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ABSTRACT

A new numerical method, based on the Vortex Method, for the simulation

of two-dimensionalseparated flows, has been developed and tested on a wide
range of cases. The fluid is incompressible and the Reynolds number is high.

A rigorous analytical basisfor the representation of the Navier-Stokes equa-
tions in terms of the vorticity is used. It includes an equation for the control

of circulation around each body, which has sometimes been overlooked.

In the Vortex Method the vorticity transport equation is solved numerically
in a Lagrangian reference frame, by following elementary vortices. The

resulting method is grid-free and concentrates its points in the regions of
steep gradients; it also allows a simple and exact treatment of the far-field
conditions. It is well adapted to the modeling of transport phenomena.

The Vortex Method has been criticized for its handling of the viscous
effects. In this study most of the effort has been devoted to understanding and
controlling the parasitic numerical effects, and to reproducing the true physi-

cal effects. This was achieved by coupling an inviscid outer flow (computed

by the "VortexMethod), with a viscous boundary layer flow(computed by an
Eulerian method).

Two significant advantages of this new version of the Vortex Method are
the capacity to treat bodies of arbitrary shape, and the ability to accurately

compute the pressure and shear stress at the solid boundary. These two

quantities reflect the stracture of the boundary layer.

Several versions of the method are presented and applied to variou,_

problems, most of which had massive separation. The comparison of its
results with other results, gencrally experimental, demonstrates the reliability

and the general accuracy of the new method, with little dependence on em-

pirical parameters. Many of the complex features of the flow past a circular
cylinder, over a wide range of Reynolds numbers, are correctly reproduced.

The method appears to incorporate many of the physical mechanisms of
separated flows, and the dependence on Reynolds number has been obtained.

Its accuracy, when experimental results are taken as a reference, is limited

mostly by difficulties in modeling turbulence, and by the two-dimensional
assumption.
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Nomenclature.

Roman symbols.

(a, b) A set of Lagrangian coordinates.

Am Area of solid region Sm

By Intensity of the buffer vortex sheet.
c Chordofairfoll.

Cd Drag coefficient: C_-- drag/(.Spc2Uoo 2)

C_ Lift coefficient.

Cn Normal force coefficient,.

Cm Moment coefficient: Cm -" moment](.Spc3Uoo 2)

Cp Pressure coefncient: Cp -- (p -- poo)/(.SpUoo2)

Cpo,Cpl s, Cpt c Fourier coefficients of the pressure during the dynamic stall.

Do Parameter in merging device.

Di Distance from i th vortex to the wall.

d/dr Eulerian time derivative (fixed point in space).

D/Dt Lagrangian time derivative (particlc).

F Fluid region.

i Imaginary complex number: t_ --- --1

i, j Indices of two vortices.

k Reduced frequency of the dynamic stall pitching.

1 Side of the square cells used for the taylor expansions.

K,L Indices of two cells for Taylor expansions.

L Length scale associated with the solid body.

m Index of a solid.

M Number of solids.

n Coordinate normal to the wall in inner region.

n Unit vector normal to OS.
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n Number of cells for approximating the vortex interactions.

N_ Number of grid points in a Finite Difference simulation.

N_ Number of vortices.

Nw Number of points along the wall.

p Pressure (divided by the density).

r Vector representation of (x,y):

,=(;)
R (large) distance from the origin in an asymptotic expansion.

Re Reynolds number. Re --IUoo[L/v

R0 Distance from the creation poiuts to the wall.

s Coordinate parallel to the wall in inner region.

As Size of intervals along the wall.

S Solid region (union of the Sin's)

0S Boundary of S (union of the OSm's).

Sm Interior of the rnth solid.

OSm Boundary of Sm

t Unit vector tangent to the boundary OS

t Time.

u, v Velocity in z and y directions.

U Velocity vector:

U'-- °
Y

Urn(z, y) Velocity of the solid material in the m th body at (z, y).

Urn0 Reference velocity of the mth body (at z -- Y -- O)

U_ Velocity at large distances (in general aligned with z axis).

V0 Tolerance in the merging device.

z, y Coordinates.

z Complex representation of (z, y) : z -- (z Jr- iy)

Z Complex variable, used ia model equations.

1983013882-009



Greek symbols.

c_ incidence of the airfoil.

ao, al mean and amplitude of a during the dynamic stall.

intermittency factor for the turbulence model.

"_ normalized core vorticity distribution.

F Circulation: closed line integral of the velocity.

Fs Circulation of ith vortex.

5 thickness of the numerical viscous region.
_* centroid of the inner region vorticiw in the n direction.

filtered version of 6".

A Laplace's operator: A -- a=2 -k 8y2

At Time step of the numerical integration.

e Amount of artificial dissipation.

r/ Function of regularization of the velocity, associated with q,.

V Gradient operator:

(°1V= 0y

/z Coefficient of viscosity.

u Coefficient of kinematic viscosity: u "- Iz/p.

p Density of the fluid (p is constant and omitted in general)

w Vorticity.

flrn Angular velocity of m t_ solid.
Stream function.

Core radius.

r Viscous shear stress at the solid wall.

Subscripts and superscripts.

co value at large distances (freestream).

complex conjugate of z.
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I)INTRODUCTION.

1) Description of the prot,/_,-..

Separated flows, in which the fluid fails to smoothly follow the solid sur-

face, in contrast with attached flows, are generally more complex and more

challenging to measure or predict. It was shown by Prandtl that, for the

same conditions, the viscous equations and the inviscid equations can have

very different solutions even if viscosity is extremely weak, precisely because

the viscous flow might separate while the inviscid flow does not [I] . Flows

at high Reynolds numbers (low viscosity) are thus very sensitive and, by and

large, we only have a qualitative and sometimes simplistic knowledge of their

behavior.

In most designs, separation is undesirable since it results in inefficient

operation, with high drag or loss of pressure, or even it leads to a dangerous

situation like stall. However many devices, like wings or diffusers, often

operate on the verge of separai_ion. In other cases separation is present in the

design conditions, where it is undesirable but unavoidable, like on aircraft

tlfils or cars, or a normal feature of the flow, like on a three dimensional

wing.

A relevant example is the flow around the retreating blade of a helicopter

in translation [2], [3]. The blade experiences large and rapid changes of

incidence and velocity, sufficient to cause stall with strong unsteady effects.

The blade may even move with the trailing edge forward for part of the

cycle, which always causes separation. The dynamic stability of the system
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strongly depends on the aerodynamic loads, especially the pitching moment,

and these exhibit very significant non-linear and hysteretic effects. Figure

1 illustrates bow much the loads can differ during dynamic stall from static

loads at the same incidence (Fig. 1 is a personal communication by W. J.

McCroskey. The data appeared in [60]). Accurately predicting d:ynamic stall

woul(" thus be very useful, and should be possible in the near future (at least

fur two-dimensional flow), thanks to improvements in numerical methods and

computers.

Experimental results demonstrate the strong sensitivity of separated flows

to details of body geometry, for instance surface roughness [4], and of course

to the Reynolds number [1] . The best known example is the circular cylinder:

this flow still exhibits dramatic changes at Reynolds numbers of one million

(Fig. 2 and 3). Wind tunnel tests are less reliable when line viscous effects

are involved than when the compressibility effects dominate, because the

Reynolds number depends on model size, while the Mach number does no_,

:_d because separation is influenced by wind-tunnel turbulence. ?_ualysis

atone has not been able to produce many results, mainly because separated

flows can rarely be treated as slightly perturbed from a known exact soiutioa:

they are not very accessible to small disturbance theories. Dee streamline

theory made use of the observation that, in many cases, drag depends mostly

on the forebody shape (upstream of the separation point) and very little on

the part of the body which is inside the wake [5] . Pressure also appears to

be almost constant in that. ogioa. The idea developed was to treat the wake

as a "dead-watel _ region and to assume a constant pressure m that region; in

general the value of the base pressure is determined empirically. This theory

did produce some good results [6] , but a method that ignores the unsteady

character of the flow cannot be expected to be very accurate; it relies very

much on empiricism. Thus there is an existing need for the development of

',umerical methods capable of solving either the full Navier-Stokes equations
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or a hi_.ghlevel approximation to them without relying on much empirical

input. Once these methods have reached an acceptable level or accuracy,

they are expected to be much faster and less expen._ive than large scale wind

tunnel tests, and may be more accurate if they are carefully validated against

flight, tests.

_Whereas accurate and practical numerical methods are available to com-

pute attached flows [7], similar methods do nct exist for separated flows,

which are vortical. The slowly-varying, attached, irrotational flows are very

amenable to finite difference or finite element methods, and to an Eulerian

formulation. Some of these methods can also treat separated flows, but

obtaining accurate results becomes extremely costly at _ederate or high

Reynolds numbers [8] . One alternative is the Lagrangian "Vortex Method"

[9] . This method provides a description which is better adapted to high-

Reynolds number, vorticity-dominat_-<l, unsteady flows, and should result in

a greater accuracy for a given levei of computing resources.

The first objective of this work was to study the c,,pabilities of the "vortex

Method, review its inherent strengths and weaknesses, especially in the con-

text of two-dimen _ional separated flows, and remedy some of the weaknesses.

The other objective was to develop a reliable and accurate computer program,

based on the Vortex Method, for the simulation of a general class of separated

flows. This program has been validated by systematic comparison with known

results, and is beginning to be used as :_n active research tool to invcstigatsome candidate designs, in parallel with wind tunnel tests.

The flows to be considered are viscous flows past two-dimensional solid

bodies in a uniform stream. Only incompressible flows are considered. [he

incompressibility limitation is a,qsoci-Ltedwith the Vortex Method. The two-

dim,'nsional restriction is not, but si_al: .rag two dimensional tlows is a first

step an_ reflects the "state of the art". (The extension to t.hrce dimensions

3
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would not be straightforward, but it is certainly possible [9].) We consider

here one or more bodies a_d they may be in non-uniform motion. Even if the

motion is uniform, the flow is likely to be un._teady with a possible periodic

character. Frequently _eparation of the boundary layer will occur as a result of .

the body being bluff or at high angles of attack. Large vortical structures will

appear and form a wake having a turbulent character, tad these structures

will strongly influence the lout's on the body. Their subsequent decay in the

wake far downs_ieam is of less interest because of their small influence on the

loads. Again, t_pical examples are the flow past a circular cylinder, and the

static or dynamic stall of au airfoil.

2) Equations.

The b, havior of isotropic viscous fluids is described by the Navier-Stokes

systcm of partial differential equations. The independent variables are the

cartesian coordinates z and y and the time t. In the conventional formulation

the dependent variables are the velocity vector U =- (u, v) and the pressure i

p. The density p is constant since the fluid is incompressible; the symbol p

will actually be taken to represent the ratic p/p, and p will be omitted in

the writing. Similarly, the c_efflcient of viscosity # is divided by p to yield

the kinematic viscosity u. The dependent variables are defined m the fluid

region, that is the region of the plane exterior to the solid. Since the fluid is

incompressible the problem involves only U and p, and the following system

of equations prevails:

(continuity} V.U = 0 (l)

9U

(momentum) -_- _ U.VU --- --Vp -_- uAU (2)

where V is the gradient operator and A is Laplace's operator.

4
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The boundary conditions are as follows. At large distances from the body

U tends to the "freestream velocity" Uoo. At the boundary with a solid the

velocity U of the fluid equals the velocity of the solid material. No boundary

conditions are needed for the pressure. Initial conditions for U at time 0 are

also considered given.

Instead of the conventional _(u, v, p)" formulation, the vorticity formulation

is sometimes useful. The role of vorticity in the dynamics of the problem

considered here is crucial, and a more efficient method is likely to result if

the vorticity is treated directly. It is defined by:

Ov Ou
-- (3)

az 8y

In two dimensions w is a scalar quantity and is interpreted as the local angular

velocity of the fluid (multiplied by 2).

We will show that, owing to the boundary conditions imposed on U, there

is a one-to-one correspondence between an incompressible velocity field U and

a vorticity field _. This allows one to develop a solution by focusing on the

vorticity.

The vorticity obeys a well-known conservation law. Taking the curl of

Equation 2 and using Equation 1 we obtain:

Dw Ow

D"-7-- + U.vw-- (4)

Equation 4 describes how vorticity is convected by the velocity field and

diffused by viscosity. In tw_ dimensions there is no term corresponding to

"vortex stretching". Thus Equation 4 is of the same type as the equation

governing dye concentration. If dye is released by the solid it stays in

streaks that trail the solid and are confined to the wake. So will vordcity.

The difference between dye and vorticity is that dye concentration does not

interact with the velocity (it is a "passive" scalar) while vorticity and velocity

are related by Eq. 3.
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The incompressibility condition is now implicit and the pressure term drops

from the equations. And as a result, the number of unknowns is reduced :_

from three to one. The main difficulty is in deriving appropriate boundary

conditions (or conditions of another type) to form a complete system with

Eq. 4. Many approaches exist in the literature and the one taken for this

study will be described in detail later.

We can now turn our attention to the principal numerical methods that

have been proposed to solve either Eqs. (1,2) or Eqs. (1,3,4).

3) Related investigations.

The finite difference method is the prevailing method in Computational

Fluid Dynamics, as opposed to finite element methods, spectral methods,

vortex methods, etc, and will be reviewed first. The finite element methods

will not be described. They are quite similar to the finite difference methods

and are receiving more and more attention because they are I):mally more

accurate. They a,'e probably less mature and certainly less widespread, at

least in the English literature on fluid mechanics. Spectral methods can be

extremely accurate, but are still much less versatile t.han the other methods;

they have been used only with very simple geometries (periodic flows, or

channels) and not for flows around solids. For that reason, they too will not

be described. Finally, the Vortex Method is a promisin ; although not very

mature alternative to finite differences for the simulation of incompressible

vortical flows. The method will be introduced and its literature reviewed

after the finite difference methods have been considered. Then the relative

advantages of the two methods will be assessed.

a) Finite difference methods.

The finite difference method is very well known [10] . Out of the large

6
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number of finite difference publications, we shall describe only a few out-

standing studies, wl_'.h seem to be capable of treating two-dimensional flows,

with large separation, at Reynolds numbers of at least 103. As a rule, the

difficulty increases with the Reynolds number.

All of these studies used the Euleriau frame of reference and solved either

Eqs. (1,2) or Eqs. (1,3,4) by finite difference approximations on a grid

that does not evolve in time. With either formulation there is a variety of

finite difference schemes available, time advance schemes, boundary condition

procedures, and turbulence models if applicable.

In 1961 Thoman and Szewczyk treated the flow over a circular cylinder

for Reynolds numbers ranging from ! to 3. x 105 [11]. They used two

overlapping grids: one near the surface and an outer grid, extending to only

5 diameters. Freestream condit,ions were imposed over most of the outer

boundary. It is difficult to estimate a priori how much this affects the solution,

compared to a situation in which the disturbances are allowed to extend much

farther than 5 diameters. Thoman and Szewczyk used an upwind differeL'._

scheme to stabilize the computation. They recognize the important fact

_hat this scheme is dissipative, in the sense that its stability comes from

a numerical dissipation of the energy, not the physical dissipation. (The

elementary form of upwind differencing introduces enough diffusion to bring

the effective cell Reynolds number down to 2.) Thoman and Szewczyk carried

their computations up to the onset of the drag crisis and the average drag

they found was very accurate. They did not report results at higher Reynolds

numbers. The pressure distribution was accurate up to a Reynolds number

of 400 and quite inaccurate at 3. X 105, although fortuitously the drag did

not reflect it. The Strouhal number was too low by about 30%. The results

were quite good, but the accuracy of the upwind scheme was a subject of

controversy.

Ten years later Jordan and Fromm treated the circular cylinder for
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Reynolds numbers ranging from 100 to 1000 [12] . They used a log-polar

grid of large extent (187 diameters) and an outer edge condition devised to

allow the solution to oscillate freely. The time history of ""+.,l_., drag, _:nd

torque clearly showed tkat a limit cycle was reached. The drag and shedding

frequency were accurate but again the pressure distribution was not as satis-

factory. The authors estimated that their computations should be considered

as accurate up to Re -- 400.

In 1977 Mehta computed the dynamic stall of an airfoil [8]. He used the

vorticity formulation, Eqs. (1,3,4), a conformal mapping from the airfoil

to a circle, and finite difference approximations. The numerical boundary

conditions imposed at the outer edge were chosen to constraint the solution as

little as possible. A very elaborate implicit program was used, to obtain high

order accuracy and reasonable running times. Implicit time marching schemes

are more stable, numerically, than explicit ones. The flow was incompressible

and the simulation "direct" (no turbulence model) with Reynolds numbers

up to 104 considered. Good agreement with flow visualizations was obtained.

All the qualitative features of the flow were reproduced, but quantitative

comparisons were not reported.

Wu treated the flow around a circular cylinder and around a stalled air-

foil by an original method [13] . Wu presented a very good description and

justification of his vorticity formulation in [14] . For the numerical method,

he computed the vorticity on a grid, but only the cells that contained vor-

ticity were active. This helped reduce the number of points, like in the Vortex

Method, except that here an active cell could never be passive again: the

computational domain could only grow with time. Also, while the vortical

domain is formally infinite (because of viscosity), Wu kept it finite by a_tivat-

ing a cell only if it contained more than an arbitrary "low" level of vorticity.

The irregular domain is expected to make the vectorization of the program

difficult. The velocity at the grid points was computed by Biot-Savart in-
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tegration and the vorticity equation was solved in Eulerian coordinates by an

explicit method. In a recent paper Wu and Gulcat treat separately the wake,

the irrotational region and the attached boundary layer [15] . By adopting

the simplest possible level of description for each region, they save significant

computer time. Wu obtained very accurate results for the cylinder at low

Reynolds numbers. At a Reynolds number of 4. x 104 Wu and Gulcat ob-

tain what appears to be a very good pressure distribution and a good drag

coefficient. However they compare the experimental pressure, averaged over

a long time, with the computed instantaneous pressure at time 4.8 (based

on velocity and radius). After such a short time the flow surely has not

reached its limit cycle. Thus the agreement might be fortuitous. In general,

Wu produced some very good ideas 1;ut did not always support them with

sufficient numerical evidence.

In 1981 Tassa and Sankar treated dynamic stall in compressible turbulent

flow [16]. They used an implicit finite difference program and an algebraic

turbulence model. The overall quality of their results was comparable to

the quality of the results to be reported in the present work. The agree-

ment between different simulations or different experiments, for this difficult

problem, is only qualitative. Shocks were not mentioned although the Mach

number was 0.6 and high incidence angles were reached. It also seems that

the downstream boundary condition used would not allow circulation to leave

the computational domain; this is a problem with any method that solves the

equations on a finite domain.

The study by Shang, in 1982, treated compressible flow around a circular

cylinder [17] . Shang plans to extend it to three dimensions. Accordingly,

he used the primitive variables (density, velocity, pressure, energy) and the

compressible equivalent of the system of equations (1,2). The computational

domain extended to 30 diameters; "non reflecting" boundary conditions were

applied at the outer edge to minimize the constraint introduced by the finite

9
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domain. The explicit McCormack scheme was used. The program was fully

vectorized on the CRAY computer. The Mach number was 0.6 and the

Reynolds number 1.67 x 105, which is quite high, but no turbulence model

was implemented. This suggests that the computation was stabilized by

the numerical dissipation of the McCormack scheme, which might be much

stronger than the molecular dissipation, depending on the grid. The drag and

shedding frequency agreed very well with experiments. The average pressures

were not reported. The lift exhibited a markedly non-harmonic behavior; this

is not mentioned in textbooks, but is consistently observed in experiments

and in computations, both finite difference and vortex.

In 1982 Davis and Moore treated the incompressible flow past rectangles at

Reynolds numbers between 100 and 2800 [18]. In that range, the molecular

viscosity still has a significant effect and the flow characteristics depend on

the Reynolds number. The finite difference scheme was chosen to provide a

smooth solution with a minimum of numerical dissipation. The freestream

conditions were imposed at the outer boundary, except on the downstream

face where the numerical boundary condition was chosen to allow vortices to

cross the boundary. The grid was adapted to the rectangular shape and it

might be difficult to extend the program to other shapes. Satisfying agree-

ment with experiments was obtained, especially at low Reynolds numbers.

They estimated that the upper limit for good accuracy was about I000.

Computations at a higher Reynolds number will require a very fine grid, or

a turbulence model, or both. A remarkable feature was that, while the flow

at Re -_ 250 was very regular, with the lift signal almost a pure sinusoidal

function of time, at Re --" I000 the shedding was much more irregular.

b) Vortex methods.

Before a discussion of the literature is presented, the basic idea of the

Vortex Method will be introduced and its most salient features discussed.

10
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The Vortex Method was designed in an attempt to provide a more natural

and efficient description of the eddies and of the vorticity they carry. The

method represents the vorticity field as the sum of a large number N_ of

mobile functions with small supports:

N,

w(r)=_ Fi q(lr--rll) (5)
i_l

where ri -- (xij 9i) is the center and V, is the circulation of the i eh vortex,

and ")'is the function of regularization or "core shape", ff is smooth, has a

small support, and an integral of 1. "_ypically, ff is a Gaussian. This provides

a very convenient description of the vorticity. The main advantage, when

external flows are treated, is that in the large irrotational region no vortices

will be needed. This saves large amounts of memory and allows vortices to

be concentrated in the wake, where resolution is needed.

Dynamically, these blobs follow the fluid, like particles. This is a

Lagrangian description. They retain their circulation in time, so that total

vorticity is conserved; this corresponds to the inviscid fluid equations

drs
-- =0 (6)
dt

dri

-_- -- U(ri, t) (7) ,

Equations (5,6,7) give a closed problem involving only the ri's and F,'s,

provided that U can be calculated from w. U needs to be known only at

the vortex locations and not in the irrotational region; with incompressible

fluid, this can be achieved by application of the Biot-Savart law. On the other

hand, the main disadvantage with using the Biot-Savart law is that it makes

each vortex interact with all the other vortices at every time step, which is

very costly.

11
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The advantage of a Lagrangian description for the solution of the inviscid

version of Eq. 4 is obvious: in Lagrangian coordinates w is constant in time.

The transport of any quantity is always treated better by having the quantity

travel across the domain rather than by transferring the quantity from a fixed

grid point to the neighboring points. As a result, the Vortex Method has no

obvious numerical dispersion and possibly less numerical diffusion than an ._

Eulerian method (this last point will be discussed in more detail). The Vortex

Method also turns out to be much more stable than most Eulerian methods.

Large time steps can be taken as long as the accuracy is sufficient.

The efficiency of the Vortex Method, compared to a "u, v, p" formulation,

arises in particular from the exploitation of two assumptions: the fluid is

incompressible and inviscid.

The incompressibility restriction is clearly necessary to the Vortex Method

in its present form (the Biot-Savart law depends on it). With air, it means

that only flows at low Mach numbers can be treated, such as the flow around

a landing airplane, or around the retreating blade of a helicopter. Even then,

high subsonic Mach numbers can appear locally for freestream Math numbers

as low as 0.2. So far these effects have had to be neglected. For flows of

liquids, incompressibility is obviously a good assumption.

The inviscid restriction is more controversial. The convergence of the

algorithm to the solution of the inviscid equation has been mathematically

demonstrated (in the absence of boundaries) [19] . Explicitely adding the

viscous term uAw is not convenient in a Lagrangian reference frame because

it involves derivatives with respect to the Eulerian coordinates. On the other

hand the method often reproduces viscous behavior, especially around solids,

even though it is based on the inviscid equation. For years this feature has

been used to simulate viscous flows with an "inviscid" method. This will

be made clearer by use of some theoretical arguments and some numerical

experiments described in this report.

