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❆❜str❛❝t✿ We consider the mathematical modeling and numerical simulation of high throughput sorting of two different types

of biological cells (type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS) whose oper-

ating behavior relies on surface acoustic wave (SAW) manipulated fluid flow in a microchannel. The BioMEMS

consists of a separation channel with three inflow channels for injection of the carrier fluid and the cells, two out-

flow channels for separation, and an interdigital transducer (IDT) close to the lateral wall of the separation channel

for generation of the SAWs. The cells can be distinguished by fluorescence. The inflow velocities are tuned so

that without SAW actuation a cell of type I leaves the device through a designated outflow channel. However, if

a cell of type II is detected, the IDT is switched on and the SAWs modify the fluid flow so that the cell leaves the

separation channel through the other outflow boundary. The motion of a cell in the carrier fluid is modeled by the

Finite Element Immersed Boundary method (FE-IB). Numerical results are presented that illustrate the feasibility

of the surface acoustic wave actuated cell sorting approach.
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1. Introduction

Biomedical Micro-Electro-Mechanical Systems (BioMEMS) are miniaturized laboratories on a chip (lab-on-a-chip)
that can be used for various biomedical and biochemical purposes such as hybridization in genomics, protein profiling in
proteomics, and cytometry in cell analysis. In this project, we will focus on high throughput cell sorting in microfluidic
channels which has significant applications in basic cell biology, cancer research, clinical diagnostics, drug design in
pharmacology, tissue engineering in reproductive medicine, and transplantation immunology [8, 10, 16, 25, 29].

The working horses in cell sorting are still centrifugal methods where a sample is spun in a rotating chamber such
that heavier cells are separated from lighter ones [19, 24]. Other bioengineering technologies are based on elec-
trokinetic/dielectrophoretic methods where an external electric field is used to separate cells with different charge or
polarization properties [9, 31, 33], or on magnetic methods, where cells (particles) of interest are labeled with magnetic
materials and separated from the rest by applying an external magnetic field [23, 32]. Acoustic techniques rely on bulk
acoustic wave (BAW)-based acoustophoresis [22] or standing surface acoustic waves (SSAW) [26, 27] to separate cells
(particles) of different densities or sizes.

All the methodologies mentioned before heavily rely on different properties of the cells or particles in the sample
(density/size, charge/polarization, magnetic labeling) and hence are restricted to specific applications. A very recent
technology, which does not depend on such contrasts, is surface acoustic wave actuated cell sorting (SAWACS) [12, 13].
It combines the advantages of SAW generated acoustic streaming in microfluidic polydimethylsiloxane (PDMS) devices
and fluorescence activated cell sorting (FACS).

The separation channel is placed on top of a plastic chip partially coated by a piezoelectric substrate to enable the
generation and propagation of surface acoustic waves (SAWs). The channel has length of 350 µm, a width of 220 µm, and
a height of 50 µm. It features an injection channel at the center of the left boundary (highlighted in green in Figure 1),
two adjacent inflow channels, and two outflow channels at the right boundary. An interdigital transducer (IDT) is placed
close to the lower lateral wall. Once a cell has entered the separation channel and is recognized as a cell designated
to leave the upper outlet, the IDT is switched on and generates the SAWs. The induced acoustic streaming deflects the
focussing stream towards the upper outlet, cf. Figure 1 (bottom). Without SAW actuation, the velocities at the inflow
channels and the injection channel are tuned in such a way that the cell leaves the main channel through the lower
outlet, cf. Figure 1 (top). The device has been successfully tested for cell sorting involving different cell types such as
human keratinocytes, murine fibroblasts cells, and melanoma cells [13]. In this paper, we will be concerned with SAW
actuated cell sorting both for viscoelastic cells such as red blood cells (RBCs) and malignant breast cancer cells.

Figure 1. Surface acoustic wave actuated cell sorting (SAWACS) in a microfluidic PDMS channel (prepared in the lab of the first author).

2. The mathematical model equations

We use standard notation from Lebesgue and Sobolev space theory, cf., e.g., [30]. In particular, for a bounded domain
Ω ⊂ R

d, d ∈ N, we denote by L2(Ω) and L2(Ω) = L2(Ω)d the Hilbert space of square integrable scalar- and vector-
valued functions on Ω, equipped with the inner product ( · , · )0,Ω and the associated norm ‖ ·‖0,Ω, respectively. Further, we
denote by Hs(Ω), s ∈ R+, the Sobolev space of vector-valued functions with the inner product ( · , · )s,Ω and the associated

✼✻✶
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norm ‖ ·‖s,Ω. The space Hs
0,Γ′ (Ω) is the subspace with vanishing trace on Γ′ ⊆ Γ. We will omit the subindex Γ′ if Γ′ = Γ.

H−s(Ω) stands for the dual space of Hs
0(Ω) with 〈 · , · 〉 referring to the dual product. The space Hs(Ω) ⊂ Hs(Ω) is the

subspace of all u↾Ω where u ∈ Hs(Rd) and 〈u↾Ω,φ〉 = 〈u, φ̃〉 for all φ ∈ C∞
0 (Ω) with φ̃ referring to the continuation of φ

by zero outside Ω. We denote by Hs−1/2(Γ′), s ≥ 1, the trace space of vector-valued functions on Γ′. We further refer to
Hs−1/2

00 (Γ′) as the space of functions whose extensions by zero to Γ\Γ′ belong to Hs−1/2(Γ). Finally, we denote by C k,µ(Ω)

and Ck,µ(Ω), k ∈ N0, µ ∈ (0, 1/2), the Banach spaces of k-times continuously differentiable scalar- and vector-valued
functions on Ω whose derivatives of order k are Hölder continuous of order µ.

Moreover, for T > 0 and a Banach space Z (Z) of scalar (vector-valued) functions, we denote by L2((0, T ), Z ) (L2((0, T ), Z))
the Hilbert space and by C ([0, T ], Z ) (C([0, T ], Z)) the Banach space of functions v : [0, T ] → Z (v : [0, T ] → Z) with norms

‖v‖L2((0,T ),Z ) =




T∫

0

‖v(t)‖2
Z dt




1/2

, ‖v‖C ([0,T ],Z ) = max
t∈[0,T ]

‖v(t)‖Z ,

and analogous settings in the vector-valued case. The spaces Hs((0, T ), Z ), s ∈ R+, (Hs((0, T ), Z)) are defined likewise.

2.1. Incompressible Navier–Stokes equations

We consider a microchannel Ω = (0, a1)× (0, a2), ai > 0, with three inflow boundaries Γ
(i)
in = {0}× (b

(i)
1 , b

(i)
2 ), 0 < b

(i)
1 <

b
(i)
2 , 1 ≤ i ≤ 3, two outflow boundaries Γ

(i)
out = {a1}× (c

i)
1 , c

(i)
2 ), 0 < c

(i)
1 < c

(i)
2 < a2, 1 ≤ i ≤ 2, and a boundary

Γac = (a1/2−d1, a1/2+d1)×{0}, where the SAWs enter the channel. We set ΓD = ∂Ω \
(⋃3

i=1 Γ
(i)

in ∪ ⋃2
i=1 Γ

(i)

out ∪ Γac

)

and Γ′ =
⋃3

i=1 Γ
(i)

in ∪ Γac ∪ ΓD, cf. Figure 2. For T > 0, we further set Q = Ω× (0, T ], Σ
(i)
in = Γ

(i)
in × (0, T ], 1 ≤ i ≤ 3,

Σ
(i)
out = Γ

(i)
out × (0, T ], 1 ≤ i ≤ 2, Σac = Γac × (0, T ], and ΣD = ΓD × (0, T ].

Γac

Γ
(1)
in

Γ
(2)
in

Γ
(3)
in

Γ
(1)
out

Γ
(2)
out

Figure 2. Microchannel with three inflow boundaries Γ
(i)
in , 1 ≤ i ≤ 3, two outflow boundaries Γ

(i)
out, 1 ≤ i ≤ 2, and a boundary Γac where the SAWs

enter the channel.

