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Weak shock wave focusing at fold caustics is described by the mixed type elliptic/hyperbolic
nonlinear Tricomi equation. This paper presents a new and original numerical method for solving
this equation, using a potential formulation and an “exact” numerical solver for handling
nonlinearities. Validation tests demonstrate quantitatively the efficiency of the algorithm, which is
able to handle complex waveforms as may come out from “optimized” aircraft designed to
minimize sonic booms. It provides a real alternative to the approximate method of the hodograph
transform. This motivated the application to evaluate the ground track focusing of sonic boom for
an accelerating aircraft, by coupling CFD Euler simulations performed around the mock-up on an
adaptated mesh grid, atmospheric propagation modeling, and the Tricomi algorithm. The chosen
configuration is the European Eurosup mock-up. Convergence of the focused boom at the ground
level as a function of the matching distance is investigated to demonstrate the efficiency of the
numerical process. As a conclusion, it is indicated how the present work may pave the way towards
a study on sonic superbooffocused boommitigation. © 2003 Acoustical Society of America.
[DOI: 10.1121/1.1610459

PACS numbers: 43.25.Ch, 43.25[MFH)]

I. INTRODUCTION was initially estimated from the linear aerodynamic theory
for slender bodiegWhitham, 1952, a theory that also pro-
Sonic booms remain a community acceptance problenjides the correct matching to geometrical acoustics. How-
that may jeopardize the development of future civil superever, Whitham's linear approximation lacks precision for
sonic aircraft(either supersonic transport or business. jet relatively low Mach numbers such as those of acceleration
The most intense sonic boom is the focused sonic boom d%cusing (around Mach 1.2 to 1)4 Nowadays numerical
to the aircraft transonic acceleration from Mach 1 to cruisemeans enable CED simulations to be reliable far enough
speed, and it cannot be avoided by realistic maneuvers. {tom the aircraft(one or several fuselage length®irect
leads to an amplification of ground pressures up to two tQnatching between CFD simulations and acoustical propaga-
three times the carpet boom shock strength. Therefore, t§on can be achieved for cruigsteady flight, with a good
comply with a future international regulation on sonic boomaconvergence at ground level provided the matching is per-
it is important to predict accurately the level of focusedfyrmed far enough from the aircraft. More sophisticated
booms. The present work will demonstrate such a predictiov;;\,ays of matching can be achieved closer to the aircraft, but
is now within reach. It is a complex task, as it requires apsve not been fully explored yéPlotkin and Page, 2002
precise CFD simulation of the pressure field far enough from  caystics are surfaces, and their ground intersection are
the aircraft, a correct matching between aerodynamicajnes, where the ray-tube area vanishes and the geometrical
evaluations and acoustical propagation modeling in the atycoystics approximation neglecting diffraction breaks down.
mosphere, and a_valldated modeling of shock waves focusingong regular smooth caustics surfaféfeld” caustics ac-
around the caustic at ground level. cording to the terminology of catastrophe thedihom,
According to the classic theorjHayesetal, 1969,  1979. Berry, 197, diffraction must be taken into account
sonic booms are computed within the framework of geojngjge a “diffraction boundary layer” around the caustic

m_etrical acoustics. The eikoni(iphase) functﬁon is deter- (Buchal and Keller, 1960to be matched to geometrical
mined by the ray path, and the signal amplitude by the rayzqqstics. Within this layer, the pressure satisfies the linear
tube area. Nonlinear effects along each ray entail therjcomi equation, whose generic solution in the frequency
pressure signal to evolve_from the comphcated_shock flovyomain is the well-known Airy function, in agreement with
around the body of the aircraft down to the ultimate “N” ¢ carastrophe theory. If, as for sonic booms, the incoming

wave reached at ground level for long propagation distanceg;gna| possesses shock waves, the amplified signal near the
The input pressure signal describing the aircraft flow f'eldcaustics and the outgoing signal exhibit a “U” shape result-

ing from the7/2 phase jump through the caustics. This shape
¥Electronic mail: marchi@Imm.jussieu.fr is substantiated by flight tes(8Vanneret al,, 1972, but the
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linear theory fails to predict finite peaks for the “U” wave. z 4
To recover finite amplitudes, nonlinearities must be taken

into account as an additional “limiting” mechanism. The re- Incoming ray Qﬂ“‘g"i“g“’y
sulting equation satisfied by the pressure field is the so-callec S
nonlinear Tricomi equation(Guiraud, 196% which is a J
mixed-type(elliptic/hyperbolig equation(Sec. I). The pro- \\ Re

cess of linear diffraction being the dominant mechanism RS ’

N‘}

by laboratory-scale experimentSturtevant and Kulkarny,
1976; Marchiancet al., 2003 at small Mach numbers. The
objective of this paper is to present a new numerical method cau
to solve thenonlinear Tricomi equatiomising a pseudospec-

tral method, and to apply it for predicting ground track sonic

boom focusing coupled with CFD nearfield simulations of a FIG. 1. Geometry of the caustic.

realistic high-speed supersonic transport.

