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Weak shock wave focusing at fold caustics is described by the mixed type elliptic/hyperbolic
nonlinear Tricomi equation. This paper presents a new and original numerical method for solving
this equation, using a potential formulation and an ‘‘exact’’ numerical solver for handling
nonlinearities. Validation tests demonstrate quantitatively the efficiency of the algorithm, which is
able to handle complex waveforms as may come out from ‘‘optimized’’ aircraft designed to
minimize sonic booms. It provides a real alternative to the approximate method of the hodograph
transform. This motivated the application to evaluate the ground track focusing of sonic boom for
an accelerating aircraft, by coupling CFD Euler simulations performed around the mock-up on an
adaptated mesh grid, atmospheric propagation modeling, and the Tricomi algorithm. The chosen
configuration is the European Eurosup mock-up. Convergence of the focused boom at the ground
level as a function of the matching distance is investigated to demonstrate the efficiency of the
numerical process. As a conclusion, it is indicated how the present work may pave the way towards
a study on sonic superboom~focused boom! mitigation. © 2003 Acoustical Society of America.
@DOI: 10.1121/1.1610459#
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I. INTRODUCTION

Sonic booms remain a community acceptance prob
that may jeopardize the development of future civil sup
sonic aircraft~either supersonic transport or business je!.
The most intense sonic boom is the focused sonic boom
to the aircraft transonic acceleration from Mach 1 to cru
speed, and it cannot be avoided by realistic maneuver
leads to an amplification of ground pressures up to two
three times the carpet boom shock strength. Therefore
comply with a future international regulation on sonic boo
it is important to predict accurately the level of focus
booms. The present work will demonstrate such a predic
is now within reach. It is a complex task, as it requires
precise CFD simulation of the pressure field far enough fr
the aircraft, a correct matching between aerodynam
evaluations and acoustical propagation modeling in the
mosphere, and a validated modeling of shock waves focu
around the caustic at ground level.

According to the classic theory~Hayes et al., 1969!,
sonic booms are computed within the framework of ge
metrical acoustics. The eikonal~phase! function is deter-
mined by the ray path, and the signal amplitude by the r
tube area. Nonlinear effects along each ray entail
pressure signal to evolve from the complicated shock fl
around the body of the aircraft down to the ultimate ‘‘N
wave reached at ground level for long propagation distan
The input pressure signal describing the aircraft flow fi

a!Electronic mail: marchi@lmm.jussieu.fr
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was initially estimated from the linear aerodynamic theo
for slender bodies~Whitham, 1952!, a theory that also pro-
vides the correct matching to geometrical acoustics. Ho
ever, Whitham’s linear approximation lacks precision f
relatively low Mach numbers such as those of accelera
focusing ~around Mach 1.2 to 1.4!. Nowadays numerica
means enable CFD simulations to be reliable far eno
from the aircraft~one or several fuselage lengths!. Direct
matching between CFD simulations and acoustical propa
tion can be achieved for cruise~steady! flight, with a good
convergence at ground level provided the matching is p
formed far enough from the aircraft. More sophisticat
ways of matching can be achieved closer to the aircraft,
have not been fully explored yet~Plotkin and Page, 2002!.

Caustics are surfaces, and their ground intersection
lines, where the ray-tube area vanishes and the geomet
acoustics approximation neglecting diffraction breaks dow
Around regular smooth caustics surfaces@‘‘fold’’ caustics ac-
cording to the terminology of catastrophe theory~Thom,
1972; Berry, 1976!#, diffraction must be taken into accoun
inside a ‘‘diffraction boundary layer’’ around the caust
~Buchal and Keller, 1960! to be matched to geometrica
acoustics. Within this layer, the pressure satisfies the lin
Tricomi equation, whose generic solution in the frequen
domain is the well-known Airy function, in agreement wit
the catastrophe theory. If, as for sonic booms, the incom
signal possesses shock waves, the amplified signal nea
caustics and the outgoing signal exhibit a ‘‘U’’ shape resu
ing from thep/2 phase jump through the caustics. This sha
is substantiated by flight tests~Wanneret al., 1972!, but the
14(4)/1758/14/$19.00 © 2003 Acoustical Society of America



.
e

e-
lle

sm
rt

,
e
ho
-
ic

f a

i

n
th
en
s
g

ld
at
s-
to
n

tic
of
dr
e
e
i

te

a
e
a

ba

n
af
m
ag

e
d
tu

n
ic
a
ls

oin

on

,

ic,

us-
ates
er,

it

rival
ss

tem

us-
-

re

f

la-
n-
ed:

-

ncy
he
e

linear theory fails to predict finite peaks for the ‘‘U’’ wave
To recover finite amplitudes, nonlinearities must be tak
into account as an additional ‘‘limiting’’ mechanism. The r
sulting equation satisfied by the pressure field is the so-ca
nonlinear Tricomi equation~Guiraud, 1965! which is a
mixed-type~elliptic/hyperbolic! equation~Sec. II!. The pro-
cess of linear diffraction being the dominant mechani
around caustics, supplemented by nonlinearities, is suppo
by laboratory-scale experiments~Sturtevant and Kulkarny
1976; Marchianoet al., 2003! at small Mach numbers. Th
objective of this paper is to present a new numerical met
to solve thenonlinear Tricomi equationusing a pseudospec
tral method, and to apply it for predicting ground track son
boom focusing coupled with CFD nearfield simulations o
realistic high-speed supersonic transport.