_a
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The method has been studied and refined for decades, without becoming

operational and widely used. This is partly true because of the viscosity issue

and partly because the problems it is applied to are very difficult for any

method. We shall limit our review to papers treating flows past solids. Good

research has been done on flows without bounds:ies, but the difficulties _,hese

simulations raise are quite different: in these cases viscosity actually plays a

negligible role.

Bryson, in 1959, used a very simple model to represent the flow around

a circular cylinder, with one pair of symmetrically placed vortices which

moved away from the cylinder and gathered circulation with time [20] (Fig.

4a) (Bryson did not use Eqs. 6 and 7). Thus, flow separation was assumed

but viscosity was not accounted for otherwise. This rather empirical model

served well for a short time after a rapid start. It was intended for use in

a slender body analogy: the steady three dimensional flow past a slender

cone at angle of attack is analogous, cross-section by cross-section, to the

two dimensional time-developing flow past an expanding circle in translation.

The two flows have many common features, including the formation of two

symmetric vortices, followed by a loss of stability and an asymmetric state

with a side force. This side force can affect the control of airplanes with long

noses,

At the ne_ level of complexity, a large number of vortices are used and

follow the fluid (Eqs. 6 and 7 are applied) and symmetry is not imposed

[211, [22], [23]. New vortices are added at the separation points, which

are either obvious (a corner on the body) or known empirically (the leading

edge of :,a airfoil or an assumed separation point on its top surface, the 84°

point ca ._ circular cylinder in the subcritical range, etc ). The strength and

exact position of _he new vortices are chosen in accordance with Prandtl's

rule and a so-called _Kutta condition ". l'randtl's rule states that the flux of

13
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separating vorticity is u2/2, where u is the velocity at the outer edge of the t

boundary layer. The "Kutta condition" is applied even though the wall is

smooth; it states that the velocity at the wall, under the separating boundary

layer, is zerc. It would be described better as a selective application of the

no-slip condition. Thus the boundary conditions are neither truly inviscid

nor truly viscous. The distinction that is made between "under" and "over"

the boundary layer is not very clear, especially when the upstream p,_rt of

this boundary layer is not represented. This is a major source of uncertainty;

the exact points where the velocity is sampled are quite arbitrary and have

s strong influence on the results [24]. A mapping from the body shape to

a circle is used, in conjunction with image vortices, so that the tangency

condition is satisfied. This is the traditional way to treat inviscid flows. It is

not as weil adapted to viscous flows, and the method to be described in this

report actually does not use images. In addition to degrading the accuracy

(the interaction of a vortex with its image becomes very inaccurate when they

are close to the w _,l), the use of mappings and images _ extremely unwieldy:

accurate conformal mappings for arbitrary shapes arc not readily available.

The viscous "no-slip" condition is satisfied only whe_'e the Kutta condition is

applied.

Some authors allow the vortices to emanate from a fixed point on an

ordered shear layer (Fig. 4b). In general this requires a redistribution of the

vortices at each step to keep the curve smooth [25]. From time to time, the

shear layer is cut on an empirical basis to allow the formation of the Karman

street [22] . Other authors do not link the vortices and let them become a

"jungle" (Fig. 4c).

In most of the papers of this period, the flow is called "inviscid'' and the

questio" of how any vorticity can leave the wall is not addressed. The value

of oefllcient of viscosity is irrelevant. The method tends to overpredict

the drag and an empirical suppression of vorticity is often used to decrease
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thedragtothedesiredvalue[22],[26],[27]. Thissuppressionofvorticity,

whichviolatesthetwo-dimensionalvorticityconservationlaw,issometimes

presentedasa way toaccountforthree-dimensionaleffects.

Deffenbaughand Marshallattemptedto coupletheVortexMethod to a

boundarylayer,usingan integralmethodfortheboundarylayer[28].They

encountereddifllcultiesinlocatingtheseparationpoint,possiblybecauseof

theinaccuraciesassociatedwitb .hereleaseofa singlevortexatseparation,

and becauseofthequestionablev-_,,dityofBernouili'sequationina vortical

flow.They useda mergingdeviceforadjacentvortices.They treatedthe

circularcylinderat subcriticalReynoldsnumbersand concludedthatthe

couplingalgorithmstillhad tobe refined.They alsofoundthattheyhad

to destroysome of the vorticity,otherwisethe dragcame out too large.

Deffenbaughand Shivanandaproposeda methodtotreatcompressibleflow

atlowMach numbers[26]. Apparentlytheirfirstattemptwas notcarried

further.

A more ambitiousapproachwas takenby Chorin[29]. A random walk

displacementisadded to themotionof thevortices,This random walk

reproducestheeffectsofviscousdi_usionstatistically.Thisalgorithmtreats

thewholeflowas viscous,theReynoldsnumber iswelldefinedand finite.

The no-slipboundaryconditionisused,vorticesarepresentallalongthe

walland theseparationoftheboundarylayerisspontaneous(Fig.4d).No

empiricalinputisneededand the method can bow solveproblemson its

own,providedthattheresolutic.nisfineenoughforthestatisticalargument

to hold.Unfortunately,itseemsthatthiswouldrequirea huge numberof

vorticesandan extremelyaccurateintegrationofthetransportterm,sothat

thescatteringitcreatesdoesnotdominatetherandomwalk [30],[31];the

random walkideaisattractivebutnotsopractical.

Chorintreatedtheboundaryconditionatthewallintwostages,usingboth

sourcesandvortices.He appliedtheboundaryconditionsincollocationform,

15
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which is not optimal. The int_.gral form is more costly, since it requires the

evaluation of logarithms (or arctangents), but it is much more accurate and

less sensitive to the non-physical parameters, for example the core radius.

Chorin treatea the circular cylinder; his results for drag are accurate at Re

-- 100, but then seem to decrease monotonically above 100, which is not

correct physically. With use of the sources Chorin did not need to employ a

conformal mapping. However both he and his student, Cheer, later returned

to the image-and-mapping method (probably so that the normal velocity

would be identically zero at the wall, instead of oscillating near zero).

Chorin subsequently introduced the _Vortex Sheet Method" in order to

take into account the widely different scales in the s and n directions cf

the boundary layer and to reduce the scattering in the direction normal to

the wall [32]. The region exterior to the boundary layer is treated by the

isotropic" Vortex Blob Method with an exchange of vortex elements, sheets

becoming blobs and vice versa. The circular cylinder and a Joukovsk-y airfoil

were treated b) ?heer with this hybrid method [33] . She reports good values

for the drag of the cylinder (at subcritical Reynolds numbers), but the results

were not very detailed and the runs seemed to be very short. Chorin and

Cheer did not use a merging device and had to stop their simulations after

a fairly short time to keep computer cost under control. In this case, like in

Wu and Gulcat's case, such short simulations are questionable as they clearly

do not reach a true asymptotic state. Although his work left room for many

improvements it is clear that Chorin showed the way towards a method which

is powerful and mathematical in spirit, rather than empirical.

More recently, Lewis independently introduced an image-free form of the

Vortex Method which is similar to the one that will be presented here [34] .

It is not clear whether Lewis correctly applied Eq. 10.5 (see below) or an

equivalent condition. Lewis made use of the advantage of not needing a

mapping to treat various shapes. Using a modest computer, Lewis introduced
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only a small number of vortices, at only two separation points. The ooundary

layer wv: not treated separately, lie applied Prandtl's rule, although he

recognized that it is very delicate to apply. Porthouse acd Lewis subsequently

published results using a random walk model to account for viscosity [35];

these results seem to confirm that very many vortices and very short stew

would be needed for the random walk effect to be meaningful at practical

values of the Reynolds number.

c) Finite difference versus Vortex methods.

It appears that presently neither method _one can treat high Eeynolds

number flows with the level of accuracy that is needed for engineering. For

example, reliable quantitative predictions have not been obtained for dynamic

stall and computing these flows is a matter of research, not of production.

In some cases, only qualitative agreement is obtained, for instance agreement

with visualizations. In other cases, the quantitative agreement is good but

limited to a few numbers l'le drag or shedding frequency. One reason

is that quantitative and veriLed experimental data are often not available

for separated flows; these seem to be as hard to measure as they are to

compute. In addition, the numerical method is still twc-dimensional and

the experiments, even _,hen the geometry is two-dimensional, often ha_e

significant three dimensional effects. The comparison with exact solutions

would be a more rigorous test of the accuracy of the numerical results;

unfortunately, almost no exact solutions are known for separated flows.

ff the Reynolds number is quite low, less than 103, the finite difference

methods work well, because the solution is very smooth_ At the Reynolds

numbers of aeronautical interest, which are of 10e or more, the vortic,_l

structures in the wake become so small that a very fine grid is needed,

which requires a very large memory and very sh_rt time steps, ff *.he grid

is too coarse _umeri-al diffusion and dispersion can easily dominate physical
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diffusion. If this happens the simulation is not truly viscous; such a situation

is often considered acceptable far from the walls, but not close to the wall.

Reaching higher Reynolds numbers will mostly be a matter of computer

power, both in terms of memory and speed, and of turbulence modeling.

The Vortex methods suffer from their imperfect viscous modeling and a

certain lack of credibility, independent of the Reynolds number. Nearly all

the studies treated the same shapes: cylinders, ellipses, Joukovsky airfoils.

Also, too much empirical input was needed. On the other hand, the vortex

proga'ams needed relatively little memory and some of them ran very fast.

Improving them is more a matter of improving the algorithm.

A basic advantage of the finite difference methods is that they rest on a

well established theory of stability and convergence (at least for bounded

or periodic geometries; infinite domains are not treated in a fully satisfying

manner). The same cannot be said of the Vortex methods when viscosity and

boundaries are involved.

Another advantage of finite difference laethods over Vortex methods is that

they can be extended to compressible flows without major changes. Treating

compressible flows, with a Mach number above about 0.1, is even easier in

some cases because it makes the celerity of the signals smaller. The extension

to three dimensions is also simpler, conceptually, than for the Vortex Method.

The most significant difference is that the finite difference methods include

the viscous terms, while the Vortex Method is essentially ; .viscid. However,

the finite difference grid often is too coarse to resolve th_se viscous terms

except close to the wall [35] . This effectively removes the laminar viscosity,

and the energy is controlled by some form of numerical dissipation instead.

The true advantages of the finite difference method, even over a Vortex

Method coupled to a boundary layer, are that boundary layer assumptions are

not involved (therefore no singularities are expected) and that the transition
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from a viscous treatment (Ruegrid, near the wall) to an effectively inviscid

treatment (coarse grid, away from the wall) is smooth.

Another issue is the modeling of the turbulent stresses in the wake.

Whereas modeling these Jtresses is reasonably easy in the boundary layer,

modeling them in the wake is extremely difficult. Thus, some finite difference

methods include turbulent stresses, but these are evaluated with so much un-

certainty that the benefit is nDt obvious in terms of accuracy. The turbulent

stresses conveniently improve the stability of the finite difference computa-

tions; this is not an issue with the Vortex Method which is very stable.

The Vortex Method has only treated bodies in a uniform freestream flow.

It is planned to extend it to bodies in a uniform shear flow, which will be

qqite simple. On the other hand it would be much more difficult to treat non-

uniform incoming shear flow. In that domain the finite difference methods

are still more versatile.

The main advantages of the Vortex Method are its accuracy in treating the

convection terms, and th, absence of a grid. Generating grids around com-

plex shapes is not easy [36_ , and unless the grid is very smooth the accuracy

suffers. Furthermore, for many finite difference programs the computational

efficiency depends on mapping the physical domain to a rectangular com-

putational domain. Thus, treating several bodies either involves the use of a

highly distorted grid, or a rather delicate zonal approach [37] ,[38] . Taese

difficulties are totally absent in the Vortex Method, at least in its most recent

versions, which makes it especially attractive for multiple bodies.

Another advantage is that the Vortex Method effectively includes the

infinite domain whereas the finite difference methods include only a finite

domain and require artificial boundary conditions at a finite distance f:om the

body. Choosing these conditions is delicate: there is a danger of constraining

the solution in a hidden way. The Vortex methods need less empiricism in

this regard. It is also possible to add wind-tunnel wall effects to the Vortex
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Method (this is quite simple if the flow does not separate from the tunnel

walls).

Tl_e Vortex Method previously lacked versatility: with the use of conformal

mappings it was awkward to treat shapes uther than ellipses or Joukovsky

airfoils. The situation has now reversed itself since, as we shall see, recent

versions of the Vortex Method easily treat arbitrary shapes while avoiding

grid generation [34], [39] ,[40] .

It is not easy to assess the relative computer costs for the two methods.

In the Vortex Method, N_ interac¢ions have to l_j computed at each time

step, where N_ is the number of vortices. In contrast, ma_v finite difference

methods require only of the order of Ng operations, where N_ is the number

of grid points. This is true for most explicit methods and for the implicit

methods that have a suitable ordering of the grid. Since both methods,

in their widely used forms, are second order accurate, the finite difference

method seems to have the advantage. However in practical situations Nv and

Ng are limited and the relevant, question is: _ itich values of Nv and Ng would

achieve the desired level of accuracy? Then the memory requirements and

the running times could be compared.

Only experience can answer the question, but two general rules apply.

First, the Vortex Method will be more competitive if the vortical region is

small, which makes Nv much smaller than N_. Typically, the Vortex Method

works well with an external flow, but not as well with an internal flow which

might be filled with _orticity, and thus make Nv and N 9 about equal. Second,

the Vortex Method nearly always requires less memory, while the running

times can differ greatly in one sense or the other. Many researchers reporte(1

extremely shol't running times for Vortex computation.., but their resolution

was very coarse and their accuracy questionable. Other Vortex computations

required hundreds of hours of computer time.

To allow an evaluation of the method used in this study, the run time used
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by the computations will be reported in the "Results" section.

4) Summary of the evolution of the present method.

The starting point of this study was an algorithm written by R. Rogallo

(NASA Ames C. F. D. Branch, unpublished work). It was similar to Chorin's

1973 method [29], but it included a merging device and made use of the

integral form of the boundary condition, which is more efficient. It also had

images. During the present study, which was also done at NASA Ames,

the algorithm underwent three mutations, resulting in the versions KPD1,

KPD2 and KPD3_

KPD1 makes use of the new boundary condition (without sources, images

or conformal mapping), but does not employ a boundary layer. It is versatile,

robust, and accurate for flows that are not sensitive to viscous effects, for

example the flow past a square body at Reynolds numbers between 104 and

10 7. KPD1 has been successfully use i for the "Vortex Flowmeter" study

with Dr. Couet [40]. This configuration involves several interacting bluff

bodies.

KPD2 is directly based on KPD1; it treats the boundary layer, from the

attachment point to the first separation point, with an integral method and

treats the rest of the domain with the Vortex Method. This removes the

problems with premature separation experienced with KPD1. The integral

method is designed for boundary layers imbedded in an irrotational flow;

moreover, it exhibits a singularity at the separation point. This is why

it cannot be applied beyond the separation point. The boundary layer is

also considered as quasi-steady. KPD2 is suited to problems with a single

streamlined body, and can _pture the major viscous and turbulent effects to

which K [D1 is insensitive. It has been used mostly for airfoil flows, including

dynamic stall .[39] and the tilt-rotor configuration (work to be published in
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cooperation with W. J. McCroskey).

KPD3 is quite different from KPD1 or KPD2; it is the latest version of

the program and possesses the most potential. It treats the viscous region

along the wall with a truly unsteady implicit finite difference bour.=lary layer

method, in a manner that is valid even inside a vortical outer flow (like the

wake of the body itself or the wake of another body). The boundary layer

solver is not classical. It allows for separation and reattachment of vorticity;

intuitive arguments are invoked to couple it as strongly as possible wish the

outer solution. KPD3 has been validated on the circular cylinder at moderate

and high Reynolds numbers, using the Baldwin-Lomax algebraic turbulence

model. It can treat several bodies without special precautions, and in general

is more accurate and provides more information than KPD1 or KPD2. It is

not quite as robust in its present version; in particular it can have di_culties

near sharp edges.
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II.ANALYTICAL CONSIDERATIONS.

I)Vorticityformulation.

The incompressible Navier-Stokes equations are formulated in terms of the

vorticity, and the res.dting system of equations will be solved numerically. It

will be shu#n that the initial-value problem used for the vorticity is mathe-

matically equivalent to 1he _, ual initial-value problem used for (u, v, p). Since

the "(u, v,,_ _ system is well posed, the "0J" system will also be well posed.

The vorticity formulation is considered to be more efficient numerically.

The first subsection wi!l introduce the necessary definitions _nd present the

formal proof of equivalence of the two systems. The procedure follows closely

the work of J. Wu, described in [14]. The second subsection will contain

some comments about the aspects of the procedure _hat do not follow the

traditional train of thought and sometimes become misunderstood.

a) Definitions and proof of equivalence.

The domain is the (z, y) plane. It contains M solid regions called Sin; each

Sm is an open and bounded domain with a boundary 0Sm. Let S be the

union of the Sin's and F be the fluid domain. Thus the plane is partitioned

into the two open domains S and F and the boundary 09. In general, the

solids move and therefore S and F depend on the time, t.

The momentum equation, Eq. 2, contains a parabolic diffusion term, uAU,

and therefore the function U is expected to be smooth. U is considered as
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being at least of class Ca in F, that is three times continuously differentiable,

at all times t > 0. The pressure is at least of class C1.

The velocity of a point (z, y) belonging to the solid Sm is given by the

function Urn:

where U,n0 and fire are known functions of time. In this study the motion

of the solid bodies will always be prescribed, but the theory would not be

different if it were known from the solution of a dynamic equation (for

example a solid with elastic restraint).

The complete system of equations governing u, v and p is the following:

(incompressibility, Eq. 1) V.U = 0 in F (9.1)

DU
(momentum, Eq. 9) -- -- --Vp + vAU in F (9.2)

Dt

(at wall) O(x,y)-- Um(X,y) on (gSm (9.3)

(far field) U 'Joo for Ilrll-* oo (9.4)

(initially irrotatlonal) At t = 0 V X U -- 0 in F (9.5)

(no initial circulation) At t -- 0 /.., U.ds -----0 (9.6)
II

where Cm is a contour that encloses Sm and dgSm. A more accurate definition

of the contour within F is not necessary, because the velocity field is irrota-

tional in F at time zero (Eq. 9.5), so that the line integral does not depend

on the contour.

Let us turn our attention to the vorticity formulation. The vort_city _ is

defined by Eq. 3. Since U i., considered as being of class Ca, _ is considered

to be of class C2 in F for t _ 0. In the exact solution the vorticity is known

to decay expon'_atially at large distances from the body, provided that it

did initially, at time zero [14]. All the flows considered here will be started
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from rest, with zero vorticity in F; therefore exponential decay of w can be

assumed. As a consequence, all generalized integrals involving the vorticity

over the infinite region are absolutely convergent and have the same behavior

as if the vorticity had a finite support.

For the vorticity formulation it is convenient to formally extend the velocity

field to cover the whole plane; inside F it is the fluid velocity and inside S,,

it is the velocity Um of the solid material. Naturally, the same dynamical

equations do not apply in F and in S (in particular the pressure will not

be extended to S), but this does not affect the kinematics of the extended

velocity field. The reason for extending the various fields into S is that

this will allow the use of Green's functions without any boundary terms or

images" for the solution of the Cauchy-Riemann equations.

Similarly, an extended vorticity field is defined by applying the definition,

Eq. 3, both in F and in S. Inside S the velocity (given by Eq. 8) and the

vorticity are both of Class Coo.

We can sow introduce the system of equations that will govern the vorticity:

(vorticity conservation law, Eq. 4) D....ww_. vA_ in F (10.1)
Dt

(vorticity inside solid) w -- 2flm in S,, (10.2)

(Biot-Savart)

+co +oo

1 / / (yP--y) w(x_,y')dx'dy '
(10.3)

uOO u_3

(at wall) U.n -- Um.n on aSm (n : normal vector to 8Sm) (10.4}

--2A (Am area of Sin)

Ow
dfl,,

(additional condition) v-_nds -" m dt
D

0S,.

(lo.s)

(initially irrotational) at t -- 0 w -- 0 in F (10.6)
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(no initial circulation) at t _- 0 / f w(z, y)dzdy -- 0 (10.7)
Dm

where the domain Dra encloses Sm and OSm like the contour Cm in Eq. (9.6).

The main result of this chapter is that the systems 9 and 10 are equivalent.

First let's prove that the system 9 implies the system 10:

• Equation 10.1 has already been derived as the curl of Eq. 9.2.

• Equation 10.2 is obtained by taking the curl of Eq. 8.

• Equation 10.3 is the Green's function integral giving the solution U of

the Cauchy Riemann system formed by Eq. 9.1 and Eq. 3, subject to the

boundary conditions, Eq. 9.4.

• Equation 10.4 is a consequence of Eq. 9.3.

• To derive Eq. 10.5 we use Eq. 9.2 and the idenU_y:

_U--- v(v.u)- v x w

in addition V.U _- 0 from Eq. 9.1. We then write Eq. 9.2 on OSm and take

its dot product with the tangent unit vectol ..

DU t _ Op Oco
D-T" 08 t-_'8"_n (12)

Since the particles, locally, adhere to the wall their acceleration is the same

as the acceleration of the wall: DU/Dt -- DUm/Dt on OSm. Thus we have:

DUm t -- Op Ow
Dt " -- 0_ -_-v-_n (13)

We then integrate Eq. 13 along the closed contour OSm. The acceleration

derived from Eq. 8 is integrated analytically, and the pressure term cancels.

The final result is Eq. 10.5.

• Equation 10.6 is a consequence of Eq. 3 and Eq. 9.5.
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• Finally,Eo. 10.7isa consequenceofEq. 3,appliedinF and Sin,and

EQ. 9.6.

Let us now prove that the system 10, in return, implies the system 9:

• Equation 9.1 is automatically satisfied when the velocity field U is

, generated by the Biot-Savart law, Eq. 10.3.

• Equation 9.4 is also automatically satisfied due to Eq. 10.3 and the fact

that w decays exponentially away from the origin.

• To prove Eq. 9.3 it is convenient to introduce a stream function. The

velocity U given by Eq. 10.3 is divergence-free and a stream function ¢ can

be associated with it and given by:

__ 0¢O_ =v -- "----u (14)
Oz Oy

The solid body velocity field given by Eq. 8 is also divergence-free; a stream

functinn Cm can be associated with it and defined over S,.,, by the same

formula as Eq. 14. In both cases the strt, am function is defined except for an

arbitrary additive constant. Then Eq. 10.4 can be rewritten:

----- _ along OSm (15)
as os

Thus _ -- Cm is constant along OSm. (n addition, as a consequence of Eq. 3

and Eq. 14 the following Poisson's equation applies:

¢

(16)

Now the (scalar) curl of Um is 2(lm, and _ is also equal to 2flm in Sin, from

Eq. 10.2. Therefore _band Cm satisfy the same Poisson's equation, and:

A(¢--g,m)=0 inSm (17)
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The function _- _r, satisfies Laplace's equation in S,_, which is bounded.

It is also constant on OSm (Eq. 15), which represents a Dirichlet boundary

condition. This is a well posed problem and the unique solution for ¢-- ¢,, is

a constant over Sin. Therefore its derivatives are zero, which can te written

U(z, y)-- Um(z, y) in Sm (18) .

The velocity field is equal to the solid body velocity inside the solid.

Furthermore since w is considered to be of class C2 it is bounded (for t > 0)

and the velocity field U generated by Eq. 10.3 is continuous; so if it is equal

to Um inside Sm it is also equal to Um on OSm, (the solid body is assumed

to have a finite thickness) and Eq. 9.3 follows.