The new algorithm for solving the nonlinear Tricomi So, near a regular causfia fold caustic in the terminology
equation derives from a previous versiphuger and Cou- of catastrophe theoryThom, 1972], either two or zero
louvrat, 2002. The reader is referred to this work for an acoustical rays go through a given point, depending on
extensive bibliography on numerical methods applied to thevhich side(“illuminated” or “shadow” side) of the caustic
nonlinear Tricomi equation. Let us only cite the most recenthis point lies onFig. 1). For a point on the illuminated side,
work of Cheng and Hafe2002. Compared to this previous among the two rays going through this point, afiee so-
code, two very substantial improvements have been brouglfalled incoming ray has not yet tangented the caustic,
(Sec. lll). The equation is now solved for the potential field whereas the other onghe so-calledoutgoing ray has al-
instead of the pressure field, and nonlinear effects are treatedady tangented the caustic. Sufficiently far from the caus-
with an “exact” solver that removes artificial numerical dis- tics, these two rays do not interact and sound propagates
sipation and avoids any stability condition. This results intoaccording to the laws of geometrical acoustics. However,
an innovative combination of numerical methods with poten-close to the caustics, the two rays become indiscerralste
tial applications for other equations in nonlinear acousticgording to the terminology of Kravtsov and Orlg¥993].
(such as the KZ equatipnAs a consequence, the number of There, diffraction effects must be taken into account to limit
iterations and the computation time have been reduced drahe amplitude of the acoustical field. The thicknéssf the
matically by a factor ofroughly) 40, the convergence of the diffraction boundary laye(Buchal and Keller, 1960around
maximum peak amplitude with mesh refinement is now perthe caustic can be chosen as the distance at which the arrival
fectly reached, and the theoretical Guiraud’s similitude istimes of the incoming and outgoing signals differ by less
satisfied numerically with a good precision. This constitutesghan the period of the signéf periodic), or its duration(for
a complete and quantitative validation of the algoritt®ec.  a pulse. Let us choose the origi® at some point of the fold
IV), which is able to handle complex waveforms as maycaustic, and introduce the Cartesian coordinate system
come out from “optimized” aircraft designed to minimize (Oxy2, with Ox being tangent to the caustic at podtand
sonic booms. It provides a real alternative to the approximateriented towards the direction of the ray tangenting the caus-
method of the hodograph transform developed by Seebasi at this point, andDz being oriented in the normal direc-
(1971 and Gill and Seebasd 973, and currently applied tion to the caustic, towards the illuminated side. At pdnt
for the numerical evaluation of the superbodilotkin,  we denote by, the ambient density, the ambient sound
2002. This motivated the application to evaluate the groundspeed, angb, the ambient pressure. The radius of curvature
track focusing of the sonic boom of an accelerating aircraftof the intersection of the caustics with th®x2) plane is
by coupling CFD Euler simulations performed far away from R, while R, is the radius of curvature of the projection of
the aircraft on an adaptated mesh grid, atmospheric propagéie acoustical ray on theOx2) plane andR .= 1/(1/Rsec
tion modeling, and the Tricomi algorithit®ec. \). Conver-  +1/R,) is the radius of curvature of the acoustical ray rela-
gence of the focused boom at ground level as a function ofive to the caustics. To formulate the problem in a dimen-
the matching distance is investigated to demonstrate the e$ionless form, three characteristic quantities are introduced:
ficiency of the numerical process. As a conclusion, we indi-
cate how the present work may pave the way towards a stud%
on sonic superboortfocused boommitigation. (

. . .y . ~
around caustics, supplemented by nonlinearities, is supportel S I\
sic

) the characteristic duration of the acoustical sigial;,
) the thickness of the diffraction boundafBuchal and
Keller, 1960: 6= (2/c5T2.R.,) *°, and

Il. THE PHYSICAL PROBLEM: THE NONLINEAR (3) the maximal pressung,. of the incoming acoustical sig-
TRICOMI EQUATION ' nal at distance from the caustic.

From a physical point of view, a caustic is a region According to the catastrophe theaerry, 1976, the pres-
where sound is amplified. In terms of geometrical acousticssure near the fold caustic can be shown in the high-frequency
it is the locus of points where the ray-tube area vanishes anlimit to be a function of two independent variables only: the
where the geometrical approximation breaks down. It is alsalistance to the caustiz, and the phase of the signal. The
an envelope of rays, tangent to acoustical rays at any pointorresponding dimensionless variables are
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(1) the dimensionless delayed time:7=[t—x(1 to a numerical treatment. In order to avoid this difficulty, the
— 2R/l Tac problem will now be formulated in terms of potential, in-

(2) the dimensionless distance to the caustiez/ 8, and stead of pressure.

(3) the dimensionless pressure= (p— po)/Pac-

- o , ll. THE NUMERICAL ALGORITHM
In writing the Euler equations in terms of these variables, the

pressure field can be shown to satisfy the nonlinear Tricomf*- The equation for the potential

equation(Guiraud, 1965; Hayes, 1988 From now on, we drop all subscripts—for the dimen-
sionless variables. The acoustical potential is related to the

25 2~ 2/ A2
IP__IP ® 7(p ): (1) acoustical pressure by the expression:

__Z_ s
9z It 2 972

I T
where coefficieny measures the nonlinear effects relative to P= E‘:"ﬁ_ wp(T ydr’, ©®)

the diffraction effects:

. the (arbitrary) value of the potential at large negative times

Reau being chosen equal to 0.
“:ZBMa‘{(zcoTaC) @ The equation satisfied by the potential field near the
. ) ) ) caustic now is
with 8= 1+ B/2A the nonlinearity parameter of the medium,
and M, the acoustical Mach number (M= P,./(poC2)). 2 PP w d[[ap)\?

The associated boundary conditions of the nonlinear Tri- E_Zﬁ 2 a7\ ar =0. ©
comi equation are written below.

(1) In time, for a transient signal, the medium is not It turns out to be exactly the nonlinear Tricomi E@), ex-
perturbed before or after the acoustical wave has passed: cept for the nonlinear term. Equatidf) is called the Tri-
- comi equation for potential.
p(z,7— +0)=0; () The associated boundary conditions in time Egsand
(4) and in the shadow zone E@5) are identical for the
potential as for the pressure field. Only the matching bound-

or, for a periodic signa{with a period T, one simply gets

p(z,7+T)=p(z,7). (4)  ary condition with geometrical acousti¢gq. (6) or (7)] is
(2) Away from the caustic in the shadow zone, thedlﬁerent:
acoustical pressure decays exponentially: d d 2
p y p y 21/4_‘ZS i —1/4_(1S 2F| 7+ §Z3/2). (10)
Pz —,7)-0. ©) R
(3) Away from the caustic on the illuminated side, the In this “weak” formulation, the original incoming signaét
field matches the geometrical acoustics approximation: ~ NOW appears instead of its time derivative. Therefore, this