The new algorithm for solving the nonlinear Tricom
equation derives from a previous version~Auger and Cou-
louvrat, 2002!. The reader is referred to this work for a
extensive bibliography on numerical methods applied to
nonlinear Tricomi equation. Let us only cite the most rec
work of Cheng and Hafez~2002!. Compared to this previou
code, two very substantial improvements have been brou
~Sec. III!. The equation is now solved for the potential fie
instead of the pressure field, and nonlinear effects are tre
with an ‘‘exact’’ solver that removes artificial numerical di
sipation and avoids any stability condition. This results in
an innovative combination of numerical methods with pote
tial applications for other equations in nonlinear acous
~such as the KZ equation!. As a consequence, the number
iterations and the computation time have been reduced
matically by a factor of~roughly! 40, the convergence of th
maximum peak amplitude with mesh refinement is now p
fectly reached, and the theoretical Guiraud’s similitude
satisfied numerically with a good precision. This constitu
a complete and quantitative validation of the algorithm~Sec.
IV !, which is able to handle complex waveforms as m
come out from ‘‘optimized’’ aircraft designed to minimiz
sonic booms. It provides a real alternative to the approxim
method of the hodograph transform developed by See
~1971! and Gill and Seebass~1973!, and currently applied
for the numerical evaluation of the superboom~Plotkin,
2002!. This motivated the application to evaluate the grou
track focusing of the sonic boom of an accelerating aircr
by coupling CFD Euler simulations performed far away fro
the aircraft on an adaptated mesh grid, atmospheric prop
tion modeling, and the Tricomi algorithm~Sec. V!. Conver-
gence of the focused boom at ground level as a function
the matching distance is investigated to demonstrate the
ficiency of the numerical process. As a conclusion, we in
cate how the present work may pave the way towards a s
on sonic superboom~focused boom! mitigation.

II. THE PHYSICAL PROBLEM: THE NONLINEAR
TRICOMI EQUATION

From a physical point of view, a caustic is a regio
where sound is amplified. In terms of geometrical acoust
it is the locus of points where the ray-tube area vanishes
where the geometrical approximation breaks down. It is a
an envelope of rays, tangent to acoustical rays at any p
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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So, near a regular caustic@a fold caustic in the terminology
of catastrophe theory~Thom, 1972!#, either two or zero
acoustical rays go through a given point, depending
which side~‘‘illuminated’’ or ‘‘shadow’’ side! of the caustic
this point lies on~Fig. 1!. For a point on the illuminated side
among the two rays going through this point, one~the so-
called incoming ray! has not yet tangented the caust
whereas the other one~the so-calledoutgoing ray! has al-
ready tangented the caustic. Sufficiently far from the ca
tics, these two rays do not interact and sound propag
according to the laws of geometrical acoustics. Howev
close to the caustics, the two rays become indiscernable@ac-
cording to the terminology of Kravtsov and Orlov~1993!#.
There, diffraction effects must be taken into account to lim
the amplitude of the acoustical field. The thicknessd of the
diffraction boundary layer~Buchal and Keller, 1960! around
the caustic can be chosen as the distance at which the ar
times of the incoming and outgoing signals differ by le
than the period of the signal~if periodic!, or its duration~for
a pulse!. Let us choose the originO at some point of the fold
caustic, and introduce the Cartesian coordinate sys
(Oxyz), with Ox being tangent to the caustic at pointO and
oriented towards the direction of the ray tangenting the ca
tic at this point, andOz being oriented in the normal direc
tion to the caustic, towards the illuminated side. At pointO,
we denote byr0 the ambient density,c0 the ambient sound
speed, andp0 the ambient pressure. The radius of curvatu
of the intersection of the caustics with the (Oxz) plane is
Rsec, while Rray is the radius of curvature of the projection o
the acoustical ray on the (Oxz) plane andRcau51/(1/Rsec

11/Rray) is the radius of curvature of the acoustical ray re
tive to the caustics. To formulate the problem in a dime
sionless form, three characteristic quantities are introduc

~1! the characteristic duration of the acoustical signal:Tac,
~2! the thickness of the diffraction boundary~Buchal and

Keller, 1960!: d5(2/c0
2Tac

2 Rcau)
21/3, and

~3! the maximal pressurepac of the incoming acoustical sig
nal at distanced from the caustic.

According to the catastrophe theory~Berry, 1976!, the pres-
sure near the fold caustic can be shown in the high-freque
limit to be a function of two independent variables only: t
distance to the causticz, and the phase of the signal. Th
corresponding dimensionless variables are

FIG. 1. Geometry of the caustic.
1759Marchiano et al.: Shock wave focusing at fold caustics
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~1! the dimensionless delayed time: t̄5@ t2x(1
2z/Rsec)/c0#/Tac,

~2! the dimensionless distance to the caustic:z̄5z/d, and
~3! the dimensionless pressure:p̄5(p2p0)/pac.

In writing the Euler equations in terms of these variables,
pressure field can be shown to satisfy the nonlinear Tric
equation~Guiraud, 1965; Hayes, 1968!:

]2p̄

] z̄2
2 z̄

]2p̄

]t̄2
1

m

2

]2~ p̄2!

]t̄2
50, ~1!

where coefficientm measures the nonlinear effects relative
the diffraction effects:

m52bMacF Rcau

~2c0Tac!
G2/3

, ~2!

with b511B/2A the nonlinearity parameter of the medium
and Mac the acoustical Mach number (Mac5Pac/(r0c0

2)).
The associated boundary conditions of the nonlinear

comi equation are written below.
~1! In time, for a transient signal, the medium is n

perturbed before or after the acoustical wave has passe

p̄~ z̄,t̄→6`!50; ~3!

or, for a periodic signal~with a period T!, one simply gets

p̄~ z̄,t̄1T!5p~ z̄,t̄ !. ~4!

~2! Away from the caustic in the shadow zone, t
acoustical pressure decays exponentially:

p̄~ z̄→2`,t̄ !→0. ~5!

~3! Away from the caustic on the illuminated side, th
field matches the geometrical acoustics approximation:

p̄~ z̄→1`,t̄ !5 z̄21/4bF~ t̄1 2
3z̄

3/2!1G~ t̄2 2
3z̄

3/2!c. ~6!

The F function is the~dimensionless! time waveform of the
incoming signal, before it is affected by diffraction whil
tangenting the caustic. Therefore, theF function is supposed
to be known. On the contrary, theG function is the time
waveform along the outgoing ray. Unlike the incoming s
nal F, the outgoing signalG has undergone the diffractio
effects after having tangented the caustic, and is unkno
To eliminate this unknown function, the matching bounda
condition Eq.~6! can be written as a ‘‘radiation condition,
by a combination of its derivatives with respect toz̄ and t̄:

z̄1/4
] p̄

]t̄
1 z̄21/4

] p̄

] z̄
——→
z̄→1`

2
dF

dt̄ S t̄1
2

3
z̄3/2D . ~7!