• To prove Eq. q.2 we have to produce a pressure field. Let us consider

the quantity:
DU

(19)
Dt

with U given by Eq. 10.3. If we take the curl of Eq. 19 we get (,,'ace U is

divergence-free):
Dw

- vA_ (20)
Dt

which is zero from Eq. 10.1. Therefore the quantity defined by Eq. 19 is the

gradient of a function p:

DU
- vAu---- -Vp (21)

Dt

We now write Eq. 21 on OSm, rewrite the viscous term as in Eq. 13, use the

same argument for DU/Dt and take the dot product with the tangent unit

vector to obtain:

f Op dfl,.n / Ocv_-ds=2A. _ +u _ds (22)
8S., 8Sin
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The right-hand side is zero from Eq. 10.5. This means that p is single-valued

around each solid S,n. Therefore p is the pressure (defined except for an

additive constant) and Eq. 9.2 is satisfied.

• Equation 9.5 is a consequence of Eq. 10.6 and Eq. 3.

• Finally, Eq. 9.6 is a consequence of Eq. 10.7 and Eq. 3, applied in F

and Sin.

This completes the proof.

b)Comments.

The firstcomment qualifiesoutassertionthat"thesystemisweU-posed_.

The farfieldcondition,Eq. 9.4,isimpreciseinthe sensethatitdoesnot

specifyhow fastthedifference(U- Uoo)tendstozeroas[Ir[ltendstooo.

How strongthisdecayshouldbe to providea weU-posedsystemwiththe

Navier-Stokesequationshasnotbeenrigorouslyestablished.The common

practiceone follows,when confrontedwiththisquestion,isto as ame a

behaviorin thefarfieldthatisasregularas possible.Ifwe assumethat

the velocity can be expanded in negative povers of Ilr[[ and that the llow

is effectively irrotaticnal in the far field (the vorticity decays exponentially)

then the terms of order I[r[[-s are a source term and a vortex term. The

source term _aust be zero for mass to be conserved. The vortex term gives

the circulation around a large contour. This circulation must be a constant,

from Kelvin's theorem (the viscous term uAU has been written --z,V × _,'and

therefore decays exponentially, if _ does). If a steady lifting flow is sought

the circulation will not be zero. In our case the _alue of the circulation

does not matter much since the flow is viscous and unsteady, and thus will

wash away any excess circulation. We shall assume zero circulation; *,herefore

the velocity disturbances decay like ][rl1-2. With this decay specified, the

Cauchy-Riemann system has a unique solution, given by Eq. ,1.0.3.Rigorously
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this should not be considered as a pure boundary condition: it would be over-

specified. It contains the boundary condition and an assumption abouL the

far-field behavior of the solution.

The initial conditions were derived in the same spirit. They simulate an

impulsive start of the flow. After such a start the vorticity will be confined

to @S and be infinite in magnitude, with a finite jump of velocity across aS.

This is simply a potential flow problem and it is well known that in such a

case the circulation around each solid is arbitrary. It was set to zero.

The second comment concerns the boundary condition at the wall. If

we examine the system 10 and especially Eq. 10.4, it seems that only the

continuity condition (zero velocity normal to OSm) is applied and that the

no-slip condition (zero velocity parallel to OSm) has been lost. However it was

shown that Eq. 9.3, which includes no-slip, was satisfied. This paradox is

clarified by noting, first, that the velocity fields produced by the formula 10.3

are not arbitrary (they are divergence-free and have the required vorticity

2fire in Sin), and second, that w hat we have shown is that the global normal

velocity condition (Eq. 10.4 applied all along 0Sin) implies the global no-slip

condition. Naturally, the local normal velocity condition does not imply the

no-slip condition.

Except for Chorin's first paper [29] and the recent paper by Lewis [34], all

papers employing vortices imposed the boundary condition, Eq. 9.3, in two

stages. First, they included image vortices in the Biot-Savart law, Eq. 10.3,

to secure the normal velocity condition, and then, they introduced vortices

to secure the no-slip condition. Here the complete boundary condition is

obtained in one step by introducing vortices to satisfy Eq. 10.4, which

Lecomes an integral equation for _ if U is replaced by Eq. 10.3. '[his

is much more efficient since Eq. 10.4 and 10.3 can be written directly in

the physical plane, whereas the image vortices could only be used after a

conformal transformation had converted the body into a circle. This made

3O
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the Vortex Method awkward and limited the simulations to the few cases for

which the mapping and its derivatives are. nown: ellipses, Joukovsky airfoils,

etc.

The third comment is about the conservavion of circulation. We mentioned

previously Kelvin's theorem concerning the circulation around a large con-

tour, F. Equation 10.5 has an interesting consequence which extends Kelvin's

theorem. This result is due to Wu [14]. F is equal to

4-00 q-o_

F= f f w(z,y)dzdy (23)
mOO _OO

(the integral inclt:des the vorticity that is insidt S). To evaluate dF/dt it is

convenient to use Lagrangian coordinates, because in Lagrangian coordinates

F and S do not depend on t, so that points do not switch from F to S as the

solids move. Let (c., b) be I,agrangian coordinates which coincide with (z, y)

at the time considered. The Jacobian of t_.: mapping (a, b) -_ (x, y) is 1 at

any time since the flow is incompressible. Therefore F b also equal to:

+oo +_

F= / f w(,_,b)dadb (24)
--OO --OO

we can integrate in either set of coordinates. Then dF/dt is:

+oo +¢0

-- -_(a,b) dadb (25)

This is Reynolds' tr_.nsport theorem.

We can now revert to the (z,y) coordinates to evaluate Eq. 25. In S,n

Dw/Dt is 2dglm/dt and integrates to 2Amdl2m]dt. In F, D_'/Dt is _,.X,,' and
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is easily integrated by parts, to yield:
f

dr 2Am -I-u ds (26)d-7=
mml

There i_ no contribution from the far-field, because of the exponential decay of

a:. In addition, for each rn the expression between brackets is zero, according

to Eq. 10.5. The integral along OSm that appears in Eqs. 10.5 add 26 can

be interpreted as the total production of fluid vorticity along OSm. Clearly

each solid, while changing its internal circulation at the rate 2A,ndllm/dt,

releases an opposite amount of vorticity into F. If there is only one solid this

is equi_Jent to Kelvin's theorem, which states that dr/dt is zero. If there

are several solid bodies Eq. 26 is a stronger result, since each solid separately

contributes zero to the circulation.

Another point of interest is the way the pressure is computed. Computing

the pressure is not necessary in order to solve the vorticity equation, but it

is an excellent way to monitor the simulation. The common w__ to interptet

boundary layer behavior is in terms of the pressure gradient 'along the wall.

Formally, the. pressure is given by Eq. 21; however this eqr.atioh would be

hard to use numerically with the Vortex Method. On the other hand Eq. 13

gives the wall pressure gradient as a function of _Occ/On, and we have se_,n

that g8w/On is the rate of creation of vorticity at the wall; this quantity

is _,ell defined in the Vortex MeShed and will allow the wall pressure to be

computed accurately, even in:_ide the wake. Using Beruoulli's equation in the

_ake would be incorrect since tne flow there is vortical.

A detail remains: Eq. 13 only yields the pressure gradient; thus the pressure

is known except for an additive constant, ff one wishes to determine this

constant and the body is in contact with the irrotatioual region, it is possible _

to apply Bernoulli's theorem from infinity upstream to a point on t,h_,attach¢'d

part of the boundary layer. In practice it, is convenient to use the front
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stagnation point.

Another useful boundary layer monitor is the wall shear sti ess. It is equal

to:

r "- uw on OSm (27)

2) Approximations [or the outer and inner regions.

L:atching procedure.

a) Moti_-ation.

This section describes the approximations that are made and how certain

considerations allow os to simplify the equations, by omitting terms that are

known to be. small or information tha_ is not important.

Most of this section applies to all three versions of the program; when they

differ, the description will apply only to XPD3. The theory implemented _u

KPD1 and KPD2 and their numerical aspects will be described in Appendix

A.

The most important, and the most delicate, approximation is naturally the

neglect of viscosity. The coefficient of viscosity is small, but it multiplies the

highest derivative, and the perturbation problem is said to be singular [42] .

The inviscid problem and the viscous problem have very different characters;

in particular they do not require the same number of boundary conditions.

Regions exist in the flow where the velocity gradients are so large that the

viscc,us term is as large as *,heinertia term. This viscous term can change the

locai _alue of the vorticity by an amount of order 1, meaning that it does not

tend to zero while the coefficient of viscosity docJ. Therefore the flow with

small viscosity cannot be treated as slightly different from the inviscid flow

in the usual sense, and a straightforward attempt to expand the solution as

a power series in u would fail.
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The justification for omitting the viscosity is the following. The effect of

viscosity will be to diffuse tke vorticity over very short distances, without

creating or destroying any. (The viscous term in Eq. 4 is the divergence

of vVw and vV_ is interpreted as a flux of vorticity. It is not a source

term.) Let L be the length scale associated with the body, Uoo the freestream

velocity and v the kinematic viscosity. The non-dimensional number LUoa/L/

is the Reynolds number, and is large in all cases under consideration (over

104). The length scale associated with the viscous diffusion is v_ where t

is the "age" of the vorticity. Let us consider some vorticity which is "born"

at the solid boundary and in a time L/Uoo is transported into the wake, to a

distance L from the solid. The viscous scale becomes V/_'L/Uoo and the ratio

of this scale to L is VZv/LUoo, or Re -1/2, and thus is small. Integrals like

the one in equation 10.3 and in general the flow close to the solid boundary

will not be sensitive to the displacement of the vorticity over such a small

distance. Since predicting the stresses on the solid is the ultimate objective

of the stud)', omitting detailed informatien about the vo_icity diffusion in

the wake is minor as long as the transport is correct.

However the vorticity is "produced" at the solid boundary [43] and its

subsequent transport is very sensitive to its initial life, near the wall, during

which the scales are small and the viscous term important. It is the convection

_ith the fluid that carries the vorticity into the large structures of the wake,

but the velocity is zero at the wall and only the viscosity can make the

vorticity penetrate into the stream at all. Therefore the "justification" we

just reviewed breaks down in the wall region.

This motivates the procedure, illustrated in Fig. 5, of coupling an inviscid

outer flow and a viscous boundary !_yer flow. This procedure is common when

the outer flow is not only treated as inviscid but also as irrotational. Here,

the outer flow will be vortical. The effort will be worthwhile if un efficient

solver is available for the simplified equations in each region.
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The Vortex Method is etficient in the outer flow; it treats the transport

term accurately and provides the necessary resolution in the wake. It does not

cause any problem at large distances from the body. Its weakness in treating

the detailed viscous features will not disturb the large scale structures which

dominate in the wake. The implicit finite difference method is very good

at treating thin viscous flows. For such a small and logically rectangular

domain it is also very fast. Both methods are available and well tested. The

new element that is needed is a procedure that makes the two regions interact

through the boundary conditions at the interface.

In a previous investigation Shestakov also coupled the Vortex Method to

an Eulerian method [44] ; however he used the Vortex Method in the wall

region, and the Eulerian mt _hod away from it! Even though the conditions

were slightly different (he treated an internal flow) our interpretation and

Shestakov's appear to be totally opposite, ms results appear reasenable, but

it is not clear how much his flow depended on the wall region, or how much

benefit he derived from using the Vo rex Method near the wall.

The two approximate systems of equations will be described separately,

followed by a discussion of the conditions at the interface.

b} Outer flow.

In the outer region, the viscous term in Eq. t is dropped, only the transport

term is retained. The approximate equation is:

Dw
m =0  2s)
Dt

The material derivative of the vorticity, or equivalently its time derivative

in Lagrangian coordinates, is zero; this is what makes a Lagrangian method

attractive.

The vorticity is zero at large distances (the system is always started with

the fluid at rest) and no boundary condition is needed in the far field for Eq.
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28. The far field behavior of the velocity is essentially the same as in the

exact formulation, in which the vorticity decayed exponentially.

The proper boundary condition for the hyperbolic Eq. 28 at the interface

with another domain depends on the sense of the vek.zity; w itself is the

characteristic variable and the velocity U gives the characteristic direction.

If this velocity is into the other domain (outflow), no condition should be

applied; if it i_ into this domain, the value Gf the vorticity, or equivalently

the flux of vorticity, should be prescribed. Information travels in the same

sense as the particles, and this is realized very simply with a Lagrangian

method: an outflow boundary absorbs particles and information, an inflow

boundary generates new particles which carry information.

c) Inner flow.

I.'!the boundary layer the viscous terms are retained, but the thinness of the

layer renders some terms negligibl_. Curvature effects will not be included.

This is legitimate for shapes like a circular cylinder; for airfoils, it might be

necessary to account for curvature near the trailing edg , or to round it off

so as to increase its radius of curvature.

Let 8 and n be the coordinates along the wail and normal to it respectively,

and u and v be the velocity components in the s and n directions respectively.

The scale in the n direction being much smaller than that in the s direction

allows Eqs. 1,3 and 4 to be approximated by:

Ou Ov
t =-0 (29)

Os On

Ou
w= --- (30)

On

Ow 02w

•._- + U.V_ --- U_n 2 (31)

Equation 1 has simply been reformulated in terms of (s, n, u, v), without

approximation, to yield Eq. 29. The definition of the vorticity, Eq. 3, has
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been simplified by dropping the Ov/Os term, giving Eq. 30, and the viscous

term in the s direction has been dropped from Eq. 4 to give Eq. 31.

These differential equations are the same as the conventional time-

dependent boundary layer equatiGas, but the boundary conditions employed

will be different. The inner region extends around the whole body, and the

boundary conditions in the s direction are periodic. The equation is advanced

in time, not by "marching" along the boundary layer in the direction of the

local velocity. Thus the type and stability of the equation are not affected

when this velocity changes sign, for instance at separation. The other major

difference is that, whereas conventional boundary layers are imbedded in an

irrotational outer flow, this one is not. In particular, there is no Bernoulli

relation linking the outer velocity to the pressure gradient. Also, the vor_icity

does not necessarily tend to zero at the outer edge of the inner region, and

the boundary condition at this edge must allow a transfer of vorticity to or

from the outer flow.

The edge of the inner region i_ at n -- 6, where 6 is a parameter.

should be small enough for the boandary layer assumptions to be valid; on

the other hand _ should be large enough for the physical viscous region to

be contained in the computational region. Naturally, the "viscou_ region"

cannot be precisely defined; however, if the inner solution reveals strong

gradients confined to the vicinity of the wall and a quieter region elsewhere,

is probably large enough. Another test is tc compute the various physical

thicknesses of the boundary layer (displacement, momentum, etc ) and to

compare them to 6. Along the attached region, the boundary layer is well

within _; after separation almost all the vorticity is in the outer region and

theie is no boundary layer in the usual sense. Examples will be given to

illustrate how diis chosen.

In the boundary layer the velocity is obtained by integrating Eqs. 29 and

30 in the n direction. Both components of the velocity are zero at the wall.
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Thisprovidesa wellposedsystemwithEqs.29 and 30 sincethesearefirst

order.

Equation31 isofsecondorderinthen directionand thusrequirestwo

boundaryconditions.

Insteadofa boundaryconditionatthewall,the integralequations,Eqs.

10.3,10.4andEq. 10.5,areused.Thisisnaturalsincewe haveshownthatin

theexactformulationEqs.10.3,10.4and 10.5regulatethefluxofvorticity

fromthewall.

The otherconditionregulatesthefluxofvorticitythroughtheinterface.

d)Interfaceconditions.

Boththevelocityandthevorticityfieldshouldbematchedattheinterface.

The matchingof the velocitiesisdone in the same spiritas in classical

boundarylayertheory.The componentofvelocityparalleltothewall,u,

willalwaysbe _atchedsinceitisoforder1. The normalcomponentv is

small,oforder_,atn = _ and a_thelowestlevelofapproximationitis

neglected;we shalladoptthenextlevelofal_proximationand match thev

componentsaswell(stillassumingthattheinnerregionisthin).

As forthevorticity,sinceEq. 28 isfirstorderand Eq. 31 issecondorder,

theycannotbe matchedwithoutmakingan additionalapproximation.

The two domainsexchangevorticitythroughtheinterface.SinceEq. 28

is applied down to the interface, it is consistent to derive the approximate .

interface condition in the same spirit. Thus it is assumed that the into,face

is far enough from the wall for the viscous term to be dominated by the

convection term, and the transfer of vorticity is taken a_ vv and imposed by

the upstream region. The boundary condition has thus dropped to '.he le_'el

of the inviscid approximation. For Eq. 31, this means that the viscous term

v_Jis neglected at the outer edge of the boundary layer.
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l]I) NUMERICAL IMPLEMENTATION.

Discrete approximations to the continuous equations are derived as a basis

for the following discussion of the numerical method. The algorithm used

for each region are described first, and then the coupling procedure is intro-

duced. Each method converges in its domain as the scale of the discretization

is reduced in space and time. However, the complete algorithm should not

be expected to converge to the Navier-Stokes solution since the errors intro-

duced by the inviscid and the boundary layer approximations remain finite.

Convergence at a given Reynolds number could only occur if the order of the

boundary layer approximation (among other things) was increased in parallel

with the numerical refinement.

This chapter applies to the KPD3 program; KPD1 and especially KPD2

use a different logic which will be described in Appendix A.

1) Outer flow.

a) Extent of the outer region and discretization in space.

The outer region covers the whole (x, y) plane except the solid and a narrow

band of thickness _ around it. It extends to infinity and no grid is involved.

The vorticity field is described as the sum of a large number N_ of mobile

functions of small support, referred to as "vortices _. Each vortex is defined by

the position ri -----(zi, ys) of its center, its circulation Fi which is the integral

of *_hevorticity it carries, and the shape q of the distribution of the vorticity

around the center (see Eq. 5). This distribution is in general bell-shaped; this

is the _vortex blob" method.
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An individual vortex does not live for the full duration of the computation

New vortices are created at the interface, where they enter the outer flow.

Vortices can also be absorbed by the wall region and thus removed from the

computation. Finally, vortices are allowed to merge when certain conditions

are fulfilled. The vortices are independent entities; they form a "jungle"

except maybe just after separation, where the free shear layer has not yet

undergone instability and broken down into circular eddies.

In this study, the shape of the blob, ff is taken to be axisymmetric, and is

the same for all vortices at all times. The whole blob moves at the velocity

of its center. Clearly, no diffusion of the blob takes place, and the straining

of the blob by the velocikv gradients is also neglected. This straining is the

source of the spatial error, as analyzed in [9] and [19].

Simple cores, defined by algebraic functions, were used. Being everywhere

positive, these cores are expected to yield second order convergence in aa in-

viscid problem [19]. The superiority of the more elaborate cores (which should

yield higher order convergence) has not been clearly demonstrated [45] ; there-

fore the simplest possible approach was chosen. The cores chosen also require

less computing time. The computaticn of the interactions is the most time-

consuming part of the program and it might be advantageous to have many

*inexpensive _ vortices rather than a smaller number _f _sophisticated" ones.

Finally, it is vet7 likely that the main source of error is not in the treatment

of the inviscid transport of vorticity, but in the neglect of the small scale

turbulence, and even more in the interaction with the walls. In the wall

region the solution is not smooth at the scale of the vortex core radius, and

the rate of co-_vergence of the method becomes less relevant.

Two cores were used and are defined by

Corel ff(r)---_ _a_ , ifr<a; (32.1)
[0, if > a.

C72

Core 2 if(r) -- 2_r(r2 @ :_2)2 (32.2)

: 4O
!
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a is the "core radius". These functions are plotted in Fig. 6, as weli as

the corresponding velocity and stream function distributions, with the point

vortex as a reference. In Core 1 the vorticity is continuous and the velocity

continuously differentiable, while Core 2 is infinitely differentiable. Core 1 has

a finite support and a vortex is not allowed within a distance a of the wall,

so that the vorticity is entirely outside the solid. Core 2 does not have this

property: its support is infinite (the vorticity decays like r -4) and penetrates

the solid. Although this does not appear to be very natural, the differences

in the results were negligible.

Core 1 was used in some versions of KPD1 and KPD2, in particular for

the case of dynamic stall (on a CDC 7600). It was then decided to switch

to Core 2 for the CRAY version of the program, because Core 1 involves an

"IF" test which inhibits the vectorization of the loop.

b) Computation of the velocity.

The velocity field must be computed in order to solve Eq. 28 for w. If we

introduce the value of w from Eq. _ into the Biot-Savart law, Eq. 10.3, the

velocity induced at a point r by the vortices is given by:

(r)= hi) x-
i-=l

with _/defined by:

d(r2_/) = r'y(r)and r}_ r-2for rlarge. (34)
dr

The formula is greatly simplified by the fact that the blobs are axisym-

metric. If point vortices were used ,7 would be equal to r -2. With vortex

blobs r/is regular near zero, and the velocity field is smooth.

The uniform freestream velocity also contributes to the velocity field, as

well as the velocity induced by the inner flow vorticity, which is not included

in the blobs. Since the inner region is a thin shear layer, even compared to the
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ORIGINALP,"_S|;
OF POOR QUALITY

core diameters of _he vortices, it can be represented to a good approximation

by a vortex sheet of zero thickness. The strength of the vortex sheet will

be designated by Ue; it is the circulation per unit length of the sheet, and

also the jump of tangential velocity across the sheet. The sheet is made up

of segments, each segment covering the interval between two wall points (see

Fig. 7). The strength of the vortex sheet is assumed piecewise linear. The

velocity field of such a segment of vortex sheet can be expressed analytically.

In complex variables it is

U(z)= Iz2- 1- 02 - zl) -
(35)

where zl and z2 are the two ends and Uel and U_2 are the strength at

each end and the overbar denotes the complex conjugate. This field jumps

across the sheet but is smooth on each side: this is why segments are used

instead of circular vortices to represent the inner flow vorticity. The velocity

field however has a logarithmic singularity at the junction of two adjoining

segments unless they have the same slope. Therefore it is desirable to keep

this slope as smooth as possible.

Thus the velocity of each vortex is the sum of thc freestream velocity Uoo,

Nto terms of the type given by Eq. 35 for the Nw wall intervals, and N_

terms of the type given by Eq. 33 for the N_ vortex blobs. This is the

discrete analog of Eq. 10.3.

The computation of the interactions has to be performed at each time step

and this is the most time-consuming part of the program. N_(N_ + Nw)

interactions have to be computed, and each of the N,jN, interactions with

the wall segments involves a complex logarithm. Fortunately, the simplicity

of the data base makes vectorization easy, provided, that the function _7does

not involve "IF" tests or any non-simple function. Even then, it is worthwhile

to apply analytical tools to reduce this cost.

The high cost of implementing the Biot-Savart law, Eq. 33, comes from

the fact that each vortex interacts with vortices in the whole domain, with
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distant vortices as well as with its neighbours. On the other hand, the velocity

field induced by a distant cluster of vortices does not depend much on its

detailed shape, and this should be taken into account by the program. The

velocity induced at a large distance R by a cluster of diameter I has a Taylor

expansion in terms of l/R. The first terms of this expansion are a vortex

term, a dipole term, and so on.

To implement this in a cvntrolled way, with a known and bounded error,

the clusters are first given a precise definition. The plane is divided into a

number n of identical square cells of side l, surrounded by an external cell

which is treated separately (Fig. 8). For the scheme to achieve its purpese,

each cell should contain more than a few vortices; so n should be much smaller

than N_. Each time the interactions are to be computed, the vortices that

are in the same cell are linked, logically. Their distance to the center of the

cell is smaller than l/v/2.

It is convenient to use complex notation here. The function that is ex-

panded is (z, -- zj) -I, where z, is complex for (x,,y,). Let z, be in the K th

cell, with center ZK, and z_ in the L th cell (see Fig. 9). Thus {zs -- zj) -1 is

expanded in the vicinity of (ZK -- ZL) -t. The function z -1 has a rapidly

converging Taylor expansion, and the error can be bounded as a function of

l/[Zt< -- ZL[ and of the number of terms that are retained. This number of

terms is chosen to make the error as uniform as possible. If the two cells

are far from each other, compared to 1, only the first term of the expansion

will be kept. If they are not very far, up to four terms will be included. If

they are neighbours, the Taylor expansion does not apply; in that case, the

interactions are computed vortex by vortex. _' either vortex is in the external

cell, the Taylor expansion is not used either, since the external cell is infinite

in extent and has no "center _.