_ A — 73 -, formulation is better suited to a numerical resolution in case
p(z—+»,7)=2 Y{F(7+52°)+G(7—52°)].  (6) the incoming signal displays some shocks, as for sonic

The F function is the(dimensionlesstime waveform of the booms.

incoming signal, before it is affected by diffraction while . .
tangenting the caustic. Therefore, thdunction is supposed B. The iterative scheme

to be known. On the contrary, th@ function is the time A usual way for solving nonlinear equations involving
waveform along the outgoing ray. Unlike the incoming sig-only houndary conditiongand no initial conditioh is to

nal F, the outgoing signaG has undergone the diffraction pyilg an iterative scheme, starting from an arbitrary initial
effects after having tangented the caustic, and is unknownsondition and converging after several iterations towards the
To eliminate this unknown function, the matching boundaryse|ytion of the problem. Following Auger and Coulouvrat
condition Eq.(6) can be written as a “radiation condition,” (2002, we introduce the so calledpseudo time t, through

by a combination of its derivatives with respectzand r: an additional term in the nonlinear Tricomi equation:
p — . dp dF [ 2 2 2 2 2
BB U2 g Re_Re e (i »
JT iz - ., d7 arat 922 g2 2 97|\ a7 |

In Eq. (7), the term — iz 3 F(7+ 2%+ G(7—%%?)]  with the unmodified boundary conditions Ed8)—(5) and
=0(1/z%%» coming from the derivative of the slowly vary- (10).

ing amplitude is omitted since it is negligibly small com- The additional termy?¢/drat is supposed to tend to-
pared to other term®(1) of Eq. (7) emanating from the ward zero when the iterative solutiap(t,r,z) has reached
derivative of the rapidly varying phase. its “steady” limit for large values of the pseudo tinte In

However, in this new formulation now appears the timethis caseg(t— +«, 7,2) satisfies the right-hand side of Eq.
derivative of the incoming signal. In the case of an incoming(11), i.e., the nonlinear Tricomi equation for potential Eq.
shock wave, this leads to a boundary condition with a shar§9). The new Eq.(11) is called the “unsteady” nonlinear
singularity(delta Dirac distributiojy which is not well suited ~ Tricomi equation. It is of hyperbolic type, generally consid-
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ered as easier to solve numerically than a mixeliptic/  tives with respect ta are approximated by finite differences
hyperbolig type equation such as the original nonlinear Tri- precise at second ordécentered differences, except for the
comi equation. The artificial variabtes labeled as a pseudo boundary conditions Estimation of iteration +1/2 is ob-
time for its use to design the iterative process. However, théained through a first-order, implicit finite scheme in variable
unsteady nonlinear Tricomi Egl1) can be shown to effec- t. Finally, the resulting quasi-tridiagonal linear matrix system
tively model the diffraction of nonlinear acoustical waves inis solved using a standard algorithm, and the potential in the
the shadow zone created by atmospheric refradfBnulou-  time domain is recovered after an inverse Fourier transform.
vrat, 2002. In this case, thénow physical variablet has the  As the procedure is completely identical to the one used by
meaning of the penetration distance of the wave inside th@uger and Coulouvraf2002), further details are not repeated
shadow zone. Moreover, if thes®¢/d7? term is omitted in  here. The only difference is that, in the boundary condition
Eqg. (11), this one reduces to the well-known KZ equation Eq. (10), there now appears the incoming time waveform
(Zabolotskaya and Khokhlov, 196@escribing the diffrac- F(7) instead of its time derivative in the algorithm of Auger
tion of finite amplitude paraxial sound beams. The KZ equa{2001). For incoming shock waveguch as an N wave for
tion is also a model equation for the diffraction of nonlinearsonic boon), the time waveform is much less singular than
acoustical waves at cusp causti@oulouvrat, 200Q the its derivative. Indeed, as the potential is a continuous func-
caustics immediately following the fold caustics in the hier-tion, solving the problem in terms of potential instead of
archy of catastrophe theory. pressure leads to a suppression of Gibbs oscillations that re-
The numerical resolution of the unsteady nonlinear Tri-sulted from the Fourier transform of the discontinuous pres-
comi Eq.(11) is achieved by means of the fractional stepssure field. While these oscillations could be sharply reduced
method(Ames, 1977. Over a single integration stept for  through the iterative process of Auger and Coulou(2a02)
pseudo time, the equation is split into two simpler equationspy adding some small numerical viscosity in the discretiza-
The first one takes into account the linear diffraction effectsjon of Burgers’ equation, this reduction was achieved only

(unsteady linear Tricomi equatigin after a sufficient number of iterations, and convergence re-
Rb Pb P quireq several thousaan of iterations. N'ow, with the new
=7 (12)  algorithm for the potential, convergence is reached after a
Itit 972 97 few tens of iterations only.
while the second one takes into account the nonlinear effects The choice of an algorithm in the frequency domain is
(inviscid Burgers’ equation for the potential motivated by the transsonic aspect of the Tricomi equation.
Let us recall that a Tricomi equation is of mixed type, either
ﬁ: ﬁ(ﬁ)z (13) hyperbolic if z— up>0, or elliptic otherwise, the sonic line
gt 2\ adr z— up=0 separating the illuminate@r supersonicside of

the caustics where sound “propagates,” from the shafmw
subsoni¢ side where sound is evanescent. In the elliptic do-
main below the sonic line, there is no oriented flow of infor-
mation in timer, contrarily to the hyperbolic domain where

information propagates along the sense of ascending times.