We denote by v and p the velocity field and the pressure and refer to σ (v, p) = ηD(v) − pI as the stress tensor, where
η is the dynamic viscosity of the carrier fluid and D(v) = (∇v +(∇v)T )/2 stands for the rate of deformation tensor. We
impose inflow velocities v

(i)
in at the inflow boundaries Σ

(i)
in , 1 ≤ i ≤ 3, do-nothing boundary conditions at the outflow

boundaries Σ
(i)
out, 1 ≤ i ≤ 2, and zero velocity at ΣD. Moreover, we have v = v ac at Σac with v ac = 0 in case of no

SAW actuation and v ac = ∂u/∂t in case the IDT is switched on. Here, u stands for the displacement vector of the SAW
which will be specified in the following subsection 2.2. Finally, we denote by v(0) the initial velocity and by F a force
density which reflects the impact of the immersed cell on the carrier fluid and which will be derived in subsection 2.3.

✼✻✷
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The initial-boundary value problem for the incompressible Navier–Stokes equations then reads as follows:

ρ
∂v

∂t
+ ρ(v ·∇)v − ∇ · σ (v, p) = F in Q, (1a)

∇ · v = 0 in Q, (1b)

v = v
(i)
in on Σ

(i)
in , 1 ≤ i ≤ 3, (1c)

σ (v, p)n = 0 on Σ
(i)
out, (1d)

v = vac on Σac (1e)

v = 0 on ΣD, (1f)

v = v(0) in Ω. (1g)

Introducing the function spaces

V(0, T ) = H1
(
(0, T ), H−1(Ω)

)
∩ L2

(
(0, T ), H1(Ω)

)
,

W(0, T ) =
{

v ∈ V(0, T ) : v↾
Σ

(i)
in

= v
(i)
in , 1 ≤ i ≤ 3, v↾Σac

= vac, v↾ΣD
= 0

}
,

Q(0, T ) = L2
(
(0, T ), L2(Ω)

)
,

the weak formulation of the Navier–Stokes equations requires the computation of (v, p) ∈ W(0, T )×Q(0, T ) such that
for all w ∈ H1

0,Γ′ (Ω) and all q ∈ L2(Ω) there holds

〈
ρ

∂v

∂t
, w

〉

H−1,H1

+ a(v, w) − b(p, w) = ℓ(w), (2a)

b(q, v) = 0, (2b)

v( · , 0) = v(0). (2c)

Here, a( · , · ), b( · , · ), and the functional ℓ( · ) are given by

a(v, w) = (ρ(v ·∇)v, w)0,Ω + (η∇v, ∇w)0,Ω, b(p, v) = (p, ∇·v)0,Ω, ℓ(w) = 〈F, w〉H−1 ,H1
0
.

2.2. Surface acoustic wave actuation

In SAW actuated cell sorting, the separation channel is placed on top of a plastic chip partially coated by a piezoelectric
substrate such as lithium niobate (LiNbO3). The SAWs are generated by an interdigital transducer (IDT) close to the
wall of the channel with its aperture pointing towards the wall. The IDT features fingers substantially parallel to
one another. A static electric field E is applied to generate a strain which varies across the aperture of the IDT. The
electric field is either perpendicular or parallel to the fingers and created by applying an AC voltage between two
correspondingly positioned conductors. The piezoelectric effect thus leads to SAWs that travel in the direction of the
wall, enter the fluid filled microchannel, and thus manipulate the flow field in the channel.

In piezoelectric materials, the stress tensor σ depends linearly on the electric field E according to the generalized
Hooke’s law

σ (u, E) = cε(u) − eE,

where ε(u) = (∇u + (∇u)T )/2 is the linearized strain tensor and u denotes the mechanical displacement. Moreover, c and
e refer to the symmetric fourth order elasticity tensor and the symmetric third order piezoelectric tensor, respectively.
Hence, the application of an electric field causes a displacement of the material. The origin of the piezoelectric effect
is related to an asymmetry in the unit cell of a piezoelectric crystal and can be observed only in materials with a polar
axis, cf., e.g., [11, 18].

✼✻✸
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Figure 3. Interdigital Transducer IDT (top) and motion of the SAW in the sagittal plane (right).

Since the frequency of the electromagnetic wave is small compared to the frequency of the generated acoustic wave,
a coupling will be neglected. Further, the electric field will be considered as quasistatic and irrotational so that it can be
expressed as the gradient of an electric potential Φ, i.e., E = −∇Φ. Moreover, piezoelectric materials are nearly perfect
insulators and hence, the only remaining quantity of interest in Maxwell’s equations is the dielectric displacement D

which is related to the electric field by the constitutive equation

D = εE + P,

where ε is the electric permittivity of the material and P stands for the polarization which depends linearly on the
displacement u according to P = eε(u). We assume that the piezoelectric material with density ρ occupies some
domain Ω1 with boundary Γ1 = ∂Ω1 and exterior unit normal n1 such that

Γ1 = ΓE,D ∪ ΓE,N , ΓE,D ∩ ΓE,N = ∅,

Γ1 = Γp,D ∪ Γp,N , Γp,D ∩ Γp,N = ∅,

where ΓE,D is a rectangular subdomain of the upper boundary of Γ1 and ΓE,N = Γ1 \ ΓE,D . Given boundary data ΦE,D

on ΓE,D , the pair (u, Φ) satisfies the following initial-boundary value problem for the piezoelectric equations, cf. [15],

ρp

∂2u

∂t2
− ∇·σ (u, E) = 0 in Q1 = Ω1 × (0, T1),

∇· D(u, E) = 0 in Q1,

u = 0 on Γp,D, n1 · σ = σn1
on Γp,N ,

Φ = ΦE,D on ΓE,D, n1 · D = Dn1
on ΓE,N ,

u( · , 0) = 0,
∂u

∂t
( · , 0) = 0 in Ω1.

For an ideal piezoelectric material, the SAW behaves like a Rayleigh wave which propagates in the sagittal plane
spanned by the unit surface normal and the real wave vector k, i.e., the (x1, x3)-plane with respect to the coordinate
system in Figure 4. SAWs are strictly confined to the limiting surface of the piezoelectric substrate and practically nil
outside a relatively narrow zone. To be precise, the amplitude of the displacement u decays exponentially with depth
into the substrate [18]. In true Rayleigh waves, most of the energy (90 %) is concentrated within one wavelength from
the surface. The mechanical displacement u should thus vanish as x3 → ∞, and since x1 is the direction of propagation
of the wave, the dependence of u on the x2 coordinate can be neglected. Moreover, if the harmonically excited IDT is

✼✻✹
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Figure 4. Surface acoustic waves: coordinate system (left) and Rayleigh wave (right).

placed close to the lateral wall of the microchannel and we restrict ourselves to a two-dimensional scenario, we may
assume u = (u1, u2) with

u1 = 0, u2 = a sin(2πft) on Σac,

where a is the amplitude and f stands for the operating frequency of the IDT. This leads to vac = (vac,1, vac,2)
T with

vac,1 = 0, vac,2 =
∂u2

∂t
= 2aπf cos(2πft) on Σac (3)

in (1e), cf. [2].

2.3. Finite Element Immersed Boundary method

Red blood cells (RBCs) and malignant breast cancer cells (MCF-7) are viscoelastic bodies consisting of a cytoskeleton
enclosing a heterogeneous cell interior [1]. In a simplified biomechanical model, neglecting viscoelastic properties,
the cytoskeleton can be represented as an elastic membrane with specific elastic moduli and the cell interior as an
incompressible fluid with specific density and viscosity. We further suppose that the density and viscosity are the same
for the carrier fluid and the fluid enclosed by the membrane. This is a realistic assumption, since in the experiments
the carrier fluid is manipulated by chemical additives to adjust these properties (density/viscosity matching). It also
facilitates the application of the Immersed Boundary (IB) method. The IB method, which has been originally suggested by
Peskin [20] (cf. also the survey article [21] and references therein), relies on the incompressible Navier–Stokes equations
(1a)–(1g) for the motion of the carrier fluid within an Eulerian coordinate system, equations describing the motion of
the immersed cells within a Lagrangian coordinate system, and the interaction equations which transform Eulerian into
Lagrangian quantities and vice versa. The finite element version of IB has been introduced in [5] and further studied
in [4, 6, 14].

