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SUMMARY

A particle-based model for the simulation of wave propagation is presented. The
model is based on solid-state physics principles and considers a piece of rock to be a
Hookean material composed of discrete particles representing fundamental intact rock
units. These particles interact at their contact points and experience reversible elastic
forces proportional to their displacement from equilibrium. Particles are followed
through space by numerically solving their equations of motion. We demonstrate that
a numerical implementation of this scheme is capable of modelling the propagation
of elastic waves through heterogeneous isotropic media. The results obtained are
compared with a high-order finite difference solution to the wave equation. The method
is found to be accurate, and thus offers an alternative to traditional continuum-based
wave simulators.

Key words: finite difference methods, heterogeneity, particle-based model, wave

propagation.

1 INTRODUCTION

Analytical methods allow us to model a wide spectrum of
processes in the Earth Sciences and have enjoyed considerable
success in crustal deformation and wave propagation studies
for many decades. It is well known that inherent short-
comings in these schemes make it necessary to oversimplify
(smooth) the geology in order to render the differential equations
possible to solve. This shortcoming has become all the more
acute with the growing realization of the highly heterogeneous
nature of geological materials (e.g. Frankel 1989; Turcotte
1992; Marsan & Bean 1999). In reality, geological media are
discontinuous over a broad scale range, being composed of
discrete grains, neighbour—neighbour structural features and
containing both macroscopic and microscopic fractures. In an
effort to capture the effects of severe heterogeneity, numerical
methods for simulating wave propagation through the Earth’s
crust have become important tools in the field of seismology
over the past two decades. The development of numerical
schemes has enabled us to study wave propagation through
complex media for which analytical solutions to the wave
equation must be severely truncated. These methods have
proved valuable as a way of comparing real data obtained
during seismic exploration with synthetic data from numerical
models. They have also provided insights into the study of
processes such as the scattering of seismic waves during their
passage through the crust.

The most popular scheme is the finite difference (FD)
method, which solves the wave equation by replacing the partial
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derivatives in space and time by their finite difference approxi-
mations. The solutions include all transmitted and reflected
waves, P-to-SV and SV-to-P conversions, diffractions and
scattered waves (e.g. Frankel 1989). Other schemes such as the
boundary element method (e.g. Pointer ez al. 1998) can also be
used. Despite this success, schemes based on continuum methods
may fail to model important aspects of wave propagation such
as possible fluid movement in heterogeneous pore spaces.
Consequently they require rather than provide observations
for crucial processes such as intrinsic wave attenuation.

We introduce a numerical method that approaches the
wave propagation problem from the discrete perspective. This
approach, termed a ‘discrete particle scheme’ (DPS), is based
not on the wave equation, but on the underlying physics of
wave propagation that occurs at the atomic scale. Due to the
limitations imposed by current computational power it is not
possible to simulate rocks at the atomic scale; however, we can
employ a particle-based approach in which particles represent
larger units of intact rock, whose size depends on the appli-
cation of the model and the available computational power.
The geological medium is now described by a large number
of these interacting particles, which are free to move in space
subject to the constraints imposed by bonds with other particles.
Waves propagate through the discrete lattice due to the inter-
actions occurring at the contacts between the particles. A simple
force—displacement interaction between the particles implicitly
includes all boundary conditions between zones with different
material properties and is shown here to capture elastic wave
propagation in accordance with continuum mechanics.
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2 DISCRETE PARTICLE SCHEMES

The discrete approach to modelling rock mechanics derives
from solid-state physics models of microscopic crystals (e.g.
Hoover et al. 1974), in which the crystal is considered to be
made up of a closely packed lattice of particles interacting with
Hooke’s law forces. Cundall & Strack (1979) used a similar
approach to model rock mechanics problems using the ‘distinct
element method’, a numerical scheme in which particles
representing blocks of rock interact through both radial and
shear forces. The distinct element method has since been used
extensively to model a diverse range of processes from rock
fracture and mining and engineering applications to tectonic
processes (Saltzer & Pollard 1992) and particulate mechanics
(Williams et al. 1994). Other related methods include the
‘lattice solid model’ (Mora & Place 1993, 1994, 1998; Donze
et al. 1994), which has been used to study earthquake dynamics.
We now use these principles to investigate the propagation of
elastic waves through a 2-D lattice of interacting particles. The
model is composed of circular particles representing blocks of
rock, arranged in a closely packed isotropic hexagonal con-
figuration (Fig. 1). We chose this configuration as it resembles
real rocks more closely than the more loosely packed cubic
lattice. Each particle interacts radially with each of its six
neighbours at the contact points, and the particles undergo
displacement as a response to externally applied forces. We
apply an external force in the form of a seismic source and
examine the reaction of the medium to determine whether
seismic waves propagate through the lattice in accordance with
wave theory.

