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Abstract

An immersed finite element method for solid–fluid interaction is presented with
application focus on highly deformable elastic bodies in a Stokes flow environment.
The method is based on a global balance equation which combines the solid and fluid
momentum balances, the fluid mass balance and, in weak form, the interface
conditions. By means of an Updated Lagrangian description for finite elasticity, only
one analysis mesh is used, where the solid particles are backtracked in order to preserve
the deformation history. The method results in a full coupling of the solid-fluid system
which is solved by an exact Newton method. The location of the material interface is
captured by a signed distance function and updated according to the computed
displacement increments and the help of an explicit surface parameterisation; no
body-fitted volume meshes are needed. Special emphasis is placed on the accurate
integration of finite elements traversed by the interface and the related numerical
stability of the shape function basis. A number of applications for compressible
Neo-Hookean solids subject to creeping flow are presented, motivated by microfluidic
experimentation in mechanobiology.

Keywords: Immersed finite elements, Fluid–solid interaction, Updated Lagrangian
method, Computational mechanobiology, Nitsche’s method

Background

In a large class of biological and biomedical problems, the interaction of fluid flow and

highly deformable solids plays an important role. Consider, as examples, the biological

response of cells to a mechanical stimulus [1], the flow of capsules in a narrowed tube [2],

the deformation of thin-walled blood vessels [3], or the motion of red blood cells [4]. Not

only themechanical response of cells and tissues in a fluid environment is of great interest,

but also the biological implications of the mechanical environment (that is, mechanobi-

ology). It is, for instance, suggested that fluid shear stresses can control the phenotype

of a living cell: to regulate the cell’s differentiation or proliferation, or simply damage it,

see for example [5] for endothelial cells. To this end, microfluidic experimentation [6] has

proven a powerful tool for the in vitro analysis of such phenomena because it allows to pre-

cisely control the mechanical and chemical environment of individual cells or aggregates

thereof. Nevertheless, this methodology is expensive and time-consuming. Therefore,

computational mechanobiology [7] often proves to be a promising alternative to assist the
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experimentation. For the considered field of applications, inertia forces are negligible (flow

with very low Reynolds numbers, Re ≪ 1) and the ratio of elastic to viscous stresses is by

orders of magnitude smaller than in systems akin to aeroelasticity (for example, heaving

wings [8] and insect flight [9]). For the modelling of living cells in a continuum mechan-

ical framework, the most common approaches are liquid-filled, elastic membranes or

(visco-)elastic solids. Both descriptions have their merits and both can be supported or

rejected by experiments [10]. In this work, we consider a solid domain occupied by a

homogeneous compressible Neo-Hookean material that is subject to Stokes flow. This

class of problems yields an initial, but generic approach to above range of applications

with the potential of future extension.

Over the last decades a large quantity of methods has been developed for the numerical

analysis of fluid-structure interaction problems (see, for instance, the journal issues [11–

13] dedicated entirely to this topic, or the monograph [14]). Broadly speaking, these

can be classified into monolithic methods, e.g. [15], and iterative coupling approaches,

e.g. [16,17]. Whereas in the former class of methods a fully coupled system of equations

is formulated, in the latter class the equations of fluid and solid domains are solved inde-

pendently and provide the boundary conditions (velocities or forces) to the respectively

other domain. Although this iterative approach bears the potential of higher numerical

efficiency and software modularity, the stability of the iteration process often requires

severe restrictions of the size of the time step or sub-iterations [18]. In order to avoid this

intricacy, the approach presented here is monolithic.

Another important classification is to divide the methods into those using body-fitted

meshes and their counterpart, immersed methods [19]. A body-fitted mesh conforms to

the geometry of the problem, this means that the interface between solid and fluid is

solved and tracked by the mesh [20], see also [21] for space-time formulation. The advan-

tage of this approach is a simplified implementation of interface conditions and has been

successfully applied to a wide range of applications: biomedical (for instance, airways and

arteries [3,22]), parachutes [23,24], or the iso-geometric analysis of wind turbines [25].

Nevertheless, the use of body-fitted meshes has the downside that large solid deforma-

tions can lead to a virtual destruction of the analysis mesh. Even though this problem is

addressed by the ALE formalism [26], there are situations where a body-fitted mesh can-

not be maintained. Tedious re-meshing and solution mapping techniques are often the

consequence of the severe mesh distortions and are avoided by the immersed techniques.

The most prominent approach with non-body-fitted meshes is the immersed boundary

method [27] and tailored towards elastic surfaces subject to a flow environment. It has

been successfully applied to simulations of blood flow and the deformation of red blood

cells [28]. Moreover, a finite element counterpart has been developed in [29]. Despite

its great success, the numerical stability of the immersed boundary method is subject to

severe restrictions of the time step [27] due to its mainly explicit character. Apart from

thementioned techniques which rely domain discretisations, the use of boundary integral

equations is a popular alternative [30]. Due to the surface-only description of the flowfield,

the numerical cost can be reduced significantly in this class of methods. See, for instance,

the simulation of vesicle flow [31,32] where an unbounded fluid domain and liquid-filled

membranes are used as model problem. Nevertheless, there are restrictions on the use of

boundary integral equations: they rely on a homogeneous Stokes flow and any extension to

non-linear flow behaviour is not straightforward; moreover, the robust implementation
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of singular integral equations is a demanding task. The application target of the afore-

mentioned methods is mostly the interaction between a fluid and a reduced solid, such

as a membrane or a shell. Here we focus on voluminous solids instead as, for instance,

in [33,34], where an explicit finite difference method is presented for this problem class.

The here presented approach falls into the class of finite element methods with

immersed boundaries and the spatial discretisation does not conform with the location

of the solid-fluid interface. Henceforth, we refer to our method as an immersed finite

element method even though the term has already been employed in [29] (see also, [35])

for a finite element analogy to the immersed boundary method of [27], which basically

consists of an explicit coupling scheme where structural forces are imposed on the fluid

mesh and the computed velocities modify the structural configuration. The method pre-

sented in [33] and typically the immersed boundary method do not sharply resolve the

interface but work with a transition zone between the two media that depends on the

grid resolution. The method proposed here works with a so-called sharp interface rep-

resentation [19] and is based on the immersed b-spline finite element method proposed

in [36]; see also [37,38] for finite element methods with embedded interfaces. Therein,

the application to viscous fluid flow with moving boundaries has been targeted and later

carried over to the partitioned analysis of fluid-structure interaction in [8]. In this latter

reference, the structure is resolved by a Lagrangian mesh and the fluid with a Eulerian

mesh in which an implicit geometry representation is superimposed in order to capture

the interface. Here, this idea is pushed further by using only one analysis mesh for both

solid and fluid, in the spirit of the methods developed in [39,40], which are based on a

fully Eulerian description, see also [41–43]. The drawback of fully Eulerian approaches

for the solid is that displacement and velocity become independent fields that are cou-

pled by an additional advection equation which needs to be solved [42]. In order to avoid

this additional equation and have solid velocities as an extra field, we choose an Updated

Lagrangian method [44] combined with particle tracking, as advertised in [45] for plas-

ticity problems with large deformations. Moreover, this choice of expressing the solid

equilibrium in the latest known configuration avoids the need of shape derivatives [46]

in the linearisation process for the used Newton method. Under the assumption of small

velocities, the time derivatives are completely neglected from the field equations and only

appear through the interface condition between solid and fluid. This condition is weakly

incorporated using Nitsche’s method [47], see also [8,46] for this technique in the context

of an iterative couplingmethod. A signed distance function is used to capture the location

of the interface as a level set [48] for the field computation. At the end of every time step

an explicit surface parameterisation is generated and moved with the computed displace-

ment increment. Note that we combine explicit and implicit geometry descriptions; the

implicit version is used for a quick interface detection at the beginning of each simulation

step. Falling back to a temporary explicit description allows to accurately trace the inter-

face location without the need of additional advection equations as common in level set

methods [48]. We thereby avoid possible distortions of the surface mesh when using an

entirely explicit surface description.

Several test applications demonstrate the potential of themethod. First, the convergence

behaviours of the updated Lagrangianmethod for a solid-only problem and a fully coupled

fluid-solid interaction problem are studied. Next, the cases of a solid subject to shear flow,

theflow througha constrictedpipe section anddriven cavity floware analysednumerically.
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Based on the computed field data, several quantities of interest are studied, such as the

shape variation of the immersed solid, particle motion, Cauchy stresses in fluid and solid,

and fluid velocity patterns.

The outline of this article is as follows. In “Fluid–solid interaction” section, the basic

balance equations of solid and fluid are presented and a global solid–fluid balance equa-

tion that incorporates the interface conditions weakly is derived. Other than customary,

we first discretise this expression in time and linearise it before introducing the spatial dis-

cretisation in “Immersed finite element method” section. More specifically, in “Updated

Lagrangian method and linearisation” section the linearisation is based on an Updated

Lagrangian formalism that avoids the need of shape derivatives. Regarding the immersed

finite element discretisation, a special emphasis is placed on the integration and numerical

stability related to the elements which are traversed by the interface in “Cut elements”

section. Moreover, the displacement history is maintained with a particle tracking algo-

rithm presented in “Interface update and particle tracking” section. Finally, in “Example

applications” section several example applications are presented which demonstrate the

potential of the new method.

Fluid–solid interaction

We begin by deriving our coupling formulation from the balances of momentum and

mass of the solid and the fluid parts, respectively. Here, we restrict ourselves to the case

of very low Reynolds numbers such that inertia terms and fluid advection can be safely

discarded. This simplification is justified by the fact that viscous forces are significantly

larger than inertial forces [49].

Static balance laws

The balance laws for solid and fluid can be found, among others, in [50–52]. The main

equations important for this work are presented in this section and help to introduce the

chosen notation. Let �s(t) ⊂ RD (D = 2 or 3 denotes the spatial dimension) be occupied

by a hyperelastic solid and immersed in a control volume domain � at the time t. The

remainder �f (t) = �\�s(t) of this volume is occupied by a viscous incompressible fluid.