peated until convergence. As a result, both physical mechal.is difference of behavior was the key point of the original
nisms (linear diffraction and nonlineariti¢sare taken into  &gorithm of Murman and Col€197]) for transsonic prob-

account over one pseudo time step. The method of fractiondfMS: Which introduced a switch in the way of discretizing
steps is rather common and has been applied successfully f§€ ranssonic equations, using upwind finite differences in
standard algorithms in nonlinear acoustics solving the kzhe hyperbolic domain but centered finite differences in the
equation, either in the frequencfroysaet al, 1993 or in elliptic QOmaln. Sugh a way gf d|scr§t|2|ng is therefore in-
the time domair(Lee and Hamilton, 1995Here, it is all the ~ compatible with a time domain algorithm for the KZ equa-
more suited as intermediate steps have no physical meaningn such as the one used by Lee and Hamilt®93, which
and are just a way to reach convergence toward the solutiof¢!i€s heavily on the hyperbolic character of the KZ equation
of the Tricomi's equation. The criterium for convergence @nd the oriented flow of information along ascending times.
simply consists in comparing two successive iterations. IffN€ use of an algorithm in the frequency domain implies an
they differ by less than a small parametethen the program  artificial periodicity of the prqblgnﬁthe per!od be_mg th.e size

is stopped, otherwise the iterative process goes on. Finall@f the computation domain in timelmposing this periodic-
once convergence is reached, the pressure field is derivdy. it forces some reverse flow of information, hence remov-
from the potential by using a standard finite differenceind the problem of specifically handling the flow of informa-

scheme(centered derivativés The choice of the arbitrary tion in the elliptic domain. This can be seen as an equivalent
parametet is discussed in Sec. IV. to the hyperbolic wave equatiofwith its associated initial

conditions in time being transformed in the frequency do-
main into the elliptic Helmholtz equatiofwith no initial
conditiong. The numerical cost to pay for this is that the
The unsteady linear Tricomi Eql12) with boundary method requires a sufficiently large domain in time com-
conditions Eqs(3)—(5) and (10) is solved in the frequency pared to the effective duration of the signal, so that the arti-
domain, using a FFT algorithm. For each frequency, derivaficial periodization of the signals interferes as little as pos-

Starting from the previous iteratianfirst Eq.(12) is solved
numerically over the pseudo time st&p, thus providing the
intermediate iteratiom+ 1/2. This one is used as a starting
point for solving Burgers’ Eq(13) over the same pseudo step
At and finally obtaining iteration+ 1. This process is re-

C. Resolution of the unsteady linear Tricomi equation
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X FIG. 3. Multivalued and physical solutions of the inviscid Burgers’ equation
(a) for potential andb) for pressure.
FIG. 2. The Airy function.

the so-called ARAP sonic boom propagation code for solving
%urgers’ equation along the acoustical rays launched by the
aircraft. The algorithm is based on the exact solution of the
Burgers’ Eq.(13) expressed for the pressure field:

sible with the signal. This appears perfectly manageabl
from a computational point of view by choosing for an in-
coming “N” wave of duration 1 a time domain equal to
[—8/3;+11/3]. A second justification for the choice of an
algorithm in the frequency domain is that, in the linear case  dp u d(p)?

n=0, the exact solution of the Tricomi equation can be ob- 5y =% ~ 5, - (14)
tained as a superposition of Airy functiofill and Seebass,

1973. In catastrophe theory, the Airy functiq83g is the ~ Note that variablé (pseudo timgplays the role of a distance
generic solution for the pressure field near fold caustic®f Propagation in the usual formulation of the inviscid Bur-
(Berry, 1976 and reflects the mixed elliptic/hyperbolic type gers’ equation in nonlinear acoustics. For an initial condition
of the Tricomi equation through its oscillating or exponen-P(t=0,7) =po(7), the solution of Eq(14) is given under the
tially decaying character, depending on the sign of its arguimplicit form by the Poisson’s solutioiBlackstocket al,
ment(Fig. 2. Moreover, for sonic boom, the nonlinear pa- 1998

rameteru i_n Tricomi equation is_generally small_, of th@T or(_jer p(t,7)=po( )
of 0.1. This means that the main effect of nonlinearities is to

limit the amplitude of the “U” wave(unbounded in the lin- 7= 60— utpe(0),
ear casg according to the scheme intuited by Guiraud
(1965. Therefore the solution of the nonlinear Tricomi equa-
tion deviates only weakly from the linear solution, which is
“naturally” given in the frequency domain by the Airy func-

(15

where 6 is the nonlinear characteristic variable associated to
the distorsion of the wave profile. If the distance of propa-
gationt is higher than the shock formation distartge then

this solution is multivalued, and hence physically meaning-

tion. less. Shocks must be introduced, their position being deter-
mined according to the weak shock thefsych as in Pesto-

D. Analytical solution of the inviscid Burgers rius algorithm(1973], or equivalently by applying the law

equation of equal areagLandau, 1945 However, these methods are

In the algorithm of Auger and Coulouvrg2002, the rath(_er co_mplex to implement numerically, especially_ for
inviscid Burgers’ equation for the pressure field was solved®ling with the emergence of new shocks, or the merging of
numerically using ahock capturinglgorithm of McDonald several shocks into a smgle_ one, phenomena that are I!ke!y to
and Ambrosiang1984. The chosen scheme discretizes the@ccur for the Tricomi equation, especially near the sonic line
Burgers’ equation by using either first-or second-order finiteVhere the shock pattern may be rather complex. The method
differences. Generally, more precise second-order differencé¥ Hayes based on the potential turns out much simpler to
are used, however, near shock waves, first-order differenc&®de: First, Poisson’s solution for the potential EtB) with
are preferable as they introduce numerical viscosity that stgD€ initial condition ¢(t=0,7) = ¢o=J/"..po(7')d7" is [0
bilizes the algorithm and enable to go through capture  P€ing implicitly defined by relationi15)]
the shock. The “switch” between first- and second-order dif- ut
ferences is made through a filter that guarantees monotonic- ¢(t,7)= ¢o(0)— 7(p0( 0))2. (16)
ity. As an explicit scheme, it imposes a CFL stability condi-
tion that prevents the use of relatively larde¢ steps. In the As for the pressure, if the propagation “distance” is larger
present version of the algorithm, tbockcapturing scheme than the shock formation distante t., this solution is mul-
has been replaced by an “exaathock fittingalgorithm. Itis  tivalued. However, Hayest al. (1969 noted that, among the
based on the graphical method used by Hates. (1969 in multiple possible values of the potential, the physically
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meaningful one is the maximum of potentji&ig. 3(a)]. This 10’ .
result is directly related to the second principle of thermody- R :
namics and the fact that shock waves of Burgers’ equation 0 ;- Fooee
can only be compression shock waves. The positions of
shock waves are therefore automatically determined as thex

intersections of the several branches of the multivalued Pois-§ ¢
son’s solution. In short, the exact solution, including shock $

waves, is simply =10’