We consider an immersed cell occupying a subdomain Bt , t ∈ [0, T ], with boundary ∂Bt that is supposed to be a
non-selfintersecting closed curve. We further assume that the boundary ∂B0 of the initial configuration B0 has length
L = |∂B0| and denote by q ∈ [0, L] the Lagrangian coordinate labeling a material point on ∂B0. We further refer to
X(q, t) = (X1(q, t), X2(q, t))T as the position of that point at time t ∈ (0, T ] such that

X ∈ H1
(
(0, T ), L2([0, L])

)
∩ L2

(
(0, T ), H3

per([0, L])
)
, (4)

where H3
per([0, L]) = {Y ∈ H3((0, L)) : ∂kY(0)/∂qk = ∂kY(L)/∂qk , k = 0, 1, 2}. The total elastic energy of the immersed

boundary ∂Bt is given by

E(t) = Ee(t) + Eb(t), t ∈ (0, T ),

Ee(t) =

L∫

0

E
e(X(q, t)) dq, Eb(t) =

L∫

0

E
b(X(q, t)) dq,

✼✻✺
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where E
e(t) and E

b(t) stand for the local energy densities,

E
e(X(q, t)) =

κe

2

(∣∣∣∣
∂X

∂q
(q, t)

∣∣∣∣
2

− 1

)
, E

b(X(q, t)) =
κb

2

∣∣∣∣
∂2X

∂q2
(q, t)

∣∣∣∣
2

.

Here, κe > 0 and κb > 0 denote the elasticity coefficients with respect to elongation–compression (Young’s modulus)
and bending.

Denoting by f the local force density, f(q, t) = −E ′(X(q, t)), where E ′ stands for the Gâteaux derivative of E , the global
force density F in (1a) is given by

〈F(t), w〉H−1,H1
0

=

L∫

0

f(q, t) · w(X(q, t)) dq, w ∈ H1
0(Ω). (5)

Remark 2.1.

For sufficiently smooth w in (5), integration by parts yields

〈F(t), w〉H−1,H1
0

= −κe

L∫

0

∂X( · , t)

∂q
· ∂

∂q
w(X( · , t)) dq − κb

L∫

0

∂2X( · , t)

∂q2
· ∂2

∂q2
w(X( · , t)) dq

= −κe

L∫

0

∂X( · , t)

∂q
· D1w(X( · , t))

∂X( · , t)

∂q
dq − κb

L∫

0

∂2X( · , t)

∂q2
· D1w(X( · , t))

∂2X( · , t)

∂q2
dq

− κb

L∫

0

∂2X( · , t)

∂q2
· D2w(X( · , t))

(
∂X( · , t)

∂q
,

∂X( · , t)

∂q

)
dq.

(6)

Moreover, the immersed boundary moves with the velocity v of the carrier fluid and hence, the equation of motion of the
immersed boundary reads as follows:

∂X

∂t
(q, t) = v(X(q, t), t), (q, t) ∈ [0, L]× (0, T ], (7a)

X( · , 0) = X(0)( · ). (7b)

2.4. A stability estimate

In case v↾Σ = 0, a stability estimate for the FE-IB has been derived in [6], whereas such an estimate has been provided
in [14] for inflow and outflow boundary conditions of the form νΓin · v↾Γin

= −νΓout · v↾Γout
= g with g being independent

of t ∈ [0, T ]. In the sequel, we will establish a stability estimate under the boundary conditions as given by (1c)–(1f).

We suppose that the inflow velocities v
(i)
in , 1 ≤ i ≤ 3, in (1c) and vac in (1e) satisfy

v
(i)
in ∈ H1

(
(0, T ), H

5/2+µ
00 (Γ

(i)
in )
)
, 1 ≤ i ≤ 3, (8a)

vac ∈ H1
(
(0, T ), H

5/2+µ
00 (Γac)

)
, (8b)

for some µ ∈ (0, 1/2). We further construct v
(i)
out, 1 ≤ i ≤ 2,

v
(i)
out ∈ H1

(
(0, T ), H

5/2+µ
00 (Γ

(i)
out)
)
, 1 ≤ i ≤ 2, (9)

such that for t ∈ [0, T ] there holds

2∑

i=1

∫

Γ
(i)
out

n · v
(i)
out(s, t) ds +

3∑

i=1

∫

Γ
(i)
in

n · v
(i)
in (s, t) ds +

∫

Γac

n · vac(s, t) ds = 0. (10)

✼✻✻
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Lemma 2.2.

Under the assumptions (8a), (8b), (9), and (10) there exists a function ψ̂ ∈ H1
(
(0, T ), H3+µ(Ω) ∩ H(div0, Ω)

)
satisfying

for t ∈ [0, T ],

ψ̂( · , t)↾
Γ

(i)
in

= v
Γ

(i)
in

( · , t), 1 ≤ i ≤ 3, (11a)

ψ̂( · , t)↾
Γ

(i)
out

= v
Γ

(i)
out

( · , t), 1 ≤ i ≤ 2, (11b)

ψ̂( · , t)↾Γac
= vΓac ( · , t). (11c)

Moreover, there exist constants Ĉ1 > 0 and Ĉ2 > 0 such that for t ∈ [0, T ] it holds

‖ψ̂( · , t)‖C2,µ (Ω) ≤ Ĉ1g1(t), (12a)
t∫

0

∥∥∥∥
∂ψ̂

∂τ
( · , τ)

∥∥∥∥
2

C2,µ (Ω)

dτ ≤ Ĉ2g2(t), (12b)

where the upper bounds g1(t) and g2(t) are given by

g1(t) =

3∑

i=1

∥∥v
(i)
in ( · , t)

∥∥
H

5/2+µ
00 (Γ

(i)
in )

+

2∑

i=1

∥∥v
(i)
out( · , t)

∥∥
H

5/2+µ
00 (Γ

(i)
out)

+ ‖vac( · , t)‖
H

5/2+µ
00 (Γac)

, (13a)

g2(t) =

t∫

0

(
3∑

i=1

∥∥∥∥
∂v

(i)
in

∂τ
( · , τ)

∥∥∥∥
2

H
5/2+µ
00 (Γ

(i)
in )

+

2∑

i=1

∥∥∥∥
∂v

(i)
out

∂τ
( · , τ)

∥∥∥∥
2

H
5/2+µ
00 (Γ

(i)
out)

+

∥∥∥∥
∂vac

∂τ
( · , τ)

∥∥∥∥
2

H
5/2+µ
00 (Γac)

)
dτ. (13b)

Proof. We denote by ṽ
(i)
in ( · , t) ∈ H5/2+µ(Γ), 1 ≤ i ≤ 3, ṽ

(i)
out( · , t) ∈ H5/2+µ(Γ), 1 ≤ i ≤ 2, and ṽac( · , t) ∈ H5/2+µ(Γ) the

extensions of v
(i)
in ( · , t), v

(i)
out( · , t), and vac( · , t) by zero to Γ such that

∥∥ṽ
(i)
in ( · , t)

∥∥
5/2+µ,Γ

.
∥∥v

(i)
in ( · , t)

∥∥
H

5/2+µ
00 (Γ

(i)
in )

,

∥∥ṽ
(i)
out( · , t)

∥∥
5/2+µ,Γ

.
∥∥v

(i)
out( · , t)

∥∥
H

5/2+µ
00 (Γ

(i)
out)

,
∥∥ṽac( · , t)

∥∥
5/2+µ,Γ

. ‖vac( · , t)‖
H

5/2+µ
00 (Γac)

.