The boundary of the solid domain is denoted by Ŵ(t) and the solid is assumed to be

strictly inside � at all times, such that ∂� ∩ Ŵ(t) = ∅. The outward unit normal vector

to the solid domain is denoted by n. This vector refers to the current configuration is

therefore time-dependent, but we omit to write n(t) for simplicity. This choice of notation

is illustrated in Fig. 1 and it has to be emphasised that the configuration of the domains

is time-dependent: the interaction between solid and fluid changes shape and location

of �s(t) and thus �f (t). But the outer boundary ∂� is assumed to remain fixed. In view

of the considered applications, we neglect inertia and advection terms and formulate the

following local balance laws

−∇ · σs(d) = 0 x ∈ �s(t) (1)

−∇ · σ f (u, p) = 0 x ∈ � f (t) (2)

∇ · u = 0 x ∈ � f (t). (3)

Here, σs and σf are the Cauchy stresses in the solid and the fluid, respectively, and we

have the primal field variables solid displacement d, fluid velocity u and fluid pressure p;
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n=ns

=−nf
Ωs(t)

Ωf (t) = Ω \ Ωs(t)

Γ(t) = ∂Ωs(t)

∂Ω

Fig. 1 Fluid–solid interaction. Snapshot at time t of the time-dependent configuration of fluid domain �f (t)
with immersed solid �s(t)

all functions of the spatial coordinate x and time t. The spatial divergence operation is

symbolised by ∇ · (). Equations (1) and (2) are the quasi-static momentum balances in

solid and fluid, and (3) is the balance of mass for an incompressible fluid.

The fluid is Newtonian and the solid is assumed to be hyperelastic. Therefore, the above

introduced stresses fulfil the material laws

σf (u, p) = −pI + 2μf ε(u) (4)

σs(d) =
1

det F

∂W (F )

∂F
F⊤ with F = F (d), (5)

where I is the D-dimensional identity tensor, μf the fluid’s dynamic viscosity, ε denotes

the symmetric gradient, F the deformation gradient and W the strain energy density

function [50,53].

On the current location of the interface Ŵ(t) between solid and fluid, we have the

conditions

ḋ :=
∂d

∂t
= u and σsn = σf n, (6)

which are commonly referred to as continuity and equilibrium conditions. It remains to

specify boundary conditions for the fluid boundary ∂�. Here, either of the two possibilities

u = ū or σf n = 0 (7)

is used which are a prescribed flow velocity or an outflow condition.

Equations (1), (2), (3) together with the material laws, (4) and (5), and the interface and

boundary conditions, (6) and (7), completely describe the problem. Note that even though

we work with the static balance laws (neglected inertia), the problem is time-dependent

due to the change of the configurations: �s(t) and �(t) are functions of d and thus of

time. Due to this dependency, the problem is non-linear in addition to the nonlinearity

given by the solid stresses (4). Moreover, the first condition in (6) couples solid with fluid

velocities and thus renders the solid sub-problem time-dependent.

Coupling formulation

Here, a global balance law for fluid and solid is derived which does not rely on essential

boundary conditions. This means that the interface conditions (6) are not directly ful-

filled by the choice of the finite element basis, which will be later introduced in Section

“Immersed finite element method”. Its main advantage is to allow for a configuration of
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solid and fluid that changes independently of the used finite element mesh. Nevertheless,

the conditions imposed on ∂� for the outer fluid boundary are treated in the classic way

by imposing u = ū essentially and σ f n = 0 naturally. Since this boundary does not move,

there is no disadvantage of this standard approach.

We begin with a weighted residual approach using test functions δd, δu and δp with

the only condition that δu = 0 on the parts of ∂� where the condition u = ū is applied.

Other than that, these test functions are not restricted by any condition. Weighting the

solid momentum balance (1) by δd, the fluid momentum balance (2) by δu, and the fluid

mass balance (3) by δp and application of the divergence theorem gives
∫

�s(t)
σs(d) : ε(δd) d� +

∫

�f (t)
σf (u, p) : ε(δu) d� −

∫

�f (t)
δp(∇ · u) d�

−
∫

Ŵ(t)
[σs(d)n · δd − σf (u, p)n · δu] dŴ = 0. (8)

The boundary terms on ∂� have been dropped due the treatment of boundary conditions

as discussed above. For sake of legibility, we introduce the following abbreviations

as(d; δd) =
∫

�s(t)
σs(d) : ε(δd) d� (9)

af (u, p; δu, δp) =
∫

�f (t)
σf (u, p) : ε(δu) d� −

∫

�f (t)
δp(∇ · u) d� (10)

aŴ(d,u, p; δd, δu, δp) =
∫

Ŵ(t)
[σs(d)n · δd − σf (u, p)n · δu] dŴ, (11)

such that Equation (8) can be recast in the form

afsi(d,u, p; δd, δu, δp) = as(d; δd) + af (u, p; δu, δp) − aŴ(d,u, p; δd, δu, δp) = 0. (12)

The next step is to incorporate conditions (6) into this balance equation. Observe that the

integrand in expression (11) is the difference of a product. One can show that

σsn · δd − σf n · δu

=
(

βσsn + (1 − β)σ f n
)

· (δd − δu) +
(

(1 − β)δd + βδu
)

· (σsn − σf n) (13)

for any β ∈ R. Hence, we obtain for the interface term

aŴ(d,u, p; δd, δu, δp) =
∫

Ŵ(t)

(

βσs(d)n + (1 − β)σf (u, p)n
)

· (δd − δu) dŴ

+
∫

Ŵ(t)

(

(1 − β)δd + βδu
)

· (σs(d)n − σf (u, p)n) dŴ. (14)

Note that the second integral is zero due to interface equilibrium (6)2 and is now removed

from this expression.With reference toNitsche’smethod [37,47,54] for the incorporation

of Dirichlet boundary conditions in a weak form, two new terms are added to this result

aŴ(d,u, p; δd, δu, δp) =
∫

Ŵ(t)

(

βσs(d)n + (1 − β)σf (u, p)n
)

· (δd − δu) dŴ

+
∫

Ŵ(t)

(

βσ̃s(δd)n + (1 − β)σf (δu, δp)n
)

· (ḋ − u) dŴ

− γ

∫

Ŵ(t)
(ḋ − u) · (δd − δu) dŴ. (15)

Note that the same expression has been derived in [25] via a Lagrangemultiplier approach

and a subsequent elimination of themultipliers. Here, γ > 0 is some parameter whichwill
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be determined in section “Cut elements” and σ̃s denotes a stress-like function of the test

displacements δd. Note thatγ turns out to bedependent on the choice of thefinite element

discretisation, as shown already in [37] and for this reason its specification is postponed.

Inserting expression (15) into the balance equation (12) gives a family of formulations for

fluid–solid coupling based on Nitsche’s method [16,25] which is parameterised by the

number β . From now on, we fix β = 0 and consider only the interface term

aŴ(d,u, p; δd, δu, δp)=
∫

Ŵ(t)
σf (u, p)n · (δd−δu) dŴ+

∫

Ŵ(t)
σf (δu, δp)n · (ḋ − u) dŴ

−γ

∫

Ŵ(t)
(ḋ − u) · (δd − δu) dŴ. (16)

Hence, the expression comprises a fluid-sided “mortaring” as coined in [16], see also [25]

for a motivation of this choice of parameter. On the other hand, we refer [38,55] for an

analysis of the choice of this parameter β for interface problems in which both domains

are governed by the same mathematical model. Inserting this interface term (16) into

expression (12) gives the desired global fluid–solid balance equation that incorporates the

interface conditions (6). The time semi-discretisation and linearisation of this problem

are given in the remainder of this section, whereas the finite element space discretisation

is introduced in “Immersed finite element method” section.

Time semi-discretisation

The fluid–solid balance (12) as derived in the previous section is time-dependent and

nonlinear. Typically, such expressions are discretised by following the concept of the

method of lines: the discretisation in space leads to a system of (nonlinear) ODEs which is

than tackled by a time discretisation. Here, we reverse this order and make use of what is

referred to as Rothe’s method [56]. The aim of this work is to use a fixed, stationary finite

element mesh in which the fluid-solid domain configuration moves freely. Nevertheless

the finite element spaces vary in function of this configuration and, for this reason, it

is preferred to begin with time discretisation and linearisation before finally applying

a spatial discretisation with in finite elements as outlined in “Immersed finite element

method” section.

For simplicity, the Euler backward method [57] is used for time stepping although

the presented approach is not restricted to this choice. Therefore, let a specific time

instant be denoted by tn and the size of the current time step by �t. Moreover, the

approximation of the principal unknown fields at a time instant, are indicated by the same

subscript; for instance, dn(x) approximates d(x, tn). Based on the Euler-backward scheme,

the displacement velocity becomes

ḋn+1 =
dn+1 − dn

�t
. (17)

Using this notation, the non-linear problem to find the system state (dn+1,un+1, pn+1)

reads

asn+1(dn+1; δd) + a
f
n+1(un+1, pn+1; δu, δp) −

∫

Ŵn+1

σf (un+1, pn+1)n · (δd − δu) dŴ

−
∫

Ŵn+1

σf (δu, δp)n ·
(

dn+1

�t
− un+1

)

dŴ+γ

∫

Ŵn+1

(

dn+1

�t
−un+1

)

· (δd−δu) dŴ

= γ

∫

Ŵn+1

dn

�t
· (δd − δu) dŴ −

∫

Ŵn+1

σf (δu, δp)n ·
dn

�t
dŴ, (18)
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where the current state (dn,un, pn) is given. Here, the subscripts n + 1 at the solid and

fluid domain contributions, as and af , and at the interface Ŵ emphasise that the position

of solid and fluid domain at the new time instant tn+1 is considered. Note that this con-

figuration is unknown since it depends on the displacement field dn+1. Problem (18) is

therefore nonlinear due to the solid contribution as and the implicit dependence on the

domain configuration.

Updated Lagrangian method and linearisation

A full linearisation of the nonlinear problem (18) evidently leads to shape derivatives [46].

We aim to avoid this complexity by expressing the balance law (18) not in the unknown

spatial configuration, but in the latest known configuration. This approach, also known

asUpdated Lagrangian, is well established for large-deformation analysis, see [44]. More-

over, theunknown interface locationŴn+1 in (18) is simply replacedby theknown interface

Ŵn, see e.g. [40]. Based on this explicit treatment of the fluid–solid interface, its location

is known in every time step and updated after the new system state (dn+1,un+1, pn+1) has

been determined. In the following, only the solid state is considered. For the treatment of

the fluid part, we simply disregard the discrepancies between the unknown and the latest

known configurations. A thorough error analysis of this approach is still pending, but the

results given in “Example applications” section convey that this defect is not detrimental

to the overall approach.