B R .-

ut 5
G(t,7)=max ¢o(0)— =5 (Po(0))7 (17

From a numerical point of view, finding the maximum of

several values is much more efficient than solving the differ- 10

ential equation governing the position of the shocks accord- ! ; ;

ing to weak shock theory, or determining the position that 0 80 100 180 20 250 30 30 40

makes the surface of the two lobes equal, as for the law of Number of iteration

equal areas. The only numerical cost is due to the diSCI’etizcl”":'IG. 4. Logarithm of the maximal value of the difference between two

tion. Indeed, the initial condition is given numerically on an syccessive iteratiorisandi+1 versus the number of iterations, for an in-

equally spaced grid. This means that the exact Poisson’s sgemingN wave with 4=0.05.

lution is known for equally spaced discrete values of the

characterist_ic variaplé. As a counterpart, the discrete values g Convergence with mesh grid refinement

of the physical variable- are unequally spaced. To compare

the different values of the multivalued solution E@6) for When nonlinearities are neglect¢d=0), the solution

the samevalue of 7, it is therefore necessary to reinterpolate Of the linear Tricomi’s equation for pressure for an incoming

the multivalued solution on fixed equally spaced grid for Shock wave is singulaglogarithmic singularity on the illu-

the  variable. This is the only numerical approximation thatMinated side, power-5 on the geometrical causficThis

is introduced into the scheme, otherwise the method is and&ingularity is impossible to reproduce numerically because of

lytically exact. In particular, it can be applied for whatever the filtering induced by discretization, but we observe a regu-

value of the pseudo time steyt. There is no CFL condition. lar increase of the maximal pressure amplitude with the num-
Note that this method allows us to find the physical presber of discretization points. As the exact mathematical solu-

sure too, since the physical points for the Poisson’s solutioon is singular, the numerical one does not converge with

in pressure are the points corresponding to the physical pdrid refinement(Fig. 5. This behavior is of course physi-

tentiel [Fig. 3(b)]. More details on the overall algorithm il- Cally meaningless and, according to Guirga865, nonlin-

lustrated by a diagram can be found in Auger and Coulouvragarities must be introduced to remove the singularity when

(2002. In the present up-dated version, the only changes ithe incoming wave has a shock. This expected behavior is

that diagram consist in replacing the pressure by the poteroserved numerically in Fig. 5, where we clearly get numeri-

tial, and the MacDonald and Ambrosiano algorithm by thecal convergence for a sufficiently fine gri@i024 discretiza-
analytical solution Eq(17). tion points in time or more Also, the nonlinear solution

strongly deviates from the linear one. This result is an indi-

rect validation of the algorithm, showing that it follows

Guiraud’s assumption, and better converges with time dis-
IV. VALIDATION OF THE ALGORITHM cretization than the previous algorithm of Auger and Coulou-
A. Convergence down to machine precision vrat (2002. Let us finally notice that, contrarily to the time

discretization, the number of points in distarceloes not
Convergence tests have shown that the convergence pa-

o .~ "Influence very much the solution.
rameters can be chosen arbitrarily small, down to machine
precision £~10"1°) (Fig. 4). This is a crucial test to check
the effective convergence of the whole numerical proces
(iterative  unsteady  Tricomi  equatiersplit  step

%. Physical behavior

+discretisatioh towards the solution of the nonlinear Tri- For incoming “N” waves, the numerical solution de-
comi equation. However, in practice, such an extreme precipends only on the physical nonlinearity parameteFigures
sion is not necessary, and we routinely choesel0 . 6 and 8 show the spatio-temporal field of presqu(z 7) in

Using this parameter the computation time is dramaticallya linear grayscale calculated along a line perpendicular to the
reduced with a factor of 40 in comparison with the existingcaustic versus dimensionless time fo=0.05 andu=0.5.
code of Auger and Coulouvr&2002. This factor grows ex- The white line is the sonic line separating the elliptic
ponentially with the criterion of convergence. This is an im-(shadow zone from the hyperboli¢illuminated one. The
portant difference between the two methods, that proves théeformation of the sonic line is very sensitive to the nonlin-
potential formulation associated with an explicit treatment ofearity parameter. In the hyperbolic zone, cusped wavefronts
nonlinearity is more pertinent than the associated pressur@e obvious, corresponding to each incoming and outgoing
formulation. shock waves. For both values af the incoming and outgo-
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FIG. 5. Maximal value of the dimensionless pressure versus the number #IG. 7. Pressure versus dimensionless timeufe0.05, for four distances
points of the temporal discretizatiq@500 points in the spatial gfidn the  from the caustic(a) z=1, (b) z= zZysx (distance where the maximal pressure
linear case(x=0) and in the nonlinear casg.=0.1), for an incoming N is found, (c) z=0, and(d) z= —1.

wave.