We define ṽ ∈ H1
(
(0, T ), H5/2+µ(Γ)

)
by

ṽ =

3∑

i=1

ṽ
(i)
in +

2∑

i=1

ṽ
(i)
out + ṽac

and observe that due to (10) there holds

∫

Γ

(n · ṽ) ds = 0. (14)

In view of the trace theorem [30] and (14) there exists ψ̂ ∈ H1
(
(0, T ), H3+µ(Ω) ∩ H(div0, Ω)

)
satisfying (11a)–(11c) and

∥∥ψ̂( · , t)
∥∥

3+µ,Ω
.

3∑

i=1

∥∥ṽ
(i)
in

∥∥
5/2+µ,Γ

+

2∑

i=1

∥∥ṽ
(i)
out

∥∥
5/2+µ,Γ

+ ‖ṽac‖5/2+µ,Γ.

Finally, (12a) and (12b) follow from the continuous embedding of H3+µ(Ω) in C2,µ(Ω).
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Numerical simulation of surface acoustic wave actuated cell sorting

For the proof of the subsequent energy estimate, we note that the computational domain Ω ⊂ R
2 is such that for

v ∈ W(0, T ) the Poincaré–Friedrichs inequality

‖v( · , t)‖0,Ω ≤ CΩ

(
‖∇v( · , t)‖2

0,Ω + ‖v( · , t)‖2
0,Γ

)1/2
, t ∈ [0, T ], (15)

holds true for some constant CΩ > 0.

Theorem 2.3.

Suppose that the data of the problem satisfy (8a) and (8b), and that the additional assumption

max
0≤t≤T

g1(t) ≤ η

8ρĈ1C
2
Ω

(16)

holds true, where g1(t), t ∈ [0, T ], is from (13a) and the positive constants Ĉ1, CΩ are given by (12a) and (15). Moreover,

assume that the triple (v, p, X) satisfies (2a)–(2c) and (7a) and (7b). Then, there exists a positive constant C , depending

on ρ, η, κe, κb, Ĉi, 0 ≤ i ≤ 2, and CΩ such that

ρ

4
‖v( · , t)‖2

0,Ω +
η

8

t∫

0

‖∇v( · , t)‖2
0,Ω dτ +

κe

2

∥∥∥∥
∂X( · , t)

∂q

∥∥∥∥
2

0,[0,L]

+
κb

2

∥∥∥∥
∂2X( · , t)

∂q2

∥∥∥∥
2

0,[0,L]

≤ C

(
g1(0)2 + g1(t)

2 +

t∫

0

(g1(τ)2 + g2(τ)2) dτ + max
0≤τ≤t

g1(τ)

t∫

0

‖v( · , τ)‖2
0,Γ dτ + ‖u(0)‖2

0,Ω

+

∥∥∥∥
∂X(0)

∂q

∥∥∥∥
2

0,[0,L]

+

∥∥∥∥
∂2X(0)

∂q2

∥∥∥∥
2

0,[0,L]

+

t∫

0

∥∥∥∥
∂X( · , τ)

∂q

∥∥∥∥
2

0,[0,L]

dτ +

t∫

0

∥∥∥∥
∂2X( · , τ)

∂q2

∥∥∥∥
2

0,[0,L]

dτ

)
.

(17)

Proof. Due to Lemma 2.2, w = v − ψ̂ is an admissible test function in (2a). Integrating over [0, t], it follows that

t∫

0

〈
ρ

∂v

∂τ
, v− ψ̂

〉
dτ +

t∫

0

a(v, v− ψ̂) dτ =

t∫

0

〈
F(τ), v− ψ̂

〉
H−1,H1

0
dτ. (18)

Using partial integration, the Cauchy–Schwarz inequality, Young’s inequality with ε1 > 0, and the Poincaré–Friedrichs
inequality (15), the first term on the left-hand side in (18) can be bounded from below according to

t∫

0

〈
ρ

∂v

∂τ
, v− ψ̂

〉

H−1,H1
0

dτ =
ρ

2

t∫

0

∂

∂τ
‖v(τ)‖2

0,Ω dτ − ρ
(
v( · , t), ψ̂( · , t)

)
0,Ω

+ ρ
(
v( · , 0), ψ̂( · , 0)

)
0,Ω

+ ρ

t∫

0

(
v( · , τ),

∂ψ̂

∂τ
( · , τ)

)

0,Ω

dτ

≥ ρ

4
‖v( · , t)‖2

0,Ω − 3ρ

4
‖v( · , 0)‖2

0,Ω − ρ
(

‖ψ̂( · , t)‖2
0,Ω + ‖ψ̂( · , 0)‖2

0,Ω

)

− ε1ρ

t∫

0

‖v( · , τ)‖2
0,Ω dτ − ρ

4ε1

t∫

0

∥∥∥∥
∂ψ̂

∂τ
( · , τ)

∥∥∥∥
2

0,Ω

dτ

≥ ρ

4
‖v( · , t)‖2

0,Ω − 3ρ

4
‖v( · , 0)‖2

0,Ω − ρ
(

‖ψ̂( · , t)‖2
0,Ω + ‖ψ̂( · , 0)‖2

0,Ω

)

− ε1ρC 2
Ω

( t∫

0

‖∇v( · , τ)‖2
0,Ω dτ +

t∫

0

‖v( · , τ)‖2
0,Γ dτ

)
− ρ

4ε1

t∫

0

∥∥∥∥
∂ψ̂

∂τ
( · , τ)

∥∥∥∥
2

0,Ω

dτ.

(19)
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For the second term on the left-hand side in (18) we obtain

t∫

0

a(v, v− ψ̂) dτ =

t∫

0

(
ρ(v ·∇)v, v

)
0,Ω

dτ −
t∫

0

(
ρ(v ·∇)v, ψ̂

)
0,Ω

dτ +

t∫

0

(
η∇v, ∇(v− ψ̂)

)
0,Ω

dτ. (20)

The first term on the right-hand side of (20) can be estimated as follows:

t∫

0

(
ρ(v ·∇)v, v

)
0,Ω

dτ =
ρ

2

t∫

0

∫

Γ

|v(s, τ)|2n · v(s, τ) ds dτ

≥ −ρ

2

t∫

0

∫

Γ

|v(s, τ)|2|n ·v(s, τ)| ds dτ ≥ − ρ

2
max
0≤τ≤t

g1(t)

t∫

0

‖v( · , τ)‖2
0,Γ dτ.

(21)

By means of the Cauchy–Schwarz inequality, Young’s inequality, and the Poincaré–Friedrichs inequality (15), the
remaining two terms on the right-hand side in (20) can be estimated from below according to

t∫

0

(
η∇v, ∇(v− ψ̂)

)
0,Ω

dτ −
t∫

0

(
ρ(v ·∇)v, ψ̂

)
0,Ω

dτ

≥ η

t∫

0

‖∇v( · , τ)‖2
0,Ω dτ − η

t∫

0

‖∇v( · , τ)‖0,Ω‖∇ψ̂( · , τ)‖0,Ω dτ

− ρ Ĉ1 max
0≤τ≤t

g1(τ)

t∫

0

2∑

i,j=1

‖vj ( · , τ)‖0,Ω

∥∥∥∥
∂vi

∂xj

( · , τ)

∥∥∥∥
0,Ω

dτ

≥
(

η

2
− ρ

√
2 Ĉ1C

2
Ω max

0≤τ≤t
g1(τ)

) t∫

0

‖∇v( · , τ)‖2
0,Ω dτ − ρ

√
2

2
C 2

Ω max
0≤τ≤t

g1(τ)

t∫

0

‖v( · , τ)‖2
0,Γ dτ − η

2

t∫

0

g2
1(τ) dτ.