At first, consider the three solid domain configurations occurring in the Updated

Lagrangian Method: the initial configuration �s
0, the latest known configuration �s

n and

the unknown configuration �s
n+1, see Fig. 2. Coordinates in these configurations are

denoted with the same subscript, for instance, xn ∈ �n. The maps are between two

configurations, �a and �b are denoted by ϕb
a : �a → �b. For instance, the coordi-

nate xn+1 results from either mapping from the initial or the latest known configura-

tion, i.e., xn+1 = ϕn+1
0 (x0) = ϕn+1

n (xn). At last, the deformation gradients are defined as

Fb
a = ∂xb/∂xa and aremaps between the respective tangent spaces.We refer to [44,50,53]

for more details on large elastic deformations and the notion of configurations.

Thedeformationsϕn
0 andϕn+1

0 in Fig. 2 are represented by theLagrangian displacements

dn and dn+1. Consider the solid contribution

asn+1(dn+1; δd) =
∫

�s
n+1

σs(dn+1) : ε(δd) d� =
∫

�s
n+1

σs(dn+1) : ∇n+1δd d�, (19)

Ωs
0

x0

Ωs
n

xn

Ωs
n+1

xn+1

ϕn+1
0 = ϕn+1

n ◦ ϕn
0◦ ϕn

0
ϕn

0

ϕn+1
n

F n
0

F 0
n

F 0
n+1

F n+1
0

F n
n+1

F n+1
n

Fig. 2 Configurations in updated Lagrangian method. Initial, latest known and unknown configurations of
the solid domain, �s

0 , �
s
n and �s

n+1 ; maps ϕb
a between configurations �s

a and �s
b
and the corresponding

deformation gradients Fb
a
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where the subscript to the ∇-operator indicates the coordinate with respect to which

the differentiation is carried out. This expression is now mapped to the latest known

configuration �s
n,

asn+1(dn+1; δd) =
∫

�s
n

(

σ(dn+1) : ∇n+1δd
)

◦ ϕn+1
n det Fn+1

n d�

=
∫

�s
n

[

det Fn+1
n

(

σ(dn+1) ◦ ϕn+1
n

)

(Fn+1
n )−⊤

]

:
(

∇n(δϕ ◦ ϕn+1
n )

)

d�

=
∫

�s
n

Pn+1
n (dn+1) : ∇nδd d�. (20)

Here, the first line is obtained from (19) by mapping the integration domain, the second

line results from the chain rule in order to change from∇n+1 to∇n, and the last line intro-

duces a new stress tensor Pn+1
n . Note that for n = 0, Pn+1

0 coincides with the standard

definition of the first Piola-Kirchhoff stress tensor [53]. Moreover, with an abuse of nota-

tion the composition of the test displacements δd with the map ϕn+1
n is also denoted by

δd. Now, the result of (20) is introduced in (18) and the explicit treatment of the interface

used. The nonlinear fluid–solid balance now reads
∫

�s
n

Pn+1
n (dn+1) : ∇nδd d� +

∫

�
f
n

σf (un+1, pn+1) : ε(δu) d� −
∫

�
f
n

δp(∇ · un+1) d�

−
∫

Ŵn

σf (un+1, pn+1)n · (δd − δu) dŴ −
∫

Ŵn

σf (δu, δp)n ·
(

dn+1

�t
− un+1

)

dŴ

+ γ

∫

Ŵn

(

dn+1

�t
− un+1

)

· (δd − δu) dŴ = γ

∫

Ŵn

dn

�t
· (δd − δu) dŴ (21)

and only its first term, the solid domain contribution, remains nonlinear. A Newton

method [53] is applied to this expression. Let k be the iteration counter placed as a left

superscript and �d the unknown displacement increment such that the latest iterate for

the unknown dn+1 becomes

k+1dn+1 = kdn+1 + �d. (22)

Note that (21) is linear in un+1 and pn+1 such that we can directly work with k+1un+1 and
k+1pn+1 as unknowns without increments. Linearisation of the integrand of the solid part

in direction of the increment �d gives

D
(

kPn+1
n : ∇nδd

)

[�d] =
[

(∇nδd) ·
(

kFn+1
n

)−1
· kPn+1

n

]

: ∇n�d

+ det kFn+1
n

[

(∇nδd) ·
(

kFn+1
n

)−1
]

: kCn+1 :

[

∇n�d ·
(

kFn+1
n

)−1
]

, (23)

where Cn+1 refers to the material elasticity tensor [50,53]. Note that expression (23)

requires the deformation gradient kFn+1
n and, moreover, the material evaluations for

kPn+1
n and kCn+1 are based on the deformation gradient kFn+1

0 . We note that

kFn+1
0 = kFn+1

n · Fn
0 = kFn+1

n ·
(

F0
n

)−1
(24)

whose factors are furthermore computed by means of

kFn+1
n =

∂

∂xn

[

xn +
(

kdn+1 − dn

)

]

= I + ∇n

(

kdn+1 − dn

)

(25)

F0
n =

∂

∂xn

[

xn − dn

]

= I − ∇ndn.
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Now, the linearisation process can be summarised and the following Newton step
∫

�s
n

D
(

kPn+1
n : ∇nδd

)

[�d] d� +
∫

�
f
n

σf
(

k+1un+1,
k+1pn+1

)

: ε(δu) d�

−
∫

�
f
n

δp(∇ · k+1un+1) d� −
∫

Ŵn

σf
(

k+1un+1,
k+1pn+1

)

n · (δd − δu) dŴ

−
∫

Ŵn

σf (δu, δp)n ·
(

�d

�t
− k+1un+1

)

dŴ + γ

∫

Ŵn

(

�d

�t
− kun+1

)

· (δd − δu) dŴ

= −
∫

�n
s

kPn+1
n : ∇nδd d� + γ

∫

Ŵn

dn

�t
· (δd − δu) dŴ

+
∫

Ŵn

σf (δu, δp)n ·
kdn+1

�t
dŴ − γ

∫

Ŵn

kdn+1

�t
· (δd − δu) dŴ (26)

followed by the update (22). This last expression represents a time-discretised and lin-

earised version of the global fluid–solid balance (12) which incorporates the interface

conditions (6). The remaining step for a numerical solution is the spatial discretisation by

finite elements as outlined in the following section.

Immersed finite element method

The global fluid–solid balance equation (12) and its time-discretised and linearised ver-

sion (26) are perfectly suited for an immersed finite element method [19]. Note that here

immersed solely refers to the fact that the interface location is independent of the finite

element mesh and we do not refer to the method of [29]. Observe that Dirichlet boundary

conditions only appear on the boundary ∂� which is fixed in space and time, and that

the interface conditions (6) have been incorporated in a weak form. This implies that the

finite element spaces need only be equipped with essential boundary conditions on ∂�

but are not affected by the specific location of the interface Ŵ.

In the implementation, quadrilateral elements in two and hexahedrons in three dimen-

sions are used. For the solid displacement piece-wise linear Lagrange polynomials are

used (bi- and tri-linear, to be precise), for the fluid velocity quadratic and for the pressure

linear functions. For the system state at time instant tn the finite element approximation

has the form

dn(x) ≈
∑

i

dn,iN
d
i (x), un(x) ≈

∑

j

un,jN
u
j (x), and

pn(x) ≈
∑

k

pn,kN
p

k
(x). (27)

The specific choice for the discretisation of the fluid variables u and p corresponds to the

Taylor-Hood element and thus guarantees the fulfilment of the inf-sup stability condi-

tion [57]. In principle, the entire domain � holds the the approximation for the fields d,

u and p. But for the solid only the degrees of freedom dn,i are active which correspond to

points inside �s or, as explained below, in the vicinity of the interface Ŵ. The same holds

for the fluid degrees of freedom un,j and pn,k with respect to the domain �f .

It is assumed that the interface Ŵn = ∂�s
n is strictly inside the full domain � for all time

instants tn. Therefore, there are no boundary conditions for the solid domain. For the fluid

domain, the Dirichlet boundary condition (7)1 on ∂� is treated essentially. Moreover, in

case of ∂� being entirely treated as a Dirichlet boundary, the fluid pressure can only be

known up to a constant value and we therefore set p = 0 at some point of this boundary

in order to ensure solvability of the fluid problem.
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Figure 3 shows the configuration of Fig. 1with an immersedfinite element discretisation.

A simple structured grid is filling the domain�without awareness of the current location

of Ŵn. More precisely, the figure shows the respective discretisation of fluid and solid in

the left and right pictures. Obviously, the elements which are traversed by the interface

Ŵn have a physical and a fictitious side such that the solution is well-defined until the

boundary. These fictitious element parts are highlighted in Fig. 3.

Implicit geometry representation

Although the analysis mesh is virtually independent of the configuration of solid and

fluid domains, the expressions in the Newton method (26) require integrating over the

interface Ŵn and the volumes �s
n and �

f
n, respectively. Therefore, it is necessary to know

about the location of the interfaceŴn on the element level andwe employ a signed distance

function

distŴn (x) = s(x) min
y∈Ŵn

|x − y|, with s(x) =
{

1 if x ∈ �
s
n

−1 if x ∈ �
f
n.

(28)

This function represents Ŵn implicitly as the level set [48] distŴn (x) = 0. Note that this

choice of geometry representation has the effect of smoothing out surface features. Here,

this poses no problem since the applications we consider all have a smooth interface from

the onset. In case of fluid–solid interfaces with a corners and edges, this choice has to be

reviewed carefully, see, for instance, [42]. In the implementation, distŴn is represented by

its interpolate using the finite element functions of the backgroundmesh (here, piece-wise

linear). The coefficients of this interpolation are the nodal values of the distance function,

distŴn (x) ≈
∑

i

rn,iN
r
i (x) with rn,i = distŴn (xi). (29)

Note the dependence of the coefficients rn,i on the time instant tn due the dynamics of

the location of the interface Ŵ. The calculation of rn,i requires to find the surface element

(line or triangle) which is closest to the point xi of interest. GivenN mesh points xi andM

surface elements, this task is of complexityO(N×M). There is a variety of algorithmswith

a lower complexity [58], but here we content ourselves with this brute-force approach;

after all this part of the computation is not time-critical.