ing shocks merge exactly on the sonic line. No triple shock igjeometrical causticz=0, Figs. 7¢) and 9c)], the amplitude
observed. In the shadow zone, no shock propagates in accdras strongly decreased because the first peak is now in the
dance with the elliptic nature of the equation there. For botlshadow zone. This is completely different from the linear
values of u, the signal is also plotted at several distancesbehavior, where the highest singularity is right on the geo-
from the caustiqFigs. 7 and @ At matching distance with metrical caustic. In the nonlinear case, the point of maximum
geometrical acoustica=1 [Figs. 71a) and 9a)] the incom-  amplitude is generally in the elliptic domain, very close to,
ing and the outgoing signals are similar to test flights meabut not exactly on, the sonic line. Note that for strong non-
surements(Wanneret al, 1972: the “N” wave is trans- linearities[Fig. 9(c)], the signal deviates from the usual “U”
formed into a “U” wave. The higher the nonlinearity shape, as the first peak is strongly smoothed because in the
parameter, the more the solution is distorted is. Figufes 7 shadow zone, while the second one remains sharp because
and 9b) show the pressure versus time at the distance wherstill in the hyperbolic domain. Finally, away in the elliptic
pressure is maximal. The amplification factaraximal am-  zone[Figs. 7d) and 49d), z= — 1], the signal is smooth, and
plitude divided by the amplitude of the “N” wave at the its amplitude is very weak as expected, due to the exponen-
matching boundanydecreases as the nonlinearity parametetial decay there. These results, showing the numerical simu-
increases: it is about 2.5 far=0.05, but only 1.5 for=0.5.  lations behave qualitatively as expected from the physics and
For the valugu=0.05 typical for sonic boom, the amplifica- in agreement with flight tests, provide an additional valida-
tion factor is in agreement with flight tests values. On thetion.

—_
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o o o o
N R O X
o o o o

Z (dimensionless distance from the caustic)
o
Z (dimensionless distance from the caustic)
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FIG. 6. Pressure field for=0.05. The white line is the sonic line. The FIG. 8. Pressure field fou=0.5. The white line is the sonic line. The
hyperbolic zone is above that line, the elliptic one is below. The pressuréyperbolic zone is above that line, the elliptic one is below. The pressure
levels are indicated by the gray bar. levels are indicated by the gray bar.
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FIG. 10. Validation of Guiraud’s similitude for an incoming rectangular
FIG. 9. Pressure versus dimensionless timeer0.5, for four distances  window signal. Computed deformation of the sonic line for different values
from the caustic(a) z=1, (b) z= z,, (distance where the maximal pressure of u between 0.01 and 0.Zcontinuous lines and comparison with
is found, (c) z=0, and(d) z=—1. Guiraud's similitude for the point of maximum deformaticeircles.

D. Guiraud’s similitude over, this point is easily spotted, and especially difficult to
It has been established previously that the numerical sogg::tgt?zgtlij(;?]e:'hC:rLIy%oﬁsogg;ve;?EIZCGTLZ?Q?O:EQui,:niass : élg_er
lution converges toward a finite value. To ensure this value ismandin Lantitative test Atpthis ’ oint acco’rdin 0 the
correct, and to provide a quantitative validation of the code 9. g ' point, 9

we check the similitude law derived by Guira(p63. In-  Sc219 1w,

deed, with the new scalingp=pud¢, z=u**z, and r Pmax= 1~ °Cp, (20)
= 557, the nonlinear Tricomi equation can be written a5
-~ -~ ~ 5 Z(Pmax) =" Cy, (21
70 570 2212 (18 7(Pma) = 17, (22)
Jz g2 2dr|dr
_ . where the quantitie€,, C,, C, should be constant if the
and its boundary condition problem is invariant. Results are plotted in Fig. 10, where the
_ (9;‘5 _ (9’(; 2. computedsonic lines at different values qf between 0.01
zl""ﬁ +7 1"‘5 = 2F( w8 T+ §z3’2 ) . (199  and 0.2 are plotted as continuous lines, while the positions of

the cusp(circle) for the same values gk are deducednu-
Note that the nonlinearity parameter is eliminated from themerically by Guiraud’s scaling law Eq$§21) and (22) from
nonlinear Tricomi equation, but now appears in the phase afhe computed position at the lowest value sof Figure 10

the boundary condition. However, for a “step” way& () obviously demonstrates this poiftircle) constantly remains
=0 for 7<0 andF(7) =1 for 0], the incoming wave pro- on the top of thecontinuou$ sonic line, accordingly to the
file is invariant by a phase dilatation, so the whole problemtheoretical similitude. The results are also in very good
gets independant of the value pf The objective of the agreement for the pressure amplitude, as exemplified by Fig.
validation test is to check whether the code satisfies thid1: for u values larger than 0.02, the raiid’®p ., deviates
property. However, because of the discretization, a true stefpom less than 2% of the constant value 1.76. The larger
shock of infinite duration cannot be simulated. Instead, weleviation for smaller values of is related to unsufficient
use a rectangular windoyWF(7)=1 if 0<7<2 and F(7) time discretization in cases where the very sharp peaks of the
=0 everywhere elde This function is completely identical wave profile are difficult to capture numerically. Hence, the
to the step function locally around the shock, so that we camumerical scheme satisfies the nonlinear quantitative simili-
expect it to satisfy at least approximately Guiraud’s scalingude law. The whole sonic line, and not only the positions of
law. This kind of approximation is used in practice by Gill the wavefront cusp, could be theoretically deduced from one
and Seebas§1973 to estimate solutions of the nonlinear another through Guiraud’s law. However, if applied for the
Tricomi equation when the hodograph transform fails to pre-inite signal used here, the similitude would rapidly diverge
dict the shock positions. For the pressure field, the corredrom numerical simulations. For instance, according to
similitude is p=px~Y%p. Guiraud’s similitude is tested in Guiraud’s law, the “width” of the sonic line around his
Fig. 10 for the amplitude and position of the maximal distor-maximum deformation should be 36 times larger for the larg-
sion of the sonic line, corresponding to the cusp of the shoclkst value ofu than for the smallest one. Clearly this is not
wavefront on the sonic line. This point is chosen as it isthe case, because the numerical results are constrained by the
exactly on the shock wavefront, so that it is as little as posfinite duration of the signal, which prevents too huge distor-
sible influenced by the finite duration of the signal. More-sions, especially for the phase variable. This explains why,
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. . . . . . signal and for the point of maximum amplitude.
when applied for the point of maximum amplitude which is 9 P P