2.1 Lattice structure and properties

In the current 2-D scheme the particles are frictionless circular
discs of area density p, separated by a distance r(, the equilibrium
particle spacing. Neighbouring particles are bonded together
by virtual springs of stiffness K which resist any displacement
of particles from their equilibrium spacing. The particle pro-
perties determine the spring stiffnesses. The macroscopic
properties of the medium are determined by the particle area

Figure 1. In discrete particle schemes the geological medium is con-
sidered to be made up of interacting particles whose meaning depends
on the scale (e.g. blocks of rock, grains of sand). In these experiments
we use a model in which the particles are arranged in a hexagonal
geometry, with each particle bonded to its six nearest neighbours.

density, equilibrium spacing and bond stiffnesses. Hoover et al.
(1974) calculated Lamé’s constants for a closely packed isotropic
hexagonal lattice,

KV3
The area density per particle is
2m
= , 2
P \/gro @

where m is the particle mass. This leads to compressional and
shear wave velocities of

9K
Vp=r0 @5 (3)
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The P-to-S-wave ratio for a hexagonal lattice is thus fixed at
1.73 and Poisson’s ratio is 0.25. These values are typical of
crustal rocks. A different lattice geometry would be required in
order to change the P-to-S-wave ratio.

In the following simulations, each particle is assigned a
density, diameter and P-wave velocity. The particle diameters
determine the equilibrium spacing, ro, between the particles.
Eq. (2) gives the mass of each particle, and the stiffness of the
bond joining two neighbouring particles is calculated from
eq. (3). Neighbouring particles may have very different pro-
perties, in which case the bond stiffness is found by averaging
the properties of the particles. The S-wave velocity is implicit.

2.2 Particle interaction

Bonded particles interact at their contacts. This interaction is
described by Hooke’s law, which specifies the magnitude of the
elastic force, F, acting between the two particles i and j as a
result of compression or dilation of the spring joining them:

Fijy=Kij)(ri,—"ro,,) s ®)

where r;; is the distance between the particle centres.
This force can be resolved into components parallel to the
horizontal and vertical axes,

F..,=F;jcos0, (6)

XGi.j)

F.

2Gij)

= Hi’j) sin 0 N (7)

where 0 is the angle between the particles (Fig. 2). 6 can be
calculated from the horizontal (x) and vertical (z) distances
between the particles as follows:

, ®)
sinf= - . )

Since the positions of all particles in the simulation are known
at all times, the forces acting at their contacts can be resolved.
These forces are tensional if particles are stretched apart and
compressional if particles are pushed together. The total force
on any particle is the sum of the forces applied by each of its
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Figure 2. Particles interact at their contacts by means of reversible
elastic forces. Two compressed particles experience a repulsive force
proportional to the amount of overlap between them and the stiffness
of the bond joining them. The force on any particle is the sum of the
forces applied by each of its neighbours.

N =6 neighbours:

N

F‘x[ = Z Fx(,;,', > (10)
J
N

F,=S"F. (11)

@) "
J

The bonds between particles are analogous to, for example, the
interatomic potential, or at a much larger scale, the cement
which bonds grains of sand together. Although Hooke’s law
describes a completely elastic system, the interaction rule can
be altered to accommodate different rheologies. Since particle
interactions are radial only, rotation of the particles is not
considered.

The particles obey Newtonian dynamics, allowing their
accelerations at the current time step to be found:

F

xf==, (12)
m
F.