Ωf
n

Γn

∂Ω

Ωs
n

Γn

Fig. 3 Discretisation of fluid and solid domains. Immersed finite element discretisation of the fluid–solid
problem at time instant tn : fluid finite elements (left), solid finite elements (right); the hatched elements allow
to accurately interpolate the solution across the interface Ŵn and are referred to as cut elements
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Cut elements

Once the distance function (28) has been computed for all mesh points xi, the interfaceŴn

is reconstructed in all elements that are traversed by it. That is where a change of the sign

of the distance function occurs. To this end, a linear approximation (line elements in two

and triangles in three dimensions) is used to construct a polytopeŴh
n the approximatesŴn.

Such a situation for one element in two dimensions is depicted in Fig. 4. The element is

at first decomposed into two triangles (in three dimensions, a hexahedron is decomposed

into six tetrahedrons [8]). The arrows in this figure represent the shortest distance from

every grid point to the immersed interface Ŵn. By linear interpolation along all edges,

intersection points (the red circles) are determined.

After the calculation of the intersection points, piece-wise linear elements form the

surrogate interface Ŵh
n in the solution process. Effectively all terms that contain integrals

over Ŵn are expressed as integrals over Ŵh
n . In addition, the sub-regions of the cut element

which belong to the fluid (�
f
n) and the solid (�s

n) side are now polygons or polytopes for

which a standard numerical integration is in general not possible. Therefore, these shapes

are subdivided into triangles or tetrahedrons on which Gauß quadrature rules [57,59] are

used, as it is common in the implementation of XFEM [60]. The integration on the cut

elements is therefore carried out with the same accuracy as the volume elements strictly

inside the domain. See [61] for an overviewof the numerical implementation of integration

over cut elements and an alternative approach based on the divergence theorem and

surface integration. Alternatively, in [62] an approach for explicit time integration is given

in which a surrogate boundary is instead thereby avoiding the cut element integration.

At last, the stability of the finite element basis used in (27) needs to be considered.

Consider Fig. 3 and let us assume that all grid points hold degrees of freedom dn,i, un,j , and

pn,k . In fact, the quadratic shape functions used for the fluid velocity u lead to additional

degrees of freedom, but they are ignored in this discussion for sake of simplicity. These

degrees of freedom can be classified by the intersection of their support with the domain

of integration. Let Ni(x) be any shape function of (27) and Si = supp(Ni) its support, that

is Ni(x) = 0 for all x /∈ Si. Focusing on the discretisation of the solid displacements (the

fluid side is treated analogously), the degrees of freedom are classified as follows: inactive

if Si ∩�s
n = ∅; critical if Si ∩�s

n �= ∅ and |Si ∩�s
n| < ǫh, using some predefined threshold

ǫ; active otherwise. Note that this categorisation is dependent on the time instant tn and

therefore the used finite element spaces change between the time instants.

Γh
n

Γn

Ωf
n

Ωs
n

xi

rn,i

Fig. 4 Cut element. Construction of the surrogate interface Ŵh
n based on the nodal values rn,i of the distance

function
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Inactive degrees of freedom do not pose any problem as they are simply discarded

from the approximation (27). Similarly, active degrees of freedom do not need any special

consideration and are treated as in any standard finite element method. But the critical

ones need a special consideration which is due to the fact that the measure sn,i = |Si ∩�s
n|

relates to the condition of the final systemmatrix.Obviously, if sn,i → 0 the corresponding

contributions to the systemmatrix vanish and the resulting linear system is ill-conditioned.

There are various approaches which address this stability issue, see [63]. We choose the

method proposed by [63], see also [8,36], and precondition the system by constraining

the critical degrees of freedom to active ones,

dn,i =
∑

j∈Jn(i)
cijdn,j , (30)

where dn,i denotes a critical degree of freedom. The set Jn(i) contains suitably chosen

active degrees of freedom and cij are the weights of this linear constraint. See [36,63] for

the technical details of this approach and [64] for an alternative approach of stabilising

the finite element basis on cut cells. Note that introducing (30) into the finite element

approximation (27) gives rise to a modified finite element basis, akin to the extended

B-splines introduced by [63]. Effectively, the support of some shape functions in the

vicinity of the immersed interface Ŵn is enlarged as they included linear combinations of

shape functions that correspond to critical degrees of freedom. This implies that, even

though the intersection of elements with the solid or fluid domain can be arbitrarily small,

the shape function supports arebounded frombelow. Inotherwords, the above introduced

measure sn,i of intersection between shape function support and domain of integration

is always of a similar magnitude as the mesh size h. Note, alternatively, the ghost penalty

approach from [34], where an additional term is added to the Nitsche method in order to

give stability for small cut elements.

It remains to discuss the parameter γ of the weak incorporation of boundary conditions

as introduced in (15). As shown in [16,51], the global fluid-solid balance (12) can be inter-

preted as a fluid-only problem or a solid-only problem, using a space decomposition [52].

The latter is simply a problem of linear elasticity with a Robin boundary condition. Here,

the parameter γ represents physically the stiffness of the support and γ > 0 is a sufficient

condition for the solvability of the problem [57]. For the fluid problem, on the other hand,

the value of γ needs further attention. In order to ensure a stable inverse of the fluid saddle

point problem, two conditions need to be satisfied: the inf-sup condition and the elliptic-

ity of the bilinear form which only depends on u and δu. The former condition is already

fulfilled by the choice of the finite element discretisation by Taylor-Hood elements. For

the ellipticity condition we have to analyse the term

ã f (u, δu) =
∫

�f (t)
2μf ε(u) : ε(δu) d� −

∫

Ŵ(t)
2μf ε(u)nf · δu dŴ

−
∫

Ŵ(t)
2μf ε(δu)nf · u dŴ + γ

∫

Ŵ(t)
δu · u dŴ. (31)

Note the change of sign that occurs due to the choice of the normal vector n f = −n.

We require now ã f (u,u) > 0 for all u �= 0. By introducing the abbreviation A(u, δu) =
∫

� f 2μf ε(u) : ε(δu) d�, this expression can be estimated as follows
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ãf (u,u) = A(u,u) − 2

∫

Ŵ

2μf ε(u)nf · u dŴ + γ

∫

Ŵ

u · u dŴ

≥
(

√

A(u,u) − CI‖u‖Ŵ

)2
+(γ −C2

I )‖u‖Ŵ > 0, u �= 0, γ > C2
I . (32)

This estimate is based on the Cauchy-Schwarz inequality, Korn’s inequality [57] to ensure

the positivity of A(u,u), and a special inverse inequality that reads

C2
I A(u,u) ≥

∫

Ŵ

(2μf ε(u)nf )2 dŴ. (33)

Details on the derivation of the estimate (32) and the inverse inequality (33) can be found

in, among others, [37,38]. Estimate (32) assures that for the choice γ > C2
I the matrix

block corresponding to A(u, δu) has a stable inverse and in combination with the inf-sup

condition a stable solution of the linear system is guaranteed. But the exact value of CI

from the inverse estimate (33) is not obvious. Ways to find estimates for this value are

discussed in [38]. Especially attractive is the element-wise approach in which the problem

is considered locally taking into account that all elements which are strictly in side the

domain only have the elliptic A(u, δu) as a contribution, but no interface terms, and need

therefore not to be considered. Following the steps of [38], the estimate for CI becomes

under the assumption of piece-wise linear finite element shape functions for u for an

element �e

C2
I,e > 2μf |�e ∩ Ŵ|

|�e ∩ �f |
. (34)

Note that there are possible geometric configurations in which this value is unbounded

and therefore not suited to guarantee numerical stability. But the derivation of (34) does

not consider the stabilisation technique that is employed here. The use of the linear

constraints (30) effectively augment the support of shape functions near the boundary

and a value of the constant of the order

γ > C2
I =

γ0μ
f

h
, (35)

where h is a measure of the element size, is sufficient even for relatively small numbers

γ0. See [36] for a numerical study of this parameter in the context of fluid flow around

moving boundaries. In our numerical results in “Example applications” section, a value of

γ0 = 1 has been chosen unless noted otherwise and no stability issues are encountered.

Interface update and particle tracking

The Updated Lagrangian Method, as outlined in section “Updated Lagrangian method

and linearisation”, is now reconsidered. The aim is to change the solid configuration, but

maintain a fixed mesh throughout the simulation. Instead of using a material mesh as in a

standard finite element method for large deformations which moves along with the solid,

only the solid surface (the interface) representation is relocated. This is achieved by the

following steps

• Extract a surface mesh Ŵ̃n from the current level set data distŴn (Eq. (28) and the

construction in Fig. 4) which delivers an explicit description of the interface

• Evaluate at every node xŴ
i of this surface mesh the current displacement increment

and update the coordinate of that node.

xŴ
i ← xŴ

i + (dn+1 − dn)(x
Ŵ
i ). (36)
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• The thereby updated surface mesh becomes Ŵn+1 and is used for the the signed

distance function (29) in the next step.

These surface operations require some comments. In principle it is possible toworkwith

one surface mesh throughout the simulation. But the surface Ŵh
n as seen by the immersed

finite element solver (refer to Fig. 4) does not coincide with the original surface mesh Ŵ.

This implies that a displacement solution might not be available at the location of a node

of the original surface mesh. Moreover, the use of a newly generated mesh from the level

set data liberates the method from the surface mesh size: the thus generated surface mesh

has always the same resolution as the domain mesh. A pure level set approach, on the

other hand, works only with an implicit geometry description, but requires an additional

advection equation to be solved in every time step [48]. Such equation poses numerical

difficulties and would add another field of unknowns to our system. For this reason, we

have chosen to combine both approaches. This approach of switching between explicit

and implicit surface descriptions is depicted in Fig. 5. But the conversion from explicit to

implicit and back to an explicit surface representation (as in the top line of this diagram)

affects the volume enclosed by Ŵ and can lead to undesirable shrinking effects, especially

in case of relatively coarsemeshes. For this reason, an artificial coordinate x̃i is introduced

before the surface location is updated which is defined as

x̃i = c + α(xŴ
i − c) with α = D

√

Vn/Ṽn (37)

with the enclosed volumesVn ofŴn and Ṽn of Ŵ̃n, and c the centre of the domain�s; recall

that D = 2 or D = 3 denotes the spatial dimension. Note that this coordinate scaling

only affects the gain or loss of volume throughout the conversions between explicit and

implicit surface representations. The volume changes due to the elastic deformation of

the compressible material are not inhibited.

