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Amplitude of wall displacement 

Fourier-Chebyshev amplitude of v; see (16) 

Pressure coefficient 

Wall shape function 

See (20) 

H(Y) = dY/dn ; see (17) 

Wavenumber of wall displacement 

Turbulent kinetic energy 

X-wavenumber 

Number of retained modes in x1 or < 

Pressure 

UeJ I Reynolds number 

Time 

Reynolds stress 

Chebyshev polynomial of degree n 

Higenfunction; see (18) 

Velocity in x-direction 

Free-stream velocity in x-direction 

Velocity in y-direction 

See (19) 

Unmapped Cartesian coordinate 

x1 = x 

x2 =Y 

Mapped coordinate; see (14) or (15) 

Unmapped Cartesian coordinate 

Mapped coordinate; see (14) or (15) 

= 1,2; coordinate label 

Time step 

Space discretization interval 

Velocity fluctuation 

Boundary layer thickness 

Coordinate in conformal mapped system 

Phase of wall displacement 
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'k 

pT 

Eigenvalue; see (18) 

Eddy viscosity coefficient 

Viscosity 

Pi 

Density 

Parameter used in (17) 

Parameter usedinviscous stabilization; see (13) 

Coordinate in conformally mapped system 

Superscripts 

Convective update 
* Pressure update 

- Viscous update 

= Viscous stabilization 

I Derivative with respect to < + in ; 

Also, fluctuation from mean flow 
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I. INTRODUCTION 

The study of mechanisms of possible drag 

reduction effects in flows over wavy walls as 

well as the study of mechanisms of generation 

of surface waves by wind requires understanding 

of the detailed flows over wavy surfaces. In 

this paper, we describe a computer code based 

on spectral methods to study two-dimensional 

incompressible flows in wavy geometries. 

Work on flows in wavy geometries began 

with the classical analysis of Kelvin and 
1 Helmholtz of linearized inviscid surface waves . 

In the absence of mean-flow-shear effects, 

inviscid theory predicts that, for wall displace- 

ments of the form Y= a cos(kx + $0) with 

ka <cl (so that the problem may be linearized 

in terms of ka), the pressure distribution is 

180' out of phase with the wall displacement 

and the pressure coefficient C 
P 

= IP Imax/liPU2 

has the value 2ka at the wall. Miles2 extended 

the inviscid theory of account for shear in the 

mean flow, still restricting attention to very 

gentle waves. Miles' theory improves the pre- 

diction of the pressure coefficients. However, 

because of the inviscid nature of the analysis, 

the pressure phase shift at the wall is still 180'. 



Benjamin3 analyzed high Reynolds number laminar 

flows over wavy walls including the effects of 

shear still assuming ka <cl. Benjamin's theory 

typically predicts a pressure phase shift of 

210' relative to the displacement of a solid 

wavy boundary. The theory of Miles and Benjamin 

has also been extended to turbulent flows. Davis4 

analyzes turbulent flow over wavy surfaces by 

postulating that Reynolds stresses are, to a 

first approximation, constant along lines of 

constant n, where (Srrl) is a first-order 

accurate orthogonal coordinate system with 

the wavy boundary at n= 0. Davis' analysis is, 

therefore, also limited to small ka. Markatos5 

has recently presented numerical results for 

transfer of heat, mass and momentum in flow 

over an evaporating wavy water surface. While 

Markatos' numerical results are at best first- 

order accurate in space, they go a long way 

towards providing understanding of the nature 

of flow over wavy walls. 

The work described in this paper extends 

previous work in several ways. The full 

time-dependent two-dimensional Navier-Stokes 

equations are solved using spectral methods 

to achieve high spatial accuracy and high-order 

time-splitting methods together with conformal 

mapping methods to allow simulation of flow 

over steep waves. Results for laminar flows at 
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Reynolds numbers up to Rex = 4 X10 5 are presented 

in Sec. III. Turbulent flows over wavy walls are 

simulated by using a spatially varying eddy vis- 

cosity distribution. Some preliminary results 

and comparisons with experiment are given in 

Sec. IV. 

II. METHODS OF SOLUTION 

The two-dimensional Navier-Stokes equations 

are 

aVa + f v~?=-%+ f aTaB at 
B=l B a B=l axg 

with 01 =1,2, 

? avc, 
,Ll 3 = Or 

(1) 

(2) 

where the stress tensor may include both laminar 

(viscous) stresses, vyy,and turbulent Reynolds 

stresses (to be discussed briefly in Sec. IV below). 

Eqs. (1) - (2) are to be solved in the region 

0 < x1 < 27r, - f(Xl' t) < x2 < a (3) - 

above the wall x2 = f(xl,t). In the present 

paper, we restrict attention to surfaces of the 

form 

f(xlr t) = a cos kx (4) 

independent of t with periodic inflow-outflow 

boundary conditions in x1, viz. 



v& + zn, 3’ t) = v,(xl, x2, t) (5) 

Extensions to study the effects of time-dependent 

geometries and inflow-outflow boundary conditions 

are presently being made. 