In the final version of the program, enough terms were taken to ensure

a maximum relative error of 1% in each interaction. The actual error was

computed in a test case by also computing the velocities without using Taylor
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expansions. The maximum difference that was observed was about 0.5% of

U_, and th _."L2" average was less than 0.1%. This level of error is very

moderate, ia comparison to the other possible sources of error.

With a proper choice of I and n, computing the interactions this way

instead of applying Eqs. 33 and 35 directly can save 65% of the time on

a serial computer like the CDC 7600. Typical values are Nv -- 1000, n --

100, l -- .5 with a oody of size 2. Vectorizing the Taylor expansion for the

CRAY was possible, but resulted in a program that was more complex and

less "smooth" logically, with shorter loops. As a result, KPD1 and KPD2

run faster without the Taylor expansions; KPD3 still runs faster with them,

because using them saves the time of evaluation of most of the complex

logarithms in Eq. 35.

c) Time integration.

The system of ordinary differential equations, Eqs. 7 and 24, is integrated

by the Adams-Baslfforth second order method. The velocity of each vortex

is computed at uniform time intervals and the positions updated according

to the formula:

,,(t+ ,at)= ,,(t)+ ,at{v,tt)- u,It- ,at)) 136)

,at is the time step and, .,e accuracy in terms of ,at is of second order [46] .

As with any multistep method, the first step of integration mu._t be treated

differently because Ul(t- ,at) is not available. Thus the first step in the life

of each vortex is handled by the explicit Euler scheme:

rdt + ,at)= ri(t)+ ,at U_(t) (37)

The Adams-Bashforth scheme was chosen because it is second order accurate,

while requiring only one evaluation _.f the derivative per step. It is weakly

unstable when applied to linear equations, but the non-linearity of equations

7 and 24 actually stabilizes the integration and no stability problem has been
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encountered (see subsection e)). The need to store two levels or the velocity

values is not a problem since the Vortex Method involves only a very moderate

number of variables.

It should be noted, however, that since the inner region solution is only

first order accurate in time, the overall accuracy is of first order at best.

The Adams-Baslfforth schem, is used mainly to gain quantitative accuracy

(over the first order Euler scheme) and especiully reduce the scattering of the

vortices (see subsection e) ).

d) Vortex merging device.

The boundary layer releases a significant number of vortices near the wall

at each time step: typically 100 new vortices, compared to a total number of

1000. (N_-_'_aiiy, these m0 vortices do not carry 10% ,ff the _orticity; they

are numerous but weak. Typically, in one time step the new vortices of one

sign might add up to a circulation of 0.03, while each one of main "K_rman

Street" eddies carries a circulation of the order of 10). This continuous

addition of new variables should be balanced by the suppression of some of the

old variables at approximately the same rate; this is done by merging pairs

of vortices into one when appropriate conditions are fulfilled. As a result,

the vortices are dense near the body, where Rue resolution is desirable, and

become progressively sparser away from it.

Deffenbaugh and Marshall introduced a merging method t It did not make

all the details available [28]. R. Rogallo (personal comm,mication) used a •

device which was very similar in spirit to the one used here; however the

error estimate was different.

If nothing wa_ done to keep the number of vortices under control the

program would only be able to compute flows of relatively short duration

before the number of vor_,ices and the associated computing cost would be-

come excessive. This would bc acceptable for some applications (slender body

"2D-3D" analogy, for instance) but not for the ones considered in this study. _:
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Furthermore, if all the ,,ortices are kept,, there is a st,rong inceutive to

create fewer at each ct,ep; aa a result the wall boundary condition is more

loosely satisfied: _ypically only 20 discrete equations are retained [29]. It

is preferable to have a much greater resolution near the body, typically 200

. discrete equations, and then let these many _mall vortices progressively merge

; into larger ones. Furthermore the description of the flow is more homogeneous

in time and :an actually reach an asymptotic state.

The procedure is the following. Only the merging of two vortices into one

is attempted, at each time step. If we consider two vortices of circulation Fl

and F2 and positioo z_ and z2, the velocity field they create before merging

is, in complex notation:

I:(_)= '--'( r_ t- r2 ) (38)
2_ (z- zx) (z- z2)

The field they create after merging is:

i F
_(z) -- (39)

2_(z - Z)

where F and Z are the circulation and position,recpectively, of the new vortex.

The first few terms of the expansion of the difference IT(z) -- W(z) at large

distance z are (the complex conjugate of):

2_((r- r,- r._)+ (r,_,+ r_- rz) (rz_- r,.-_- r_))2,r\ z za + zs

-t-O(Izl-_) (40)

The _wo leading terms can be removed by taking:

[' -- ra + Fa (41.1)
l'

Z --- rlzl -t- r2z_
F (41.2)
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This mea_s that the new vortex is given the sum of the circulations of the

old oaes and placed at their centroid (Fig. 10). It is worth noting that

two vortices, if they are isolated, orbit precisely around this centroid, which

is itself stationary. Thus by merging we replace two vortices, which would

move on two concentric circles, by one stationary vortex at the center of

these circles. This way of merging also preserves the total circulation, and

the first moment of vorticity, which is equal to the impulse of the flow (this

results from an integration by parts [14]). It should also be noted that if the

. two vortices have opposite signs the centroid is aligned with them but not

between them (Fig. 10.b).

The third term cannot be removed within this framework, and is therefore

taken as an estimate of the error introduced by the merging. At each step the

vortices are examined pair by pair and the merging done only if the estimate

is within a tolerance V0. The exact estimate used is:

tr,r l Iz,- z21 < v0 (42)
IF1 -Jr-r21 (Do -[- dl)l'5(Do "Jr-d2) 1'5

where dl and d2 are the distances from zl and z2 to the nearest wall and Do

is a parameter. The expression in Eq. 42 has the dimension of a velocity

and is our estimate of the disturbance that a merging would impose on the

boundary layer. Typically, V0 is of the order 10-4Uoo or less.

The disturbance estimate is the product of two factors. The first factor

depends only on the circulations:

Ir r l (43)
Ir, +

Clearly, merging of vortices with large circulations is discouraged, as is the

merging of two vortices that have nearly opposite circulations. (In that case

the new vortex would be very far from the original ones. See Fig. 10b)

The second factor depends only on the positions:

IzI- z212 (44)
(Do "'Fcil)l'5(Do + d2)1"5
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Clearly vortices are more likely to merge if they are close to each other and

far from the body. The parameter Do controls the relative variation of the

estimate as a function of dl and d2. If Do is large (Do _ d) has a slow relative

variation near the wall and the density of vortices will be quite uniform. If Do

is sm "!l (Do _ d) gets very small near the wall, which discourages merging

and will result in more small vortices subsisting near the wall. Thus, the

parameter Do allows the use_ te shift the resolution from the wall region to

the wake or vice versa_ as illustrated in Fig. 11.

The value of the tolerance V0 is not held constant for every time step.

Instead, the programs slowly adjusts it to keep the number of vortices near

the chosen number, raising V0 to make mergings easier if it sees too many

vortices and lowering Vu if it sees too few. The number of vortices thus

remains close to the input value, which is very desirable from a practical

point of view.

In contrast with some earlier approaches [22], this method of merging vor-

tices is totally automatic and has a m,,thematical rather than a physical basis.

For instance no effort is made to _manually _ obtain a well defined Karman

street; the vortices will probably take on this pattern at some distance from

the body, but it will be destroyed as they move farther downstream.

e) Numerical diffusion.

The Vortex Method, at least in an unbounded fluid, has been shown to

converge to the solution of the Euler (inviscid) equations. In reference [45],

(written with Dr. Y. Nakamura and Dr. A. Leonard) we applied the Vortex

Method to several simple problems and by comparison with the known exact

solutions confirmed the mathematical estimates: second order convergence,

in terms of the core radius, was observed. These flows were all inviscid and

unbounded, and the initial data had to be sufficiently smooth. Gaussian cores

were used, but any core for which '_ is smooth and everywhere positive should

also give second order convergence [19].

Although the Vortex Method solves the inviscid equations, there is evidence
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of a significant "numerical", or "parasitic", diffusion in the solutions i_

produces. Essentially, s_rong velocity gradients induce strong accelerations

which deteriorate the accuracy of integration of the motion of the vortices.

This effect is different from the numerical diffusion present in many finite-

difference methods, in that it is caused by velocity gradients instead of the

velocity itself. Naturally this diffusion tends to zero as more vortices are used

and shorter time steps taken, but it cannot be ignored when doing computa-

tions with a practical level of resolution. To describe this numerical diffusion

better we shall consider some of the ihvariants of the system. In this section

only unbounded flows will be considered; the presence of a solid and the

creation of vorticity at its surface would only complicate the discussion.

It is well known that a system of point vortices is a Hamiltonian system

[47]. The Hamiltonian of the system is the Kirchhoff function, defined by

F_Fj

w= lo lr,- r l) (45)
_J

and the equations of motion become

r aw (46.1)

= +ow (46.2)

Naturally W itself is an invariant. Other invariants are the total circulation,

the first moment of the vorticity (equivalent to the momentum of the fluid)

and the second moment (equivalent te the angular momentuza) [14], [48]. W

is also the energy of interaction of the vortices (their internal energy is infinite

and has been separated from the interaction energy). These quantities are

also invafiants of the exact inviscid solution; these built-in invariants provide

a basic advantage in usLngthe Vortex Method.

For a system of vortex blobs a Kirchhoff function can still be defined, by

replacing the logarithm in Eq. 45 by an appropriate regular function. For
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example Core 2 results in the Kirchhoff function

r,r i

W--_ _ _ log(_/[ri- ry]2 -Jr-or2) (47)
i01

and Eq. 46 is satisfied.

If we give all the vortices the same core shape, the vortex blob system has

the same 4 invariants as the point vortex system (this is the "semi-discrete"

system: discretized in space but continuous in time).

On the other hand it is clear that errors in the integration of the ordinary

differential equations, Eq. 7, tend to scatter the vortices and therefore act in

the same sense as a diffusion term. One way to describe this diffusion more

precisely is t_ determine which of the invariants we mentioned are actually

conserved and which ones are not in the solution of the fully discrete system

(discretized both in space and time). Any deviation will be a result of the

time integration errors.

The total circulation is obviously conserved because each value Fs is kept

constant. The first moment of vorticity, f f wr, is conserved too if the time

integration scheme is linear (which is the case for all the classical schemes)

because it is a linear combination of the rl's.

The second moment of vorticity, f f cot2, is not conserved in general. It

reflects the scattering of the vortices. In Ref. [45] we defined an effective

viscosity ve by:

(48)

It is shown in Reference [48] that an exact viscous solution satisfies Eq. 48

with v_ replaced by v; this motivates the definition of re. The viscous

diffusion steadily increases the second moment of vorticity, which is a measure

of the spreading of the vorticity. The effective visccAty was calculated in
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several cases and shown to tend to zero with the size of time step, for a

given space discretization. This why we called the Vortex Method "semi-

inviscid", meaning that the space discretization itself was not responsible for

the diffusion, but that it allowed the time integration scheme to introduce a

diffusive error (the same terminology is used when a method is said to "semi-

conserve" energy, i.e. it would conserve energy if the time integration were

" exact).

The concept of effective viscosity according to Eq. 48 however has several

. weaknesses. It breaks down if the total circulation is zero, which is often

the case, and if there are solid walls boundary terms appear which cannot

be defined very. reliably in a vortex simulation. More importantly, it is a

global quantity. A concept that would yield a local effective viscosity would

be much more useful, but has not been found yet. Thus it is not possible

to produce the "modified equation" the way it is commonly done with finite

difference methods, or to produce an "effective Reynolds number" of the

computation. If that were possible, one could think of using the integration

errors to ;atroduce the desired diffusion.

The reason why the second moment is not conserved is that it is not a

linear combination of the r_'s; similarly, W is non.linear and will not be

conserved. Delcourt and Brown used W (interpreted as the energy) for their

definition of an effective viscosity [31]. The effective viscosity turned out to

be positive, since the energy decayed steadily. For the time integration they

used the Euler explicit and the ttuen scheme (also called Runge-Kutta, first

and second order).

We showed in Ref. [40] that the non-linearity of Eqs. 7 and 36 has a strong

influence, even in a very simple case: two vortices isolated ,a space. If their

circulations are F1 and F2, their (complex) positions are given Z1 and Z2, and

they are treated as point vortices, then their spatial separation Z = (Z1-- Z2)

satisfies the first order ordinary differential equation:

dZ i(rl + r2)
-- -_- _ (49)
dt 2_rZ

$1
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If Z0 is the initial separation, at t -- 0, the solution is:

Z(t) = Zo e_n°t (50)

where f_o is defined by fl0 -- (rl + r2)/(2_'lZ012). The vortices orbit

together, and the second moment of vorticity is constant; in that sense the

discretization by vortices did not introduce any diffusion. The linear ordinary

differential equation:
dZ

d--f= inoZ (sl)
has the same solution and is more familiar. In finite difference methods,

convection terms generally produce pure imaginary eigenvalues, which makes

Eq. 51 a good model problem.

Although the two equations have the same exact solution their numerical

integration, by the same scheme, can give widely diffe'tent results in terms

of stability° We shall concentrate on the modulus of Z since we are mostly

interested in scattering. Fig. 12 shews IZI as a lunetion of time as found

in a numerical solutions to Eqs. 49 and 51 for a typical case: Adams-

Bashforth 2 and Lomax schemes, and several values of the time step. The

Lomax scheme is especially adapted to the integration of Eq. 51 [46] . With

Adams-Bashforth-2 the nonlinearity of Eq. 49 reduces the error, compared to

the linear equation, because as IZI iLcreases the angular velocity decreases,

and the integration becomes more accurate. The solution to Eq. 51 grows

exponentially, which is a strong instability, while the solution to Eq. 49 only

grows like t 1/s. The integration of the linear equation by the Lomax scheme

shows exponential decay, while the integration of the non-linear equation

keeps [Z I finite. In this case the second moment increases and decreases

periodically; the effective viscosity is not constant, and even takes on negative

values. It appears that the angular velocity cannot remain below a given value

(about 0.24/At with the Lomax scheme).

Similarly, in practical cases with many vortices the time integration scheme

does not allow values of angular velocities above a certain level, and scatters
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the vortices when the local velocity gradients are too stlong (in that sense

the Vortex Method is stabilized by its own integration errors).

In the computations done in this study, a typical value of the angular

velocity in the near wake is 10, and the time step is 0.03 (in compatible

units). The product is non-dimensional and of the order of 0.3: obviously

integration errors will be sigaiflcar; at the scale of the individual vortices.

Considering the fact that at high Reynolds numbers the angular velocities in

the exact solution would be as high as several hundred units, at least an order

of magnitude greater, it is also clear that resolving all scales is not possible.

The Vortex Method performs well in spite of such errors partly because the

conservation of circulation and momentum are built-in.

The effect of merging can be examined in the same spirit. When two

vortices of the same sign (the more likely case) merge the second moment of

the vorticity distribution decreases. The merging concentrates vorticity and

this is especially apparent in the far wake. If the mergings occur far enough

from the solid body the effect of this "reverse diffusion" is small.

2) Inner flow.

The boundarylayerequations,Eqs. 29,30 and 31, aresolvedusinga

finitedifferencediscreti_ationinspaceand an implicitmethod intime.The

accuracyisofsecondorderinonespacedirection,fourthorderintheother,

and firstorderintime.The Baldwin-Lomaxalgebraicturbulencemodel is

used.

a)Extentofregionand discretizationinspace.

The regionisa band ofwidth_ placedaroundthebody._ issmall,com-

paredtotheradiusofcurvature,and thecurvatureoftheband isneglected.

The functionsw, u and v areassignedvaluesatthenodesofa grid.The

gridisstretchedinthesdirection,accordingtothedistributionofthepoints

alongthewall.In then directionan exponentialstrc_cl_ngisusedtogive
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a finer resolution near the wall. This is especially useful for turbCent ca.ces,

in which the viscous sublayer is very thin. With the grids used the cell size

near the wall was of the order of 5, in "wall units", so that the first point

was well within the viscous sublayer [50]. The equations are transformed to a

computational plane where the grid is uniform. Centered differences are used

for all derivatives in all directions. Second order accurate differences are used

in the n direction, in which the grid can be made very fine without penalty.

In the a direction, the grid repoduces the intervals involved in the outer flow,

and these cannot be made very short. For this reason, and to make the

convection of vorticity as accurate as possible, fourth order accurate Pade

differences are used in the s direction. Naturally, to actually obtain fourth

order accuracy the grid should be smooth enough, which is not always e. y

when generating complex shapes.

b) Computation of the velocity field.

The u velocity in the grid is obtained by integrating Eq. 30 upwards from

the wall, where u -- 0. The v velocity is then obtained by integrating Eq. 29

with v = 0 at the wail. In both cases, the second order accurate "trapezoidal

rule" is used in the n direction, and au/as is obtained by Pade differences.

c) Time integration scheme.

The integration in time is done using a first order accurate implicit scheme:

it is the r_uler implicit scheme, except that the velocity components are

"frozen" at the old time level. Completely linearizing the non-linear convec-

tion term, U.Vo;, would make the matrix inversion much more costly without

formally improving the accuracy. Furthermore the Euler implicit scheme is

very stable according to a "frozen velocity" analysis, and there is no evidence

that the incomplete linearization hurts its stability.

This first order scheme is used because the time variations in the boundary

layer are very slow (typically 300 steps per period) and because implementing
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a higher order scheme would be much more complex, again becallse of the

difficulty in linearizing the velocity compenents.

The boundary condition in the s direction is periodic and does not require

special attention. The boundary conditions in t_he n direction are implicit,

which is desirable in the presence of a viscous term and with a fine grid.

d) Approximate factorization.

The time evolution equation is written in "delta" form and the implicit

operator is approximately factored into two tridiagonal operators, one in each

direction. This simplifies the solution without degrading either the first order

accuracy in time, or the accuracy of the steady state.

The operator in the s direction is periodic and tridiagonal. It is solved

by the Thomas Algorithm, adapted to periodic matrices. The operator in

the n direction has the three diagonals plus a full first line representing

the integral across the layer. This integral condition replaces the boundary

condition at the wall; more details will be given in the chapter on the coupling.

The boundary condition at _ will also be described later; it is included by

modifying the last line of the matrix. This matrix is solved by the Thomas

Algorithm, this time adapted to start the elimination from the bottom and

eliminate the first line too.

e) Artificial dissipation.

Finally, an artificial dissipation is added in the s direction. The centered

differences used to approximate the first derivatives in the s direction do

not couple the even and odd lines, and a small positive term representing a

derivative of even order is added to the time derivative to absorb energy and

avoid the appearance of oscillations. A fourth order derivative is generally

used, to disturb the slow varying components as little as possible. Depending

on the amount added, it might be necessary to treat the artificial dissipation

implicitely to preserve stability.
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Probably because of the constraints imposed by the outer flow, and of the

non-linearity, a catastrophic instability does not result if the dissipation is

omitted in this program: the solution remains bounded. However it exhibits

short wave undulations in the s direction, which have half-periods close

to the grid size, and are very probably caused by the inaccuracies of the

finite difference method when treating the convection term with m :-constant

velocity. Naturally the coefficient of artificial dissipation, e, is given a value

as low as possible. This will be illustrated in the "Results" chapter.

As a whole the numerical method used for the inner flow closely follows the

theories developed by l_cam, Warming, Steger and Pulliam at NASA Ames

[49] .

f) Turbulence model.

The Baldwin-Lomax turbulence model was chosen because it is simple to

use and was designed for separating flows [50] . It is based on the Cebeci-

Smith model, but modified to ensure a normal behavior even when the

boundary layer thicknesses become very large. It is an algebraic, or "zero-

equation", model; it does not require the solution of any additional differential

equations, or any special conditions at the outer edge of the inner region.

The turbulent stresses predicted by the Baldwin-Lomax model are multi-

plied by an intermittency factor fl which is a function of s only, and switches

from 0 to 1 as the boundary layer undergoes transition. The transition

model proposed by Baldwin and Lomax is not used; it does not seem to

take sufficiently into account the pressure gradients which are very strong in

flows around cylinders for instance. The criterion described by Schlichting,

which is based on his own stability theory and an empirical correlation by

Granville, incorporates the dependence on the pressure gradient and is used

instead [51]. This transition model produces a position ss of instability of

the laminar boundary layer, and a position st of full transition. This delay

is used in the program to make the transition smoother: the intermittency
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factor/_(s) is defined by:

fl(s)--O if s < s, (52.1)

(3 s--s_ --2 s--si ifsi,,, s <st (52.2)

_(s)-- 1 if s > st (52.3)

The choice of a cubic function for Eq. 52.2 was arbitrary; it was chosen

merely to make/_ a smooth function of s.

The turbulence model is present in the e:gorithm regardless of the Reynolds

number. However, for Reynolds numbers of 105 or less, transition is not

predicted (although instability often is) and the turbulent stresses are never

activated. Thus the computation is fully laminar in such cases.

l(n_3) Coup,._¢,.

The interaction of the two regions irlvolves the matching of the velocity

fields and the transfer of vorticity acre , the interface.

The veloci_.es are matched by properly setting up the vortex sheet that

represents the inner flow vorticity in the Biot-Savart integral. The outer

velocity field is a function of the ri's and F,'s, the values of Ue and the position

of the vortex sheet. If it satisfies Eq. 10.4 then the velocity at the wall (under

the sheet) will be zero, and the tangential velocity over the vortex sheet will

be U6. Thus Ue is the value of the tangential outer velocity at n --/J.

On the other hand the tangential component of the inner velocity at n --

is:
$

/*

u(s, 5)=-- J w(s,n)cln (53)
rim0

in view of Eq. 30. For the tangential velocities to match, this inte_al must

be equal to Ue.
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Matching the normal velocities is not as crucial, because the normal velocity

is still small at 6. The program r,_ns quite well without any effort to metch

the normal velocities. However some finer effects can be added by doing so.

Since the vortex sheets is a simplified representation of a layer of vorticity of

finite thickness 6, the vertical position of the vortex sheet is arbitrary within

the thickne:_ 6; it is natural to place it at the centroid of the inner flow

vorticity, defined by:

a'(s)-- f_"°nw(s'n)dn (54)
.f_-0_(s,n)en

Fig. 13 shows that if the vortex sheet is placed at 6" the normal velocity at

a distance 6 from the wall must be

--d(tr,(6- :)) (55)

for mass to be conserved.

Now from Eq. 29, the normal component or the inner velocity, at n -- 6,

is:
8

v(s,6)=- f Ou-_s dn (56)
_tm0

Using integration by parts we obtain:

$

[ Ou]6 0 f=-:g]0 o.
nw( s, n )dn (57)

J

This equation, combined with Eqs. 53, 54, and 55, a-,d the fact that 06/0_ ---

0 shows that the normal velocities at 6 indeed match.

The vortex sheet is placed at 6° because 6* is the centroid of the vorticity.

However integration by parts shows that, if the boundary layer is entirely

contained in the band of thickness 6, 6° is the classical displacement thick-

ness defined in boundary layer theory [51] . The line defined by 5° acts as an
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effective boundary for the outer flow; its slope introduces the _mall amount

of normal velocity due to the thickening of the boundary layer. This yiel_._ a

boundary layer procedure of higher order and the incorporation of the dis-

placement effect is necessary to ..void the singularity tha +.other,_ise appears

in the boundary layer solutions near separation or reattachment [52] , [53],

[54t The boundary layer acts on the pressure both by the emission of vor-

ticity into the outer region and by the displacement effect inherent in 6"; the

outer region vorticity controls the broad features of the pre._ure distribution

while the 6* effect corrects the pressure locally, especially near separation.