In Eq. ~7!, the term 2 1
4z̄

23/2@F( t̄1 2
3z̄

3/2)1G( t̄2 2
3z̄

3/2)#
5O(1/z3/2) coming from the derivative of the slowly vary
ing amplitude is omitted since it is negligibly small com
pared to other termsO(1) of Eq. ~7! emanating from the
derivative of the rapidly varying phase.

However, in this new formulation now appears the tim
derivative of the incoming signal. In the case of an incom
shock wave, this leads to a boundary condition with a sh
singularity~delta Dirac distribution!, which is not well suited
1760 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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to a numerical treatment. In order to avoid this difficulty, t
problem will now be formulated in terms of potential, in
stead of pressure.

III. THE NUMERICAL ALGORITHM

A. The equation for the potential

From now on, we drop all subscripts—for the dime
sionless variables. The acoustical potential is related to
acoustical pressure by the expression:

p5
]f

]t
⇔f5E

2`

t

p~t8!dt8, ~8!

the ~arbitrary! value of the potential at large negative tim
being chosen equal to 0.

The equation satisfied by the potential field near
caustic now is

]2f

]z2
2z

]2f

]t2
1

m

2

]

]t F S ]f

]t D 2G50. ~9!

It turns out to be exactly the nonlinear Tricomi Eq.~1!, ex-
cept for the nonlinear term. Equation~9! is called the Tri-
comi equation for potential.

The associated boundary conditions in time Eqs.~3! and
~4! and in the shadow zone Eq.~5! are identical for the
potential as for the pressure field. Only the matching bou
ary condition with geometrical acoustics@Eq. ~6! or ~7!# is
different:

z1/4
]f

]t
1z21/4

]f

]z
——→
z̄→1`

2FS t1
2

3
z3/2D . ~10!

In this ‘‘weak’’ formulation, the original incoming signalF
now appears instead of its time derivative. Therefore, t
formulation is better suited to a numerical resolution in ca
the incoming signal displays some shocks, as for so
booms.

B. The iterative scheme

A usual way for solving nonlinear equations involvin
only boundary conditions~and no initial condition! is to
build an iterative scheme, starting from an arbitrary init
condition and converging after several iterations towards
solution of the problem. Following Auger and Coulouvr
~2002!, we introduce the so called ‘‘pseudo time’’ t, through
an additional term in the nonlinear Tricomi equation:

]2f

]t]t
5

]2f

]z2
2z

]2f

]t2
1

m

2

]

]t F S ]f

]t D 2G . ~11!

with the unmodified boundary conditions Eqs.~3!–~5! and
~10!.

The additional term]2f/]t]t is supposed to tend to
ward zero when the iterative solutionf(t,t,z) has reached
its ‘‘steady’’ limit for large values of the pseudo timet. In
this case,f(t→1`,t,z) satisfies the right-hand side of Eq
~11!, i.e., the nonlinear Tricomi equation for potential E
~9!. The new Eq.~11! is called the ‘‘unsteady’’ nonlinear
Tricomi equation. It is of hyperbolic type, generally consi
Marchiano et al.: Shock wave focusing at fold caustics
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ered as easier to solve numerically than a mixed~elliptic/
hyperbolic! type equation such as the original nonlinear T
comi equation. The artificial variablet is labeled as a pseud
time for its use to design the iterative process. However,
unsteady nonlinear Tricomi Eq.~11! can be shown to effec
tively model the diffraction of nonlinear acoustical waves
the shadow zone created by atmospheric refraction~Coulou-
vrat, 2002!. In this case, the~now physical! variablet has the
meaning of the penetration distance of the wave inside
shadow zone. Moreover, if thez]2f/]t2 term is omitted in
Eq. ~11!, this one reduces to the well-known KZ equatio
~Zabolotskaya and Khokhlov, 1969! describing the diffrac-
tion of finite amplitude paraxial sound beams. The KZ eq
tion is also a model equation for the diffraction of nonline
acoustical waves at cusp caustics~Coulouvrat, 2000!, the
caustics immediately following the fold caustics in the hie
archy of catastrophe theory.

The numerical resolution of the unsteady nonlinear T
comi Eq. ~11! is achieved by means of the fractional ste
method~Ames, 1977!. Over a single integration stepDt for
pseudo time, the equation is split into two simpler equatio
The first one takes into account the linear diffraction effe
~unsteady linear Tricomi equation!:

]2f

]t]t
5

]2f

]z2
2z

]2f

]t2
, ~12!

while the second one takes into account the nonlinear eff
~inviscid Burgers’ equation for the potential!:

]f

]t
5

m

2 S ]f

]t D 2

. ~13!

Starting from the previous iterationi, first Eq.~12! is solved
numerically over the pseudo time stepDt, thus providing the
intermediate iterationi 11/2. This one is used as a startin
point for solving Burgers’ Eq.~13! over the same pseudo ste
Dt and finally obtaining iterationi 11. This process is re
peated until convergence. As a result, both physical mec
nisms ~linear diffraction and nonlinearities! are taken into
account over one pseudo time step. The method of fractio
steps is rather common and has been applied successful
standard algorithms in nonlinear acoustics solving the
equation, either in the frequency~Frøysaet al., 1993! or in
the time domain~Lee and Hamilton, 1995!. Here, it is all the
more suited as intermediate steps have no physical mea
and are just a way to reach convergence toward the solu
of the Tricomi’s equation. The criterium for convergen
simply consists in comparing two successive iterations
they differ by less than a small parameter«, then the program
is stopped, otherwise the iterative process goes on. Fin
once convergence is reached, the pressure field is der
from the potential by using a standard finite differen
scheme~centered derivatives!. The choice of the arbitrary
parameter« is discussed in Sec. IV.