Z;,: = (13)
m

2.3 Numerical integration

Particle velocities and positions are extrapolated to the next
time step using the velocity—Verlet numerical integration
scheme (Allen & Tildesley 1987). This is a second-order finite
difference approximation to the equations of motion. The
accelerations are integrated first to give the current velocities,

30 = X1 A+ A LU= AD TN ’A;)“df ®,

(14)
Z{(t—At)+z/ (1)

Z()=zi(t— A+ At 3

(15)
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The current velocities are integrated to give the positions at
the next time step,

xi(t+ AN =x,()+ Arx} (t)+ — x”(t) (16)

zi(t+ Ay =z(1) + Atzl(1) + ”(t) (17)

This completes the update of particle positions to the next time
step, and the new interaction forces may now be calculated.

2.4 Numerical stability

Disturbances propagate through the lattice by means of forces
at the contacts between particles. Since each particle reacts
only to forces applied by its neighbours, it is important that
any disturbance propagating through the lattice can cross
only one particle in a given direction per time step. The time
step must therefore be balanced against the maximum speed
of propagation through the model, i.e. the maximum com-
pressional wave velocity. This gives rise to the following
stability criterion:

py o o V3
v 2

Pmax

(18)

where rg, is the minimum interparticle spacing in the lattice.
A similar condition is used in finite difference solutions to the
wave equation.

3 WAVE PROPAGATION

The majority of numerical experiments using particle-
based schemes have focused on modelling quasi-static tectonic
processes, or non-elastodynamic effects such as fracturing. In
these simulations, dynamic wave propagation is artificially
damped out of the model (Mora & Place 1993, 1994). To our
knowledge only a small number of discrete particle experiments
have concentrated on elastodynamic processes. An example
is the investigation of acoustic emissions, which are produced
when failure occurs in rocks subjected to stress (Hazzard et al.
1998). These experiments are of interest in the areas of earth-
quake dynamics and the mechanics of rock failure. They
simulate the high-frequency oscillations of particles which
occur after bonds have broken in the lattice owing to external
forces.

Here we introduce a method which allows us to model
wave propagation without bringing the model to failure and
which does not employ artificial damping. An artificial source
(Fig. 3) is input as a force on a particle on the lattice, in a
manner analogous to the artificial explosive sources used in
traditional wave simulations in controlled-source seismology.
In this manner we are able to control the frequency and
wavelength of the source, ensuring that no dispersion occurs
(see Section 3.1). The results of these simulations must be com-
pared to an analytical solution to the wave equation to judge
their accuracy. We compare our results to those obtained using a
high-order finite difference solution to the wave equation, which
has already been demonstrated as accurate by comparison with
analytical solutions (Igel 1993).
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Figure 3. Wave propagation is initiated by inputting a source function with a central frequency of 16 Hz as a vertical force on the particle at the

centre of the lattice.

3.1 Dispersion

Wave speeds are a function of wavelength in a discrete
lattice. We have carried out an investigation of the dispersive
properties of our model to see if they are in accordance with
theoretical dispersion relations provided by solid-state physics
(e.g. Young 1992).

In the case of a plane longitudinal wave propagating through
a cubic lattice, the particles are displaced in the direction of
propagation of the wave. All particles in a plane perpendicular
to the wave move in unison, so we need consider only one row
of particles, parallel to the direction of propagation (Fig. 4).
The equilibrium position of each particle j is j times ry. During
wave propagation, each particle is displaced along the x axis by
a distance x;. The force on particle j is given by Hooke’s law,

Fi=K(xjy1—2x+x;-1), (19)
and its acceleration is given by Newton’s law,

dzx,-
Fi=m TR (20)
If the wave travelling through the lattice has the wavefunction
sin (wt—kx), (21)

where x is the equilibrium position of the jth particle and &
is the wavenumber (2n/1), then the displacement of the jth
particle due to the wave is

xj(1) = sin (wt —kjro) (22)
and its acceleration is

dZX‘ 2 . .

sz = —(w)* sin (w1 —kjrg) . (23)

X

Figure 4. A portion of the 1-D lattice used to investigate dispersion.

Substituting these back into eqs (19) and (20) gives

w=2 (E) sin (lﬂ) . (24)
m 2

This is an important result because it shows that w is a function
of sin (k) and thus the wave speed w/k is also a function of
sin (k), i.e. the wave is dispersive. Fig. 5 shows the relation
between w and k.