(22)

In view of (6) and (7a), for the right-hand side in (18) we find

t∫

0

〈F(τ), v〉H−1,H1
0
dτ =

t∫

0


−κe

L∫

0

∂X(q, τ)

∂q
· ∂

∂q
v(X(q, τ)) dq − κb

L∫

0

∂2X(q, τ)

∂q2
· ∂2

∂q2
v(X(q, τ)) dq


 dτ

=

t∫

0


−κe

L∫

0

∂X(q, τ)

∂q
· ∂

∂τ

(
∂X(q, τ)

∂q

)
dq − κb

L∫

0

∂2X(q, τ)

∂q2
· ∂

∂τ

(
∂2X(q, τ)

∂q2

)
dq


 dτ

= −κe

2

t∫

0

∂

∂τ

∥∥∥∥
∂X

∂q
(τ)

∥∥∥∥
2

0,[0,L]

dτ − κb

2

t∫

0

∂

∂τ

∥∥∥∥
∂2X

∂q2
(τ)

∥∥∥∥
2

0,[0,L]

dτ

=
κe

2

(∥∥∥∥
∂X

∂q
(0)

∥∥∥∥
2

0,[0,L]

−
∥∥∥∥

∂X

∂q
(t)

∥∥∥∥
2

0,[0,L]

)
+

κb

2

(∥∥∥∥
∂2X

∂q2
(0)

∥∥∥∥
2

0,[0,L]

−
∥∥∥∥

∂2X

∂q2
(t)

∥∥∥∥
2

0,[0,L]

)
.

(23)

Using (6) again, we get

t∫

0

〈F(τ), ψ̂〉H−1,H1
0
dτ = κe

t∫

0

(
∂X

∂q
, D1ψ̂(X( · , τ))

∂X

∂q

)

0,[0,L]

dτ + κb

t∫

0

(
∂2X

∂q2
, D1ψ̂(X( · , τ))

∂2X

∂q2

)

0,[0,L]

dτ

+ κb

t∫

0

(
∂2X

∂q2
, D2ψ̂(X( · , τ))

(
∂X

∂q
,

∂X

∂q

))

0,[0,L]

dτ.

(24)

The stability estimate (17) now follows by using (19) with ε1 = η/(4ρC 2
Ω) and (20)–(24) in (18).
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Numerical simulation of surface acoustic wave actuated cell sorting

Remark 2.4.

The meaning of the assumption (16) is that the magnitude of the inflow velocities should be bounded depending on the
fluid parameters ρ and η as well as the geometry of the channel as reflected by the parameters Ĉ and CΩ. Actually, the
inflow velocities used in our simulations, cf. Section 4, and the data are such that (16) is always satisfied. A violation
of (16) corresponds to the experimentally observable scenario that extremely high inflow velocities cause the immersed
membranes to get torn apart.

3. Semi-Implicit FE Immersed Boundary method

For discretization in space and time we use the Backward Euler/Forward Euler Finite Element Immersed Boundary
method from [14] in the sense that we discretize the Navier–Stokes equations by the backward Euler method in time
and by Taylor–Hood P2/P1 elements in space, whereas we discretize the equation of motion of the immersed cell by
the forward Euler scheme in time and by periodic cubic splines in space.

3.1. Discretization in space and time

Let Th(Ω) be a quasi-uniform simplicial triangulation of Ω that aligns with the partition of Γ. For K ∈ Th(Ω), we denote
by |K | the area of K , by hK the diameter of K , and we set h = max {hK : K ∈ Th(Ω)}. Further, Pk (K ), k ∈ N, refers
to the set of polynomials of degree ≤ k on K . For the spatial discretization of the weak formulation (2a)–(2c) of the
incompressible Navier–Stokes equations we use P2/P1 Taylor–Hood elements [7], i.e., we define

Vh =
{

vh ∈ C(Ω) : vh↾K ∈ P2(K )2, K ∈ Th(Ω)
}

, Qh =
{

wh ∈ C (Ω) : wh↾K ∈ P1(K ), K ∈ Th(Ω)
}

,

and set V
h,Γ

(i)
in

= Vh↾Γ
(i)
in

, 1 ≤ i ≤ 2, Vh,Γac = Vh↾Γac
. The finite element spaces are spanned by the canonically specified

nodal basis functions.

For the discretization in time we consider an equidistant partition

T∆t = {0 = t0 < t1 < . . . < tM = T}, M ∈ N,

of the time interval [0, T ] into subintervals of length ∆t = T/M and denote by v
(m)
h an approximation of vh ∈ Vh at t = tm.

We further refer to D+
∆tv

(m)
h = (v

(m+1)
h − v

(m)
h )/∆t and D−

∆tv
(m)
h = (v

(m)
h − v

(m−1)
h )/∆t as the forward and backward difference

operator. For tm ∈ T∆t , we define v
(i)
h,in( · , tm), 1 ≤ i ≤ 2, and vh,ac( · , tm) as the L2-projection of v

(i)
in ( · , tm) onto Vh↾Γ

(i)
in

and

of vac( · , tm) onto Vh↾Γac
. We set

W
(m)
h =

{
w

(m)
h ∈ C(Ω) : w

(m)
h ∈ Vh, w

(m)
h ↾

Γ
(i)
in

= v
(i)
hin( · , tm), 1 ≤ i ≤ 2, w

(m)
h ↾Γac

= vh,ac( · , tm), w
(m)
h ↾ΓD

= 0
}

,

Q
(m)
h =

{
w

(m)
h ∈ C (Ω) : w

(m)
h ↾K ∈ Qh

}
.

The discretization of the immersed boundary is done with respect to a partition

T∆q =
{

0 = q0 < q1 < . . . < qR = L
}

, R ∈ N,

of the interval [0, L] into subintervals Ii = [qr−1, qr ], 1 ≤ r ≤ R , of length ∆qr = qr − qr−1 with ∆q =

max {∆qr : 1 ≤ r ≤ R}. We approximate X from (4) by periodic cubic splines

Sh =
{

Yh ∈ C2([0, L]; Ω) : Yh↾Ir
∈ P3(Ir)

2, 1 ≤ r ≤ R, Y
(k)
h (q0) = Y

(k)
h (qR ), k = 0, 1, 2

}
,

✼✼✵
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where P3(Ir) stands for the set of polynomials of degree ≤ 3 on Ir . For Yh ∈ Sh, we set Yh,r = Yh(qr), 0 ≤ r ≤ R .
The discrete immersed cell occupies subdomains Bh,tm ⊂ Ω with boundaries ∂Bh,tm that are C 2 curves described by the
periodic cubic spline X

(m)
h ( · ) ∈ Sh.

We define the total discrete energy by means of Eh(tm) = Ee
h (tm) + Eb

h (tm), where the discrete elastic energy Ee
h (tm) and

the discrete bending energy Eb
h (tm) are given by

Ee
h (tm) =

κe

2

L∫

0

(∣∣∣∣
∂X

(m)
h

∂q
(q)

∣∣∣∣
2

− 1

)
dq, Eb

h (tm) =
κb

2

R∑

r=1

qr∫

qr−1

∣∣∣∣
∂2X

(m)
h

∂q2
(q)

∣∣∣∣
2

dq.

Observing that ∂3X
(m)
h (q)/∂q3 is constant on Ir , the discrete force density takes the form

〈
F

(m)
h , wh

〉
h

= −κe

L∫

0

∂X
(m)
h

∂q
· ∂

∂q
wh

(
X

(m)
h (q)

)
dq + κb

R∑

i=1

qi∫

qi−1

∂3X
(m)
h

∂q3
· ∂

∂q
wh

(
X

(m)
h (q)

)
dq

= −κe

L∫

0

∂X
(m)
h (q)

∂q
· ∇wh

(
X

(m)
h (q)

) ∂X
(m)
h

∂q
dq + κb

R∑

r=1

∂3X
(m)
h

∂q3
↾

Ir

qr∫

qr−1

∇wh

(
X

(m)
h (q)

) ∂X
(m)
h

∂q
dq,

(25)

which is a discrete approximation of (6).