C. Resolution of the unsteady linear Tricomi equation

The unsteady linear Tricomi Eq.~12! with boundary
conditions Eqs.~3!–~5! and ~10! is solved in the frequency
domain, using a FFT algorithm. For each frequency, deri
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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tives with respect toz̄ are approximated by finite difference
precise at second order~centered differences, except for th
boundary conditions!. Estimation of iterationi 11/2 is ob-
tained through a first-order, implicit finite scheme in variab
t. Finally, the resulting quasi-tridiagonal linear matrix syste
is solved using a standard algorithm, and the potential in
time domain is recovered after an inverse Fourier transfo
As the procedure is completely identical to the one used
Auger and Coulouvrat~2002!, further details are not repeate
here. The only difference is that, in the boundary condit
Eq. ~10!, there now appears the incoming time wavefo
F(t) instead of its time derivative in the algorithm of Auge
~2001!. For incoming shock waves~such as an N wave fo
sonic boom!, the time waveform is much less singular tha
its derivative. Indeed, as the potential is a continuous fu
tion, solving the problem in terms of potential instead
pressure leads to a suppression of Gibbs oscillations tha
sulted from the Fourier transform of the discontinuous pr
sure field. While these oscillations could be sharply redu
through the iterative process of Auger and Coulouvrat~2002!
by adding some small numerical viscosity in the discreti
tion of Burgers’ equation, this reduction was achieved o
after a sufficient number of iterations, and convergence
quired several thousands of iterations. Now, with the n
algorithm for the potential, convergence is reached afte
few tens of iterations only.

The choice of an algorithm in the frequency domain
motivated by the transsonic aspect of the Tricomi equati
Let us recall that a Tricomi equation is of mixed type, eith
hyperbolic if z2mp.0, or elliptic otherwise, the sonic line
z2mp50 separating the illuminated~or supersonic! side of
the caustics where sound ‘‘propagates,’’ from the shadow~or
subsonic! side where sound is evanescent. In the elliptic d
main below the sonic line, there is no oriented flow of info
mation in timet, contrarily to the hyperbolic domain wher
information propagates along the sense of ascending tim
This difference of behavior was the key point of the origin
algorithm of Murman and Cole~1971! for transsonic prob-
lems, which introduced a switch in the way of discretizin
the transsonic equations, using upwind finite differences
the hyperbolic domain but centered finite differences in
elliptic domain. Such a way of discretizing is therefore i
compatible with a time domain algorithm for the KZ equ
tion such as the one used by Lee and Hamilton~1995!, which
relies heavily on the hyperbolic character of the KZ equat
and the oriented flow of information along ascending tim
The use of an algorithm in the frequency domain implies
artificial periodicity of the problem~the period being the size
of the computation domain in time!. Imposing this periodic-
ity, it forces some reverse flow of information, hence remo
ing the problem of specifically handling the flow of informa
tion in the elliptic domain. This can be seen as an equiva
to the hyperbolic wave equation~with its associated initial
conditions in time! being transformed in the frequency do
main into the elliptic Helmholtz equation~with no initial
conditions!. The numerical cost to pay for this is that th
method requires a sufficiently large domain in time co
pared to the effective duration of the signal, so that the a
ficial periodization of the signals interferes as little as po
1761Marchiano et al.: Shock wave focusing at fold caustics
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sible with the signal. This appears perfectly managea
from a computational point of view by choosing for an i
coming ‘‘N’’ wave of duration 1 a time domain equal to
@28/3;111/3#. A second justification for the choice of a
algorithm in the frequency domain is that, in the linear ca
m50, the exact solution of the Tricomi equation can be o
tained as a superposition of Airy functions~Gill and Seebass
1973!. In catastrophe theory, the Airy function~1838! is the
generic solution for the pressure field near fold caus
~Berry, 1976! and reflects the mixed elliptic/hyperbolic typ
of the Tricomi equation through its oscillating or expone
tially decaying character, depending on the sign of its ar
ment ~Fig. 2!. Moreover, for sonic boom, the nonlinear p
rameterm in Tricomi equation is generally small, of the ord
of 0.1. This means that the main effect of nonlinearities is
limit the amplitude of the ‘‘U’’ wave~unbounded in the lin-
ear case!, according to the scheme intuited by Guira
~1965!. Therefore the solution of the nonlinear Tricomi equ
tion deviates only weakly from the linear solution, which
‘‘naturally’’ given in the frequency domain by the Airy func
tion.

D. Analytical solution of the inviscid Burgers
equation

In the algorithm of Auger and Coulouvrat~2002!, the
inviscid Burgers’ equation for the pressure field was solv
numerically using ashock capturingalgorithm of McDonald
and Ambrosiano~1984!. The chosen scheme discretizes t
Burgers’ equation by using either first-or second-order fin
differences. Generally, more precise second-order differen
are used, however, near shock waves, first-order differen
are preferable as they introduce numerical viscosity that
bilizes the algorithm and enable to go through~to capture!
the shock. The ‘‘switch’’ between first- and second-order d
ferences is made through a filter that guarantees monoto
ity. As an explicit scheme, it imposes a CFL stability con
tion that prevents the use of relatively largeDt steps. In the
present version of the algorithm, theshockcapturing scheme
has been replaced by an ‘‘exact’’shock fittingalgorithm. It is
based on the graphical method used by Hayeset al. ~1969! in

FIG. 2. The Airy function.
1762 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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the so-called ARAP sonic boom propagation code for solv
Burgers’ equation along the acoustical rays launched by
aircraft. The algorithm is based on the exact solution of
Burgers’ Eq.~13! expressed for the pressure field:

]p

]t
5

m

2

]~p!2

]t
. ~14!

Note that variablet ~pseudo time! plays the role of a distance
of propagation in the usual formulation of the inviscid Bu
gers’ equation in nonlinear acoustics. For an initial conditi
p(t50,t)5p0(t), the solution of Eq.~14! is given under the
implicit form by the Poisson’s solution~Blackstocket al.,
1998!:

p~ t,t!5p0~u!

~15!
t5u2mtp0~u!,

whereu is the nonlinear characteristic variable associated
the distorsion of the wave profile. If the distance of prop
gation t is higher than the shock formation distancetc , then
this solution is multivalued, and hence physically meanin
less. Shocks must be introduced, their position being de
mined according to the weak shock theory@such as in Pesto
rius algorithm~1973!#, or equivalently by applying the law
of equal areas~Landau, 1945!. However, these methods ar
rather complex to implement numerically, especially f
dealing with the emergence of new shocks, or the mergin
several shocks into a single one, phenomena that are like
occur for the Tricomi equation, especially near the sonic l
where the shock pattern may be rather complex. The met
of Hayes based on the potential turns out much simple
code. First, Poisson’s solution for the potential Eq.~13! with
the initial condition f(t50,t)5f05*2`

t p0(t8)dt8 is @u
being implicitly defined by relation~15!#

f~ t,t!5f0~u!2
mt

2
~p0~u!!2. ~16!