Although many questions are still open the consensus seems to be that a

truly unsteady boundary layer, even in a direct solution (U, imposed), d_es

not have a singularity at separation [52] , [53] , [54] , [55] , [56] . However, if

the solution as time progresses tends to a steady state, the shear stress dis-

tribution will steepen and tend to a singular d!sW',bution unless the boundary

layer is allowed to relieve '_.hepressure gradient by the dispiaceraent effect.

;his is what is sought in this algorithm; fairly smooth solutivns are obtained

but some oscillations near separation suggest that the problem might not be

entirely solved. Naturally, the production of fair numerical solutions is not

a proof of the regularity of the differential system unless a thorough conver-

gence study is made like "-:nreference [54]. This was not possible here, mostly

bec_aase of the high cost of the vortex part of the computation.

In some plots of the computated results (especially in Figure 36), the vortex

sheet is shown as a solid line over the wall and it is apparent how it lies

very close to the wall in the part of the boundary laye,' having a favorable ,

pressure gradient, then leaves the vicinity of the wall, until the boundary

layer separates and injects itself into the outer region, becoming a free shear

layer made of vortices.

One problem persists regarding the positioning of the vortex sheet at 6° . It

is that 6'can take on negative val,les, or values larger than 6, and in general

is no'_very smooth in the regions where U, is small. Values of 6' !ar_er than
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5 are not acceptable, because then some vortices would be under the vortex

sheet and their tangential velocity wou)d not be correct. In addition, we have

seen that the vortex sheet shouid be kept very smooth. For these reasons,

the function 5* is filtered and truncated between 0 and 5, giving 8, and the

sheet is placed at a Jistance $ over the wall, instead of 6'.

. The thickness 6" is obtained from the inner flow solution. The determina-

tion of the quantity Ereis more complex and coupled to the transfer of vor-

ticity. The whole procedure will now be described; it reflects the flux of

information from one module to the other a-__lwas devised on an intuitive

basis. The flow chart in Fig. I4 illustrates it.

A buffer is used that communicates alternatively with the outer flow and

with the inner flow. It is a vortex sheet of intensity Bf. Starting from the

outer flow, at each time step *,he vortices that crossed the interface are put

into the buffer and considered as candidates for absorbtion by the inner flow.

The buffer then communicates wLh the inner flow.

The _irculation per unit length, under the old vortices, will be (Ue -'i- Bf).

Equatior, s 10.3, 10.4 and 10.5 are then solved. In one time step the vorticity

that is generated'ut the wall will not reach the outer flow in significant

amounts (the vorticity diffuses to distances of order _ an:] vf_'7 will be

.002 or !_ss while 5 will be .015 or more). Therefore Eq. I0.3/10 4/10.5 can be

soived to a very gogd approximation by considering the outer flow vorticity

asknown and thestrength(Ue_-By) oftheinnershearlayerasunknown.

Thisamountstoassumingthatforonetimestepthefluxofvorticitythrough

thewall,:¢hichisalsothepressuregradient,doesnotdependon theshiftof

inner,egionvorticityinthen direction.

Inthatsensethebgundarylayersolutionis"direct"ateachstepand the

couplingisnot"strong"inthe senseof [53];thepressuredistributionis

imposedontheboundarylayerforthisstep,andwillrespondtotheboundary

layeronlyforthenexttimestep.Thisshouldbesufficientsincethe_-ariations

intheboundarylayerareveryslow.
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(Ue + Bf) is computed by solving a linear system. If N_ is the number

ol"wall intervals, the N_ unknowns are the values of (Ue + Bf) over each

,:ll interval. The first Nw -- 1 equations govern the differences between the

va !ues of the stream function at the Nw wall points (this is the integral form

of' Eq. 10.4, which is considered less sensitive and therefore more efficient

th _n the colocation form), and the last equation governs the total circulation

- e_ itted by the solid (Eq. 10.5). The stream function is the sum of the

su earn function generated by the freestream and the existing vortices (which

is '_nown and forms the right hand side), and of the stream function generated

by the vortex sheets (which is the unknown). The matrix is computed at the

beginning of the run and "Gauss eliminated" once and for all, since it does

not change. Note that a rotation of the solid does not affect the matrix; but

if _everal solids were to move independently, this would affect the distance

between wall points, and a different matrix would have to be inverted at each

tixle step. The cost would then be higher.

l_he linear equations are set up to strongly couple each unknown with the

eqlation of the same index, so that the matrix has its larger elements near

th_ diagonal. As a result, the matrix is well conditioned enough for Gaussian

elimination wi_h partial pivoting or even without pivoting (both on the CDC

76]0 and the CRAY).

then the inner flow is advanced. In particular, the transfer of vorticity

th'uugh the interface is c_mputed. This vorticity is transferred between U,

an:l BI, but (Ue+BI) takes the value that was just computed. Two cases are

possible: ve < 0, and ve > 0. ve is the normal velocity at 6 and i_ obtained

fr¢m the inner solution (Eq. 56). As was done for the inner flow solution, the

ve ocity ve lags by one time step.

_fve < [}the transfer is imposed by the outer region, in keeping with Eq.

30 The buffer vorticity is injected into the boundary layer; after the transfer

th _buffer is empty and all the vorticity is in Ue. This injection of the buffer

co lstitutes the boundary condition at n ---._ for the inner flow.
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OF pOG_ '- .....

If ve > 0 the transfer is imposed by the inner flow. The inner flow rejects

the buffer and injects _u_,w_.,__:,-^_.1 _,_,tl,i,_,._. _._,_, ._.-._,_._._tTh_ flux is vewe, where _e

is the value of the vorticity at n -- 5. This in itself constitutes the boundary

condition at _, since it amounts to setting the viscous flux to zero (it can also

be interpreted as a linear extrapolation).

In both cases, the sum of B I and of the integral in Eq. 53 is equal to the

value that was computed for (U_ -'k BI). This yields the integral condition

for the inner flow vorticity.

The new values of Ue and By have now been determined and the program

returns to the outer region_ The U_ vorticity stays in the boundary layer and

Ue gives the strength of the vortex sheet. The buffer vorticity is injected into

the outer flow under the form of new vortices if v_ > 0. (If ve < 0 the buffer

is empty.) The values of 5* have also been computed and the vortex sheet is

repositioned.

The outer flow is then advanced, which involves the computatfon of the

velocities, the motion of the vortices, and the mergings. The program is now

ready to start a new loop by determining the vortices to be put into the buffer

(Fig. 14).
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IV)RESULTS.

I)Parameters.

The main parameters are the number of vortices, N_, the time step, At, the

core radius, u, the distance, R0, from the wall where newly created vortices

are placed, the grid thickness, 6, and the artificial dissipation coefficient, E,

if NPD3 i._ used, and the parameter, Do, of the merging device.

a)Number ofvortices,N_.

The costofa computationdependsstronglyon N_ sincethecomputertime

pertimestepisrough!yproportionaltoN_; naturally,thelargerN_ isthe

greaterthedetailsthatarereproducedandthemore accuratethesimulation.

Itisimpossibletorationallyselecta minimum valueofNv fora particular
situation.One shouldobservethesolutionandascertainwhetherthesmallest

featuresconsideredsignificantcontainatleastseveralvorticesand therefore

havesome degreeof structureand some abilityto be strained.(A good

graphicssystemisessentialforthemonitoringofvortexcomputations).If

aneddycontainscnlyonecomputationalvortex_t;_effectivelycircular,and
ofsizea.

A more quantitativeestimateofaccuracy,inselectingthevalueofN_ to ,'

be used,isthe toleranceV0 for_uerging.The largerNv isthe laterthe

mergingswilloccurandthesmallerV0 willbe.As an examplethesame code

(Kr'D1)was run forthesame case(a square)withN_ ----800,then with

N_ -- 1200(Fig.15).At theend ofthesimulationsV0 was 7.6x 10-4 in

thefirstcaseand 1.7X 10-4 intheothercase.The differenceissignificant:

with800vortices,mergingsoccuredthatcauseda disturbancefourtimesas

strongaswouldbe allowedwith1200vortices.Howeverbothvaluesaresmall

comparedtoUco.

63

1983013882-073



t

For a single smooth body a value of 1000 is generally sufficient: the

significant eddies in the flow are not very small and the other sources of error

(boundary layer assumptions, turbulence model, etc.) probably dominate. If

the body has sharp corners or a trailing edge then larger wlues of Nv might

be desirable. The need for resolution is also stronger if the separating boun-

dary layer is very thin; for example, the circular cylinder in the critical range

of Reynolds numbers. In that case 1600 vortices were used. Finally, _ith

several bodies the wake of the first body interacts with the other bodies; then

it is justified to use much more vortices. The Vortex Flowmeter simulations

described in Reference [41] used N_ _- 3600.

b) Time step, At.

As was the case for N_, the choice of At is a compromise between cost and

accuracy.

The Lagrangian method can be quite accurate in the wake without a very

short At because accelerations are moderate there, which makes Eq. 7 easy

to integrate accurately. Similarly the Euleriau method in the boundary layer

can be accurate witho,lt a very short step: the boundary layer often evolves

slowly and in that case C. F. L. numbers much larger than 1 are acceptable

(the C. F. L. number is {UIAt/As, with U the local velocity and/_s the grid

size in the s direction). The region that demands a short step is in general

the intermediate region, and this is for two reasons. First, the vortices that

are just outside the inner region often pass several grid points in one step

while the inner region points intera_:t only with their immediate neighbours.

This can create an imbalance because the signals do not travel at the same

celerity in the two layers. Second, if the time step is long the newly-created

vortices are stronger (their circulation is proportional to At) and such strong

vortices disturb the inner region.

To estimate an acceptable value for At the user should observe the simula-

tion where the body has tight curves; if At is too long the vortices will not

follow the wall. The C. F. L. number should not be much larger than 1

In general the results depend on At more directly than on N_; one of _he
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weaknesses of the method is that it is only first order accurate ia terms of

At.

c) Core Radius, a.

Unlike Nr and At the core radius does not influence computing cost and an

optimum value exists, instead of a compromise between cost and accuracy (in

• Ref. [45] we systematically determined this optimum value in a few simple '

cases). If a is large, the velocity is very smooth locally and the noise is low:

as a result the vortices will not scatter much. On the other hand a large

core radiu._ can suppress velocity gradients that are physically significant and

_freeze" a coherent structure that would be better represented if the cores

were small enough and allowed it to evolve.

Fig. 16 shows the same flow computed with a _ .005 and then a _ .05. It

is clear that the simulation is not very sensitive to the value of a: changing it

by a factor of 10 did not cause a striking difference. As a rule, a should be of

the order of As/2, where As is the spacing of the points along the wall. The

value of a influences the coupling between wall points and creation points, in

the same way as the value of R0 does (see subsection d)).

d) Distance R0.

The points where new vortex blobs are introduced are located at a distance

R0 over the wall. In addition, vortices that are found within a distance R0 of

the wall are treated as being absorbed by the wall layer. Thus R0 is a rather

important parameter.

If KPD3 is used, R0 is equal to _, so that the vortices are created at the

edge of the viscous region. If Core 1 is used, Ro is equal to the core radius

a, so that the edge of the core is tangent to the wall.

If Core 2 is used in KPD1 or KPD2, Ro is an independent and non-

physical parameter. A good value for Ro is aoout ,_s/2, where As is the

spacing of the points along the wall. Much smaller values would let the

vortices go too close to the wall points (where the stream function is sampled)

and create noise in the pressure. Much larger values would weaken the
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coupling between each creation point and the wall point below it; again, the

result might be oscillations in the pressure distribution. Such oscillations

are a sign that the system is not functioning properly, and will also strongly

disturb the integral boundary layer solver.

For simplicity R0 is held the fixed for all the points along the wall. On

the other hand As might vary, for instance if wall points are clustered in a

region that is thought to require more resolution. (The selection of the wall

points and their clustering is left to the user). To keep the ratio Ro/As at a

value of the order of 1/2, the clustering of points should be moderate, in the

applications presented here points were clustered near sharp edges or trailing

edges, or sometimes in the separation regions, but the ratio of the largest

value of As to its smallest value did not exceed about 2.

e) Selection of 6, for KPD3.

The thickness 6 of the computed viscous region results from a compromise

and can be chosen by observing the solution.

On the one hand, the larger the value of 6, the greater the domain treated

by the viscous solver, which is good. (In addition, extending the.computa-

tional viscous region is not very costly). The attached part of the boundary

layer clearly must be contained in the grid; the vorticity contour plots are

helpful in ascertaining this. Another say to assure it is to compute the dis-

placement thickness, 6": it should be of the order of 6/2 or less along the

entire attached boundary layer. Near separation it is normal for 6" to be-

come comparable to 6 or even exceed it (vorticity of the two signs is present,

and as a result the centroid can have large excursions). Fig. 17a shows a

computation in which 6 was too small: the boundary layer reaches the edge

of the grid, even in a region with favorable pressure gradient. This defeats

the purpose of having an inner viscous region.

On the other hand, the larger 6 is the less the boundary layer assumptions

are justified. The errors associated to these assumptions grow. These errors

are hard to estimate quantitatively, but the results often give indications

when 6 is too large: the stability decreases and oscillations appear near
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separation. Probably, the variations of the displacement thickness become

too steep and disturb the algorithm. Fig. 17b shows such a case.

f) Selection of e.

A small amount, of artificial dissipation proves to be necessary to keep the

solution smooth in the inner region, so that the finite difference approxima-

tions are accurate. Since fourth-order dissipation is used, it is difficult to

compare the effect of the artificial dissipation with other sources of dissipa-

tion, for example the viscous stresses which are a _cond-order term. Fig.

18a shows a simulation with e -- 0. Ripples appear in the vorticity contours

and the other quantities involved with the inner region. The ripples are in the

s direction, which was to be expected since that is the direction in which the

grid is coarse and viscous stresses comparable in maT':itude to the convection

terms are not present.

This is why artificial dissipation is added only in the 8 direction. In Fig.

18b the flow is simulated with the grid and other parameters the same, but

e _- 0.8 x 10-5. The solution is now smooth, e can be increased further,

even by a factor 10, without any apparent effect. This is important since it

shows that the dependence of the solution on e is weak, provided that e is

large enough to eliminate the ripples.

g) Merging parameter, Do.

The effect of Do was described in Chapter Ill. In this case also, the only

way to determine a good value for the parameter is to observe the simulation.

However, a good rule is to make Do about 5% of the body size if only one body

is present. If there are several bodies, more vortices are devoted to computing

the wake of the first body, so that it is not too coarsely represented when it

strikes the second one. To achieve this, Do is made larger: about 50_ of the

distance between bodies.
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2) Memory requirements and computing times.

a) Codes KPDI and KPD2

The codes KPD1 and KPD2 have very similar requirements; the integral

boundary layer solver requires very little memory and computing time. The

total memory is abou'_ 105 words, and little effort was spent trying to reduce

it. It could certainly be reduced to about 0.7 x 105. With 200 wall points the

matrix alone requires 0.4 x 105 words. The computing time with N_ -" 1100

and Nw - 200 is about 0.4 seconds per step on the CRAY-1. This figure is

probably close to the minimum; the program was carefully written to reduce

the CPU time and all the major operations were vectorized. Theses operations

are the computations of the interactions (O(N_)), the merging tests (O(N_)),

and the computation of the stream function at the wail points (O(N_Nt,)).

The non-dimensional time step UooAt/c was 0.015. Thus a complete period

of oscillation for the square body requires about 250 seconds on the CRAY-1.

b) KPD3 code.

The KPD3 code requires a fair amount of additional memory for the

differential boundary layer solver; the total is now about 2.8 × l0 s words in

the high resolution runs (again, no special effort was devoted to lowering the

memory requirements). The additional CPU time required for the boundary

layer is modest: about 15%. The other operation that is more time-consuming

is the computation c", ,:¢ velocity field induced by the vortex sheet at the wall.

It is O(NvNw) and now involves a complex logarithm, whereas in KPD1 and

KPD2 only arithmetic operations were involved.

Simulations of the circular cylinder with KPD3 were run with two levels

of resolution. At the lower level N_ -- 1100, Nw -- 200 and At -- 0.025, and

the CPU time was about 1.1 seconds per step, or 450 seconds per shedding

cycle. The high resolution runs used Nv -- 1600, N_ -- 300 and At --- 0.02,

resulting in a CPU time of 2.1 seconds per step, or 1050 seconds per cycle.

68

1983013882-078



3) Results from the program KPD1.

a) Flow around a square.

The flow around a square is a good test because the viscous effects seem to

be reduced to a minimum. The experiments exhibit a flat drag curve from

• Re = 10 4 to Re -- 107 [57], probably because the primary separation occurs

at the front corners irrespective of boundary layer thickness or of its laminar

or turbulent character.

The computed mean drag coefficient is 1.8; the experimental value is 2.

The computed Strouhal number is .11, which agrees with experiments. These

results were obtained with Core 1, N_ = 1000, Nw = 320, a -- R0 -- .02

and At ---- .03 (U_o -- 1 and c = 2). The tendency to underpredict the

drag of the square is real: with other sets of parameters the drag was often

even lower than 1.8, of the order of 1.4. This is a little disturbing since the

case of a square was chosen precisely because complex viscous effects are not

thought to be present. One possible cause for the inaccuracy is the difficulty

for the algorithm to model the flow near a sharp corner, where the radius

of curvature is small even compared to the size of the vortex cores and the

" spacing of the vortices.

b) Starting vortex at a sharp corner.

This example illustrates "viscous" behavior in the simulations done using

the Vortex Method. In this case the viscous character is properly, although

fortuitously, reproduced.

The body is a diamond and is a fair representation of the experimental

situation in Ref. If], for short times after the start. T_e case chosen here

is an angle of 60° and a constant velocity after the impulsive start (fl -- 1/3

and m -- 0 with the notation in [58]). We shall focus on the flow pattern

near one of the corners a short time after an impulsive start (the Ksden

Vortex), and compare it with the experimental pattern. At time zero the

flow is irrotational and as a result the velocity tends to infinity at the corner.

This is the solution to the inviscid equations and it would stay unchanged
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at all times. However, in the numerical solution, vortices are seen to leave

the wall and form a starting vortex that resembles a spiral (Fig. 19a). The

streamlines also show that the flow leaves the surface at the corner along the

tangent to the upstream face; this p_ttern is generally accepted as correct _:
and coLsistent with the Kutta condition. The streamlines are also shown F

t
in Fig. 19a and reveal the topological structure of the velocity field, with a

half-saddle point a_ _he corner and one on the back face.

Visual agreement with experiments is good. In addition, the growth of the

length scale with time was compared with similarity theory. This theory, for

an angle of 60°, predicts that the length scale will be proportional to t_/T

(B. Cantwell, personal communication}. In Fig. 19b, she distance from the

tip to the point of .zero velocity (near the center of the spiral) is plotted as

a function of time, in Log-Log coordinates. The curve is close to being a

straight line and its slope close to 5/7. The Vortex Method has succeded in

simulating the formation of a starting vortex and associated establishment

of the Kutta condition.

In this case it is clear that the motion of the vortice being ad_nced

finite step by finite step, cannot accurately follow the sharp kink in the wall,

especially if the magnitude of the velocity is large. After the first vortices

have separated from the corner the flow pattern changes, the streamlines

become smooth and the velocities smaller, and the simulation can be quite

accurate. Howevec the process, originally, is caused by inaccuracies in the

numerical solution of Eq. 7.

c) Airfoil at ;ow incidence.

This case is shown only to illustrate how KPD1, a pure Vortex algorithm,

can become inaccurate when long stretches of attached flow are present. This

is a major issue about the Vortex Method in general.

The flow around an airfoil at a low incidence, 10°, is shown on Fig. ",=,

treated by KPD1. The correct solution is a flow that rem-:i_':_ :..,: .c_, ”&almost to the trailing edge, with a very narrow wake and _er:. !o_ ,_, ._ :'he

lift is accurate!y specified by potential flow theory and the _ _=:,___ .r,m
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is satisfied.

In the numerical simulation, on the other hand, separation (defined as a

departure of the flow from the solid surface) is seen to occur just ,townstream

of the leading edge on the upper surface. As a res_Jt the wake is much too

wide, the drag is significant and the lift tGo low, probably because the trailing

edge is immersed in the wake and the Kutta condition is not satisfied.

The strong thickening of the boundary layer is a clear manifestation of

the numerical diffusion that was described earlier (Chapter lTD. Basically,

the boundary layer as represented by vortices can remain attached only in a

significantly large and favorable pressure grad ent (it actually does along the

lower surface). Thus KPD1, and pure Vortex methods in general, are not

well adapted to the simulation of flows past streamlined bodies. For these

bodies, especially for airfoils, the accuracy will improve dramatically when

the boundary layer is treated properly. In Fig. 20b the same flow is shown,

treated by KPD2. The pattern is now correct and the quantitative features

like lift, drag and moment much more accurate (see section 4).

4)ResultsfromtheprogramKPD2.

KPD2 isused mostlyto compute airfoilflows.KPDI would not be

accuratebecauseairfoilflowshavelongboundarylayers,and KPD3 isstill

restrictedsmoothshapes.

a) Attached flow on an airfoil.

This example is a direct test of the accuracy of the method, in an admit-

redly simple case, by comparing it to an exact solution. A $oukovsry airfoil is

treated at an incidence of 5°. The solution for potential flow with tbe Kutta

condition satisfied is known analytically; the pressure coe_Icient predicted

by the numerical method together with the exact one are compared in Fig.

21. The agreement is very good, which proves two facts. First, the flow as

a whole is very well predicted and the circulation has been properly chosen

by the algorithm to satisfy the Kutta condition. Second, the method of corn-
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putation of the pressure, using Eq. 13, is accurate; this is importr.nt because

Eq. 13 does not involve Bernoulli's theorem, which happens to be valid here

but is not valid when vortical flows are simulated.

b) Starting vortex on an airfoil.

Formation of the starting vortex and establisl_,.znt of the Kutta condition

are key features cf the flow around airfoils; they ate responsible for the exis-

tence of lift. Traditionally, the Kn_t_a condition has been added to inviscid

models in order i,o mimic a viscous phenomenon, namely the separation of

the boundary layer that takes place at the trailing edge if the fluid attempts

to flow around it. However the Vortex method, although it is in principle

inviscid, reproduces this viscous feature without any intervention. This is

another case in which the algorithm conveniently disobeys the inviscid equa-

tions: vortices are _thrown away" from the trailing edge if large velocities are

present, until the circulation is correct and the trailing flow is smooth.

A convincing and probably accurate simulation of the starting vortex has

been obtained and compared with the results of Wagner's theory !2] . An

airfoil is started impulsively in an irrotational fluid. The airfoil is at incidence

but there is no circulation around it; thus the Kutta condition (in classical

terms) is not satisfied at time zero. The boundary layer is seen to separate

from the lower surface at the trailing edge in Fig. 22. The vortex sheet

it carries curls up into a vortex that is swept downstream. Since the total

circular,ion remains zero, a circulation of the opposite value is established

around the airfoil. This circulation grows with time, as does the lift on

the airfoil. This lift starts at about half the steady value; Wagner's theory

predicts an initial lift of exactly half the steady value. In general, agreement

between the two curves, shown on Fig. 23, is very good. Wagner neglected

the curling up of the vortex sheet and this might account for some of the

disagreement. Also, Wagner usvcl thin airfoil theory and the steady lift curve

slope was 2r; here the airfoil was 12% thick, which results in more lift. The

convergence of the lift to the steady value is made slower by the downwash

of the starting vortex; this downwash decays only like t -1
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Also of interest are tht' motion of the center of pressure, and the presence

of drag, due to the downwash created by the vortex. At later times the center

of pressure is a_ the quarter-chord point and the drag is zero ('/ig. 22).

c) Dynamic stall.