In order to maintain the deformation history of the solid, at every grid node in the new

configuration its previous location has to be determined. As shown in Fig. 6, the grid

point xi in the new configuration at time tn+1 results from its previous location x∗
i and

the displacement increment from tn to tn+1 at that location, i.e.

Γn distΓn Γ̃n

n → n + 1

xΓ
i → x̃i + (dn+1 − dn)(xi)

Fig. 5 Sketch of the processing of the interface mesh. Given an explicit representation Ŵn , the signed
distance function is generated in order to obtain an implicit geometry representation; after the increment of
the surface displacements is computed, a new explicit surface mesh Ŵ̃n is generated whose geometry nodes
are updated using the displacement increment and volume conservation between Ŵn and Ŵ̃n , see (37)

Γn

Ωs
n

Γn+1

Ωs
n+1

ϕn+1
n

x∗

i

xid∗

n+1−d∗

n

Fig. 6 Configuration update. Change of the solid configuration from tn to tn+1 and coordinate backtracking
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xi = x∗
i + (dn+1 − dn)(x

∗
i ). (38)

Note that this expression is the same as in a standard Updated Lagrangian Method [44].

But the main difference is that here the new location xi is given and the right hand side is

sought for. Using a finite element geometry representation and the displacement trial as

in (27), this equation becomes

x(ξ∗
i ) + dn+1(ξ

∗
i ) − dn(ξ

∗
i ) − xi = 0, (39)

where ξ represents the local element coordinates and ξ∗
i is the solution to this nonlin-

ear equation. In order to solve equation (39), first the element has to be found in which

x∗
i = x(ξ∗

i ) lies, and then a Newton method is used to obtain the value of ξ∗
i . Searching for

elements in a structured grid is a simple task and one can begin with the element that con-

tains xi−(dn+1−dn)(xi) as an initial guess. If theNewtonmethoddoes not converge in this

element, its neighbours are considered.TheNewtonmethod itself consists of the iterations
[

∂x

∂ξ
+

∂(dn+1 − ∂dn)

∂ξ

]

ξ=ξ
(k)
i

�ξ = xi − x(ξ
(k)
i ) − (dn+1 − dn)(ξ

(k)
i )

ξ
(k+1)
i = ξ

(k)
i + �ξ

(40)

and converges rapidly to ξ∗
i .Once, thepoint has beendetermined, thedisplacementhistory

is transferred from x∗
i to xi. This kind of particle tracking can be found in [45] and avoids

the advection of the solid displacement typical for a fully Eulerian approach [39,40,42,65].

Fluid–solid coupling

In order to finalise this section, the algorithmic steps of the devised method are sum-

marised. Given the latest known configuration at tn by means of the solid displacements

dn and the surface mesh Ŵn, the following steps are performed:

Geometry immersion Compute the signed distance function (28) based on the given

surface mesh Ŵn.

Fluid–solid balance Solve problem (12) with the interface term (16) by aNewtonmethod

as shown in expression (26). After convergence, the new solid displacement dn+1

and the fluid state variables un+1 and pn+1 are known. The spatial discretisation is

performed as described in this section.

Geometry update Extract a surface mesh Ŵ̃n from the signed distance function. Update

the node locations of this mesh based on the displacement increment (dn+1 − dn)

taking into account the re-scaling as explained above. This yields the new interface

location Ŵn+1 and implies the solid and fluid domain locations.

Backtrack nodal locations For every finite element node in the new solid domain �s
n+1,

find its previous location in �s
n. Transfer the field variables from the previous to the

new location.

With the end of the last step, the new configuration at tn+1 is completely determined and

the solid displacement history is known at every finite element node in �s
n+1.

Example applications

In all examples, the elastic behaviour of the solid is a compressible Neo-Hookean mater-

ial [53] with strain energy expressed in the deformation gradient F

W (F ) =
λ

2
(log J )2 − μs log J +

μs

2
(trC − 3), J = det F andC = F⊤F . (41)
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The material parameters λ and μs are the Lamé parameters in E and ν, that is λ =
Eν

(1−2ν)(1+ν)
and μs = E

2(1+ν)
. The fluid is incompressible Newtonian according to (5) with

the dynamic viscosity μf .

For the finite element method, we use lowest-order Taylor-Hood elements (Q2/Q1) for

the fluid (velocity/pressure) and Q1 elements for the solid displacement [57]. An Euler

backward time integration is used with constant step size �t. The coupling parameter

γ is chosen as γ = αμf /h, where h is the characteristic element size, see Eq (35). If not

indicated otherwise,α = 1 is the default choice. The convergence criterion for theNewton

method (26) is the ℓ2 norm of the vector representing the displacement increment �d

divided by the number of solid degrees of freedom. The tolerance in all computations is

chosen as 10−10 and at most three iterations are observed. The same tolerance is used for

the Newton method (40) in the coordinate backtracking. Note that in the examples the

effective mesh size can be arbitrarily small, while the interface moves through the finite

element mesh. But due to the stabilisation, as presented in “Cut elements” section, the

size of the intersection of the shape function support with the integration domain does

not shrink to zero but remain of the order of h. For this reason, the use of the element size

h of the embedding domain grid is a valid mesh characteristic.

Before focusing on the fluid–solid applications, a pure solid example is considered. The

aim of this example is to demonstrate the viability and accuracy of the devised Updated

Lagrangian method for the solid domain based on the immersed finite element method

with particle backtracking.

Updated Lagrangian method

In a first, preliminary example, the accuracy of the updated Lagrangian method, as intro-

duced in section “Updated Lagrangianmethod and linearisation”, together with the parti-

cle backtracking of “Interface update and particle tracking section” is assessed. Therefore,

a problem only consisting of a solid domain without fluid interaction is devised. The

undeformed geometry of the solid domain is depicted in the left picture of Fig. 7. Other

than in the derivation of the presented fluid–solid coupling method and the remaining

examples, the boundary of the solid domain�s partially overlaps with the boundary ∂� of

the embedding domain. Along this overlap the displacements are set to zero by employing

u∗

0.030.020.010.005
0.28
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0.31
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mesh size h

m
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d
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p
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t

|u
∗
|

total Lagrangian
updated Lagrangian

Fig. 7 Test problem for solid solver. Geometry and fixed mesh (left); Lagrangian mesh for comparison
(middle); and comparison of a measured displacement u∗ (right)
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essential boundary conditions. Moreover, the initial solid domain �s
0 has subdomain �̃s

0

in which a constant downward body force f 0 = −n
2 e2 is applied with 0 ≤ n ≤ 4 as the

number of the load step. The region of the applied body force is darker in the picture. The

solid is hyperelastic according to (41) with parameters E = 100 and ν = 0.3.

In order to assess the quality of the solution of this problem, a pure Lagrangian approach

with a body-conformingmesh is used as comparison and themiddle picture in Fig. 7 shows

one of the meshes. Since the computational domain changes throughout the computa-

tion in the Updated Lagrangian approach, the applied body force in the latest known

configuration �s
n becomes

f n = det Fn
0f 0. (42)

Figure 8 shows the deformed solid domain for all load steps and for visual comparison

the deformed Lagrangian mesh for the final step. Without noticeable difference between

the two approaches, the boundary of the solid domain freely moves throughout the fixed

mesh.

For a more quantitative comparison, the right graph in Fig. 7 shows the modulus of the

measured displacement u∗ for the two approaches and various mesh sizes. Clearly, both

approaches converge to very similar numerical values of themeasured displacement. Note

that the presentedmethod for the solid part is tailored towards the analysis large deforma-

tion problems. In a linearised setting, the distinction between the configurations as shown

in Fig. 2 does notmake sense and there would be no need for the update of a configuration.

For this reason, analytic solutions for the convergence study are highly complicated and

we therefore rely on numerical reference solutions. Moreover, the methods we compare

in this section operate in different configurations such that we are restricted to compare

the results at individual points.

Shear flow–convergence analysis

Whereas the previous section shows the convergence of the results for a problem with

only a solid domain, we aim to assess here the convergence behaviour of the method

for a fluid–solid interaction problem. To this end, we compare the numerical solution

from various grid sizes with the outcome of a highly refined grid. Due to the lack of an

analytical solution,we use this fine-grid result as the reference solution in order to quantify

the convergence. This concept of assessing the accuracy of themethod has been employed

by other authors, see, for instance, [33].

Fig. 8 Load steps of solid test problem. Deformed solid domain�s
n for the load steps 0 ≤ n ≤ 4 coloured by

the signed distance function and the deformed Lagrangian mesh for the final step n = 4 (rightmost picture)
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To this end, we consider the problem as described in Fig. 9, a fully immersed hyperelastic

solid domain �s of depicted shape whose material points in the dark red circle are held

fixed. The radius of the upper and lower circular boundaries of the solid is 0.15, whereas

the circle of fixedmaterial points is half as big with a radius of 0.075. The distance between

the centres of the circular boundaries is 0.5 and the whole fluid box has the dimensions

1.5 × 1.5. The surrounding fluid box is subject to a prescribed shear flow and leads to a

bending of the solid body.Thefluid isNewtonianwith viscosityμf = 1 and the parameters

for the hyperelastic material as in (41) are E = 1000 and ν = 0.3. For the simulation 10

time steps with a step size �t = 0.2 are used which yield the deformed shape as shown in

the middle picture of Fig. 9 and which corresponds to a quasi-static state.

As reference solution a fine grid of 480 × 480 elements, i.e. h = 0.003125, is used. The

right graphic in Fig. 9 shows the L2-norm errors of the distance function distŴ and the

velocity field u for various grid sizes h with respect to the chosen reference at the final

step of the simulation at t = 2. One can see the both measured errors behave similarly.

They have an approximately linear decay for coarse grids followed by a order higher than

linear. The final order, which appears to be more than quadratic, is clearly owed to the

choice of reference solution and does not claim to be a characteristic of the method. Due

to the choice of the time steppingmethod, see (17), the convergence order is impeded and

does not reach the quadratic behaviour as linear finite elements for linear static problems

commonly exhibit [57]. Moreover, one has to bear in mind that the solution of nonlinear

systems in every time step by the Newton method (26) and the particle backtracking (40)

contribute to the overall error of the method.