As for the pressure, if the propagation ‘‘distance’’ is larg
than the shock formation distancet.tc , this solution is mul-
tivalued. However, Hayeset al. ~1969! noted that, among the
multiple possible values of the potential, the physica

FIG. 3. Multivalued and physical solutions of the inviscid Burgers’ equat
~a! for potential and~b! for pressure.
Marchiano et al.: Shock wave focusing at fold caustics



dy
tio

t
oi
c

of
e
rd
a

tiz
n
s

th
es
re

te

a
n

er
.
es
tio
p

-
vr
s
te
he

p
ne
k
es

i-
ec

ll
ng

t
o

su

ng

of
gu-
m-
lu-
ith
-

en
r is
ri-

di-
s
is-
u-

e

-

the

tic

in-
nts
ing

wo
-

meaningful one is the maximum of potential@Fig. 3~a!#. This
result is directly related to the second principle of thermo
namics and the fact that shock waves of Burgers’ equa
can only be compression shock waves. The positions
shock waves are therefore automatically determined as
intersections of the several branches of the multivalued P
son’s solution. In short, the exact solution, including sho
waves, is simply

f~ t,t!5maxH f0~u!2
mt

2
~p0~u!!2J . ~17!

From a numerical point of view, finding the maximum
several values is much more efficient than solving the diff
ential equation governing the position of the shocks acco
ing to weak shock theory, or determining the position th
makes the surface of the two lobes equal, as for the law
equal areas. The only numerical cost is due to the discre
tion. Indeed, the initial condition is given numerically on a
equally spaced grid. This means that the exact Poisson’s
lution is known for equally spaced discrete values of
characteristic variableu. As a counterpart, the discrete valu
of the physical variablet are unequally spaced. To compa
the different values of the multivalued solution Eq.~16! for
the samevalue oft, it is therefore necessary to reinterpola
the multivalued solution on afixed, equally spaced grid for
thet variable. This is the only numerical approximation th
is introduced into the scheme, otherwise the method is a
lytically exact. In particular, it can be applied for whatev
value of the pseudo time stepDt. There is no CFL condition

Note that this method allows us to find the physical pr
sure too, since the physical points for the Poisson’s solu
in pressure are the points corresponding to the physical
tentiel @Fig. 3~b!#. More details on the overall algorithm il
lustrated by a diagram can be found in Auger and Coulou
~2002!. In the present up-dated version, the only change
that diagram consist in replacing the pressure by the po
tial, and the MacDonald and Ambrosiano algorithm by t
analytical solution Eq.~17!.

IV. VALIDATION OF THE ALGORITHM

A. Convergence down to machine precision

Convergence tests have shown that the convergence
rameter« can be chosen arbitrarily small, down to machi
precision («'10215) ~Fig. 4!. This is a crucial test to chec
the effective convergence of the whole numerical proc
~iterative unsteady Tricomi equation1split step
1discretisation! towards the solution of the nonlinear Tr
comi equation. However, in practice, such an extreme pr
sion is not necessary, and we routinely choose«'1027.
Using this parameter the computation time is dramatica
reduced with a factor of 40 in comparison with the existi
code of Auger and Coulouvrat~2002!. This factor grows ex-
ponentially with the criterion of convergence. This is an im
portant difference between the two methods, that proves
potential formulation associated with an explicit treatment
nonlinearity is more pertinent than the associated pres
formulation.
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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B. Convergence with mesh grid refinement

When nonlinearities are neglected~m50!, the solution
of the linear Tricomi’s equation for pressure for an incomi
shock wave is singular~logarithmic singularity on the illu-
minated side, power21

6 on the geometrical caustic!. This
singularity is impossible to reproduce numerically because
the filtering induced by discretization, but we observe a re
lar increase of the maximal pressure amplitude with the nu
ber of discretization points. As the exact mathematical so
tion is singular, the numerical one does not converge w
grid refinement~Fig. 5!. This behavior is of course physi
cally meaningless and, according to Guiraud~1965!, nonlin-
earities must be introduced to remove the singularity wh
the incoming wave has a shock. This expected behavio
observed numerically in Fig. 5, where we clearly get nume
cal convergence for a sufficiently fine grid~1024 discretiza-
tion points in time or more!. Also, the nonlinear solution
strongly deviates from the linear one. This result is an in
rect validation of the algorithm, showing that it follow
Guiraud’s assumption, and better converges with time d
cretization than the previous algorithm of Auger and Coulo
vrat ~2002!. Let us finally notice that, contrarily to the tim
discretization, the number of points in distancez does not
influence very much the solution.

C. Physical behavior

For incoming ‘‘N’’ waves, the numerical solution de
pends only on the physical nonlinearity parameterm. Figures
6 and 8 show the spatio-temporal field of pressurep(z,t) in
a linear grayscale calculated along a line perpendicular to
caustic versus dimensionless time form50.05 andm50.5.
The white line is the sonic line separating the ellip
~shadow! zone from the hyperbolic~illuminated! one. The
deformation of the sonic line is very sensitive to the nonl
earity parameter. In the hyperbolic zone, cusped wavefro
are obvious, corresponding to each incoming and outgo
shock waves. For both values ofm, the incoming and outgo-

FIG. 4. Logarithm of the maximal value of the difference between t
successive iterationsi and i 11 versus the number of iterations, for an in
comingN wave withm50.05.
1763Marchiano et al.: Shock wave focusing at fold caustics
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ing shocks merge exactly on the sonic line. No triple shoc
observed. In the shadow zone, no shock propagates in a
dance with the elliptic nature of the equation there. For b
values ofm, the signal is also plotted at several distanc
from the caustic~Figs. 7 and 9!. At matching distance with
geometrical acousticsz51 @Figs. 7~a! and 9~a!# the incom-
ing and the outgoing signals are similar to test flights m
surements~Wanner et al., 1972!: the ‘‘N’’ wave is trans-
formed into a ‘‘U’’ wave. The higher the nonlinearit
parameter, the more the solution is distorted is. Figures~b!
and 9~b! show the pressure versus time at the distance wh
pressure is maximal. The amplification factor~maximal am-
plitude divided by the amplitude of the ‘‘N’’ wave at th
matching boundary! decreases as the nonlinearity parame
increases: it is about 2.5 form50.05, but only 1.5 form50.5.
For the valuem50.05 typical for sonic boom, the amplifica
tion factor is in agreement with flight tests values. On t

FIG. 5. Maximal value of the dimensionless pressure versus the numb
points of the temporal discretization~1500 points in the spatial grid! in the
linear case~m50! and in the nonlinear case~m50.1!, for an incoming N
wave.