The next case is the dynamic stall of the same NACA 0012 Mrfoil. Dynamic

stall is a challenging problem, and a ca_e was _hosen for which experimental

results are available [60]. The airfoil performs prescr;bcd oscillations in picch

with the pivot at the quarter chord. The incidence is a sinusoidal function of

time givcu by

a($) = Oeo-Jr-o_lsin(kU_t/c) (99)

The Reyncids number is 2.5 10e. In the simulation, the lower boundary

layer was in a favorable pressure gradient and generally it did not undergo

t:ansition and did not separate until th_ trailing edge. The upper boundary

layer tended to undergo transition an, rer._in attached at low angles of

attack; at high angles of attack, it separated while still laminar. It switched

instantaneously from one state to the other; this is not very satisfactory, but

is iqherent in the transition model that was used. Also, separation bubbles

in which the separated shear layer makes a transition and reattaches on the

upper surface cannot be reproduced by *.he algorithm. This is unfortunate

since such a bubble is probably present, at least during par_ of the cyci_

(KPD3 was written to eliminate these shortcomings as far as possible).

The history of the flow dur!ng one cycle can b¢ fel|(.wed on Fig. 24. The

airfoil together with the vortices are shown; the force is displayed in terms

of its magnitude, direction and axis of application (the center of pressure).

Finally, the dashed line shows the suction distribution, _,easured norm_ to

the surface and referenced to the stagnation pressure. The cycle begins with

attached flow at 5° incidence; the ,(.utta condition is satisfied as evidenced by

the smooth wake emanating from the trailing edge. The center of __ressure is

very clo_ to the quarter-chord, which is expected for a symmetrical airfoil.

As the incidence rises, counterclockwise circulation is shed; lift on the airfoil

rises and the suction peak at the _ose gets larger. At e',out 20°, the pressure
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gradient that follows this suction peak becomes too severe and the upper

boundary layers fails to undergo transition; it separates instead from the nose

: of the airfoil. A vortical region of moderate thickness forms on the upper

surface. The flow then reattaches for a short time before entering the fully

stalled condition (it :s not certain whether this reattacnment is physically

correct).

After the incidence passes its maximum of 25°, the flow on the upper surface

remains separated and large eddies form on the upper surface° These eddies

: are accompanied by low pressure regions. The surface pressure distribution is

strongly disturbed; the center of pressure moves away from the quarter-chord,

mostly towards the trailing edge. The lift stays roughly constant until the

= i,_" :er s back to about 15°, then falls. During the rest of the cycle, the

la_,_ vortices are progressively washed away and the flow reattaches on the

upper surface. The center of pressure still has large excursions: this would

be felt as buffeting in an airplane.

Figure 25 presents the numerical results for the normal force coetncient and

the moment coefficient, compared with experimeDtal results reported :n [60].

The experimental results are phase _.verrged over a large number of cycles.

Three successive cycle_ of computation are shown; the first cycle is not as

representative sir,ce it s_rted from fully irrotational flow. Three cycles are

too small a sample for phase-averaging and this is why individual cycles are

shewn.

The agreement is quite good. However, the peak mlue of the normal

ferce is lower in the computations. The peak value of the moment is also

: significantly lower; the experi_ ents exhibit a large peak during the phase

, called. "moment st_ll". Another area of disagreement it during the low

iucidence period. Reattacl_nent often seems to take an unexpectedly long

time _n the computations and this might account for the diffe,-ence. It is

hoped t_at these disagre-,ments will be better understood when the tunnel

wa!ls are inch, ded i_ the computation,

Figure 2¢"_..o_s the pressure distribution on the airfoil during dynamic

stall, af_e: it ha_ been Fourier-transfoi'med in time. The mean pressure is

]
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shown, as well as the in-phase component (the phase being given for the

incidence by Eq. 99) and the out-of-phase component. Each component has

been _on-dimensionalized, the mean is divided by the mean incidence s0

and the first harmonics are divided by the amplitude c_1. The agreement

between data extracted from different cycles is fair. The difference between

the mean and the in-phase components, and the existence of an out-of-phase

component, are manifestations of the non-linear behavior of the flow.

d) Tilt-Rotor wing in hover.

The "Tilt-Rotor"concept combines many of the advantages of wingborne

aircraft and of helicopters and has been studied for many years. NASA and

Bell have recently conducted a very successful experimental program which

included the construction and testing of the XV15 aircr_a'_. A production

version called $VX is now being developed and more emphasis is being placed

on performance. One factor in the hover performance is the download ex-

perienced by the wing in the downwash of the rotors, both an experimental

program and a numerical study are under way at NASA Ames to improve

this aspect of the system.

A Tilt-Rotor aircraft has two rotors that can'point vertically for vertical,

helicopter-like take-off and landing, and also point forward for airplane-like

forward flight. The Tilt-Rotor is much more efficient than a helicopter in for-

ward flight because it avoids the asymmetric conditions than deteriorate the

operation of the helicopter rotor, with the advancing blade experiencing drag

rise from high subsonic Much -lumbers and the retreating blade experiencing

low dynamic pressures and stall. As a result the Tilt-Rotor is much faster

and has a lower fuel consumption than the helicopter; its development was

delayed mostly by aeroelasticity and control problems.

The Tilt-Wing concept, in which the wing tilts with the rotors, was not

as successful probably because it required a heavy articulation at the wing

root, and had more severe control problems. However, for a Tilt-Rotor when

the ,otors are pointing up the wing is still hori_.ontal and placed in the

downwash of the rotors; this creates a downward force on the wing which is
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verysignificantespeciallysincehoveristhemost criticalconditioninterms

ofpayload.The objectiveistodecreasethisforceby improvingtheshapeof

thecleanwingand by addingdevices,likeflaps,thatcouldalsoserveashigh

liftdevicesforslowforwardflight.

Almostallofthewingisinthedownwash,whichisfarfrombeinguniform.

An accuratecomputationofthethreedimensionalflowispresentlyoutofthe

question;thecomputationswillbedone intwo dimensionsand areexpected

toshow trendsandprovideguidelinesforthechoiceoftheairfoiland landing

deviceson thewing.

The Tilt-Rotorwingcanbe quitethicksincetheMach numbersitreaches

arenotveryhigh;themain advantageisalighterstructureandmore spacefor

fueland othercomponents,butthelargerthicknesscoincidentallyimproves

thesituationwithregardtodownload.The NACA 4421airfoilwas chosen

forthefirststageofthe numericalstudyand threelandingdeviceswere

considered:two kindsoftrailingedgeflapand a leadingedgedevice.Both

flapsspan25% ofthechord;thefirstonepivotsabouta hingethatiswithin

thethicknessofthe airfoiland thesecondone has thehingeat,the lower

surface.The deiiectionoftheflapintroducesan arcofa circleaspartofthe

topsurface;thefirstflaphasacircleofsmallerradiusthanthesecond.Th;s

curvaturewas expectedtostronglyinfluencetheseparationoftheboundary

layerand thereforetheglobalforce.The leadingedgemodificationinvolved

rrmovalof about10% ofthechord,thusreducingthe effectivechordand

increasingtheleadingedgeradius,withagainafavorableeffecton separation

(thepartoftheairfoilthatisremovedwouldbeplacedundertheleadingedge

and thusshieldedfromthemainstream).

The KPD2 program was chosen. Allcaseswere run with the same

parameterstoallowa comparison.The Reynoldsnumber was 10z,and the

bcundarylayerunderwenttransition;alltheshapesweredefinedby about

200 points,with At _--0.03,R0 _ c -- 0.02,Do -- 0.2and Nr -_ 1000.

Severalthous_udtimestepswerenecessaryforan averagevaluetoemerge;

thisrepresents20 to30 minuteson theCRAY-I.

The flatplatewastreatedunderthesameconditionstoprovidea reference;

theresultforthedragwas about3.5,comparedtotheexperimentalvalueof

r
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about 2 [5]. Thus all the results are probably higher than the correct values;

however, this does not prevent a comparison between different configurations,

which was the main objective of the study.

Figure 27 shows the drag computed for the flat plate reference, both flaps

with deflections ranging from 0 to 90°, and the modified leading edge with

the large radius flap. Th,: clean airfoil had a drag coefficient of 2.8, which is

also thought to be higher than the correct value.

It appears that the two flaps give results that are much closer than one

would have expected, and that the small radiu:, flap can even have less drag.

In retrospect, the reason is probably that even when the flow separates from

the top surface at the hinge it can reattach on t_he flap; see Fig. 28 (in

Fig. 28 the airfoil, vortices and force are shown, as well as the instantaneous

streamlines). The size of the separation bubble will not influence the drag.

Furthermore, at low deflections the large radius flap actuall:_" increases the

chord of the airfoil, compared to the small radius flap; this colzld explain why

the small radius flap is better below 45° . At higher deflections the advantage

of the large radius flap in terms of delaying the separation seems to come

into play; however the difference is probably not large enough to override the

struct_tral considerations and dictate the choice of the flap.

Another lesson learned is that low flap deflections barely reduce the drag;

here, a linear decreaoe could have been expected. The drag then reaches

a minimum around 750, and then rises again; this is probably because the

flow does not reattach on the flap any more (Fig. 28). This character of

the drag curve, with a plateau at low deflections and a minimum at less

than 90°, was observed in measurements performed on the aircraft itself; a

more quantitative comparison will not be attempted since the flow is strongly

three-dimensional.

A third lesson learned is that the leading edge modification reduces the

drag appreciably without flap deflection, but loses almost all of its effect

when the flap is deflected to 750 (Fig. 29). This was disappointing and no

convincing explanation has been found. Other types of leading edge devices

are now considered.

The flows exhibit.ed a shedding of large vortices; the Strouhal numbers were
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of the order of 0.15, which represents rather slow variations of the loads. Some

configurations also gave rise to a significant force normal to the airflow. The

clean airfoil had low pressure near the leading edge and a small forward force°

With the flap deflected, rearward forces of the order of 0.5 were observed.

These might have to be taken into account since the available control power

is not very high in a hover condition.

As a whole this study demonstrated the flexibi!i_y of the method in treating

many different shapes, and produced consistent and useful results even in a

first pass" with a set of parameters that was not optimal. It also gave clear

indications about the structure of the flow, for instance the presence of a

bubble at _he hinge. In the near future a more extensive study will involve

the actual XV15 airfoil, flaps and other possible devices, wall effects, and will

be directly compared to wind tunnel tests_

5) Results from the program KPD3.

The program KPD3 has been applied only to the circular cylinder.

Attempts to treat airfoils with KPD3 were unsuccessful; the algorithm seems

to be unable to treat the trailing edge region properly. The most likely e_-

planation is that the boundary layer assumptions are simply not applicable

in a region where the wall has so much curvature.

The flow around a circular cylinder is the most classical bluff body problem

and the best documented. It is also a good test of the ability of the program

to predict the stucture of the boundary layer. Its dependence on the Reynolds

number is known to be strong. The range of Reynolds numbers that were

considered is from 104 to 3.16 x 107.

The value 104 is considered to be roughly the lower limit because at Re -_

104 the thickness of the viscous region is about 0.035, which is not very

small any more compared to the radius of cutvature, which is 1. As the

Reynolds number decreases, use of the boundary layer assumptions become

less justifiable.

The value of 3.16 × 10 7 was chosen as the upper lir,_i.t; experiments nave
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beenconductedup to about0.8x 107.Agreementbetweennumericaland

experimentalresultswasfoundtobequitegoodintheupperrange.Therefore

itseemsreasonabletoconsiderextendingtherangeofthenumericalsimula-

tionsby thisfactorof4 inReynoldsnumber.Furthermore,theturbulence

modelbasbeenvalidatedatReynoldsnumbersslightlyhigherthan107[50].

Fig.30showstheglobalnumericaland experimentalresultsforthedragof

acircularcylinder.Fig.31 showstheStrouhalnumberand Fig.32themean

, separation angle. Fig. 33 shows the pressure distribution at eight different

;, Reynoldsnumbers.ThesecasesincludeRe = 104,105,10s and 107, some

extracasesinthecriticalregion:105"_(3.16x I05),105.75(5.62x 105)and

10s'5(3.16X 10% and finally107.5(3.16x 107).Ex'_erimentalresultsarealso

shown when available, [61],[62],[63],[64]. Fig. 34 shows the wall shear stress

coet_cient at the same Reynolds numbers. In order to make comparisons

easier the scales are the same for all the pressure plots and for all the shear

stress plots, except 104.

The Strouhal number was determined by counting the apparent number of

periods in the lift signal during the simulation, using plots like the ones in

Fig. 40. If the length of the sample is of the order of 5 periods, this way of

determining the Strouhal number is accurate although somewhat arbitrary.

Another way is to Fourier-analyze the signal; however one still has to "clip"

the sample to simulate a periodic signal, which is also arbitrary. The Fourier

analysis method is reliable only if long samples are available; experimental

results ofteu provide hundreds of cycles, but computations do not, for obvious

cost reasons. As a result, the spectra contain subharmonics which would

probably disappear if longer samples were available. In that sense, these

harmonics are not meaningful, physically (see Fig. 41).

The mean separation angle was defined as the time-average of the angle at

which the instantaneous shear stress is zero. This does not coiucide with the

angle at which the time-average of the shear stress is zero, because the shear

stress is a strongly non-linear function in that reg;on. Actually, in some cases

thenumericalresultsfortheshearstressdo notcrosszero.Thispointwill

be developedlater.
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a) Subcritical regime.

This regime exists for Reynolds numbers under approximatively 105. The

drag and Strouhal number are almost constant, and the evolution of the flow

as the Reynolds number increases is weak (although the base pressure does

change, and the lack of change in the drag is fortuitous [65]). Both boundary

layers separate while still laminar and the separation point does not move

significantly. The shear layers transition in the wake and transition occurs

closer to the cylinder as the Reynolds number increases [65]. Apparently the

"drag crisis" starts around Re --- 2 x 105 when the process is complete and

transition occurs in the boundary layer just before or after separation, rather

than in the wake. As a result, the boundary layers reattach and separate

again, only farther downstream.

In the numerical results the boundary layers never tra=_tioned for

Re.trnnlds numbers of less than 3.16 × lC_. Thus che only evolution with

Reynolds number is the thickness 5 of the viscous region, which scales with

Re -1/2, from 0.035 as 104 to 0.015 around 10_. The average separation

angle is almost constant around 84°. The Strouhal number is between 0.205

and 0.195, which is considered a good prediction. The drag coefficient on

the other hand slowly decreases from 1.42 at 104 to 1.03 at 105 and 0.88 at

3.16 × 105. This i3 not very good since, experimentally, the drag does not

decrease in that range.

The pressure and shear stress distributions are correct qualitatively, but

the quantitative differences which cause the inaccuracy in the predicted dr_g

are obvious. At 105 the bare presstu is -0.85, compared to -1.25 in the

experiments. There is a significant pressure rise downstream of the separation

point, which is no*,correct physically.

The average shear stress remains positive until the 110° point, is reached,

while the mean separation angle is 85° . The reason for this paradox is

clear on Fig. 35b, which shows a still of the simulation at Re -- 105.

The instantaneous shear stress crosses zero, but has significant oscillations

downstream of that point. As the flow oscillates the separation point moves

back and forth and, in the average, the shear sl,ress remains very close to

zero instead of being frankly negative as in the experiments. This value
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of the shear stress is small and results from the averaging of much larger

numbers; therefore, although the situation seems inconsistent physically, the

inaccuracy is quantitatively small.

Figure 35a shows the state of the inner flow at the same instant. It includes

vorticity contours and the values of Ue, Ve and Cp (the inner region has been

unwrapped from the cylinder and the scale expanded in the n direction).

. Starting from the center of the figure (front of the cylinder) the two boun-

dary layers of opposite sign divide and progress along the wails. The mag-

nitude of Ue increases, the pressure decreases (favorable gradient) and Ve is

negative (flow into the inner region). The wall _near stress (plotted in Fig.

35b) reaches a maximum. In the region near 90° the situation changes. The

pressure gradient reverses and is now adverse; Ve becomes positive and the

flow as a whole starts moving away from the wall, taking the vorticity with

it. The shear stress rapidly falls to zero. Finally the vorticity leaves the

inner region: Us falls to zero and the shear layer is now in the outer region

under the form of vortices. Downstream of the separation region the pressure

fluctuates as the eddies contained in the outer region progress along the wall.

However the time-averaged pressure is smooth and almost constant in the

wake region.

The behavior that was just described is consistent "with what is known of

the flow. The comparison between Fig. 35b and Fig. 36 probably explains

why the numerical results differ significantly between Re -- 104 and 105.

Fig. 36 shows that at 101 the separating shear layer is much thicker than at

10s. As a result, it_ breakdown into circular vortices is slower and occurs

farther away from the wall region. Being thicker the shear layer is also

better represented by the limited number of vortices that are available. In

contrast, at 105 it becomes difficult for the vortices to properly model the

shear layer; the vortices are seer, to linger near the wall while they separate

more cleanly at 104. Very probably, the vortices cause too much mixing

too soon, which creates a situa_,ion analogous to a turbulent boundary layer:

a layer with strong mixing and a laminar sublayer. This situstion is not

incorrect physically, but the intense mixing is partly of numerical origin and

may not be quantitatively correct.
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To support this conjecture the flow at Rc -- 105 was simulated with two

levels of numer_.cal resolution. At the low leTel /_ --- 1000, N_ -- 200 and

/xt -- 0.025 were used. At the high leveJ N_ -- 1600, Nw = 300 and At ---

0.02 were used. The results were significantly different: the Cd is 0.8 with low

resolution and 1.03 with high resolution (the correct value is 1.2). We can

conclude that the regime just below critical and the critical regime itself are

the most difficult to simulate, because the shear layers are very thin, and the

level of resolution used is not quite sufficient.

Other quantities have been computed to compare with experiments. The

average velocity a_ the edge of the attached boundary layer is shown in Fig.

37. The agreement with the experiments reported in [65] is excellent. This

is consistent with the good agreement shown by the pressure in the same

region.

The value of the streamwise veloc_.tyon the centerline behind the cylinder is

shown on Fig. 38 and compared with experiments from [62]. The agreement

is good in the near wake but worsens in the far wake. The computations

seem to introduce less dissipation than the experiments indicate. This was to

be expected since the successive merging of the vortices in the wake tends to

concentrate the vorticity whereas in the real flow the turbulent stresses spread

it. It seems that the description of the wake is adequate up so approximatively

2 diameters of the back of the cylinder.

In conclusion, the subcritical regime, even though the boundary layers are

laminar, appears to be more sensitive to transition in the near wake thaD

was expected. A more accurate description of this region is probably needed.

Another possible source of error is the three-dimensional character of the i

real flow; the consensus seems to be that large scale three-dimensional effects

are not very strong in the subcritical regime, but small scale effects like

streamwise vortices might play an important role in the transition region.

b) Critical regime.

This regime is the most complex and the most difficult to model. An

intense ev_perimental activity to meas,lre and describe the flow accurately is
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being carried out [61]. It has long been known that t,e drag coefficient takes

very low values, of the order of 0.25, and that vortex shedding is disrupted

[64]. It was also known that this "drag crisis" is associated with transition in

the boundary layers [1]. Recent experiments have shown in addition that the

decrease in the drag is probably not smooth but occurs in steps instead, and

that the flow can be in otates with a non-zero average lift [61]. Finally, the

span-wise coherence of the real, three-dimensional flow is probably weakest

in the critical regime [67].

The numerical method essentially failed to model the critical regime. This

is not very surprising; the dramatic changes in the flow pattern are probably

associated to reattachment of the boundary layees, or of only one of thcm.

Reattachment is a delicate phenomenon to simulate; it requires a very ac-

curate coupling if a zonal viscous-inviscid approach is used, and in any case

a very line transition and turbulence model [55]. The turbuience model used

here was not designed with low Reynolds numbers in mind. Furthermore

the transition model was designed for attached boundary layers. It is a "one-

dimensional" model in which the whole boundary layer transitions at once.

In contrast the results in [55] showed a very non-uniform turbulent energy

across the layer.

As mentioned earlier transition was not predicted by the simult'ions for

Reynolds numbers of 3.16 × i05 or less; for Reynolds numbers of 106 or more

transition always occurred in both boundary layers. In that sense, the critical

regime predicted by the computations !s between these two values of Re. At

Re _ 5.62 × 105 transition was intermittent; in Fig. 39 transition is seen to

occur in only one of the boundary layers, as can be inferred by the sudden

rise in the wall shear stress. However the simulation did not stay locked in

either position (Fig. 39a and 39b). As a result the stable, asymmetric, lifting

situation that was observed in experiments [61] was not obtained. The low

drag values were not observed either.

'/_,.- shear _tress distribution at 5.62 × 105 reflects this intermittent tran-

sitior., it has a plateau between 90° and ll(P. The pressure distribution does

not compare well with experiments, if only because it is essentially symmetri-

cal.
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One feature of the critical regime that is observed is the alteration of

the vortex shedding pattern. Fig. 40 shows the drag and !i_ as function

of time in the simulations at Re ---- 104, 3.16 × 105 and 3.1_ × 106, and

Fig.41 shows the spectra of the lift signals. The lift has a fairly well defined

oscillation at 104 (although strong modulations are evident) and very regular

oscillations at 3.16 × 106. At 3.16 × 105 the lift keens the same sign for

much longer periods of time and its behavior is very far from being harmonic.

This impression is confirmed by the examination of the spectra: the peak

is much broader at Re -- 3.16 × 105. This might be an indication that a

small modification of the conditions could cause the simulation to find the

stable asymmetric configuration. However, the samples were too short for tl_e

spectra to be entirely reliable. For instance, the peak at a Strouhal number

of approximatively 0.08, at Re -- 105, is thought to be spurious.

In conclusion, the correct simulation of the critical regime would probably

require a more elaborate transition and turbulence model (the McDonald-Fish

model used for the simulations in [55] was quite complex). However it seems

that the method should first be improved until it simulates the subcritical

re, me very accurately before another attempt is made on the critical regime.

c) Supercritical regime.

This regime exists for Reynolds numbers above approximatively 4 x 10e.

Both boundary layers transition before separating and the flow is similar to

the subcritical flow, except that separation occurs much later, whi-h results

in a narrower wake, a lower drag coefficient and a higher shedding frequency.

The drag coefficient seems to be almost constant again in that range (although

the experiments do not exceed 8 × 106, so that, the "plateal£ is quite narrow,

covering oniy a factor 2 in Reynolds number).

The numerical results show slow variations of drag coefficient, Strouhal

number and separation angle up to /i_e -- 3.16 × 107. Separation does
I

occur later than in the subcritical regime, and the changes in wake pattern, !

shedding frequency and drag are all correct qualitatively. The pressure and

friction distributions are almost Reynolds number-independent; the transition
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point just moves upstream as the Reynolds number increases. The agreement

with experiments for the pressure distribution is not excellent and the drag

coefficient is lower than the experiments indic_,te. However there is significant

scatter in the experimental results. The agreement in the she_ r stress is poor;

the experiments do not show the steep rise associated with transitiop.

Numerically the simulations look "healthier" in that range than at loner

Reynolds numbers. The separation is frank and the pressure distribution is

smooth (Fig. 42 shows a still of the inner flow and Fig. 43 four stills of

the outer flow. The non-dimensional time, based on velocity and radius, is

indicated and the four stills cover approximatively one period of shedding).

The reason is probably that the separating shear layer is thicker again, due to

the Reynolds stresses in the inner region. Another sigv is that at Re -- 106

the simulations with low and high resolution agree very well (Figs. 33 and

34). This indicates that the resolution is sufficient.