If the wavelength 4 is much larger than the lattice spacing ry,
then

% >r, (25)
therefore
kro«1, (26)
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Figure 5. In a discrete lattice, the wave speed w/k is not constant but varies with £, i.e. different frequencies propagate at different velocities. For
small k the curve is approximately linear and all frequencies propagate at approximately the same velocity, ro+/(K/m).

SO
k}’() ki’()
— | = . 2
n( 5 ) 3 27)
In this case
w2 <5) k—ro (28)
m) 2

and thus the velocity in a 1-D lattice is

K
% zro\/%. (29)

Hence, when the wavelength is much larger than the lattice
spacing, the dispersion becomes practically undetectable. This
can be seen in Fig. 5—for small £ the curve is approximately
linear. For shorter wavelengths the waves begin to ‘see’ the
discrete nature of the lattice. For w greater than 2v/K/m there
is no value of k for which eq. (24) is satisfied. This is the
maximum possible angular frequency of waves in the lattice.
We have examined the dispersive properties of a 1-D version
of our model. A series of monochromatic sources, with a range
of frequencies and the wavefunction given by eq. (21), were
input as a displacement of one of the particles in the lattice.
The resultant wavefield was then examined at a distance of
200 wavelengths from the source. The time taken for the
wave to arrive at this location was used to calculate its velocity
and wavelength. The results in Fig. 6 show that for seismic
frequencies the lattice clearly obeys the theoretical dispersion
relation. The number of particles required per seismic wave-
length to eliminate dispersion depends on the size of the model—
a wave which appears to be non-dispersive close to the source
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may be quite obviously dispersed a greater distance away. For
our current implementation, 10 particles per seismic wave-
length are sufficient to reduce dispersion to below a detectable
level.

A similar criterion must be applied in finite difference
solutions to the wave equation. However, many implementations
of finite difference schemes use higher-order updates to the
displacement field. Consequently, they are non-dispersive for
much smaller wavelengths than our scheme. The finite differ-
ence solution used in this paper is eighth order in space and
second order in time on a staggered grid and is non-dispersive
for as few as four grid nodes per seismic wavelength (Igel 1993).

4 NUMERICAL EXPERIMENTS

We carried out the following experiments using the discrete
particle scheme and compared the results to those obtained from
finite difference wave simulations carried out using identical
parameters. The following source function was used to generate
a source with a central frequency of 16 Hz and a maximum
frequency of 30 Hz (Fig. 3):

source(f)= exp| — % (2f(t—200)At)2 cos 2zf (t—200)Ar. (30)

The source was input as a force in the z direction on the particle
at the centre of the lattice. The displacements of individual
particles at specified locations were then followed in time and
snapshots of the displacement field over the entire model were
recorded. Two different elastic models were used—a homo-
geneous model and a layered model. In each case the particle
diameter in the DPS simulations and the grid spacing in the
FD model were 10 m. Both models had a constant density
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Figure 6. Experimental measurements of dispersion in a 1-D discrete particle lattice are in agreement with the theoretical dispersion relations
provided by solid-state physics. The investigation was restricted to seismic frequencies, hence only a small portion of the theoretical curve is shown here.

of 2000 kg m—2. We used a time step of 5x10~%s. Both
numerical methods required the same order of computational
expense.

4.1 Homogeneous model

We investigated wave propagation through a 6000 x 6000 m
homogeneous model with a compressional wave velocity of

1
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6000 m s—! and an S-wave velocity of 3464 m s~!. The source
was input at the centre of the lattice and synthetic seismic
traces were collected along two horizontal profiles located at
depths of 3000 and 4500 m.