FIG. 6. Pressure field form50.05. The white line is the sonic line. Th
hyperbolic zone is above that line, the elliptic one is below. The pres
levels are indicated by the gray bar.
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geometrical caustic@z50, Figs. 7~c! and 9~c!#, the amplitude
has strongly decreased because the first peak is now in
shadow zone. This is completely different from the line
behavior, where the highest singularity is right on the ge
metrical caustic. In the nonlinear case, the point of maxim
amplitude is generally in the elliptic domain, very close
but not exactly on, the sonic line. Note that for strong no
linearities@Fig. 9~c!#, the signal deviates from the usual ‘‘U
shape, as the first peak is strongly smoothed because in
shadow zone, while the second one remains sharp bec
still in the hyperbolic domain. Finally, away in the ellipti
zone@Figs. 7~d! and 9~d!, z521], the signal is smooth, and
its amplitude is very weak as expected, due to the expon
tial decay there. These results, showing the numerical si
lations behave qualitatively as expected from the physics
in agreement with flight tests, provide an additional valid
tion.

of

re

FIG. 7. Pressure versus dimensionless time form50.05, for four distances
from the caustic:~a! z51, ~b! z5zmax ~distance where the maximal pressu
is found!, ~c! z50, and~d! z521.

FIG. 8. Pressure field form50.5. The white line is the sonic line. The
hyperbolic zone is above that line, the elliptic one is below. The press
levels are indicated by the gray bar.
Marchiano et al.: Shock wave focusing at fold caustics
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D. Guiraud’s similitude

It has been established previously that the numerical
lution converges toward a finite value. To ensure this valu
correct, and to provide a quantitative validation of the co
we check the similitude law derived by Guiraud~1965!. In-
deed, with the new scaling:f5mf̃, z5m4/5z̃, and t
5m6/5t̃, the nonlinear Tricomi equation can be written

]2f̃

] z̃2
2 z̃

]2f̃

]t̃2
1

1

2

]

]t̃ F ]f̃

]t G2

50, ~18!

and its boundary condition

z̃1/4
]f̃

]t̃
1 z̃21/4

]f̃

] z̃
52FS m6/5F t̃1

2

3
z̃3/2G D . ~19!

Note that the nonlinearity parameter is eliminated from
nonlinear Tricomi equation, but now appears in the phas
the boundary condition. However, for a ‘‘step’’ wave@F(t)
50 for t,0 andF(t)51 for t.0#, the incoming wave pro-
file is invariant by a phase dilatation, so the whole probl
gets independant of the value ofm. The objective of the
validation test is to check whether the code satisfies
property. However, because of the discretization, a true
shock of infinite duration cannot be simulated. Instead,
use a rectangular window@F(t)51 if 0,t,2 and F(t)
50 everywhere else#. This function is completely identica
to the step function locally around the shock, so that we
expect it to satisfy at least approximately Guiraud’s scal
law. This kind of approximation is used in practice by G
and Seebass~1973! to estimate solutions of the nonlinea
Tricomi equation when the hodograph transform fails to p
dict the shock positions. For the pressure field, the cor
similitude is p5m21/5p̃. Guiraud’s similitude is tested in
Fig. 10 for the amplitude and position of the maximal dist
sion of the sonic line, corresponding to the cusp of the sh
wavefront on the sonic line. This point is chosen as it
exactly on the shock wavefront, so that it is as little as p
sible influenced by the finite duration of the signal. Mor

FIG. 9. Pressure versus dimensionless time form50.5, for four distances
from the caustic:~a! z51, ~b! z5zmax ~distance where the maximal pressu
is found!, ~c! z50, and~d! z521.
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over, this point is easily spotted, and especially difficult
capture numerically, as convergence there requires a fi
discretization than for other points. Therefore, it is a d
manding, quantitative test. At this point, according to t
scaling law,

pmax5m21/5Cp , ~20!

z~pmax!5m4/5Cz , ~21!

t~pmax!5m6/5Ct , ~22!

where the quantitiesCp , Cz , Ct should be constant if the
problem is invariant. Results are plotted in Fig. 10, where
computedsonic lines at different values ofm between 0.01
and 0.2 are plotted as continuous lines, while the position
the cusp~circle! for the same values ofm are deducednu-
merically by Guiraud’s scaling law Eqs.~21! and ~22! from
the computed position at the lowest value ofm. Figure 10
obviously demonstrates this point~circle! constantly remains
on the top of the~continuous! sonic line, accordingly to the
theoretical similitude. The results are also in very go
agreement for the pressure amplitude, as exemplified by
11: for m values larger than 0.02, the ratiom1/5pmax deviates
from less than 2% of the constant value 1.76. The lar
deviation for smaller values ofm is related to unsufficient
time discretization in cases where the very sharp peaks o
wave profile are difficult to capture numerically. Hence, t
numerical scheme satisfies the nonlinear quantitative sim
tude law. The whole sonic line, and not only the positions
the wavefront cusp, could be theoretically deduced from o
another through Guiraud’s law. However, if applied for t
finite signal used here, the similitude would rapidly diver
from numerical simulations. For instance, according
Guiraud’s law, the ‘‘width’’ of the sonic line around his
maximum deformation should be 36 times larger for the la
est value ofm than for the smallest one. Clearly this is n
the case, because the numerical results are constrained b
finite duration of the signal, which prevents too huge dist
sions, especially for the phase variable. This explains w

FIG. 10. Validation of Guiraud’s similitude for an incoming rectangul
window signal. Computed deformation of the sonic line for different valu
of m between 0.01 and 0.2~continuous lines! and comparison with
Guiraud’s similitude for the point of maximum deformation~circles!.
1765Marchiano et al.: Shock wave focusing at fold caustics
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when applied for the point of maximum amplitude which
slightly awayfrom the wavefront cusp inside the elliptic do
main, the similitude law remains well satisfied for the pre
sure amplitude, but not so well for its position~Fig. 12!.
Indeed, it still satisfies a similitude law, but with a pow
0.63 instead of 0.8 for the distancez, and a power 0.99 in-
stead of 1.2 for the phaset. Similar results can be obtaine
when the incoming signal is an ‘‘N’’ wave. Consequent
when applying Guiraud’s similitude, Gill and Seebass~1973!
and Plotkin~2002! predict with a rather good accuracy th
focused boom peak amplitude, but not so well the prec
shape of the superboom.

