (2)

Φ ) stand for the
Neumann boundaries.

Concerning the wavelength λIDT of the interdigi-
tal transducer and its operating frequency f , we have
made the realistic choice λIDT = 40µm and f = ω

2π
=

100MHz.
We have discretized the computational domain by a

nested hierarchy of simplicial triangulations of the com-
putational domain Ω generated by uniform refinement
of a given coarse mesh. It is well-known that for time-
harmonic waves with increasing angular frequency ω =
2πf
λ

the finite element error grows, even if we account
for a condition on the meshsize like h . λ . A common
choice is h . λ

2 (i.e. two elements per wavelength), an es-
timate that guarantees an interpolation property for the
used finite element spaces. However, an intrinsic anal-

ysis shows that an additional condition like h .
√
λ3

is needed, if we want to control the finite element error
(cf. [28]). Therefore, we have chosen the meshsize for the
coarsest grid of the nested hierarchy accordingly.

Figures 11-13 show the amplitudes of the electric po-
tential and the polarized Rayleigh waves, respectively.
The amplitudes of the displacement waves are, as ex-
pected, in the region of nano-meters. The SAWs are
strictly confined to the surface of the substrate. Their
penetration depth into the piezoelectric material is in
the range of one wavelength.

One of the most outstanding properties of surface
acoustic wave propagation on piezoelectric materials is
that the velocity of the SAW is independent of the ap-
plied frequency. In the case of Y Xl 128◦ LiNbO3 the
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Fig. 11. Electric potential wave

Fig. 12. Displacement wave amplitudes in x1-direction

Fig. 13. Displacement wave amplitudes in x2-direction

SAW velocity is given by v = 3992m
s
, cf. [13]. Thus, for

an excitation at the frequency f = 100 MHz the theoret-
ical wavelength of the SAW is given as λ = v

f
≈ 40µm.

Our calculations show the same wavelength for the SAW.
Figure 14 also illustrates the piezoelectric wave for f =
50MHz. The wavelength of the SAW for f = 100MHz is
half of that for f = 50MHz.

We remark that the wavelength of an occurring elec-
tro-magnetical wave is in the region of approximately 0.3
m. Hence, the negligence of this electro-magnetic wave
in the modeling of piezoelectric SAW devices is justified.

The excitation of an IDT on the surface of a piezo-
electric material leads to the generation of bulk acoustic
waves (BAWs) as well as surface acoustic waves. These

Fig. 14. Electric potential wave for f = 50 MHz

Fig. 15. Bulkwave Excitation

bulk waves can also be observed in our simulations in
Figures 11-14. Technologically, they are desirably em-
ployed in solid-state circuits [13]. We refer to [16,19,
23,24,52] for finite element approximations of surface
acoustic wave propagation in signal processing. However,
for the SAW devices under consideration the presence
of BAWs is unwanted, since the interference of BAWs
with SAWs can lead to a complete loss of functionality
of the device. Our approach is sufficiently general to sim-
ulate every kind of piezoelectric resonator. In Figure 15
we have used an Y Xl 38◦ cut of LiNbO3 to generate a
strong bulk acoustic wave at frequency f = 200MHz.

We recall from Chapter 3 that Rayleigh surface waves
characteristically show an elliptical displacement, i.e. the
displacements in the x1- and x2-direction are 90o out
of phase with one another. Additionally, the amplitude
of the surface displacement in the x2-direction is larger
than that along the SAW propagation axis x1. These ob-
servations are also true in our numerical computations,
see Figures 16 and 17. In Figure 16, the displacements
in the x1- and x2-direction for a certain surface area are
depicted. The x2-displacements are flipped vertically for
easier comparability. In Figure 17 a certain surface area
is magnified and the vectors indicate the surface dis-
placements. All numerical calculations show relatively
strong reflections from the boundaries of the SAW de-
vice. In real devices these reflections are usually avoided
by attaching some adhesive material to the side bound-
aries. An easy way to model such a damping is to intro-
duce an additional term (the so-called gyroscopic term)
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Fig. 16. Phaseshift of x1- and x2- (flipped) displacements

Fig. 17. Displacement vectors for the SAW

into the piezoelectric equations which now become

ρ
∂2ui

∂t2
− ∂βi

∂xj

∂3ui

∂2xj∂t
−

− cijkl

∂2uk

∂xl∂xj

− ekij

∂2Φ

∂xk∂xj

= bi ,

eikl

∂2uk

∂xl∂xi

− ǫij
∂2Φ

∂xj∂xi

= βi

cf. e.g. [6,29]. Introducing such a damping at the bound-
aries of the bottom and left-hand side we indeed get
less reflections and thus less disturbances for the SAW.
This gets extraordinarily palpable, if we compare the x1-
displacements in Figure 12 (calculations without damp-
ing) to the new calculations with damping term in Figure
18.

Fig. 18. x1-displacements with damping
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W. Rulle, and L. Korte, Single-chip fused hybrids for
acousto-electric and acousto-optic applications, Appl.
Phys. Lett. 70, 2097, 1997

47. A. Schmidt and K.G. Siebert, Design of Adaptive Fi-
nite Element Software: The Finite Element Toolbox AL-

BERTA, LNCSE, vol. 42, Springer, 2005.
48. A. Schmidt and K.G. Siebert, ALBERT — Software

for scientific computations and applications, Acta Math.
Univ. Comenianae, 70, 105–122, 2001.

49. D. Silvester and A. Wathen, Fast iterative solution of sta-
bilised Stokes systems part I: Using simple diagonal pre-
conditioners. SIAM J. Numer. Anal., 30, 630–649, 1993

50. D. Silvester and A. Wathen, Fast iterative solution of
stabilised Stokes systems part II: Using general block
preconditioners. SIAM J. Numer. Anal., 31, 1352–1367,
1994

51. M. Streibl, H.J. Kutschera, W. Sauer, and A. Wixforth,
Numerical and experimental analysis of complex sur-
face acoustic wave fields, In: Proc. IEEE Int. Ultrasonic
Symp., San Juan, Puerto Rico, 2000 (D.E. Yuhas, ed.),
2001
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