The Backward Euler/Forward Euler FE-IB reads as follows: Given v
(0)
h ∈ W

(0)
h and X

(0)
h ∈ Sh, for m = 0, . . . , M − 1 we

perform the following two steps:

Step 1: Compute
(
v

(m+1)
h , p

(n+1)
h

)
∈ W

(m+1)
h ×Q

(m+1)
h such that for all wh ∈ Vh,0,

(
ρD+

∆tv
(m)
h , wh

)
0,Ω

+ a
(
v

(m+1)
h , wh

)
− b

(
p

(m+1)
h , wh

)
= ℓ

(m)
h (wh), (26a)

b
(
wh, v

(m+1)
h

)
= 0, (26b)

where ℓ
(m)
h (wh) =

〈
F

(m)
h , wh

〉
h

is given by (25).

Step 2: Compute X
(m+1)
h ∈ Sh according to

D+
∆tX

(m)
r = v

(m+1)
h

(
X(m)

r

)
, 1 ≤ r ≤ R. (27)

3.2. Stability of the semi-implicit FE-IB

For the derivation of a stability estimate for the semi-implicit Backward Euler/Forward Euler FE-IB we note that the
boundary ∂Bh,tm of the immersed cell at time tm consists of C 2 segments ∂B

(r)
h,tm

connecting the material points X
(m)
h,r−1

and X
(m)
h,r , 1 ≤ r ≤ R . Referring to Th

(
∂B

(r)
h,tm

)
as the set

{
K ∈ Th(Ω) : K ∩ ∂B

(r)
h,tm

6= ∅
}

we have

∥∥∇v
(m+1)
h

∥∥2

0,∂B
(r)
h,tm

≤
∑

K∈Th(∂B
(r)
h,tm

)

CK h−1
K

∥∥∇v
(m+1)
h

∥∥2

0,K
, (28)

where CK is a positive constant independent of hK . Due to the quasi-uniformity of Th(Ω) there exist constants 0 < cQ ≤
CQ , that only depend on the local geometry of the triangulation, such that

cQh ≤ hK ≤ CQh, K ∈ Th(Ω).
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Hence, denoting by C
(m)
r the maximum number of C 2 curve segments contained in an element K ∈ Th

(
∂B

(r)
h,tm

)
and setting

Ccell = c−1
Q max

0≤m≤M−1
max

1≤r≤R

(
C (m)

r max
K∈Th(∂B

(r)
h,tm

)

CK

)
, (29)

from (28) we obtain ∥∥∇v
(m+1)
h

∥∥2

0,∂Bh,tm
≤ Ccellh

−1
∥∥∇v

(m+1)
h

∥∥2

0,Ω
.

In view of ∂X
(m)
h /∂q ∈ C1([0, L]), 0 ≤ m ≤ M, and taking into account that the third derivatives ∂3X

(m)
h /∂q3 are constant

vectors on Ir , 1 ≤ r ≤ R , we further define

Λ1 = max
0≤m≤M

max
q∈[0,L)

∣∣∣∣
∂X

(m)
h

∂q

∣∣∣∣, Λ2 = max
0≤m≤M

max
1≤r≤R

∣∣∣∣
∂3X

(m)
h

∂q3
↾

Ir

∣∣∣∣. (30)

Moreover, we refer to ψ̂h( · , tm) as the biquadratic spline interpolant of ψ̂( · , tm) from Lemma 2.2. Then, there exist
constants C

(k)
2 > 0 such that

∥∥Dk ψ̂h( · , tm)
∥∥

Ck (Ω)
≤ C

(k)
2 g

(m)
1 , 0 ≤ k ≤ 2, (31a)

m−1∑

ℓ=0

∥∥D+
∆tψ̂h( · , tℓ )

∥∥
Ck (Ω)

≤ C
(k)
2 g

(m)
2 , 0 ≤ k ≤ 2. (31b)

Here, g
(m)
1 = g1(tm) with g1(t) from (13a), whereas g

(m)
2 is given by (cf. (13b))

g
(m)
2 =

m−1∑

ℓ=0

(
3∑

i=1

∥∥D+
∆tv

(i)
in ( · , tℓ )

∥∥2

H
5/2+µ
00 (Γ

(i)
in )

+

2∑

i=1

∥∥D+
∆tv

(i)
out( · , tℓ )

∥∥2

H
5/2+µ
00 (Γ

(i)
out)

+
∥∥D+

∆tvac( · , tℓ )
∥∥2

H
5/2+µ
00 (Γac)

)
∆t.

Theorem 3.1.

Let
(
v

(m)
h , p

(m)
h , X

(m)
h

)M

m=0
be the solution of the semi-implicit Backward Euler/Forward Euler FE-IB (26a), (26b) and (27).

In addition to the assumptions (8a) and (8b) let

max
0≤m≤M

g
(m)
1 ≤ η

16ρC
(1)
2 C 2

Ω

(32)

be satisfied and suppose that the following CFL-condition holds true:

∆t

h
≤ η

8Ccell(κeΛ1 +κbΛ2)
, (33)

where the positive constants CΩ, Ccell, C
(1)
2 , Λ1, Λ2 are from (15), (29), (30), and (31a). Then, there exists a positive

constant C , depending on ρ, η, κe, κb, C
(k)
2 , 0 ≤ k ≤ 2, and CΩ, Ccell, Λ1, Λ2 such that the following stability estimate is

fulfilled:

ρ

4

∥∥v
(m)
h

∥∥2

0,Ω
+

η

16

m∑

ℓ=0

∥∥∇v
(ℓ)
h

∥∥2

0,Ω
∆t +

κe

2

∥∥∥∥
∂X

(m)
h

∂q

∥∥∥∥
2

0,[0,L]

+
κb

2

∥∥∥∥
∂2X

(m)
h

∂q2

∥∥∥∥
2

0,[0,L]

≤ C

(
(g

(0)
1 )2 + (g

(m)
1 )2 +

m−1∑

ℓ=0

(
(g

(ℓ)
1 )2 + (g

(ℓ)
2 )2
)
∆t + max

0≤ℓ≤m−1
g

(ℓ)
1

m∑

ℓ=0

∥∥v
(ℓ)
h

∥∥2

0,Γ
∆t

+ ‖v
(0)
h ‖2

0,Ω +

∥∥∥∥
∂X

(0)
h

∂q

∥∥∥∥
2

0,[0,L]

+

∥∥∥∥
∂2X

(0)
h

∂q2

∥∥∥∥
2

0,[0,L]

+

m−1∑

ℓ=1

∥∥∥∥
∂X

(ℓ)
h

∂q

∥∥∥∥
2

0,[0,L]

∆t +

m−1∑

ℓ=1

∥∥∥∥
∂2X

(ℓ)
h

∂q2

∥∥∥∥
2

0,[0,L]

∆t

)
.
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Proof. We choose vh = v
(ℓ+1)
h − ψ̂

(ℓ+1)
h in (26a), multiply the equation by ∆t and sum over ℓ from ℓ = 0 to ℓ = m − 1.