In conclusion, the supercritical regime is easier to simulate from a numerical

point of view, and the Baldwin-Lomax turbulence model seems to work well.

The accuracy of the drag is not easy to assess since few experiments have

been conducted in that range.

This concludes the description of the results obtained from the programs

KPD1, KPD2 and KPD3. These results show that the method can

reproduce many of the features of separated flows a- " is generally in fair

to good agreement with experimental predictions. There is, however, room

for improvement of the quantitative agreement, even in the framework of a

two-dimensional method.
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V) CONCLUSION.

In thiswork we have developeda new numericalmethod for two-

dimensionalseparatedflows.Itincorporatesan improvedversionof the

VortexMethod,totreattheinviscidouterregion,and widelyusedintegral

orfinitedifferencemethods,totreattheviscousinnerregion.

The numericalmethodusesa formulationoftheequationsintermsofthe

vorticity.Thisformulationhasbeenshowntobe mathematicallyequivalent

to the conventionalvelocity/pressureformulationand include'_caseswith

solidsinnon-uniformmoticuor rotation.Itcouldalsotreatbodiesin a

uniformshearflow.

The flowistreatedasinviscidaway f,'emthesolidwalls.Thisismoti_-,,_d

bothby physicalarguments(inthewak? thelargestructuresdominateand

arenot verysensitiveto theviscosity)and by numericalarguments(itis

not practicalto modelstructuresso finethattheviscosityinfluencesthem

significantly).

Itisshown thattheVortexMethod can producea significantnumerical

' diffusion.Thisdiffusionispresentonlyif velocitygradientsarepresent;this

isan advantage,comparedtoE,derianmethods.Howeverstronggradients

. arepre._entinmostviscousflows,especiallynearthewall.As a result,the
numericalcliffusioncanhavea dominantinfluenceon thesimulation.

Inthefirstmain versionofthealgorithmallthevorticityisrepresented

by vortices,but theirdeparturefrom thewallisdelayed,ffnecessary,so

thatseparationoccursattheproperlocation.Thislocationispredictedby a

boundarylayersolutionba_edon atlintegralmethod,whichisruninparallel
withthevortexsolution.
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Inthesecondmainversion,athinregionnearthewallistreated._sviscou%

with boundarylayerassumptions.Thisinnerregionistreatedby a Finite

Differencemethod.The key assumptionisnottheneglectofthestreamwise

viscousterm u?)2o_/,')s2,sincecer._eredfinitedifferencesareusedinthe s

directionanyhow,itistheneglectofthe@v/Antermint_'evorticlty(toavoid

thesolutionofanellipticequatio-forthevelocity)andthecouplingwiththe

_ outerflowby means ofa vo_ex sheet(tosimplifytheinteractionbetween

thetwo regions).The couplingalgorithmisthemostdelicateelementofthe

algorithm, and ca. a eate problems especially if the wall has tight curve,_.

However it is an essential ingreciient to make the method versatile and lessen

its dependence on empiricism.

The new method conserves the traditional advantages of the Vortex Method

for the treatment of the wake: it is grid free and _curate in modeling

transport phenomena, it treaSs the far field in a simple and accurate way

It requir-_, much ie. ; memory _pace and possibly less computing effort than

comparable Finite Difference methods. In addition the method cau now

treat arbitrary solid bodies or grou )s of bodies; conformal ma.ppings are not

involved.

Many choices have to be ma_le when designing a practical method. Some

of these choices could be mad_ in a systematic way: for instance the design

of the merging device• Some choices were made on a more intu,tb e basis,

and therefore could probably be improved: for instance some details of the

coupling procedure, and of the impleme,:tation of the turbulence model.

In its first version the new method treats bluff bodies r,"_!iablyand is quite

accurate. With separation properly cont:'o!!ed it simulat-_ th_ stall of air-

foils accurately; the comparison with experimental results is very encou:ag-

ing. Some possible reasons for .,ae remaining disagreement are the thre _-

dimensional character of the real flow, which the method is unable to account

for, and. the interference with wind-_anne_ walls. These wall effects are being

added to the method.
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The second version has been used for an extensive study of the flow past

a circular cylinder at Reynolds numbers ranging from 104 to 3. × 10 7. The

c]-_age in wake pattern and decrease in the drag coefficient as the boundary

layers switch from laminar to turbulent are clearly observed, even though

the pattern in the critical range itself is not correct. In this range, the

*hree-dimeL_ional effects are probably quite strong, and the modeling of

transition and turbulence is the most delicate. In the supercritical regime

(_._ove 3. × 106) most of the flow characteristics are essentially constant and

a_ee well with experilr_ntal results. In the subcritical regime (from 104 to

2. × 105) the shedding frequency is accurate and the drag is close to the

correct value. However the drag coefficient tends to decrease steadily as the

Reynolds number increases, which is not correct. This seems to be due to a

_transition _ of the separating shear layers which is not accurate, physically.

This problem could be alleviated significantly, although not suppressed, by

refining the discreti_7,aticn. However, a further increase in the computation

cost might not be the best answer; it would be preferable to improve the

algorithm in some way.

The prospects for the method developed here to be applied to practical

cases, at least in its first version, are good. This version already has two active

research applications: the Tilt-Rotor Wing study and the Vortex Flowmeter

study. Both projects are continuing and a favorable interaction between the

numerical work and the experimental work is building up. The second version

will probably be used for further investigation of the circular cylinder flow.

. For the future many extensions are possible, especially for the second

method. They include:

• The introduction of a boundary layer model of higher order, with curva-

ture terms, in the hope of treating bodies with tight curves.

• The refinement of the coupling algorithm in the spirit of the "strong in-

teraction" theories for the separation region. A more mathematical approach

could be taken; the improvement of the coupling might involvc _ more corn-

\.
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plex model than the single vortex sheet placed at 5*.

• In the long term the inner region could be of order 1 in thickness and be

treated by a full Navier Stokes solver. This should remove all the problems

associated with boundary layer assuml:_ions. On the other hand it would

probably demand a much more complex coupling procedure, as well as the

solution of an elliptic equation in the i..ner region instead of Eqs. 29 and 30.

• The introduction of a more elaborate model for transition and for the

turbulent stresses, in the hope of reproducing the well-known "drag crisis" of

the circular cylinder and the recent findings about stable asymmetric states

and discontipuous variation of the drag coefficient. However, such a model

is not readily available, and in addition it might be that a two-dimensional

model will never be able to account for the drag crisis. This question is open.

• It has been proposed to couple the Vortex Method to a finite difference

method to treat compressible flows; the finite differences would handle the

compressible effects efficieutly on a fairly coarse mesh while the vortices would i

provide a fine description of the thin shear layers in the wake. The theoretical i

work to support these ideas has not bee _ done yet.

• The extension to three dimensions, to treat wings or cars for instance, i

The validity of two-dimensional aualysis for such cases is very liruled, and a

relatively crude three-dimensional method might be more useful than a "fine-

tuned" two dimensional method. The power of a CRAY should be sufficient

for simple cases, and the treatment of the solid should not be very different i
from the two-dimensional case. What is needed is a new three-dimensional

:_ Vortex discretization that would be reliable and more flexible than the present 1

methods, with their connected filaments; such methods are currently being

developed.

i
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APPENDIX A

This appendix contains the description of the versions KPD1 and KPD2

of the program. They differ from KPD3 in the way they handle the wall

• region.

1) Program KPD1.

This version is a pure Vortex Method. It is mentioned-mostly to clarify

some issues about the Vortex Method and its ability to simulate some viscous

flows while solving the inviscid equation.

In KPD1 even the boundary layer vorticity is represented by vortices that

belong to the outer flow. The vorticity is immeaiately injected into the vortex

region instead of transiting through an inner region as in KPD3; the new

vortices follow the wall until they separate. The treatment of the wall region

is thus very simple (Fig. 36). The rest of the algorithm (blob shape, time

integration, merging, etc.) is the same as in the ou er region of KPD3 (see

Chapter IV).

Fig. 37 is a flow chart of KPD1; it is quite a simple program and a listi_

of it is included in Appendix B.

2) Program KPD2.

In this version, the premature separation of the vortices float often occurs

with KPD1 (see Results), is artificially prevented on the basis of a boundary

layer computation. The boundary layer is computp _ by an integral method.

The integral method is chosen for its simplic_=y and low cost. The solvers

used are taken from Ref. [68]: Thwaites' m" _od for the laminar part of the

boundary layer and Head's method for , .e turbulent part. Both methods

use a small number of integral quanti_es in the boundary layer as degrees of

freedom and compute the boundary tayer by marching in the stream direction,

using empirical laws for tb, _volution of the integral quantities. Neither
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method can be used downs:.ream of the separation point. Both methods were

, designed for steady boundary layers; the unsteady effects on the boundary

layer were neglected. Finer integral methods exist that include the unsteady

effects; however these are probably weak compared :.o the interaction with
't

:_ the outer flow _hen massive separation occurs. Transition was modeled by
_t

, the Sclicht. g-Granville criterion as in KPD3.

The _ttpling between the vortex flow and the boundary layer is done as

.! foll_;_s: the vortex flow determines the instantaneous pressure distribution,

_nd the boundary layer determines the separation points. Fig. 38 is a flow

chart of KPD2.

At each time step, the pressure distribution is computed from the outer

flow solution, using Equation 13. This pressure is then used as the forcing

function to solve the boundary layer equation (this is upstream of separation

and Bernoulli's theorem applies). The upper and lower boundary layers are

computed, from the attachment point to their first separation point.

Experience with KPD1 shows that the vortices, if they are left free, always

separate too soon. Therefore making them separate at the proper location

is simt'!y a matter of delaying their natural separation. To achieve this, all

the vortices that were created upstream of the desired separation 15oint are

marked as "temporary" and after one time step are removed and replaced

by a fresh layer of vortices. This prevents the vorticity layer from thickening

prematurely. The vortices that are created downstream of the separation

point are marked as "permanent" and treated as in KPD1; being in an

adverse pressure gradient, near the separation point, they leave the vicinity

of the wall quite promptly. Thus the vorticity layer is effectively released

., into the outer flow a short distauce downstream of the separation that was

predicted by the boundary layer solver.
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PROGRAM i_DI(INPUT,OUTPU, ,TAPEI,TAPE8,TAPEI),
> TAPE.5-'INPUT, TAPE6--OUTPUT)

C
C 2D VORTEX TRACING SIMI_LA'flON PROGRJLM.

C
C PROGRAM WRITTEN BY PHILIPPE R. SPAL._'_T

C
C IN COLLABORATION WITH ANTHONY LEONARD.

C
C SEE AIAA PAPER 81-1246.

C

C NASA AMES RESEARCH CENTER, NO'CEMBER 1982.
C

C INCOMPRESSIBLE FLUID. UNIFORM VELOCITY UINF

C AT INFINITY, UINF IS COMPLEX {MAGNITUDE: ABSUIN,
C INCIDENCE IN DEGREES: ALPHA).
C THE PROGRAM COMPUTES THE UNSTEADY FLOW,
C SI"M_TING FROM POTENTIAL FLOW.

C THE SOLID SHAPE IS ARBITRARY, GIVEN BY THE RourINE SOLID.
C IT CAN BE MADE OF SEVERAL SEPARATE BODIES.
C THIS VERSION OF THE PROGRAM IS SIMPLIFIED

C AND MORE ROBUST (COMPARED TO THE ONE USED
C FOR'THE PAPER) AND DOES NOT HAVE ANY
C REYNOLDS NUMBER EFFECTS.

, C THEREFORE IT IS SUITED FOR SHAPES THAT DO NOT

C HAVE A STRONG REYNOLDS NUMBER DEPENDENCE,
:' C ESPECIALLY SHAPES WITH SHARP CORNERS.

i_ C FOR OTHER SHAPES, CIRCLES FOR EXAMPLE,
t C THIS PROGRAM GENERALLY GIVES RES[q.,TS

:_ C CLOSE TO LAMINAR RESULTS (RE=I0**5 OR SO).
C
C THIS MAIN PROGRAM CALI,S

C READPR, GMTRY, INIT, MERGE, BCBODY ,MOVE. ,,
C WRITING RESL_,TS ON TAPES, THEN READING THEM

C FROM 'FAPEOALLOWS RUNS TO CONTINUE EACH OTI{E'R. i
C

COMPLEX Z,V,FORCE(2} ,HUB,Z0,WALL,ZCR,X%t,UI NF _VF O
REAL MOM(2),DPDS(215,1),CP(215,1),CPAV(215)

C

COMMON/VORTEX/NVORT,Z(2000),V(20O0),VM('2000),
:> GAMMA(2000)

COMM ON / SOLID /NBDIES,NWALL (2),WAL L(215, l ),
> ZCR(alL I),mrB(a),Z0(;0,THETA(a 15, I),NINC('2)

> JNCIIS,a),XMAXia)
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COMMON/SYSTEM/NDIM_k(215,215),X(215),IPVT(215)
C

C READ AND PRINT THE PARAMETERS.

CALL READPR(ISTART,NDE S,NSTEP,N2,ABSUIN,ALPHA,

> DELT _D0,GANLMA0)
C

C SET UP THE GEOMETRY
C DEFINE THE SOLID AND THE CREATION POINTS ON ITS SURFACE.

C COMPUTE AND GAUSS ELIMINATE MATRIX OF INFLUENCE

C COEFFICIENTS BETWEEN WALL POINTS, AND DO OTHER
C THINGS THAT DEPEND ONLY ON THE SOLID.

CALL GMTRY(SIGMA2,CHARD)
C

C INITIALIZE THE TIME-DEPENDENT VARIABLES.

CALL INIT (ISTART,NSTART,T,V0_SI tIN,CHARD,D0)
C

UINF=ABSUIN* CEXP( CMPLX(0.,ALPHA*ATAN(I.)/45.))
AVFO=0

C

C MAIN LOOP; ADVANCE FLOW TiME STEP BY TIME STEP.

WRITE (6,104)
104 FORMAT(//," STEP BY STEP EVOLUTION OF THE FLOW:",//)
C

NEND=NSTART+NSTEF-I

DO I N--NSTART:NEND
C
C MERGE VORTICES TO KEEP THEIR NUMBER REASONABLE.

CALL MERGE(D0,V0,NDES,N)
C
C TREAT BOUNDARY CONDITION AT THE BODY BY AN

C EXCHANGE OF VORTICITY.

CALL BCBODY{FORCE,MOM,GAMMA0,N,T,UINF,

> CHARD,NOLD,CP,DELT,SIGM._)

AVFO=AVFO JrFORCE(1)
C

C MOVE VORTICES.

1 CALL MOVE{ITINF,SI GMA2,NOLD,DELT)
C

C END OF MAIN LOOP.

C

C STORE RESULTS IN CASE WE WANT A FOLLOW UP TO
C THIS RUN.

WRITE(8} N,T,NVORT,Z,GAMMA,VM,VO
C

#4
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C OUTPUT AVERAGE LOADS.

AVFO-----AVFO/NSTEP
WRITE (6,100)REAL (AVFO) ,AIMAG(AV'FO)

100 FORMAT(/,24H AVERAGE DRAG AND LIFT: ,2F8.4)
C

C END OF RUN.
STOP

END

SUBROUTINE READPR(ISTART,NDES,NSTEP,N2,
> ABSUIN,ALPHA,DELT,D0,GAMMA0)

C

C READ PARAMETERS.
C ISTART----IIF RUN ISFROM TIME 0.
C ISTART--'0IFIT ISA FOLLOW-UP.
C NDES DESIRED NUMBER OF VORTICES.
C THE PROGRAM WILL ROUGIILY MAINTAIN
C THE NUMBER OF VORTICES AT NDES. NSTEP NUMBER OF STEPS.
C ABSUIN MODULUS OF UINF,ALPHA INCIDENCE
C IN DEGREES. DELT TIME STEP.
C DO PARAMETER IN MERGING DEVICE. D0 SMALLER PUTS MORE
C VORTICES NEAR THE SOLID AND LESS FAR FROM IT.
C GAMMA0 ALLOWS THE USER TO DISTURB THE FLOW TO
C MAKE IT REACH THE SHEDDING REGIME FASTER.
C GAMMA0=0 LEAVES IT UNDISTURBED.

C GAMMA0.NE.0 ARTIFICIALLY ADDS A CIRCULATION
C GAMMA0 AT THE BEGINNING OF THE RUN.

C (GAMMA0 IS IGNORED IF ISTART-_0).

READ (5,200)ISTART,NDES,NSTEP,N2
200 FORMAT(II,315)

READ (5,20I)AB SUIN,ALPHA,DELT,D0,GAMMA0
201 FORMAT(SFS.5)
C
C PRINT THE PARAMETERS.

WRITE(6,100)

100 FORMAT(//," VORTEX SIMULATION OF BLUFF BODY FLOW",//)

IF(ISTART.NE.0)WRITE{6,101)GAMMA0
101 FORMAT(" THIS RUN STARTED WITH CIRCULATION: ",E8.2)

WRITE (6,102)NDES
102 FORMAT(/," APPROXIMATE NUMBER OF VORTICES: ",I6)

WRITE (6,103)ABSUIN,ALPHA

I03 FORMAT{/,
>" FREESTREAM VELOCI_'Y MAGNITUDE AND INCIDENCE ",2F7.4)

WRITE (6,111)DELT

111 FORMAT(/,I1H TIME STEP ,F7.4)

g5
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WRITE {6,113)D0

113 FORMAT(/,
>" CHARACTERISTIC DIMENSION IN MERGING DE'vICE ",F;.4)

C

RETURN
END

SUBROUTINE GMTRY(SIGMA2,CHARD,LA,KA,LB,KB)

¢ !
C OBTAIN SOLID SHAPE, COMPUTE SOLID-RELATED ._RRAYS, t
C GAUSS ELIMINATE THE MATRIX, +MISCELLANEOUS. i

C N'BDIESNUMBER OF BODIES. 1
fC NWALL NUMBER OF WALL POINTS ON EACH OF THEM.

C WALL ARRAY OF WALL POINTS. ZCR ARRAY OF CREATION POINTS.
C THETA POLAR ANGI,E OF ZCR POINTS.
C THETA ISUSED TO FIND IFVJRTICES ARE
C INSIDE SOLID. Z0 USED ALONG WITH THETA.

C HUB{L) ISTHE IIUB OF THE BODY "L".INC WILL
C HELP FIND OVER WHICH WALL POINT THE VORTEX IS,
C BY BISECTION. THE FIRST DIMENSION

C OF INC MUST BE AT LEAST LOG2{NW21L).
C A ISTHE MATRIX OF INFLUENCE COEFFICIENTS FROM
C CREATION POINTS TO WALL POINTS.
C

INTEGER FIRST,NEXT(215)
COMPLEX WALL,ZCR,Z0 _HUBjNT SEC,ZZ

COMMON/SOLID/NBDIES,NWALL{2),WALL(215,1),

> ZCR(215,1},HUB(2},ZO(2),THETA(215,1},NINC(2),

>INCilS,2),XMAX(2)
COMMON/SYSTEM/NDIM,A(215,215},X(215},IPVT(215)

C
C DEFINE SOLID.

CALL SOLID(NBDIES,NWALL,WALL,CHARD)
C

C COMPUTE ARCLENGTH.
ARCL=O

NDIM=O

DO 9 L=I,NBDIES

NDIM--NDIM+NWALL(L)
DO 9 K----1,NWALL(L)

9 ARCL--ARCL +CABS{WALL(K,L)-WALL( 1+MOD{K, NWALL{I,)),L})
C
C COMPUTE CORE RADIUS.

R0=ARCL/NDIM]2.

N
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SIGMA=R0/3
WRITE(6,104)SIGMA

104 FORMAT{/," THE CORE RADIUS WAS CHOSEN AS: ",F8.4,/)
SIGM.A2"- SIGMA**2

C

C DEFINE CREATION POINTS.

DO6 L-----I,NBDIES

DO7 K-" I,NWALL(L)

ZZ=WALL(I -_MOD(K+NWALL(L)-2,N_NALL{L)),L)

> -WALL( 1+MODiK,NWALL(L)),L)
7 ZCR(K,L)---WALL (K,L)+CMPLX(0.,R0/CAB S(ZZ))*ZZ

!

C CHECK THAT WALL ANrD CREATION POINTS .aRE NOT

C CROSSED DIrE TO TOO SHARP A CONCAVE KINK OR AN

C ERROR IN DEFINING THE BODY.

XMAX(L)--REAL(ZCR(I,L))
DO6 K----I,NWALL{L)

XMAX(L)--AMAX 1(XMAX(L),REAL(ZCR(K,L)))
KP-- I +MOD(K,NWALL(L))

IF(REAL((ZCR(KT,L)-ZC R(K,L))*
> CONJG(WALL(KP,L)-WALL(K,L})).GT.0.)GO TO 6

WRITE (6,102)L,K
102 FORMAT( ,

>" ON BODY NUMBER ",IS," YOU HAVE TOO SHARP A",

>" KINK NEAR POINT "J4)
STOP

8 CONTINb.'E
C

C COMPUTE MATRIX.

C EXCEPT FOR THE LAST ONE ON EACH BODY, EACH LINE

C WILL REPRESENT: PSI(WALL(NWALL))-PSI(WALL(1))
C WHERE PSI CORRESPONDS TO THE NEW VORTICES TO BE
C CREATED ANrD WILL HAVE TO CANCEL THE PSI DUE TO

C THE FREESTREAM. + OLD VORTICES. '_
C THE LAST LINE IS ALL 0, EXCEPT ON COL!YMNS

C BELONGING TO THE SAME BODY, THEN IT IS 1.
C IT WILL CONTROL THE TOTAL STRENGTH OF ALL THE NEW

C VORTICES EMANATING FROM THAT BODY, AS WELL AS
C PREVENTING THE MATRIX A FROM BEING SINGUL._R.

PI=--4*ATAN( 1.)
I0_0

DO2 L I-_I,NBDIES
JO_O

DO4 L2_- I,N'BDIES
KRON--0
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IF(LI.EQ.L2)KRON=I

DO3 J= I,NVCAI_,L(L2)
A(I0--FNWAd_,L(Ll),J0+J)=KRO N
DO3 I= 1,NWALL(L 1)- 1

3 A(10+I,J0+J)---.25/PI*ALOG(

> (SIGMA2+CABS{WALL(I+ I,L I)-ZCR(J,L2))**2)

> /(SIGMA2+CABS(WALL(I,L I }-ZCR(J,L2})** 2))

4 J0-----J0+NWALL(L2)

2 I0=I0+NWALL(L1)
C

C GAUSS ELIMINATION.

C SGECO IS THE LINPACK ROUTINE. ;,
C X ISUSED AS A DUMMY HERE.

CALL SGEC O(A,215,NDIM,IPVT,COND _X)

COND--I/COND
WRITE (6,103)CONED

103 FORMAT(/," CONDITION NUMBER ",E8.2)
C

C MISCELLANEOUS; BISECTION DEVICE.

DOI L_-_-I,N'BDIES

C FIND A HUB FOR THE PAYS OF THE BISECTION DEVICE.