slightly awayfrom the wavefront cusp inside the elliptic do- camber, and thickness have been numerically optimized, and
main, the similitude law remains well satisfied for the pres-a model has been built for wind-tunnel tests at supersonic
sure amplitude, but not so well for its positigfig. 12. and transonic speeds.
Indeed, it still satisfies a similitude law, but with a power Sonic boom focusing has been numerically simulated
0.63 instead of 0.8 for the distangeand a power 0.99 in- under the assumption of a horizontal flight at altitude 35000
stead of 1.2 for the phase Similar results can be obtained ft (10668 m), with a constant acceleration of 1 m/and in
when the incoming signal is an “N” wave. Consequently, the standard atmosphere. The altitude is typical for Concorde
when applying Guiraud’s similitude, Gill and Seeb&k3873  during its transonic acceleration phase along the route Paris
and Plotkin(2002 predict with a rather good accuracy the to New York. The acceleration is relatively large, but leads to
focused boom peak amplitude, but not so well the precis@ ground track focusing at the ground level occurring almost
shape of the superboom. exactly at Mach 1.2(1.207. Due to atmospheric conditions,
the aircraft Mach number for ground track focusing is vari-

V. SONIC BOOM SIMULATION OF AN ACCELERATING \"’/‘g:jéa:‘: ':/"VZCh ﬁjvzilf;’g;dj;fg iy ﬁa?epgise”tat;eanrgean
SUPERSONIC TRANSPORTER - Anyway, p oAy

Coulouvrat, 2002that the acceleration has little influence on
A numerical simulation of focused sonic boom at thethe amplitude of focused sonic bodibut it has on the caus-

ground level has been realized in a “realistic” case. Thetics position). For focusing, only boom simulations in the
chosen mock-up is the so-called Eurosup configuratioplane of symmetry(boom emitted with a zero azimutal
(Evans and Doherty, 1997Fig. 13), derived from the Euro- angle have been realized.
pean ESCT configuration for a future supersonic transport The computations have been performed by coupling the
aircraft. It is a wing—body configuration without horizontal numerical solver of the Tricomi equation to the numerical
canard or aft-tail and without vertical fin. The double deltacodeBANGV currently being developed by Airbus France
wing is set in a low position relative to the fuselage whichSAS and UniversitePierre et Marie Curie. It is based on a
has a circular section and is 89 m long. The wing twist,standard ray model, modified to take into account the non-

EUROSUP wing-body configuration 'I

FIG. 13. The Eurosup mock-up.
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linear distortion of the sonic boom waveform as it propagates  The matching between the near-field Euler simulations
from the aircraft down to the ground. Boom is computedand the acoustical propagation model was not sophisticated,
along the ray that is tangent to the caustic at the ground untilsing directly the CFD pressure waveform extracted at some
this ray reaches a point slightly above the ground. This prodistance from the aircraft as an input for the ray propagation.
vides the incoming waveforfi(7) and the nonlinear param- No “smooth” matching as those described by Plotkin and
eter u that are the only input parameter for the algorithmpage(2002 was performed.
solving the nonlinear Tricomi equation. Pressure waveforms below the mock-up in the symmetry
The source term, used as an input pressure field for thgjane are shown in Fig. 15 for five different distanée€0.5,
sonic boom code, has been determined using CFD simulq, 1.5, 2, 2.5 fuselage lengtis. For comparison, the pres-

tions of the Euler equations_ around the mock-up. The Tinit%ure fields are normalized by the ratiéi/L to compensate
volume softwareelsA (Cambier, 19099has been used, With ¢, the geometrical attenuation due to the conical form of the

uncentered upwind fluxes of the Roe type. The meshing of

; . wavefront. If the pressure field would perfectly match the
the air volume around the mock-up was determined using aDassic Whitham's assumptions for sonic boom the@tgn-
analytical method to build a structured grid with an H-type

o . er body, far-field approximation, linear and locally axisym-
topology. The mock-up is first set at the desired angle 01?netric field, these different curves should perfectly superim-

attack before meshing the volume around the conflguranonose_ On the figure we can clearly see three shock waves

so that constant K index surfaces remain always planes paP— . : . .
. . . . ~ .. _emanating from the aircraft nose, wing leading edge, and
allel to the incoming flow velocity at some distance: this is

intended to avoid interpolation errors when extracting thefuselage tail. AIH:OEL’ we qbservg_a fourth, sharp S.hOCk
ave emanating from the wing trailing edge, but this one

pressure fields in the planes required for the sonic boom coddaV i )
input. The H-type topology of the meshing is especiallyrapldI)_/ decays at larger d|stance§. Therefore, it appears as a
suited for capturing fine transverse gradients of the pressufdéar-field, local effect, and the distanide=0.9. seems too
field. The meshing was preadapted to the Mach number, b§hort for a sound matching with acoustical propagat|'0n. The
limiting the grid between the two Mach cones emanatingEnd Of the pressure waveform ldt=2.5_ strongly deviates
from the fuselage at its nose and at its tallghtly extended from the undisturbed value 0, probably due to a mesh bound-
forward/backward to be sure to capture all the shock waved'y t00 close to the fuselage tail. More generally, the pressure
emanating from the mock-up, Fig. 14The computational field at the rear appears pretty complex, as confirmed by
domain was extended below to 3 fuselage lengths, but t8ff-sSymmetry simulations, and the extent of the meshing is
only 1 fuselage length above. For a better capture of th@robably too close to the fuselage for capturing precisely the
origin of the shock waves, grid refinement was introduceddecaying tail of the pressure waveform. On the contrary, the
around the Mach cones emanating from the nose, the win§vo first shocks seem to superimpose almost perfectly. Small
leading edge, the wing trailing edge and the fuselage tail. Fafleviations(advancement of the nose shock and attenuation
from the mock-up, the grid refinement has to become mor@f the small dip ahead of the leading edge shockn be
regular because the exact position of the shock waves cannexplained by nonlinear propagation effects that are anyway
be guessed in advance. This results in the type of meshingken into account in the propagation code. Especially, we do
shown on Fig. 14 in the plane of symmetry. The 3D meshingiot see any strong deviation from the assumption of locally
was of the order of 5 million computation points. axisymmetric field, even for the leading edge shock though
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FIG. 15. Normalized pressure waveforms at five different distances below the magkicip line: H/L=0.5, continuous line: H/E1, dash dotted line:
H/L=1.5, dotted line: H/l=2, and dashed line: HA2.5).