We thus obtain

m−1∑

ℓ=0

((
ρD+

∆tv
(ℓ)
h , v

(ℓ+1)
h − ψ̂(ℓ+1)

h

)
0,Ω

+ a
(
v

(ℓ+1)
h , v

(ℓ+1)
h − ψ̂(ℓ+1)

h

))
∆t =

m−1∑

ℓ=0

〈
F

(ℓ)
h , v

(ℓ+1)
h − ψ̂(ℓ+1)

h

〉
h
∆t. (34)

By partial summation we find

m−1∑

ℓ=0

(
D+

∆tv
(ℓ)
h , v

(ℓ+1)
h

)
0,Ω

∆t =
1

2

(∥∥v
(m)
h

∥∥2

0,Ω
−
∥∥v

(0)
h

∥∥2

0,Ω

)
+

1

2
∆t

m−1∑

ℓ=0

∥∥D+
∆tv

(ℓ)
h

∥∥2

0,Ω
∆t, (35a)

m−1∑

ℓ=0

(
D+

∆tv
(ℓ)
h , ψ̂

(ℓ)
h

)
0,Ω

∆t = −
m−1∑

ℓ=0

(
v

(ℓ)
h , D+

∆tψ̂
(ℓ+1)
h

)
0,Ω

∆t +
(
v

(m)
h , ψ̂

(m)
h

)
0,Ω

−
(
v

(0)
h , ψ̂(0)

)
0,Ω

. (35b)

Using (35a), (35b), Young’s inequality with ε1 > 0, and the Poincaré–Friedrichs inequality (15), the first term on the
left-hand side in (34) can be bounded from below as follows:

m−1∑

ℓ=0

(
ρD+

∆tv
(ℓ)
h , v

(ℓ+1)
h − ψ̂(ℓ+1)

h

)
0,Ω

∆t

≥ ρ

4

∥∥v
(m)
h

∥∥2

0,Ω
− ρ

∥∥v
(0)
h

∥∥2

0,Ω
− ρ

∥∥ψ̂(m)
h

∥∥2

0,Ω
− ρ

2

∥∥ψ̂(0)
h

∥∥2

0,Ω
− ε1ρ

m−1∑

ℓ=0

∥∥v
(ℓ)
h

∥∥2

0,Ω
∆t − ρ

4ε1

m−1∑

ℓ=0

∥∥D+
∆tψ̂

(ℓ)
h

∥∥2

0,Ω
∆t

≥ ρ

4

∥∥v
(m)
h

∥∥2

0,Ω
− ρ

∥∥v
(0)
h

∥∥2

0,Ω
− ρ

∥∥ψ̂(m)
h

∥∥2

0,Ω
− ρ

2

∥∥ψ̂(0)
h

∥∥2

0,Ω

− ε1ρC 2
Ω

(
m−1∑

ℓ=0

∥∥∇v
(ℓ)
h

∥∥2

0,Ω
∆t +

m−1∑

ℓ=0

∥∥v
(ℓ)
h

∥∥2

0,Γ
∆t

)
− ρ

4ε1

m−1∑

ℓ=0

∥∥D+
∆tψ̂

(ℓ)
h

∥∥2

0,Ω
∆t.

(36)

As in the proof of Theorem 2.3, for the second term on the left-hand side in (34) we deduce the following lower bound.

m−1∑

ℓ=0

a
(
v

(ℓ+1)
h , v

(ℓ+1)
h − ψ̂

(ℓ+1)
h

)
∆t

≥ η

m−1∑

ℓ=0

∥∥∇v
(ℓ+1)
h ( · , τ)

∥∥2

0,Ω
∆t − η

m−1∑

ℓ=0

∥∥∇v
(ℓ+1)
h

∥∥
0,Ω

∥∥∇ψ̂
(ℓ+1)
h

∥∥
0,Ω

∆t − ρ max
0≤ℓ≤m

g1(tℓ )

m−1∑

ℓ=0

2∑

i,j=1

∥∥v
(ℓ+1)
h,j

∥∥
0,Ω

∥∥∥∥
∂v

(ℓ+1)
h,i

∂xj

∥∥∥∥
0,Ω

dτ

≥
(

η

2
−ρ

√
2 C 2

Ω max
1≤ℓ≤m

g1(tℓ )

) m−1∑

ℓ=0

∥∥∇v
(ℓ+1)
h

∥∥2

0,Ω
∆t − ρ

√
2

2
C 2

Ω max
1≤ℓ≤m

g1(tℓ )

m−1∑

ℓ=0

∥∥v
(ℓ+1)
h

∥∥2

0,Γ
∆t − η

2

m−1∑

ℓ=0

g2
1(tℓ )∆t.

Observing (25) and (27), for the right-hand side in (34) we obtain

m−1∑

ℓ=0

〈
F

(ℓ)
h , v

(ℓ+1)
h − ψ̂

(ℓ+1)
h

〉
h
∆t = −κe

m−1∑

ℓ=0

L∫

0

∂X
(ℓ)
h

∂q
· D+

∆t

∂X
(ℓ)
h

∂q
dq · ∆t + κb

m−1∑

ℓ=0

M∑

i=1

qi∫

qi−1

∂3X
(ℓ)
h

∂q3
· D+

∆t

∂X
(ℓ)
h

∂q
dq · ∆t

+ κe

m−1∑

ℓ=0

L∫

0

∂X
(ℓ)
h

∂q
· D1ψ̂

(ℓ+1)
h

∂X
(ℓ)
h

∂q
dq · ∆t + κb

m−1∑

ℓ=0

L∫

0

∂2X
(ℓ)
h

∂q2
· D1ψ̂

(ℓ+1)
h

∂2X
(ℓ)
h

∂q2
dq · ∆t

+ κb

m−1∑

ℓ=0

L∫

0

∂2X
(ℓ)
h

∂q2
· D2ψ̂

(ℓ+1)
h

(
∂X

(ℓ)
h

∂q
,

∂X
(ℓ)
h

∂q

)
dq · ∆t.

(37)
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Partial summation yields

− κe

m−1∑

ℓ=0

L∫

0

∂X
(ℓ)
h

∂q
· D+

∆t

∂X
(ℓ)
h

∂q
dq · ∆t = κe

m∑

ℓ=1

L∫

0

D−
∆t

∂X
(ℓ)
h

∂q
· ∂X

(ℓ)
h

∂q
dq · ∆t + κe




L∫

0

∣∣∣∣
∂X

(0)
h

∂q

∣∣∣∣
2

dq −
L∫

0

∣∣∣∣
∂X

(m)
h

∂q

∣∣∣∣
2

dq


. (38)

For the first term on the right-hand side in (38) it follows that

κe

m∑

ℓ=1

L∫

0

D−
∆t

∂X
(ℓ)
h

∂q
· ∂X

(ℓ)
h

∂q
dq · ∆t = κe

m−1∑

ℓ=0

L∫

0

∂X
(ℓ)
h

∂q
· D+

∆t

∂X
(ℓ)
h

∂q
dq · ∆t + κe∆t

m−1∑

ℓ=0

L∫

0

∣∣∣∣D
+
∆t

∂X
(ℓ)
h

∂q

∣∣∣∣
2

dq · ∆t. (39)

Taking (27), (29), and (30) into account, for the last term on the right-hand side in (39) we find

L∫

0

∣∣∣∣D
+
∆t

∂X
(ℓ)
h

∂q

∣∣∣∣
2

dq =

L∫

0

∣∣∣∣
∂

∂q

(
v

(ℓ+1)
h

(
X

(ℓ)
h

))∣∣∣∣
2

dq ≤
L∫

0

∣∣∇v
(ℓ+1)
h

(
X

(ℓ)
h

)∣∣2
∣∣∣∣

∂X
(ℓ)
h

∂q

∣∣∣∣
∣∣∣∣
∂X

(ℓ)
h

∂q

∣∣∣∣dq

≤ Λ1

∥∥∇v
(ℓ+1)
h

∥∥2

0,∂Bh,tℓ

≤ CcellΛ1h
−1
∥∥∇v

(ℓ+1)
h

∥∥2

0,Ω
.

(40)

Combining (38), (39) and (40) results in

− κe

m−1∑

ℓ=0

L∫

0

∂X
(ℓ)
h

∂q
· D+

∆t

∂X
(ℓ)
h

∂q
dq · ∆t ≤ κe

2

(∥∥∥∥
∂X

(0)
h

∂q

∥∥∥∥
2

[0,L]

−
∥∥∥∥

∂X
(m)
h

∂q

∥∥∥∥
2

[0,L]

)
+

κe

2
Ccell Λ1h

−1∆t

m−1∑

ℓ=0

∥∥∇v
(ℓ+1)
h

∥∥2

0,Ω
∆t. (41)

In much the same way we obtain

κb

m−1∑

ℓ=0

R∑

r=1

qr∫

qr−1

∂3X
(ℓ)
h

∂q3
·D+

∆t

∂X
(ℓ)
h

∂q
dq·∆t ≤ κb

2

(∥∥∥∥
∂2X

(0)
h

∂q2

∥∥∥∥
2

[0,L]

−
∥∥∥∥

∂2X
(m)
h

∂q2

∥∥∥∥
2

[0,L]

)
+

κb

2
Ccell Λ2h

−1∆t

m−1∑

ℓ=0

∥∥∇v
(ℓ+1)
h

∥∥2

0,Ω
∆t. (42)

Choosing ε1 = η/(4ρC 2
Ω) in (36), observing (32), using (33) in (41) and (42), and estimating the remaining terms on the

right-hand side in (37) from above, as in the proof of Theorem 2.3, allows to conclude.