Shear flow–parameter study

Consider the setup as depicted in the left picture of Fig. 10. An initially circular solid object

with radiusR is placed at the centre of a fluid box of size 2L×2L. The fluid has the viscosity

μf and the solid the material parameters E and ν. At the top and bottom boundaries a

horizontal velocity is prescribed in positive and negative directions, respectively. The

entire computational domain � = �f ∪ �s is discretised by N ×N elements leading to a

constant mesh size of h = 2L/N . The initial situation is the undeformed circle as shown

in the picture and at t > 0 the velocity boundary condition ū is applied. All simulations

cover the time interval 0 ≤ t ≤ 20.

In the following, most of the problem parameters related to discretisation, material

behaviour, geometry and boundary conditions are varied and their respective influence
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ū = (0, 0)

+

+

Ωs Ωf

0.004 0.01 0.02 0.04

0.001

0.01

O(h2)

O(h)

element size h

a
p
p
ro

x
im

a
ti

o
n

er
ro

rs

‖ disth − distref ‖2

‖uh − uref‖2

Fig. 9 Solid in shear flow. Setup (left), flow magnitude and deformed shape (middle), and convergence
results for distance function and velocity field (right).
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on the solution is studied. The choice of parameters is given in Table 1, where the standard

value and the possible variations of each parameter are shown. To get an image of various

outcomes the right picture in Fig. 10 shows the shapes of the immersed interface Ŵ at

t = 20 for various solid stiffness parameters E while keeping all other parameters at their

standard value.

As it can be seen from the deformed shapes in Fig. 10, the circle converts into an ellipse-

like shape with the deformation obviously greater for the lower material stiffness E. In

the following analysis of the influence of the parameters of Table 1, the shape of the solid

domain is used. Therefore, the moments of inertia of the solid domain,

Iij =
∫

�s
xixj d�, (43)

are computed. In this two-dimensional analysis, the Iij form a symmetric 2 × 2-matrix

whose eigenvalues I1 and I2 are the principal moments of inertia. We assume I1 ≤ I2 in

the following. Since the observed shapes are almost like a tilted ellipse, these principal

moments of inertia allow to determine the minor and major radius, r1 and r2, of an

equivalent ellipse. With these radii, the eccentricity e and a shape parameter D12 [28] are

defined

e =

√

1 −
r21

r22
=

√

1 −
I1

I2
and D12 =

r2 − r1

r2 + r1
=

√
I2 −

√
I1√

I2 +
√
I1
. (44)

Moreover, the angle θ by which the ellipse deviates from a horizontal orientation, is also

studied.

At first the method parameters N , �t and α are considered. It turned out that the

multiplier α of the boundary term as in the paragraph leading to Equation (35) did not

Table1 Parameters used in two-dimensional shear flow problem

Parameter Standard value Variations

N 50 25, 75, 100, 200

�t 0.1 0.05, 0.2, 0.5

α 1 0.01, 0.1, 10, 100

E 50 2, 5, 10, 20

ν 0.3 —

μf 1 0.1, 0.5, 2, 4

f 1 0.2, 0.5, 2, 5, 10

R 0.6 0.2, 0.4, 0.8, 1.0

L 1.4 1.0, 1.8, 2.4, 3.0
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show any noticeable influence on the monitored quantities, and is thus omitted from the

rest of the discussion. The left picture of Fig. 11 shows the eccentricity e plotted over

the time of analysis 0 ≤ t ≤ 20 for the variation of N , the number of elements per

direction. One can clearly see that there is a fluctuation of the values throughout time and

the amplitude of this fluctuation diminishes with increasing values of N . This becomes

more clear, when looking at the time-averaged values of e andθ in the right picture. Here

ā denotes the average of the quantity a over the time interval 5 ≤ 20. The values of the

average angle and the average eccentricity tend towards a specific value with increasing

N , see Fig. 11. Similar observations are made for the time step variations.

Now, the influence of the solid material’s stiffness parameter E on the outcome of the

solution is considered. The deformed shapes at t = 20 are already shown in Fig. 10. A

decreasing value of E leads to amore pronounced flattening of the solid object and a lower

angle of inclination θ . These observations are confirmed by the plots in Fig. 12, where the

evolution of e and θ are shown for all considered values of E.

The deformation of red blood cells in simple shear flow has been studied in [28] for

various membrane stiffness. This study is based on the common model of these cells as

a liquid-filled membrane. Nevertheless, there are strong similarities between the findings

in [28] and the results shown in Fig. 12 in this work. In both cases, the shape deformation

from initially spherical to elliptical and the angle variation take mainly place for t <
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ē

Fig. 11 Mesh refinement. Temporal evolution of the shape eccentricity e (left) and convergence of the
time-averaged quantities ē and θ̄ (right)
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3. Moreover, a decrease of the material stiffness (membrane stiffness in [28] and solid

stiffness E here) leads to an increase in shape eccentricity and a deviation of the principal

direction from π/4. Despite the different constitutive models (solid vs. membrane), the

qualitative outcome is very similar.

Even though the fluctuations of e diminish for larger times, this state of equilibrium is

dynamic. This means that the immersed body experiences a non-zero velocity along its

surface Ŵ and thus is constantly moving in circumferential direction. This type of motion

is referred to as tank-treading and typical for vesicles [66]. Snapshots of the velocity fields

in fluid and solid at t = 20 are shown in Fig. 13 for two different choices of E. Clearly,

the solid body is subject to a rotating flow field and responds with internal rotation. For

a lower material stiffness, this rotational motion is increased. It is important to note that

this is not a rigid body rotation, because the solid domain’s outer shape, which is non-

circular, remains fixed while the material moves. The tank-treading is also confirmed by

marking individual material particles and tracing their path throughout the simulation.

Fig. 14 shows the trajectories for three material points and the same choices of E as in

the previous figure. These particles move to their almost elliptical orbits during the initial

deformation and then stay on this path throughout the considered time.

At last, the deformed shapes at t = 20 are displayed for variations of the fluid viscosity

μf , the applied velocity f and the radius of the circular solid domain at t = 0. For

the chosen values of μf , see Table 1, one observes that a higher viscosity increases the

deformation of the solid body. Clearly, the viscous forces of the fluid flow are increased

and have a stronger effect on the solid, see the left picture in Fig. 15. Obviously the same

happens for an increase of the applied velocity, as shown in the middle picture. The right

picture of Fig. 15 shows the deformed shapes for various sizes of the solid body. Whereas

the smallest solid with R = 0.2 poses almost no obstruction to the fluid flow, there is an

increasing deformation (i.e. deviation from the initial circle) visible for larger values of

Fig. 13 Velocity fields. Stationary velocity for E = 20 (left) and E = 2 (right)

Fig. 14 Particle trajectories. Selected solid particles for E = 20 (left) and E = 2 (right)
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Fig. 15 Deformed solid bodies. Representation at t = 20 for various fluid viscosities μf (left), applied
velocities f (middle), and initial radii R (right)

R. The variation of the size of the fluid box, namely the half-width parameter L, did not

reveal any significant alterations in the solution.

Finally, we consider for the softest solid with E = 2 the variation of the stress compo-

nentsσij in thefluid and the soliddomains at some time instants. Figure16displays contour

plots of the stress components for four different times. It has to be emphasises the plotted

stress components refer to the Cartesian coordinate axis and not the principal axes of the

deformed solid. Note that there are strong indications that stresses regulate substantial

biological processes in living cells [5]. The proposedmethod allows for future applications

in which a detailed stress analysis is required for a deeper insight in such processes.

Flow in a narrowed tube

A circular solid object is placed in a pipe with a geometric constriction and subject to a

forced flow. The geometric dimensions are shown in Fig. 17 and the boundary conditions

σ11

t = 1 t = 2 t = 3 t = 5

σ12

t = 1 t = 2 t = 3 t = 5

σ22

t = 1 t = 2 t = 3 t = 5

Fig. 16 Cauchy stress. Colour contours of the solid and fluid stress components σij for the times t = 1, 2, 3,
and 5 using E = 2
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are a parabolic inflow from the left with average velocity ū = (0.1, 0), an open boundary

at the right end, and no-slip walls at the top and bottom boundaries. The constriction is

defined by a cubic polynomial reduces the pipes diameter from 2 down to 2δ with different

values of δ as given in Table 2. The mesh used in all simulations is a structured 250× 100-

grid deformed to fit into the constricted pipe. Therefore, the elements have a constant

length in x1-direction of h1 = 0.02. They are of square shape in the left (the wide) part

of the pipe and squeezed correspondingly compressed in x2-direction in the right (the

constricted) part. Hence, the mesh size in the vertical direction shrinks from h2 = 0.02

down to a value between 0.005 (δ = 0.25) and 0.008 (δ = 0.4). The size of the time steps

is constant with �t = 0.025. The fluid viscosity is set to μf = 1, the solid’s Poisson ratio

ν = 0.3 and the stiffness modulus assumes the values fromTable 2. The radius of the solid

circle is always R = 0.4.

Since δ ≥ R for all chosen values of δ, the solid cannot pass undeformed through the

narrow pipe section. Figure 18 shows snapshots of the deformed solid at 12 different time

instants between t = 0 and t = 13.75 with a constant time difference 1.25. In this picture,

the most narrow case of δ = 0.25 is shown. One can observe that the compressible solid

initially shrinks, which is due to the hydrostatic pressure of the fluid environment, and

moves with the fluid motion towards the constriction. The closer the solid gets towards

narrow section, the more it deforms to a tampion-like shape, just wide enough to fit

through the pipe.

Table 2 Parameter variations in constricted pipe flow

Parameter Value Variation

δ 0.33 0.25, 0.3, 0.4

E 100 50, 200, 500

Fig. 18 Solid deformation. Snapshots for the time instances t = 0, 1.25, 2.5, …, 13.75 for the parameter
choices E = 100 and δ = 0.25
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Figures 19, 20 show the deformed solid at the time instant t = 14. At this moment, the

solid is located completely inside the narrow part of the pipe. Figure 19 shows the differ-

ent deformed shapes for the various stiffness parameters E. Clearly, the softest material

leads to narrower state of deformation and is slightly more advanced since it poses less

disturbance to the fluid flow. In Fig. 20 the deformed shapes for a constant stiffness but

different constriction sizes are shown. Obviously, a narrower pipe requires a larger defor-

mation of the solid. Moreover, the fluid velocity is higher in the narrower section due to

the mass balance of the incompressible fluid. Therefore, the solid has advanced more in

the narrower pipe.