A conformal mapping technique6 is used to 

transform the region (4) into the region 

OL<<27r,O<T-p~ - - 

If a 51, the conformal mapping coefficients are 

accurately generated in only order NEogN opera- 

tions where N is the resolution along x1 (5 1, 

so time dependent geometries can be efficiently 

handled. A further (non-conformal) stretching 

transformation of n is used to implement the 

spectral methods described below see Eqs. (14)-(15) 

Eqs- (1) - (2) are solved numerically by 

a fractional step procedure. The fractional steps 

are: (i) Convective update _ 

An intermediate field vu is found so that 

V 
a 

= v,(t) + 2 2 AtN,(t) - +NJt-At)At (6) 

where 

Na= a Iv -v 
R avB 0: 

Here a second-orderaccurate Adams-Rashforth scheme 

is applied. 
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(ii) Press'ure' 'up'da'te 

h 

V ar 2 _ an q2 =v -- 
c% a aXc, a< aXc, a0 

with the boundary condition 

(7) 

(8) 

(9) 

Substituting (7) into (8) gives the Poisson 

equation 

i&2 
ac2 

+&= l2 
aq2 IF’] 

(10) 

with 

IF’12 = ,, (g I2 = ,f,[ +$ I2 ’ (11.1 

ci a 

where the conformal nature of the map from (x 
1' 

x2) 

to ( S,I-I ) is used. 
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(iii) Viscous 'update 

v =$ + 
a a 

At ; a T,@(t) 
a=1 axB 

(12) 

with the boundary conditions 

v 
a 

=0 atn=O. 

This Euler step is only first-order accurate but 

will be improved upon later. The time step 

restrictions for numerical stability of (12) are 

particularly severe, especially in the case of 

turbulent flows, so the next fractional step 

is designed to stabilize the scheme. 

(iv) Viscous stabilization 

;-- a ,F,;;in v: va= ?t- ,F,y;in v: ?P) (13) 

with 

$ =Oat n =O, 

where v: = 12/ar2 + a2/an2 is the Laplacian 

with respect to <,n . Here c is a parameter 

chosen to achieve optimal stabilization and accuracy. 

(v) Local extrapolation 

For time dependent problems requiring 

accurate calculation of transient .effects, a local 

extrapolation procedure 
7 

is used to achieve global 

second-order accuracy in time. Further details and 

caveats on the splitting procedure described above 

are given in Ref. 7. 



In order to implement this algorithm in a 

spectral method8, the semi-infinite region _ 0 < 5 2 2Tr, 

o<q<" - is mapped into the finite rectangular domain 

0 < x < 27r, -l<Y<l - - _ 

x= 5, Y=++-1 

or 

x= 5 I y = 1 - 2ewniL 

(14) 

for some suitable mapping scale L. 

Next, all dependent variables are expanded 

in Fourier-Chebyshev series of the form 

where T n (Y) = cos(n cos 'lY) is the Chebyshev 

polynomial of degree n. 

Technical details regarding spectral methods 

and their implementation are given in Ref. 8 

and references given therein. For illustration 

purposes, the method of solution of the Poisson 

equation (10) or (13) will now be described. After 

the transformation (14) or. (15), the equation to 

be solved is of the form 

;u + a2u - + H(Y) 
ax2 

&(Y)gj = g(X,Y). (17) 
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Introducing the eigenvalue problem 

H (Y) 
auk 

& H(Y) - = ay 'kUk (1.8) 

subject to the appropriate homogeneous boundary 

conditions, say Uk 
= 0, it follows that 

u(X,Y) = l vk tx) Uk ty) (19) 

g(X,Y) = 1 Gk(X)uk(Y) 
k 

where 
vk 

satisfies 

'jv 
a2vk 

k 
+ - 

ax2 
+ XkVk = Gk . 

(20) 

(21) 

Then (21) is solved by Fourier transformation in X, 

so the solution u to (10) or (13) can be found 

by further matrix operations. 

In the next Section, results are reported 

from this code using up to 64 Fourier modes and 

Chebyshev polynomials in each of the X and Y 

directions. Typically, the fractional step method 

with local extrapolation and tensor stress evalua- 

tion requires about 6 ms per retained mode per 

time step on a CDC 6600 computer. Time steps are 

restricted for stability to be less than the 

convective stability limit Ax/U . 

.--..-.. 