V. SONIC BOOM SIMULATION OF AN ACCELERATING
SUPERSONIC TRANSPORTER

A numerical simulation of focused sonic boom at t
ground level has been realized in a ‘‘realistic’’ case. T
chosen mock-up is the so-called Eurosup configura
~Evans and Doherty, 1997! ~Fig. 13!, derived from the Euro-
pean ESCT configuration for a future supersonic transp
aircraft. It is a wing–body configuration without horizont
canard or aft-tail and without vertical fin. The double de
wing is set in a low position relative to the fuselage whi
has a circular section and is 89 m long. The wing tw

FIG. 11. Validation of Guiraud’s similitude: ratiopmax/m21/5 as a function of
m for an incoming rectangular window signal and for the wavefront cus
1766 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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camber, and thickness have been numerically optimized,
a model has been built for wind-tunnel tests at superso
and transonic speeds.

Sonic boom focusing has been numerically simula
under the assumption of a horizontal flight at altitude 35 0
ft ~10 668 m!, with a constant acceleration of 1 m/s2, and in
the standard atmosphere. The altitude is typical for Conco
during its transonic acceleration phase along the route P
to New York. The acceleration is relatively large, but leads
a ground track focusing at the ground level occurring alm
exactly at Mach 1.2.~1.207!. Due to atmospheric conditions
the aircraft Mach number for ground track focusing is va
able, and Mach 1.2 is considered as a representative ‘‘me
value. Anyway, previous simulations have shown~Auger and
Coulouvrat, 2002! that the acceleration has little influence o
the amplitude of focused sonic boom~but it has on the caus
tics position!. For focusing, only boom simulations in th
plane of symmetry~boom emitted with a zero azimuta
angle! have been realized.

The computations have been performed by coupling
numerical solver of the Tricomi equation to the numeric
codeBANGV currently being developed by Airbus Franc
SAS and Universite´ Pierre et Marie Curie. It is based on
standard ray model, modified to take into account the n

FIG. 12. Validation of Guiraud’s similitude: ratiospmax/m21/5, z(pmax)/m
4/5,

and t(pmax)/m
6/5 as a function ofm for an incoming rectangular window

signal and for the point of maximum amplitude.
FIG. 13. The Eurosup mock-up.
Marchiano et al.: Shock wave focusing at fold caustics



FIG. 14. Mesh grid in the mock-up
symmetry plane.
te
ed
n
ro
-
m

th
u
it

a
pe

o
tio
p
is

th
o
lly
su
, b
in

ve

t
th
e
in
F
o
nn
hi
in

ns
ted,
me
on.
nd

try

-

the
he

-
m-
ves
nd
k
ne
as a

he

nd-
ure
by
is

the
the
all

tion

ay
do
lly
gh
linear distortion of the sonic boom waveform as it propaga
from the aircraft down to the ground. Boom is comput
along the ray that is tangent to the caustic at the ground u
this ray reaches a point slightly above the ground. This p
vides the incoming waveformF(t) and the nonlinear param
eter m that are the only input parameter for the algorith
solving the nonlinear Tricomi equation.

The source term, used as an input pressure field for
sonic boom code, has been determined using CFD sim
tions of the Euler equations around the mock-up. The fin
volume softwareelsA ~Cambier, 1999! has been used, with
uncentered upwind fluxes of the Roe type. The meshing
the air volume around the mock-up was determined using
analytical method to build a structured grid with an H-ty
topology. The mock-up is first set at the desired angle
attack before meshing the volume around the configura
so that constant K index surfaces remain always planes
allel to the incoming flow velocity at some distance: this
intended to avoid interpolation errors when extracting
pressure fields in the planes required for the sonic boom c
input. The H-type topology of the meshing is especia
suited for capturing fine transverse gradients of the pres
field. The meshing was preadapted to the Mach number
limiting the grid between the two Mach cones emanat
from the fuselage at its nose and at its tail~slightly extended
forward/backward to be sure to capture all the shock wa
emanating from the mock-up, Fig. 14!. The computational
domain was extended below to 3 fuselage lengths, bu
only 1 fuselage length above. For a better capture of
origin of the shock waves, grid refinement was introduc
around the Mach cones emanating from the nose, the w
leading edge, the wing trailing edge and the fuselage tail.
from the mock-up, the grid refinement has to become m
regular because the exact position of the shock waves ca
be guessed in advance. This results in the type of mes
shown on Fig. 14 in the plane of symmetry. The 3D mesh
was of the order of 5 million computation points.
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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The matching between the near-field Euler simulatio
and the acoustical propagation model was not sophistica
using directly the CFD pressure waveform extracted at so
distance from the aircraft as an input for the ray propagati
No ‘‘smooth’’ matching as those described by Plotkin a
Page~2002! was performed.

Pressure waveforms below the mock-up in the symme
plane are shown in Fig. 15 for five different distancesH ~0.5,
1, 1.5, 2, 2.5 fuselage lengthsL!. For comparison, the pres
sure fields are normalized by the ratioAH/L to compensate
for the geometrical attenuation due to the conical form of
wavefront. If the pressure field would perfectly match t
classic Whitham’s assumptions for sonic boom theory~slen-
der body, far-field approximation, linear and locally axisym
metric field!, these different curves should perfectly superi
pose. On the figure we can clearly see three shock wa
emanating from the aircraft nose, wing leading edge, a
fuselage tail. AtH50.5L, we observe a fourth, sharp shoc
wave emanating from the wing trailing edge, but this o
rapidly decays at larger distances. Therefore, it appears
near-field, local effect, and the distanceH50.5L seems too
short for a sound matching with acoustical propagation. T
end of the pressure waveform atH52.5L strongly deviates
from the undisturbed value 0, probably due to a mesh bou
ary too close to the fuselage tail. More generally, the press
field at the rear appears pretty complex, as confirmed
off-symmetry simulations, and the extent of the meshing
probably too close to the fuselage for capturing precisely
decaying tail of the pressure waveform. On the contrary,
two first shocks seem to superimpose almost perfectly. Sm
deviations~advancement of the nose shock and attenua
of the small dip ahead of the leading edge shock! can be
explained by nonlinear propagation effects that are anyw
taken into account in the propagation code. Especially, we
not see any strong deviation from the assumption of loca
axisymmetric field, even for the leading edge shock thou
1767Marchiano et al.: Shock wave focusing at fold caustics



FIG. 15. Normalized pressure waveforms at five different distances below the mock-up~thick line: H/L50.5, continuous line: H/L51, dash dotted line:
H/L51.5, dotted line: H/L52, and dashed line: H/L52.5!.
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this one is mostly associated to lift effects that are far fr
axisymmetric. This point is also confirmed by off-symmet
pressure fields.