Above observations are quantified in Figs. 21 , 22, where the enclosed area A of the

solid body and the velocity are plotted versus the current position and for all parameter

variations. The initial shrinkage due to the fluid pressure is clear visible in Fig. 21 and

more pronounced for lower values of E (softer material) and lower values of δ (higher

fluid pressure). The area then stays constant while the solid travels towards the narrower

section. When entering the transition region it begins to shrink more until reaching a

minimum size when approximately entering the narrow section. The travelled distance

is measured by the location of the centroid of the solid body with respect to its initial

location. When inside the narrow section, the solid gets stretched and increases in area.

The velocity of the solid body’s centroid is shown in Fig. 22 for all parameter choices.

At the begin of the simulation the solid catches the velocity of the surrounding fluid and

this increases when approaching the transition to the narrower section. Once entered this

final part, the velocity stays approximately constant.

In [2], a three-dimensional experiment of the flow of liquid-filled capsules through a

narrowed pipe have been carried out. Although the presented example is two-dimensional

and a compressible solid rather than a capsule is subject to the fluid flow, the observed

shapes [2] are similar to Figs. 19, 20. In the experiments, it has been found that with

increasing capillary numberCa the rear end of the capsule becomes flatter and eventually,

above some value of Ca buckles inwards. Here the values of Ca are 1/E and do not fall

into the range of inward buckling. Yet a increasing flatting with lower value of E (i.e.,

2 2.5 3 3.5 4

−0.2

0

0.2E =50

E =100

E =200

E =500

Fig. 19 Varying solid stiffness. Snapshots of the deformed solid for the time instance t = 14 and constriction
size δ = 0.33

2 2.5 3 3.5 4

δ=0.40 δ=0.30 δ=0.33 δ=0.25

Fig. 20 Varying constriction size δ. Snapshots of the deformed solid for the time instance t = 14 and a
stiffness of E = 100; the dotted lines indicate the location of the boundary in each case
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Fig. 22 Velocity versus travelled distance. Varying stiffnesses E (left) and constriction sizes δ (right); the dotted
lines indicate the location of begin and end of the transition from wide to narrow pipe sections

higher value of Ca) is visible in Fig. 19. Note that our model does not allow for contact

between the immersed solid and the domain boundaries. As the solid squeezes through

the narrowed section of the pipe it never touches the boundaries but there remains a

fluid gap between the interface and the boundary, see Fig. 18. This gap is an outcome

of the simulation and not subject to artificially imposed distance constraints. Via the

stabilisation techniques of “Cut elements” section, this implies a restriction on the mesh

size. If too many neighbouring fluid elements have degenerate degrees of freedom (a

geometric situation similar to a cusp), the employed stabilisation technique fails.

Finally, in Fig. 23 for a few parameter combinations the velocity streamlines are shown

together with the fluid pressure and the surface traction σn. For the computation of the

streamlines, the discrete velocity according to (17) has been used inside the solid domain.

Clearly, the flow pattern do not differ significantly among the displayed images. But the

fluid pressure is higher in case of a larger solid stiffness E as it is necessary in order to

sufficiently deform the solid body. In case of a smaller pipe diameter the fluid pressures

are obviously larger. Accordingly, the distribution of the surface traction becomes higher

for larger values of E and smaller values of δ.

This example is concluded by a comment on the advantage of immersed finite elements.

Themost common technique for the fully-coupled analysis of fluid–solid interaction is the

Arbitrary Lagrangian-Eulerian (ALE) technique [26] in which the fluid mesh is deformed

in order to accommodate for the solid deformation and to maintain a usable analysis

mesh. Although a powerful method, it is expected that the here presented example is not
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E = 50, δ = 0.33

E = 100, δ = 0.33

E = 200, δ = 0.33

E = 100, δ = 0.25

Fig. 23 Flow visualisation. Streamlines, pressure and the surface traction for some combinations of solid
stiffness E and pipe constriction δ at time t = 14: the fluid domain is coloured by the fluid pressure (between
0 and 60, see colour bar) and the red line indicates the distribution of the traction σn along the surface
(divided by 1000)

directly accessible by an ALE method. Figs. 18, 19, 20 clearly show that the initial fluid

mesh would be highly distorted when the solid body enters the narrow section of the pipe.

Tedious re-meshing and solution mapping techniques are required in an ALE approach.

Three-dimensional shear flow

At last, a three-dimensional example is considered. Here the setup is similar to the shear

flowof section “Shear flow–parameter study” but extended to the third dimension. Fig. 10

shows the initial configuration: a sphere of radius R = 0.6 located at the centre of a fluid

box of dimension [−1.4, 1.4]3. All parameters are chosen as the standard values of Table 1

apart from the material stiffness parameter, which assumes the values E = 5 or E = 10,

and the spatial discretisation is carried out by 203 elements of size h = 0.14.

Figure 24 displays the initial configuration and the final deformed shapes for the two

chosen material parameters. As in the two-dimensional case, the solid assumes an elliptic

shape that is inclined in the plane of the shear flow. In Fig. 25, the principal moments

of inertia, computed from the 3 × 3-matrix with coefficients (43), are shown for a time

interval 0 ≤ t ≤ 2.5 and the two choices of E. The spheres flatten as discussed above and

rotate about the axis perpendicular to the plane of shear by approximate angles 0.20π

for E = 10 and 0.17π for E = 5. As seen in Fig. 25, the moment of inertia around this

Fig. 24 Three-dimensional shear flow. Computational setup for the analysis: application of a velocity field on
the top and bottom boundaries, all other boundaries remain open (left); deformed solid shapes for E = 10
(middle) and E = 5 (right) with streamlines
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Fig. 25 Analysis of deformation. Principal moments of inertia of the deformed shape over time

out-of-plane axis stays almost constant throughout the simulation and is similar for both

stiffnesses. The other two moments clearly deviate from their initial values as the elliptic

shape in the plane of shear is formed.

Conclusion

A new approach for the numerical analysis of the interaction between viscous fluid flow

and highly deformable solids has been presented. The method builds up on previous

works, such as [8,36] for the analysis of fluid flow around moving and highly flexible

boundaries. Derived from the basic balance equations for the quasi-static equilibrium of

solid and fluid, the interface conditions are incorporated weakly and a global solid-fluid

balance law is obtained. The formalism of an updated Lagrangian method is used for the

description of the solid constituent. Its equilibrium is thus expressed in the latest known

configuration and the deformation history maintained by particle tracking between the

newly computed and the previous state of the solid. Bymeans of this choice, the advection

equations and the shape derivatives in the linearisation of a fully Eulerian method are

avoided. The analysis is carried out on one mesh which stays fixed in space and time.

For the spatial discretisation an immersed finite element method is employed with the

mesh independent of the location of the solid–fluid configuration. By using a signed dis-

tance function, the location of the interface is given implicitly to the finite element solver.

The difficulty of an accurate quadrature of the elements which are crossed by the interface

is as much addressed as the possible ill-conditioning of the system of equations due to the

small support of shape functions on such elements. Once the nonlinear iterations of the

fully coupled fluid–solid system are converged and the new equilibrium has been found,

the configuration is updated. To this end, an explicit representation of the surface is recov-

ered from the level set and this is updated bymeans of the displacement increments along

the surface. Finally, every mesh node of the solid domain is tracked back to its previous

location in order to transfer the displacement history.

Due to the choice of a monolithic fluid–solid coupling, the method is unconditionally

stable.Moreover, the full linearisation in theUpdatedLagrangian framework leads to a fast

convergence within every time step. Several example applications in two and three spatial

dimensions are presented and the influence of all parameters of the method are studied.

Being tailored towards the analysis of cell motility and microfluidic experimentation, we

consider shear flow exampleswhich reveal the basic characteristics of liquid-filled vesicles,

such as tumbling and tank-treading behaviour. Moreover, the passing of a deformable

object through a narrowed tube of diameter smaller than the body is analysed and the
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trajectories of an elastic solid in the vortex of a driven cavity flow. Especially, the former

application provides an important step in the direction of computational analysis of cell

migration in confined spaces [67].

In view of these examples, we highlight the following features of the devised method.

Based on simple balance laws, virtually anymaterial law of solid and fluid constituents can

be incorporated. Especially, active behaviour, like growth or self-propulsion, is a feasible

extension. Moreover, the restriction to a quasi-static equilibrium is not essential and an

adaption of the method to fully dynamic solid–fluid interaction is straightforward. The

developed immersed finite element method operates with a single analysis mesh for solid

and fluid that is not subject to any deformation. This is particularly useful for the analysis

of the narrowed tube and the driven cavity examples inwhich the use of a body-fittedmesh

is not possible in any standard way. Finally, we aim to emphasise that the here presented

approach is virtually mesh-free: even though a volume finite element mesh is employed it

is not subject to any geometrical restrictions and its generation is a trivial task.

Authors’ contributions

TR derived the mathematical model for the immersed FE method and carried out the numerical implementation. JMGA
defined the conception of the underlying physical models. Both authors were fully involved in the preparation of this
manuscript and the interpretation of the results. All authors read and approved the final manuscript.

Author details
1Multiscale in Mechanical and Biological Engineering (M2BE), University of Zaragoza, María de Luna 3, 50018 Zaragoza,
Spain, 2Fundación ARAID, María de Luna 11, 50018 Zaragoza, Spain.

Acknowledgements

The support of the European Research Council (ERC), through project ERC-2012-StG 306751, and of the Spanish Ministry
of Economy and Competitiveness, through project DPI2012-38090-C03-01 (partly financed by the European Union
through the European Regional Development Fund), is gratefully acknowledged.

Competing interests

The authors declare that they have no competing interests.

Received: 17 December 2015 Accepted: 12 February 2016

References

1. Tarbell JM, Weinbaum S, Kamm RD. Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng.
2005;33:1719–23.

2. Risso F, Collé-Paillot F, Zagzoule M. Experimental investigation of a bioartificial capsule flowing in a narrow tube. J
Fluid Mech. 2006;547:149–73.

3. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, SchwaabM.Modelling of fluid-structure interactions
with the space-time finite elements: Arterial fluid mechanics. Int J Numer Methods Fluids. 2007;54:901–22.