this one is mostly associated to lift effects that are far fromalmost perfect, which demonstrates the soundness of the
axisymmetric. This point is also confirmed by off-symmetry whole numerical procedure. The results are not so good for
pressure fields. the rear shock, especially fét/L=0.5 and 2.5, obviously a
Figure 16 shows the ground sonic boom predicted inconsequence of the nearfield simulatigloeal fourth shock
cruise condition at Mach 1.ho acceleration, therefore no wave atH/L=0.5, too short mesh &i/L=2.5). The agree-
focusing, depending on the ratid/L at which the matching ment is acceptable for the three other intermediate values,
between CFD and the propagation code is realized. For théespite some uncertainty in the rear shock position and am-
two head shock¢nose and leading edgethe agreement is plitude. Also noteworthy is the triple shocks structure of the

150
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FIG. 16. Ground track sonic boom at cruise Mach number 1.2 computed by matching with CFD Euler simulations at five different distances belovt the aircraf
(thick line: H/L=0.5, continuous line: H/E1, dash dotted line: HA1.5, dotted line: H/I=2, and dashed line: HAE2.5).
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FIG. 17. Groundtrack focused pressure waveforms at the geometrical causstl) for three different matching distancésontinuous line: H/l=1, dash
dotted line: H/L=1.5, and dotted line: H/E2).

boom waveform. This is due to the low Mach 1.2 inducing aforms, contrarily to the aproximate method of Gill and See-
nose shock rather strong compared to the leading edge shoblkss (1973 valid for noninteracting shock waves, an as-
(roughly 75%, Fig. 15 At Mach 1.2, fly altitude is lower sumption not satisfied here for the two close head shocks.
than for a Mach 2 cruise, boom propagation is shorter, and  Figure 17 shows the computed focused boom right at the
nonlinear effects are not sufficient for the shocks to mergegeometrical causticzE& 0 in the Tricomi equatiop only for

into the classic “N” wave boomwhich would be observed the three “admissible” distanceld/L=1, 1.5 or 2. Due to

at Mach 2. For computation of boom focusing, the Tricomi the three-shock structure of the incoming waveform, the fo-
solver perfectly handles such “complex” incoming wave- cused boom exhibits a more complex shape than the usual

400
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FIG. 18. Groundtrack focused pressure waveforms at the position of maximum amplitude for three different matching ¢istatitogsus line: H/l=1, dash
dotted line: H/L=1.5, and dotted line: H/E2).
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FIG. 19. “Optimized” signal where the nose and leading edge shocks havé|G. 20. Maximal overpressure as a function of the time interval between
not merged yet. the nose and the leading edge shocks.

“U” wave, each incoming shock wave giving rise to a peak. the Eurosup configurqtion. We als_o chose to. keep the. pres-
The agreement between the three curves turns out to be ve?ﬁre waveform symetric. The amplitutief the first shock is
satisfying, especially for the first and third “peaks.” There is Chosen equal to 0.6 and the signal energy is kept constant, so

some deviation, however, for the phase of the second shodRat the whole signal is entirely determined by a single pa-
in the caseH/L =2, but it has only a marginal consequence@meter, the time intervakt between the two first shocks

on the peak amplitude. (Fig. 19. This interval varies between(€he classic N wave
Figure 18 displays the same curves, but now at the disdnd 0.5(25% of the total duration Figure 20 shows the
tancez,, from the geometrical caustics where the pressurd!ighest amplitude of the focused boom as a function of the
field reaches its peak value. As,,, depends on the input interval between the two first shpcks. Compared to an _N
parameter, the three curves of Fig. 18 are not calculated eXYave, we first observe an amplitude decrease, the minimal
actly at the same distancg,.,, a fact that amplifies the Value being reached for an interval between the two first

differences between the curves compared to Fig. 17. This ighocks equal to 0.2612.5% of the total duration The re-

especially obvious, for the cas¢/L =1, where the highest duction of the amplitude is then about 20% compared to the
peak is associated to the second incoming shibeiding N wave. For larger time intervals, the amplitude increases
edge, while for the two other cases, it is associated to the2n€W. This proves that potential ways for the reduction of a
third (tail) shock. Let us recall that for an N wave, it is focused boom do exist. They require to produce incoming
always associated to the first shock! Comparing the twdvaves with multiple shock, both at the froand at the rear

casesH/L=1.5 or 2, however, the agreement is very good of the signal. The example of the Eurosup configuration

the only main difference being once again the phase of th’éhows that this objective should not be ruled out for a real-
second shock foH/L=2. Also to be noticed is the peak istic configuration. Nevertheless, superboom reduction sonic

amplitude(~300 Pa for all three casessignificantly differ- remain; a formidgble_ chaIIenge, especially for the rear part
ent from the one at the geometrical caustied50 Pa. The  ©Of th_e alrcrgft, Wh|ph is especially complex from an aerody-
position z,4, is typically of the order of 0.25 times the Namical point of view.

boundary layer thickness, which corresponds roughly to
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