Remark 3.2.

The CFL-condition (33) for the semi-implicit scheme means a restriction of the time-step size ∆t, in particular depending
on the size and shape, the stiffness, and the deformability of the immersed membrane as reflected by the constants
Ccell, κe, κb, Λ1, Λ2. We refer to [17] for a systematical study of this issue with regard to the motion of RBCs.

4. Results of numerical simulations

We present the results of numerical simulations for two scenarios related to the separation of RBC cells and melanoma
cells in a separation channel by SAWACS. All computations have been performed under Linux featuring IntelrCoreTM

i3-2100 CPU 3.10 GHz and 7.7 GB RAM. According to the set-up of the experiments conducted in the lab of the first
author, we have considered a separation channel

Ω = (0 µm, 300 µm)× (0 µm, 220 µm)

✼✼✹
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with three inflow boundaries

Γ
(1)
in = {0}× (30 µm, 80 µm), Γ

(2)
in = {0}× (100 µm, 130 µm), Γ

(3)
in = {0}× (150 µm, 200 µm),

two outflow boundaries

Γ
(1)
out = {300}× (20 µm, 100, µm), Γ

(2)
out = {300}× (120 µm, 200 µm),

and a boundary

Γac = (135 µm, 165 µm)×{0},

where the SAWs enter the separation channel. The density ρ and the dynamic viscosity η have been chosen as

ρ = 1.0 · 103 kg/m3, η = 6.0 · 10−3 Pa · s

both for the carrier fluid and the fluid enclosed by the membrane of the RBC and the melanoma cell. We have considered
an RBC of diameter 7.5 µm, perimeter L = 19.8 µm and moduli [28]

κe = 6.0 · 10−6 N/m, κb = 2.0 · 10−19 Nm,

whereas the melanoma cell has been modeled as a sphere of diameter 16 µm and moduli [3]

κe = 2.8 · 10−4 N/m, κb = 1.2 · 10−16 Nm.

Although the melanoma cell is stiffer than the RBC (larger values of κe, κb), it is much larger and less deformable (smaller
values of Ccell and Λ1, Λ2). According to Remark 3.2, the semi-implicit scheme requires a much smaller time step size ∆t

for the motion of the RBC than for the motion of the melanoma cell (see details for Scenarios I and II below).

Scenario I

The first scenario represents an experimental set-up without SAW actuation (i.e., vac = 0 on Σac) where an RBC enters
the separation channel through the inlet Γ

(2)
in and the inflow velocities v

(i)
in on Σ

(i)
in , 1 ≤ i ≤ 3, are chosen according to

v
(1)
in = (v

(1)
in,1, v

(1)
in,2)

T , v
(1)
in,1 = v̂

(1)
in m

(1)
in (x2)(x2 −b

(1)
1 )(b

(1)
2 −x2) cos α, v

(1)
in,2 = v̂

(1)
in m

(1)
in (x2)(x2 −b

(1)
1 )(b

(1)
2 −x2) sin α,

v
(2)
in = (v

(2)
in,1, v

(2)
in,2)

T , v
(2)
in,1 = v̂

(2)
in m

(2)
in (x2)(x2 −b

(2)
1 )(b

(2)
2 −x2), v

(2)
in,2 = 0,

v
(3)
in = (v

(3)
in,1, v

(3)
in,2)

T , v
(3)
in,1 = v̂

(3)
in m

(3)
in (x2)(x2 −b

(3)
1 )(b

(3)
2 −x2) cos α, v

(3)
in,2 = −v̂

(3)
in m

(3)
in (x2)(x2 −b

(3)
1 )(b

(3)
2 −x2) sin α.

Here, b
(1)
1 = 30, b

(2)
1 = 80, b

(2)
1 = 100, b

(2)
2 = 130, b

(3)
1 = 150, b

(3)
2 = 200, and m

(i)
in (x2), 1 ≤ i ≤ 3, are smooth cut-off

functions satisfying m
(i)
in (x2) = 1 on

[
b

(i)
1 +ε, b

(i)
2 −ε

]
and vanishing at b

(i)
1 and b

(i)
2 . The inflow velocities v̂

(i)
in , 1 ≤ i ≤ 3,

and the angle α have been chosen by means of

v̂
(1)
in = 5.0 · 10−2 m/s, v̂

(2)
in = 1.0 · 10−2 m/s, v̂

(3)
in = 10.0 · 10−2 m/s, α =

π

6
.

The inflow velocities have been chosen according to the experiments carried out in the lab of the first author. In particular,
the velocities are tuned so that without SAW actuation the default outlet of a cell is the lower one at the right boundary
of the channel, cf. Figure 1 and Figure 2.

The motion of the RBC has been simulated by the semi-implicit scheme. The simulation covered the time period from
the time instant where the RBC entered the separation channel to the time instant where the RBC left the channel.
For the discretization in space we have chosen a uniform simplicial triangulation of the computational domain Ω by
right isosceles with h = 1/3 and 54243 Degrees of Freedom (DOFs), 48146 DOFs for the velocity and 6097 DOFs for
the pressure. The CFL condition (33) required a time step size ∆t = 1/400. Larger time step sizes led to numerical
instabilities. The computational time for the whole simulation was 3 hours and 51 minutes.

The result of the numerical simulation is displayed in Figure 5 which shows the velocity field and the position of the
cell when the RBC enters the separation channel (left) and shortly before it leaves the channel (right). As can be seen,
the RBC leaves the separation channel through the designated outlet Γ

(1)
out. The complete path of the RBC (indicated in

Figure 5 (right)) is in accordance with the experimental results obtained in the lab of the first author.
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Numerical simulation of surface acoustic wave actuated cell sorting

Figure 5. Velocity field and motion of an RBC without SAW actuation: Initial state after injection (left) and state shortly before the RBC leaves the
separation channel (right).

Scenario II

The second scenario corresponds to a situation where a melanoma cell enters the separation channel through the
inlet Γ

(2)
in , the inflow velocities are chosen as in Scenario I, and SAWs are created by an IDT with operating frequency

f = 100.0 MHz that enter the channel through Γac. The impact of the SAWs on the fluid flow is realized by an inflow
velocity vac = (vac,1, vac,2), vac,1 = 0, vac,2 = 2aπfmac(x1) cos(2πft) on Σac. Here, a = 1.0 · 10−9 m and mac(x1) is a smooth
cut-off function satisfying mac(x1) = 1 on [a1/2−d1 +ε, a1/2+d1 − ε] and vanishing at a1/2 − d1 and a1/2 + d1, cf. (3).
The velocity vac has been chosen according to the operational data of the IDT used in actual experiments.

The motion of the melanoma cell has been simulated by the semi-implicit scheme. As in Scenario I, the simulation
covered the time period from the time instant where the cell entered the separation channel to the time instant where
the cell left the channel. For the discretization in space we have chosen the same uniform simplicial triangulation with
the same number of DOFs as in Scenario I. The CFL condition (33) only required a time step size ∆t = 1/40. The
computational time for the whole simulation was 12 minutes.

Figure 6 displays the resulting velocity fields and the motion of the melanoma cell. Due to the SAW actuation, the path
of the melanoma cell is diverted so that it leaves the separation channel through the outlet Γ

(2)
out. Again, the path of the

cell is in accordance with experimental results obtained in the lab of the first author.

Figure 6. Velocity field and motion of a melanoma cell with SAW actuation: Initial state after injection (left) and state shortly before the cell leaves
the separation channel (right).
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