III. LAMINAR FLOW RESULTS 

Results from three laminar flow runs will 

be described here. The first~case is flow over a 

very gentle wave a cos kx with k = $Tcrn-', 

ka = 1~/1000 at a Reynolds number Rex = 4 x 10 5 

at x = 29 cm, so the boundary thickness 6 = 6.5 'F /- 

= 0.3 cm. A plot of the mapped grid used in the O" 

calculations of this flow is given in Fig. 1, 

where only the portion of the grid near the wall 

is plotted. Since the x and y scales are different, 

the conformal nature of the map is obscured in 

the plot. 

In Fig. 2 we plot contours of the pressure 

at t = 90 (in nondimensional units in which U co = 1) 

after the solution has converged to a steady state. 

The calculation was performed using 32 Fourier 

modes in X and 33 Chebyshev polynomials in Y. 

The contouring is done in the unmapped x1 = x 

and x2 = y coordinates. The phase of the pressure 

distribution lags 214' +5' behind the surface 

displacement a cos x and the pressure coefficient 

C 
P = lPl,,,/~P U: is 

c = 1.76 x lO-4 
P 

at the wall. As mentioned above, the Kelvin-Helmholtz 

inviscid analysis predicts Cp=2ka = 6.3 x 10m3. 

On the other hand, Benjamin's theory3 predicts a phase 

shift of about 217' with C 
P 

in good agreement with 

our numerical simulations. 
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In Figs. 3 and 4 we plot contours of the velocity 

in the x2 direction in the unmapped x1 = x 

and x-2 = Y coordinates. Fig. 4 is a blown-up 

portion of Fig. 3 that highlights the structure 

of the velocity v2 near the wall. Note that the 

scale of the boundary layer is such that u = 0.96Uco 

at ky = 2.5. In Fig. 5 we plot contours of u1 

in the x-y plane blown-up to highlight the wall 

region. In Figs. 6 and 7, we plot contours of the 

spanwise vorticity at t = 90. Again, Fig. 7 is 

a blown-up version of Fig. 6. 

The second run is similar to the first except 

that the amplitude of the surface displacement is 

increased to 

ka = 5.5 x 10m2 

In Fig. 8, a contour plot is given of the pressure 

distribution at a nondimensional time t = 90. 

The phase of the pressure distribution now lags 

about 212' behind the surface while the pressure 

coefficient is increased to about 

C = 3.3 x lo-3. 
P 

Benjamin's theory still predicts a phase shift of 

about 217' with C 
P 

in good agreement with the value 

obtained by numerical simulation. In Figs. 9-11, 

we give contour plots in the wall region for the 

velocity components v1,v2 and spanwise vorticity, 

respectively, in the second run. 
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The third run involves the simulation of flow 

studied experimentally by Kachanov et al 9 . Here 

k = 2.5 cm -1 
while 

ka = (5.3 * 0.1)~ 10 
-2 . 

The calculation was performed at a Reynolds number 

ReX 
= 1.1x lo5 to match the experiment, while 

%a = 530 cm/s so the boundary layer thickness 

6 = 6.5Fr at x= 3.06 cmis 6 = 0.6 cm. 

Because the" wavelength of the wall displacement 

is much longer in this run than in the second run, 

it turns out that the accurate simulation of this 

case is somewhat more difficult. Pressure pertuba- 

tions due to the wall die out over a distance of 

order the wall wave-length which is much larger 

than 6 so the resolution requirements in Y 

are more severe than for the first two cases. The 

results reported below were obtained using 32 

Fourier modes in X and 65 Chebyshev polynomials 

in Y. 

In Fiq. 12, we plot contours of the pressure 

field for the third run after a steady state has 

been achieved. In Figs. 13 and 14, contour plots 

of the spanwise vorticity and velocity vl, 

respectively, near the wall are given. Kachanov 

et al 9 measured the distribution of x-velocity 

v1 = u fluctuations at a height of about 6 above 

the wall. They found a fluctuation amplitude Au of 

Au expt = t-7 0.005 f 0.002 
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with a phase shift of 40' k5' relative to the wall. 

The computational results give 

A";omp = 0.004 2 0.0002 

with a phase shifcof 22O$ 5: The magnitude of the 

fluctuations agree well between laboratory and 

computer experiment. The discrepancy in the phase 

shifts may be due to the sensitivity of this quantity 

to measurement error or due to the precise manner 

of measurement (in the computer experiment, the 

fluctuations of u were measured at constant Y while 

in the laboratory experiment the measurements 

seem to have been conducted at constant y). 

IV. TURBULENT FLOW RESULTS 

In this Section, we report a simulation of 

Kendall's experiment 
10 of turbulent flow over a 

wavy wall. An eddy viscosity model is used to 

simulate the effects of the turbulence. The turbulent 

Reynolds stresses are modelled as 

- pvi2 = 2UT - avl/axl - $ pk (22) 

- pvp; = VT (avl/ax2 + av2/axl) (23) 

-2 - PV2 = 2,-+ av2/ax2 - 3 pk (24) 
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where primes indicate turbulent fluctuations, overbars 

are averages, lJT is a (spatially varying) eddy 

viscosity coefficient and c is the turbulent kinetic 

energy. 