4. Keller SR, Skalak R. Motion of a tank-treading ellipsoidal particle in a shear flow. J Fluid Mech. 1982;120:27–47.
5. Diamond S, Eskin S, McIntire L. Fluid flow stimulates tissue plasminogen activator secretion by cultured human

endothelial cells. Science. 1989;243:1483–5.
6. Polacheck WJ, Li R, Uzel SG, Kamm RD. Microfluidic platforms for mechanobiology. Lab Chip. 2013;13:2252–67.
7. van der Meulen MC, Huiskes R. Why mechanobiology?: A survey article. J Biomech. 2002;35:401–14.
8. Rüberg T, Cirak F. A fixed-grid b-spline finite element technique for fluid-structure interaction. Int J Numer Methods

Fluids. 2014;74:623–60.
9. Tian FB, Dai H, Luo H, Doyle JF, Rousseau B. Fluid-structure interaction involving large deformations: 3d simulations

and applications to biological systems. J Computational Phys. 2014;258:451–69.
10. Lim C, Zhou E, Quek S. Mechanical models for living cells-a review. J Biomech. 2006;39:195–216.
11. Ohayon R, Felippa C. Advances in computational methods for fluid-structure interaction. Comput Methods Appl

Mech Eng. 2001;190:2977–3292.
12. Bazilevs Y, Takizawa K, Tezduyar TE. Special issue on computational fluid mechanics and fluid-structure interaction.

Comput Mech. 2011;48:245–348.
13. Tezduyar TE, Bazilevs Y. Advances in computational fluid mechanics and fluid-structure interactions: A tribute to

Yoichiro Matsumoto on the occasion of his 60th birthday. Int J Numer Method Fluids. 2011;65:1–340.
14. Bazilevs Y, Takizawa K, Tezduyar TE. Computational fluid-structure interaction: methods and applications. Hoboken:

Wiley; 2012.
15. Heil M. An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems.

Comput Method Appl Mech Eng. 2004;193:1–23.



Rüberg and Aznar Adv. Model. and Simul. in Eng. Sci. (2016) 3:9 Page 30 of 31

16. Burman E, FernándezM. Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressiblity.
Comput Method Appl Mech Eng. 2009;198:766–84.

17. Felippa CA, Park K, Farhat C. Partitioned analysis of coupled mechanical systems. Comput Method Appl Mech Eng.
2001;190(24):3247–70.

18. Küttler U,Wall WA. Fixed-point fluid-structure interaction solvers with dynamic relaxation. ComputMech. 2008;43:61–
72.

19. Mittal R, Iaccarino G. Immersed boundary methods. Ann Rev Fluid Mech. 2005;37:239–61.
20. Tezduyar TE. Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput

Method Eng. 2001;8:83–130.
21. Takizawa K, Tezduyar TE. Multiscale space-time fluid-structure interaction techniques. ComputMech. 2011;48:247–67.
22. Küttler U, Gee M, Förster C, Comerford A, Wall W. Coupling strategies for biomedical fluid-structure interaction

problems. Int J Numer Method Biomed Eng. 2010;26:305–21.
23. Takizawa K,Wright S, Moorman C, Tezduyar TE. Fluid-structure interactionmodeling of parachute clusters. Int J Numer

Method Fluids. 2011;65:286–307.
24. Kramer R, Cirak F, Pantano C. Fluid-structure interaction simulation of an inflatable aerodynamic tension-cone decel-

erator. AIAA J. 2010; 4608.
25. Bazilevs Y, Hsu MC, Scott M. Isogeometric fluid-structure interaction analysis with emphasis on non-matching dis-

cretizations, and with application to wind turbines. Comput Method Appl Mech Eng. 2012;249:28–41.
26. Hirt C, Amsden AA, Cook J. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys.

1974;14:227–53.
27. Peskin C. The immersed boundary method. Acta Numer. 2002;11:479–517.
28. Eggleton CD, Popel AS. Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids. 1998;10:1834–

45.
29. Zhang L, Gerstenberger A, Wang X, Liu WK. Immersed finite element method. Comput Method Appl Mech Eng.

2004;193:2051–67.
30. Pozrikidis C. Interfacial dynamics for stokes flow. J Comput Phys. 2001;169:250–301.
31. Veerapaneni SK, Gueyffier D, Zorin D, Biros G. A boundary integral method for simulating the dynamics of inextensible

vesicles suspended in a viscous fluid in 2d. J Comput Phys. 2009;228(7):2334–53.
32. Veerapaneni SK, Rahimian A, Biros G, Zorin D. A fast algorithm for simulating vesicle flows in three dimensions. J

Comput Phys. 2011;230(14):5610–34.
33. Valkov B, Rycroft CH, Kamrin K. Eulerian method for fluid-structure interaction and submerged solid–solid contact

problems. 2014.
34. Burman E, Fernández MA, et al. An unfitted nitsche method for incompressible fluid-structure interaction using

overlapping meshes. Comput Method Appl Mech Eng. 2014;279:497–514.
35. BoffiD, Gastaldi L. A finite element approach for the immersedboundarymethod. Comput Struct. 2003;81(8):491–501.
36. Rüberg T, Cirak F. Subdivision-stabilised immersed b-spline finite elements for moving boundary flows. Comput

Method Appl Mech Eng. 2011;209–212:266–83.
37. Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problem.

Comput Method Appl Mech Eng. 2002;191:5537–52.
38. Dolbow J, Harari I. An efficient finite element method for embedded interface problems. Int J Numer Method Eng.

2009;78:229–52.
39. Laadhari A, Ruiz-Baier R, Quarteroni A. Fully eulerian finite element approximation of a fluid-structure interaction

problem in cardiac cells. Int J Numer Method Eng. 2013;96:712–38.
40. Richter T, Wick T. Finite elements for fluid-structure interaction in ale and fully eulerian coordinates. Comput Method

Appl Mech Eng. 2010;199:2633–42.
41. He P, Qiao R. A full-eulerian solid level set method for simulation of fluid-structure interactions. Microfluid Nanofluid.

2011;11(5):557–67.
42. Dunne T. An eulerian approach to fluid-structure interaction and goal-orientedmesh adaptation. Int J NumerMethod

Fluid. 2006;51(9–10):1017–39.
43. Wick T. Fully eulerian fluid-structure interaction for time-dependent problems. Comput Method Appl Mech Eng.

2013;255:14–26.
44. Bathe KJ, Ramm E,Wilson EL. Finite element formulations for large deformation dynamic analysis. Int J NumerMethod

Eng. 1975;9:353–86.
45. Armero F, Love E. An arbitrary lagrangian-eulerian finite elementmethod for finite strain plasticity. Int J NumerMethod

Eng. 2003;57:471–508.
46. Fernández MÁ, Moubachir M. A Newton method using exact jacobians for solving fluid-structure coupling. Comput

Struct. 2005;83:127–42.
47. Nitsche J. Über ein Variationsprinzip zur Lösung vonDirichlet-Problemen bei Verwendung von Teilräumen, die keinen

Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,
vol. 36, Springer, 1971; 9–15.

48. Sethian JA. Theory, algorithms, and applications of level set methods for propagating interfaces. Acta Numer.
1996;5:309–95.

49. Batchelor GK. An introduction to fluid dynamics. Cambridge: University Press; 2000.
50. Ogden RW. Non-linear elastic deformations. New York: Courier Dover Publications; 1997.
51. Fernández M, Gerbeau JF, Grandmont C. A projection semi-implicit scheme for the coupling of an elastic structure

with an incompressible fluid. Int J Numer Method Eng. 2007;69:794–821.
52. LeTallec P, Mouro J. Fluid structure interaction with large structural displacements. Comput Method Appl Mech Eng.

2001;190:3039–67.
53. Bonet J. Nonlinear continuummechanics for finite element analysis. Cambridge: University Press; 1997.
54. Stenberg R. On some techniques of approximating boundary conditions in the finite element method. J Comput

Appl Math. 1995;63:139–48.



Rüberg and Aznar Adv. Model. and Simul. in Eng. Sci. (2016) 3:9 Page 31 of 31

55. Annavarapu C, Hautefeuille M, Dolbow JE. A robust Nitsche’s formulation for interface problems. Comput Method
Appl Mech Eng. 2012;225:44–54.

56. Bangerth W, Rannacher R. Finite element approximation of the acoustic wave equation: Error control and mesh
adaptation. EastWest J Numer Math. 1999;7:263–82.

57. Ern A, Guermond JL. Theory and practice of finite elements. New York: Springer; 2004.
58. Mauch S. Efficient algorithms for solving static hamilton-jacobi equations. PhD Thesis, Calinfornia Institute of Tech-

nology; 2003.
59. Hughes TJ. The finite element method: linear static and dynamic finite element analysis. New York: Courier Dover

Publications; 2012.
60. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Method

Eng. 1999;46:131–50.
61. Massing A, LarsonMG, Logg A. Efficient implementation of finite elementmethods on nonmatching and overlapping

meshes in three dimensions. SIAM J Sci Comput. 2013;35:C23–47.
62. Zeng X, Farhat C. A systematic approach for constructing higher-order immersed boundary and ghost fluid methods

for fluid-structure interaction problems. J Comput Phys. 2012;231(7):2892–923.
63. Höllig K. Finite element methods with B-splines. SIAM Front Appl Math. 2003.
64. Schott B, Wall W. A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equa-

tions. Comput Method Appl Mech Eng. 2014;276:233–65.
65. Richter T. A fully eulerian formulation for fluid-structure-interaction problems. J Comput Phys. 2013;233:227–40.
66. Barthès-Biesel D. Motion of a spherical microcapsule freely suspended in a linear shear flow. J Fluid Mech.

1980;100:831–53.
67. Wolf K, te Lindert M, Krause M, Alexander S, te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P. Physical

limits of cell migration: control by ecm space and nuclear deformation and tuning by proteolysis and traction force.
J Cell Biol. 2013;201:1069–84.


	Numerical simulation of solid deformation driven by creeping flow using  an immersed finite element method
	Abstract
	Background
	Fluid--solid interaction
	Static balance laws
	Coupling formulation
	Time semi-discretisation
	Updated Lagrangian method and linearisation

	Immersed finite element method
	Implicit geometry representation
	Cut elements
	Interface update and particle tracking
	Fluid--solid coupling

	Example applications
	Updated Lagrangian method
	Shear flow--convergence analysis
	Shear flow--parameter study
	Flow in a narrowed tube
	Three-dimensional shear flow

	Conclusion
	References