Figure 16 shows the ground sonic boom predicted
cruise condition at Mach 1.2~no acceleration, therefore n
focusing!, depending on the ratioH/L at which the matching
between CFD and the propagation code is realized. For
two head shocks~nose and leading edge!, the agreement is
1768 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
n

he

almost perfect, which demonstrates the soundness of
whole numerical procedure. The results are not so good
the rear shock, especially forH/L50.5 and 2.5, obviously a
consequence of the nearfield simulations~local fourth shock
wave atH/L50.5, too short mesh atH/L52.5). The agree-
ment is acceptable for the three other intermediate valu
despite some uncertainty in the rear shock position and
plitude. Also noteworthy is the triple shocks structure of t
e aircraf
FIG. 16. Ground track sonic boom at cruise Mach number 1.2 computed by matching with CFD Euler simulations at five different distances below tht
~thick line: H/L50.5, continuous line: H/L51, dash dotted line: H/L51.5, dotted line: H/L52, and dashed line: H/L52.5!.
Marchiano et al.: Shock wave focusing at fold caustics



FIG. 17. Groundtrack focused pressure waveforms at the geometrical caustic (z50) for three different matching distances~continuous line: H/L51, dash
dotted line: H/L51.5, and dotted line: H/L52!.
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boom waveform. This is due to the low Mach 1.2 inducing
nose shock rather strong compared to the leading edge s
~roughly 75%, Fig. 15!. At Mach 1.2, fly altitude is lower
than for a Mach 2 cruise, boom propagation is shorter,
nonlinear effects are not sufficient for the shocks to me
into the classic ‘‘N’’ wave boom~which would be observed
at Mach 2!. For computation of boom focusing, the Tricom
solver perfectly handles such ‘‘complex’’ incoming wav
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
ck

d
e

forms, contrarily to the aproximate method of Gill and Se
bass ~1973! valid for noninteracting shock waves, an a
sumption not satisfied here for the two close head shock

Figure 17 shows the computed focused boom right at
geometrical caustics (z50 in the Tricomi equation!, only for
the three ‘‘admissible’’ distancesH/L51, 1.5 or 2. Due to
the three-shock structure of the incoming waveform, the
cused boom exhibits a more complex shape than the u
FIG. 18. Groundtrack focused pressure waveforms at the position of maximum amplitude for three different matching distances~continuous line: H/L51, dash
dotted line: H/L51.5, and dotted line: H/L52!.
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‘‘U’’ wave, each incoming shock wave giving rise to a pea
The agreement between the three curves turns out to be
satisfying, especially for the first and third ‘‘peaks.’’ There
some deviation, however, for the phase of the second sh
in the caseH/L52, but it has only a marginal consequen
on the peak amplitude.

Figure 18 displays the same curves, but now at the
tancezmax from the geometrical caustics where the press
field reaches its peak value. Aszmax depends on the inpu
parameter, the three curves of Fig. 18 are not calculated
actly at the same distancezmax, a fact that amplifies the
differences between the curves compared to Fig. 17. Th
especially obvious, for the caseH/L51, where the highes
peak is associated to the second incoming shock~leading
edge!, while for the two other cases, it is associated to
third ~tail! shock. Let us recall that for an N wave, it
always associated to the first shock! Comparing the
casesH/L51.5 or 2, however, the agreement is very goo
the only main difference being once again the phase of
second shock forH/L52. Also to be noticed is the pea
amplitude~;300 Pa for all three cases!, significantly differ-
ent from the one at the geometrical caustics~;150 Pa!. The
position zmax is typically of the order of 0.25 times th
boundary layer thickness, which corresponds roughly
about 100–200 m. Taking into account the inclination of t
caustic relative to the ground plane, this means that the p
of maximum pressure may deviate from several hund
meters from the geometrical caustics, a fact that is likely
make test flights measurements of focused boom espec
difficult to carry out. Precise numerical simulations such
the present one are all the more attractive.

VI. CONCLUSION: TOWARDS A MITIGATION OF
SUPERBOOM?

Finally, a numerical study on the reduction of the f
cused sonic boom is presented. The solution of the nonlin
Tricomi equation is presented for several incoming wa
forms. We choose to compare a signal where the shocks
to the nose and the leading edge have not merged yet, a

FIG. 19. ‘‘Optimized’’ signal where the nose and leading edge shocks h
not merged yet.
1770 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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the Eurosup configuration. We also chose to keep the p
sure waveform symetric. The amplitudeh of the first shock is
chosen equal to 0.6 and the signal energy is kept constan
that the whole signal is entirely determined by a single
rameter, the time intervalDt between the two first shock
~Fig. 19!. This interval varies between 0~the classic N wave!
and 0.5 ~25% of the total duration!. Figure 20 shows the
highest amplitude of the focused boom as a function of
interval between the two first shocks. Compared to an ‘‘
wave, we first observe an amplitude decrease, the mini
value being reached for an interval between the two fi
shocks equal to 0.25~12.5% of the total duration!. The re-
duction of the amplitude is then about 20% compared to
N wave. For larger time intervals, the amplitude increa
anew. This proves that potential ways for the reduction o
focused boom do exist. They require to produce incom
waves with multiple shock, both at the frontand at the rear
of the signal. The example of the Eurosup configurat
shows that this objective should not be ruled out for a re
istic configuration. Nevertheless, superboom reduction so
remains a formidable challenge, especially for the rear p
of the aircraft, which is especially complex from an aerod
namical point of view.
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