The eddy coefficient uT is modelled by use 

of a turbulent boundary layer code 11 that includes 

effects of wall curvature and pressure gradients 

within a one-equation eddy-viscosity model. 12 The 

actual pressure measurements of the Kendall experiment 

were used in this boundary layer code. The turbulent 

kinetic energy k is modelled on the basis of flat 

plate data according to 

- - 

- ViVi / k N 0.15 (25) 

A contour plot of the resulting eddy viscosity 

coefficientu, is given in Fig. 15. 

Kendall's experiment is simulated using a 

wall displacement a cos(kx) with a = 0.32 cm and 

k = 0.62 cm-l. The mean flow velocity in the free 

stream is TJ = 500 cm/s while the molecular viscosity 

is 0.14 cm2 /s. The calculations are performed using 

32 Fourier modes in X and 33 Chebyshev polynomials 

in Y. The flow field is initialized using the result 

obtained from the boundary layer code 11 
corrected 

to be incompressible. 

In Fig. 16, we plot contours of the velocity 

field v1 in the x l-direction at t = 2s. In Fig. 17, 

spanwise vorticity contours at t = 2s are shown. 

Finally, in Figs. 18 and 19, contour plots of v1 and 

v2' respectively, at t=4s are given. It can be observed 
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from Fig. 18 that a small separation bubble is developing 

in the flow at t=4s. Separation seems to begin near 

t=3.2s. While no separation was observed 'in Kendall's 

experiment, it is known that the laboratory flow is 

close to separation. There are several possible reasons 

for the appearance of a separation bubble in the 

computation. First, the eddy viscosity distribution 1-1~ 

is fixed for all time by the turbulent boundary layer 

calculation. Since the mean-flow velocity has evolved 

significantly from the boundary layer approximation, 

it seems reasonable to expect that pT should change 

also. Second, the modelling of normal Reynolds stresses 

in (22)-(24) may be suspect. A possible remedy for 

both these problems would be integrating a multi- 

equation turbulence model at the same time as the mean 

flow equations. Further work is now planned in this 

direction. Finally, while the numerical resolution of 

the flow seems adequate in the wall region, there does 

seem to be need for more resolution at large distances 

from the wall. For this reason, higher resolution 

calculations with modified mappings in the y direction 

are now underway. 

V. CONCLUSION 

A computer code to solve the full two-dimensional 

Navier-Stokes equations in an arbitrary wavy geometry has 

been developed. The code has been run on both laminar 

and turbulent flows over wavy walls. The results have 

been compared with both available theory and experiment. 

For laminar flow, good agreement is achieved. For turbulent 

flow, the agreement is less satisfactory and may be explained 

by the simplified turbulence modelling used in these 

calculations. 
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COORDINATE SYSTEM CLOSE TO BOUNDARY 

Figure 1. A plot of the coordinate system near the wall 

for Run 1. Here the wall displacement is y = a cos kx 

with k = 101~ and a=10 
-4 

. 
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Figure 2. Contour plot of the pressure p at t=90 for 

Run 1. 
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Figure 3. Contour plot of the x2-velocity v2 at t=90 

for Run 1. 
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Figure 4. Same as Figure 3 except that the region 

near the wall is expanded. 
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Figure 5. Contour plot of the xl-velocity v1 at t=90 

near the wall for Run 1. 
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Figure 6. Contour plot of the spanwise vorticity in 

Run 1 at t=90. 
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Figure 7. Same as Figure 6 except that the region near 

the wall is expanded. 
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Figure 8. Contour plot of the pressure p at t=90 in Run 2. 
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Figure 9. Contour plot of v1 at t=90 in Run 2. 
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Figure 10. Contour plot of v2 at t=90 in Run 2. 
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Figure 11. ContouY plot of the spanwise vorticity in Run 2 

at t=90. 
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Figure 12. Contour plot of the pressure p after 

a steady state has been achieved in Run 3. 
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Figure 13. Contour plot of the x-velocity v1 in 

Run 3 after a steady state is achieved. 
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Figure 14. Contour plot of the y-velocity v2 

in Run 3 after a steady state is achieved. 
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Figure 15. Contour plot of the eddy viscosity coefficient 

UT used to simulate Kendall's experiment. 10 
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Figure 16. Contour plot of v1 at t=2s in the simulation 

of Kendall's experiment. 
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Figure 17. Same as Figure 16 except for the spanwise vorticity. 
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Figure 18. Contour plot of v1 at t=4s in the simulation 

of Kendall's experiment. 
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Figure 19. Same as Figure 18 except for v2. 
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