HUB(L} =0
NPTS--0
FIRST--=0

DO 20 I---1,NWALL(L)

IP'-- I +MOD(I,NWALL(L))

IM-_ I +MOD (I+NWALL (L)-2,NWALL (L))

IF(l .+AIMAG((ZCR(IP,L)-ZCR{I,L))*

> CONJG(ZCR(IM,L}-ZCR(I,L})).EQ.I.)GO TO 20

NEXT(1) =FroST
FIRST.----I

2O CONTINUE

C

I----FIRST

21 IF(I.EQ.0)GO TO 22

IP_---1+MOD (I,NWALL (L))

K.--N_T(1)

24 IF(K..EQ.0)GO TO 23

KP= I+MOD(K,NWALL(L))

AA=ALMAG((ZCR(IP,L)-ZCR(I,L)) *

> CONJG (ZCR(K.P,L)-ZCR(K,I,}))
IF(AA,EQ.0.)GO TO l0

INTSEC ==ZCR{I,L)+AIIVIAG((ZCR(K,L)-ZCR(I,L))*
> CONJG(ZCR(K_,L)-ZCR(K,L)))'

|8
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> (ZCR(IP,L)-ZCR(I,L))/AA

DO II J=I,NWALL(L)

11 IF(1.-_-AIMAG ((INTSEC-ZCR(J,L)) *

> CONJG(ZCR( 1+MOD(J,NWALL(L}),L)-ZC R( J,L)}

> ).LT. 1.)GO TO 10

HUB(L)---HUB(L)+INTSEC

NPTS'--NPTS-_- 1

10 K--NEXT(K)
GO TO 24

2z I=NEXT(I)
GO TO 21

• 22 IF(NPTS.GE.I}GO TO 12

WRITE(B,100)L

100 FORMAT{

>" THERE IS A PROBLEM WITH BODY NUMBER ",I4,/,
>" ITS SHAPE IS PROBABLY TOO COIvIPLEX AND THE "

>,PROGRAM WAS UNABLE TO DEFINE A HUB. ",

>" OR ELSE YOUR POINTS ARE NOT COUNTERCLOCKWISE")
STOP

12 HUB(L)==HL_(L)/NPTS

WRITE (6,101)L,REAL {HUB(L)),AIMAG{HUB(L))

101 FORMAT(/," THE IIUB FOR BODY ",I4," IS AT: ",2F8.3)
C NOW COMPUTE THE POLAR ANGLE OF ALL THE POINTS.

Z0(L)--CONJG(ZCR(NWALL(L),L)-HUB(L))

DO8 I= I,NWALL(L)

8 THETA(I,L)----

> AIMAG(CLOG(-Z0(L)*{ZCR(I,L)-HUB(L))))
C

C NOW COMPUTE THE INCREMENTS FOR THE BISECTION.

INC(1,L)=NWALL(L )/2

K=NWALL(L)-INC(I,L)
DO5 I]=2,15

IF(K.EQ.I)GO TO 1

INC(II,L)=MAX0{ I,INC(I]-1,L)/2)

5 K=K-INC(II,L)

1 NINC(L)=It. 1
C

RETURN

END

SUBROUTINE SOL ID( NBDIE S,NWALL,WAL L,C HARD)

C

C ALLOWS THE USER TO INPU'r THE SHAPE OF THE SOLID.

C IT CAN BE I BODY (NBDIESml), OR SEVERAl..

C NWALL(L) NUMBER OF POIN"S ON SOLID L (L=I,NBDIES).

I
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C WALL(K,L) COMPLEX POSITIONS OF THESE POINTb

C (K-----1,NWALL(L)).
C THEY MUST RUN COUNTER-CLOCKWISE!!

C CHARD IS THE CHARACTERISTIC DIMENSION
C

COMPLEX WALL[215,1)
INTEGER NSA'"£L(2)

C

N-BDrES--I
G FIRST BODY.

NWALL(1)=200
DO 1 K=1,100
Y=-I+.02*K

WALL(K,I).--=CMPLX{.2*(I-Y'YI,Y)

I WALL (K+ 100,1)=CMPLX(0.,-Y)
CHARD-----2

C

WRITE(6,100)

100 FOR_L_T(/," THE, SOLID IS A CAMBERED FLAT PLATE")
C

RETURN

END

SUBROUTINE INIT (ISTART,NSTART,T,V0,AB SUiN,

:> CHARD,D0)
C

C IN'ITIALIZE TIME-DEPENDENT VARIABLES.
C

COMPLEX Z,V,VM

C OMMO N/VO RTEX/NVORT ,Z(2000),V(2000) ,V'M(2600)
> ,aAMMA(2000)
W{ISTART.EQ.0)GO TO 8

C CASE OF A START FROM POTENTIAL FLOW.
START AT STEP 1 WIT][[ T_0 AND NO VORTICES.

NSTART = 1

T_0
NVORT =0

C GIVE PHONY _,_I.LrES TO THE VORTEX POSITIONS AND
C CIRCULATIONS.

DO'I I-m-1,2000

Z(I)=10.

VM(1)=o.
I' GAM_iA(1)=o.
C A TENTATIVE VALUE FOR vo,WHICH WII.L BE
C ADJUSTED LATER.

100
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V0 = I.E-S*ABSUIN*(CHARD/D0)**3
RETURN

C

C CASE OF A START FROM A PRE¥IOUS RUN.

8 READ (9) NSTART,T,NVORT,Z,GAMMA,VM,V0
C

RETURN

i END
SUBROUTINE MERGE(D0,V0,NDES,N)

C

C TIllS ROUTINE MERGES PAIRS OF VORTICES INTO ONE

C WHENEVER THE PENALTY FOR DOING SO

C IS UNDER A TOLERANCE (V0).
C ALSO ADJUSTS V0 TO ACIIIEVE DESIRED

C NUMBER OF VORTICES.

C

REAL B(2000),MERTST(2000)

COMPLEX HUB,Z,ZI,V,ZCR,Z0,WALL,VM

COMMON/VORTEX/NVOR_I ,Z(2000),V(2000),VM(2000)

> ,G MA(2000)
COMMON/SOLID /NBDIES,NWAI_.L(2),W _LL{215,1),

> ZCR(215,1} _IUB (2} ,Z0(2),TtIETA(215, I),NINC(2)

> ,INC(15,2},XM.AX(2)
C

C RETURN IF THERE ARE NO VORTICES YET.

IF(NVORT.LE.5}RETURN
C

C FEEDBACK NL_MBER OF VORTICES TO TilE TOLERANCE.

V0_V0* EXP(AMAX 1(-.1 ,.00z*(NVt )RT- NDE S))}

SQV0=SQRT(VO)
C

C PREPARE VORTICES FOR MERGING;

J FIND THEIR DISTANCE TO THE WALL.

DO 7 I--I,NVORT

D-----I.E+30

DOI L-_ I,NBDrES

C FIND THE PROJECTION ON EACH WALL BY BISECTION

C OF THE POL/dR ANGLE.

TTA-----.aJMAG{C kO G (-Z0( I.)* (Z(I}- II L'B(L))))

K_NWALL(L)

DO5 II_I,NINC(L}

5 IF(T1 A.LT.THETA(K.INC(II,L),L))

> K-'K-INC{II,L)

KM= 1+MOD(K+ N_'AL L( L)-2,NWA.LL(L ))

C D IS THE DISTANCE TO THE WALL. B(I} IS STOI(ED

101
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C TO REDUCE THE WORK IN THE INNER LOOP

C {LABEL 4, SEE FURTHER DOv¢N) TO A MINIMUM
1 D =AMI N 1(D,AIMAG{C ON JG{Z{1)-ZCR(K,L))*

> (ZCR(K,I-,)-ZCR(KM,L)))/CABS(ZCR(K,L)-ZCRuCM,L)))
B{I)=ABS( GAMMA(I))* (ABS(D+D0))**(- 1.5)/SQV0

7 CONTINUE
C

C TAKE THE VORTICES ONE BY ONE, STARTING WITH
C THE LAST ONE.

NVORT0----NVORT

DO 3 I--NVORi'0,2,-1
C

C TEST ALL THE OTHER VORTICES AGAINST IT.

DO 4 J----1,I-1

4 MERTST(J)=(REAL(Z( J)-Z{I))**2+AIMAG(Z( J)-Z(I))** 2)*
> B(J)* B(I)-ABS( GAMMA( J)-{-GAMMA(I))

C IS THE MERGING TOLERANCE SATISFIED?

C (ISMIN IS A CRAY FUNCTION USED HERE TO FIND THE
C MINIMUM OF "MERTST"

C FROM 1 TO IM WITH INCREMENT 1.)
J----ISMIN(I- 1 ,MERT ST, 1)

C IF NOT SO GO TO NEXT INDEX I.

IF(MERTST(J).GT.0.)GO TO 3
C IF SO, PROCEED wrrH THE MERGING:
C

• C PUT THE NEW VORTEX IN J'S PLACE.

Z(J)-- (Z(I)*GA_fl.A(I)-_- Z(J)*GAMMA(J))/
> (GAMMA(I)-_-GAMMA(J))

V'M(.I)-_-(VM(I)*GAMMA(I)-]-VM[ J)*GAMMA(J))/
> (G_uMIV_(I)--{-GAJVIIv_(J))
GAM:MA(J)=G,_V[MA(I)--I-G_(J)
B(J)=B(I)'ABS(GAMM.A(J)/GALMMA(1))

C

C PUT LAST VORTEX (INDEX: NVORT) IN Ith PLACE.

Z(I)----Z(NVORT)
VM{I)=VM{NVORT)
GAI_(I)fGAMM (NVORT)

B(I)--B(NVORT)
NVORT----NVORT-1

C
C TAKE NEXT VORTEX ON THE LIST.
3 CONTINUE
C

, END

102
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SUBROUTINE BCBODY(FORCE,MOM,GAhlMA0,N,T,UINF,
:> CHARD,NOLD,CP,DELT,SIGMA2)
COMPLEX FORCE(2),UINF

REAL MOM(2),DPDS(215,1},CP(215,1)
C

C THE BODY ABSORBS VORTICES AND EMITS NEW VORTICES

C TO ACCOUNT FOR IT, PLUS SOME NEW VORTICITY WHICh
C WILL ALLOW THE VELOCITY FIELD
C TO SATISFY THE BOUNDARY CONDITION U--V=0.
C

C DETECT AND ABSORB VORTICES THAT CRASHED INTO WALL.

C START COMPUTING PRESSURE AND FORCE.

CALL ABSORB(DPDS,FORCE,MOM,GAMMA0,N)
C

C EMIT NEW VORTICES TO SATISFY BOUNDARY CONDITION,

C AND FINISH COMPUTING PRESSURE, FORCE, ETC.

CALL EMIT(N,T,UINF,CHARD,NOLD,FORCE,MOM,DPDS,
> CP,DEI.T,SIGMA2)

C

RETURN
END

SUBROUTINE ABSORB(DPD S,FORCE,MOM,GAMMA0,N)

REAL DPDS(215,1),MOM(2)
COMPLEX FORCE(2),Z,V,VM,WALL,ZCR,HUB,Z0

COMMON/VORTEX/NVORT,Z(2000),V(2000),VM(2000)
> ,GAMMh(2000)
COMM ON/SOLID/NBDIES, NWALL (2),WALL (21b, l),

> ZCR(215, I),HUB (2),Z0(2),THE'rA(215, I),NINC(2)
),INC(I 5,2),XMAX(2)

COMMON/SYS'rEM/ND ,A(2 5,215),X{215),IPVT(215)
C
C KILL THE VORTICES TI-LCTARE TOO CLOSE TO A WAI,L.

C (LOST VORTICITY WILL BE REINTRODUCED IMMEDIATELY.)
C

C TAKE THE SEPARATE BODIES ONE BY ONE.
I0=0

DO9 L=I,NBDIES

C GET READY TO COMPUTE THE FORCE, MOMENT, AND \V.'._LL
C PRESSURE ON BODY "L".

FORCE(L)----0

MOM(L}----0
DO 3 K=I,NWALL(L)

8 DPDS(K,L)--0

10==I0+N_ALL(L)
C

108
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C X{I0} IN THE SECOND MEMBER WILL BE THE CIRCULATION
C DEFECT TO BE FILLED UP BY THE NEW VORTICES

C EMANATING FROM THIS BODY.

x(Io)=o
C IF THIS IS THE FIRST STEP, INTRODUCE THE DESIRED
C CIRCULATION AROUND THE FIEST BODY.

IF(N.EQ.1.AND.L.EQ.1)X(I0)--GAMMA0
C

C LOOK AT THE VORTICES ONE BY ONE.
I--1

6 IF(I.GT.NVORT)GO TO 9

IF(REAL(Z{I)).GT.XMAX(L))GO TO 5
C OVER WHICH WALL SEGMENT IS THE VORTEX?

C FIND IT BY BISECTION OF THE POLAR ANGLE.

TTA----AIMAG(CLOG(-Z0(L)*(Z(I)-HUB(L))))

K-- NWALL{L)
DO ?H----1,NINC(L)

7 IF (TTA.LT.THETA(K- INC{I1,L),L))

> K----K-INC(IIL)
C MAKE SURE OF WHERE THE PROJECTION OF THE VORTEX
C IS ON THE WALL.

2 KM----1-t-MOD(K- 2-l- NWALL (L),NWALL(L))

IF(REAL((Z(I)-ZCR(KM,L))* CONJG(ZCR(K,L)-
ZCR(I+MOD(K+NWALL{L)-3,NWALL{L)),L))).GE o._'_-,OTO !

K--KM
GO TO 2

I KP--- 1+MOD(K,NWALL(L))

IF(REAL((Z(I)-ZCR(K,L))*CONJG(ZCR(KP ; _

> -ZCR(KM,L)))_LE.0.)GO TO 4
KM=K

K=KP
GO TO 1

C

C IS THE VORTEX INSIDE THE b_,LID?

4 KM=I +MOD(K-2+NW .L(L),NWALL(L))

D--AIMAG(CONJG(7' ,_CR(K,L))*(ZCR(K,L)-ZCR(k_M,L)))
C

C IF IT IS NOT, LEA_- r ALONE.

IF(D.GT.0)G¢ ) _ 5

C IF IT IS, KILI T_ tFIRST RECORD THE LOSS OF
C CIRCULATI ::_,,AND LINEAR AND ANGUIAR MOMENTU2_I)

X(IO' - ,_,IO)+ GAMMA(1)

FO' E(L)--FORCE(L)- GAMMA(I)* Z(I)

104
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MOM(I.)=MOIVI(I.)- GAIVINL_.(I)*(REAL(Z(1)- tl UB([,))

> **2+AIMAG(7.(I)-HUB(L))**2)
C ALSO RECORD VORTICITY ABSORPTION FOR Tile PRESSURE

• C GR.ADIENT. LINEAR DEPOSITION.

D =RFALi(Z(IJ-ZCR(KM,L))*

> CON J G(ZCR(K,L)-ZCR(KM,L)))

DM=REAL((ZCR(K,L)-Z(I))*

> CONJG(ZCR(K,L)-ZCR(KM,L)))

- DPDS(K,L)=DPDS{K,L)+GAMMA(I)* D/(D+DM)

DPDS(}OVI,L)-----DPDS(1M_I,L) + GAMMA(I)*DM/iD +DM)
C

C NOW PU'F LAST VORTEX IN THE Ith PI.ACE IN THE ARRAY.

Z(I)--Z(NVORT)

GAMMA[I) = GAMMA(N_ORT)

VlVI(I)=VM(NVORT)
NVORTo=NVORT- 1

GO TO 8

C

C GO TO NEXT VORTEX.

5 I=I+1
GO TO 6

9 CONTINUE

C

RETURN

END

SUBROUTINE EMIT(N,T,UINF,CHARD,NOLD,FORCE,

> MOM,DPDS,CP,DELT,SIGMA2)

COMPLEX Z,V,VM,WALL ,ZCR,HIPEI,Z0,FORCE (2),UINF

REAL MOM(2),DPDS{215, I},CP(215.I).PSI(215,I)

>  s(2ooo)
COMM ON/VORTEX/NVORT,Z(2000),V(2000),VM(2000)
> ,GAMMA(2000)

. COMMON/SOL II)/NB DIES,I_VAI,I, (2),WALL(215,1),

> ZCR[215,1),HUB(2),Z0(2),THETA(215,I),NINC(2)
> ,INC(15,2),XMAX(2)

COMMON/SYSTEM/NDIM,A(215,21._) _(215),IPVT(215)
C

PI=4*ATAN(i .)
I0---0

DO5 L I,NBDIES
C STREAM FUNCTION AT THE WALL; CONTRIBI.:TION OF...

DO 18 K==I,NWALt,{L)
C ...THE, FREESTREAM...

C ...AND OF THE OLD VORTICES.

DO4 I_" I,NVORT

1015
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4 PS(I)=GAMMA(I)*

> ALOG(REAI,(Z(I)-WALL(K,L))**2+
> AIMAG(Z(I)-WALL(K,L))**2 +SIGMA2)

16 PSI(K,L)=AIMAG(WALL(K,L)* CON JG(UINF))
> -SSUM(NVORT,PS, 1)*.25/PI

C

C THE NEW VORTICES MUST CANCEL THE STREAM FUNCTION
C AT THE WALL.

C THIS GIVES A LINEAR SYSTEM FOR THEIR CIRCULATIONS.

C COMPUTE ITS SECOND MEMBER.

DO 18 K--- 1,NWALL(L)- 1

18 X(IO+K)--=PSI(K,L}-P SI(K+ 1,L)
5 I0=I0+NWALL(L)
C

C SOLVE SYSTEM.

C SGESL IS THE, LINPACK ROUTINE.

C X IS THE RIGHT HAND SIDE, AND
C THE SOLUTION IS WRITTEN OVER IT.

CALL SGESL(A,215,NB ODY,IPVT,X,0}
C

C CREATE NEW VORTICES.
C REMEMBER WHICH VORTICES ARE OLD ENOUGH TO USE
C ADAMS-BASHFORTH.

NOLD--NVORT

IO_O

DOn L--_,NBDIES
DO 3 K==I,NWALL(L)

C PUT THE NEW VORTEX AT THE END OF THE ARRAY.

NVORT----NVORT + 1
Z(NVORT}--ZCR(K,L)

GAMMA(NVORT)----X(I0 +K)
C RECORD THE GAIN OF LINEAR AND ANGULAR MOMENTUM.

FORCE(L}--FORCE(L)+ GAMMA(NVORT)* Z(NVORT)

MOM(L)--MOM(L) +GAMMAiN'VORT)*(REAL(Z(NVORT)
> -HUB(L))**2+AIMAG(ZiNVORT)-HUB(L))**2)

C ALSO RECORD VORTICITY CREATION FOR THE PRESSURE
C GRADIENT.

3 DPDS(K,L)=DPDS(K,L)-X(I0+K)
C
C FILTER PRESSURE GRADIENT AND INTEGRATE IT TO GET

C PRESSURE.

CP{I,L)_O
DO14 K----2,NWALL(L)
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14 CP(K,L)-'-CP(K-I,L}.-i-(3*(DPDS(K,L).-pDPDS(',i.-I,LI)
> +DPDS{ 1-{-MOD(K+NWALL(L)-3,NWALL(L)),£) +

> DPDS{I+MOD(K,NWALL(L)),L))/
> (4*DELT* CABS(UINF)**2)

C )RMALIZE PRESSURE.

CPMAX=CP (ISMAX{NWALL(L),CP(1 ,L), 1)_L)
DO22 K_--1,NWALL(L)

22 CP{K,L)-- CP(K,L}- CPMAX
C

C FINISH COMPUTING FORCE AND MOMENT AND
C NON-DIMENSIONALIZE THEM.

FORCE(L) =FORCE{L)*

> CMPLX(0.,2./(DELT* CHARD*CABS{UINF)**2) )
MOM(L)--MOI._(L)*2/(DELT*( CHARD*CABS(UINF))* *2)

17 I0._I0+NW
C

C PRINT INSTANTANEOUS DATA.

T--T+DELT

IF(MOD(N,5)3_Q.0)
> WRITE {6,105)N,T,NVORTJ_EAL{FORCE{I}),

> AIMAG{FORCE( 1)),MOM( 1}
I05 FORMAT(/,6H STEP ,I4,6H TIME ,F8.4,7H NVORT,

>I4,3H CD,F7.4,3H CL,

>FT.4,4H MOM,FT.4)

IF(MOD(N,5).EQ.0_.NBDIES.GE.2}
> WRITE(6,106}REAL(FORCE(2)),AIMAG{FORCE(2))

> _OM(2}
108 FORM.AT(" CD, CL, AND MOM ON SECOND BODY:"

> ,2F lO.4,F 11.4)
RETURN
END

SUBROUTINE MOVE(UINF,SIGMA£,NOLD,DELT)
C

C MOTION OF THE VORTICES°

C OLD VORTICES USE ADAMS-BASHFORTH-2,
C NEW ONES USE EULER EXPLICIT.
C

COMPLEX Z,V,VM,UINF

COMMON/VORTEX/N'VORT,Z(2000),V(2000),VM(2000)
> ,GA_(2oo0)

C

C COMPUTE VELOCITIES OF THE VORTICES.

CALL VELOCT(UINF,SIGMA21
C

C MOVE VORTICES.
C ADAMS-BASHFORTH-2 FOR THE OLD VORTICES.

lOT
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D013 I=I,NOLD

Z(I)----Z(I)+DELT*(I.5*V(I)-.5*VM(1))

13 VM(1)=V(I)
C ELTLER EXPLICIT FOR THE NEW VORTICES.

DO 2 I=NOLD+I,NVORT

Z(I)=Z(I)+DELT*V(1)
2 VM(I)=V(I)
C

RETURN

END

SUBROUTINE VELOCT(UINF,RC2)
C

C BIOT SAVART INTERACTION OF VORTICES, POSITIONS Z(I),

C CIRCULATION GAMMA(I). VELOCITY AT INFINITY=UINF.
C F C IS THE CHARACTERISTIC RADIUS IN THE CUT-OFF:

C U(R} IS-----{GAMMA/2PI)*R/(R**2+RC**2)
C

REAL VX(2000),VY(2000)

COMPLEX Z,V,DELZ,VM,UINF

COMMON[VORTEX/NVORT,Z(2000),V{2000),VM(2000)

> ,GAMMA(2000)
C

C FREESTREAM VELOCITY.

PI=4*ATAN(I.)

DO 3 I_I,NVORT

S V(1)=CMPLX(0.,-2*PI)*UINF
C

C COMPUTE INTERACTIONS.
C LOOP ON FIRST VORTEX.

DO1 I=2,NVORT
C LOOP ON SECOND VORTEX.

DO4 J=l,I-1

DELZ=Z(I}-Z(J)

DELZ=DELZ/(RC 2+REAL(DELZ)**2+AIMAG(DELZ)**2)

VX0)--REAL(DELZ)'GAMMA(J)
VY(J)--A/MAG(DELZ)*GAMMA(J)

4 V{J)=ViJ)- GAMMA(I)*DELZ

C (THE CRAY FUNCTION SSUM IS USED TO SUM UP A VECTOR

C LIKE VX, FROM 1 TO I-1 WITH INCREMENT 1.)

C (NOTE THAT THE CSUM FUNCTION WOULD HAVE BEEN THE

C LOGICAL CHOICE HERE; BUT IT SEEMS TO HAVE A BUG...)

l V(I)=V(I)+CMPLX(SSUM(I.I,VX,1),SSUM(I-I,VY,1))
C

C MULTIPLY BY I/2PI.

DO2 I-_ I,NVORT

2 V(1)----V(1)*CMPLX(0.,.5/PI)
C

RETURN
/

END 108
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Fig. I Normal Force Coefficient on an Airfoil during Dynamic Stall.
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Fig.2. Drag Coefficient of a Circular cylinder
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Fig.3a. Flow Pattern at Re = 104

Fig.3b. Flow Pattern at Re = 10'
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InviscidRegion.(_ --0)

Fig. 5. Division of the flow field into an inviscid and a viscous domain
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Fig. 9. Schematic of cell-to-cell interactions
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Fig. 19a. Starting Vortex at a Sharp Corner
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Fig. 20a. Computation c,f an Airfoil Flow by KPDI.

_ (Pure Vortex Method)

Fig. 20b. Computation of the same FIow by KPD2.

(With Control of Separation}
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Fig 22. Starting Vortex on an Airfoil
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Fig. 24. Stills of the Dynamic Stall Eimulation
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Fig. 28. Simulations with various flap cgnfigurations
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Fig.43._tillsof the SimuLationdt Re=lO'
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