Fig. 7 shows snapshots of the normalized displacement fields
taken after 0.5 s. The results of the discrete particle simulation
are shown in (a), and the finite difference results are shown
in (b). The displacements have been normalized to facilitate
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Figure 7. Snapshots of the normalized displacement field at time step 1000 (0.5 s), for a vertical source. Greyscale variations represent amplitude of
displacement in the x (upper figures) and z (lower figures) directions. The x and z components of displacement in the discrete particle model (a) are

compared to the x and z components in the finite difference model (b).
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Figure 8. Normalized seismic traces showing the x and z components of displacement at a location 1860 m from the source in the upper-
left quadrant of the model. Discrete-particle results (solid traces) are compared to finite difference results (dotted traces). These figures show the direct

P-wave arrival followed by the direct S wave.

direct comparison between the results. The x components
of displacement (upper figures) show P waves travelling at a
velocity of 6000 m s—! followed by the slower shear waves
travelling at 3464 m s—'. These velocities have been confirmed
by measuring them from the synthetic seismic sections. The
snapshots of the z components of displacements show P waves
propagating in the direction of the source displacement (along
the z axis) and shear waves propagating at right angles to this,
in the x direction. The snapshots show very similar results, and
are examined in greater detail in Fig. 8, in which we compare
individual traces from a particle located in the upper left
quadrant of the model, at a distance of 1860 m from the source.
This distance represents approximately nine compressional
wavelengths, and 16 shear wavelengths. Fig. 8 shows the
normalized x and z components of displacement in the discrete
particle scheme (solid traces) overlain by those of the finite
difference simulation (dotted traces). The first arrivals are
P waves, followed by shear waves. The results are very similar.

4.2 Layered model

The second model consisted of a 8000 x 8000 m grid of
P-wave velocity 6000 m s~! and S-wave velocity 3464 m s~ !,
containing a 1000-m-thick layer with a P-wave velocity of
8000 m s~ ! and an S-wave velocity of 4619 m s~!. The high-
velocity layer is located 1000 m from the source, as shown in
Fig. 9. The source was input as before, and the reflected and
transmitted wavefields were sampled at the locations marked
in Fig. 9.

Fig. 10 shows snapshots of the normalized displacement
field taken after 0.5 s. This shows the direct P and S waves
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Figure 9. Geometry of the layered model used in the numerical
experiment. The model is an 8 x 8 km isotropic elastic medium with
a P-wave velocity of 6000 m s~! containing a thin layer of higher
velocity (8000 m s~ 1).

propagating outwards from the source, P and S wave reflections
and transmissions, P-to-S-wave conversions at the boundary
between the two layers, and events from within the layer. The
transmitted wavefield was sampled at a distance of 2773 m
from the source, and was found to be very similar in the DPS
and FD models (Fig. 11). The displacements due to the reflected
wavefield (Fig. 12), sampled 1300 m from the source, are also
very similar. Due to the different lattice geometries (hexagonal
in DPS and square in FD) slight differences in the source,
receiver and interface positions will occur. This can give rise to
some of the observed differences in the recorded seismograms.
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Figure 10. Snapshots of the normalized displacement field in the heterogeneous model at time step 1000, or 0.5 s, for a vertical source. Discrete
particle results are shown in (a) while finite difference results are shown in (b). The upper figures show displacements in the x direction and the lower
ones show displacements in the z direction.
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Figure 11. Normalized x and z components of displacement at a location 2773 m from the source. This shows the transmitted wavefield in the
discrete particle model (solid trace) overlain by the displacements in the finite difference model (dotted trace). Edge effects have been suppressed.
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Figure 12. These traces are taken from a location 1300 m from the source. This shows the direct arrivals, reflections from the high-velocity layer, and

events from within the layer. Edge effects have been suppressed.

5 CONCLUSIONS

Our results show that this implementation of a discrete particle
scheme can be used to model elastic wave propagation in
heterogeneous media with the same accuracy and the same
order of computational expense as a high-order finite difference
solution to the wave equation. The hexagonal lattice geometry
used in this implementation leads to a Poisson’s ratio fixed
at 0.25. Investigations of wave propagation through hetero-
geneous media suggest that the method offers an alternative
to wave simulators based on continuum physics. This opens
up new avenues for numerical experiments involving more
realistic random particle sizes, geometries and properties.
Friction (Dobrin 1988), thermal diffusion (Leary 1995) and
fluid squirting (Wulff & Burkhardt 1996) have been proposed
as causes of wave attenuation. This method may provide an
alternative way to investigate these phenomena numerically.
For example, it may be possible to incorporate particle-based
fluids residing in arbitrary heterogeneous porosity into wave
simulations, using a similar scheme to that proposed in this
work. It is hoped that this will provide a useful tool for
investigating wave propagation in multiphase heterogeneous
media.
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