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Abstract

We performed full-scale numerical simulation of instability of weakly nonlinear

waves on the surface of deep fluid. We show that the instability development

leads to chaotization and formation of wave turbulence.

Instability of both propagating and standing waves were studied. We sepa-

rately studied pure capillary wave, that was unstable due to three-wave interac-

tions and pure gravity waves, that were unstable due to four-wave interactions.

The theoretical description of instabilities in all cases is included in the article.

The numerical algorithm used in these and many other previous simulations per-

formed by the authors is described in detail.

Keywords:
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1. Introduction.

Stationary propagating waves on the surface of deep, heavy ideal fluid have

been known since the middle of the nineteenth century. Stokes (see, for in-

stance [1]) in 1847 found the solution of the Euler equation in the form of
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trigonometric series. For the shape of surface η(x, t), he obtained:

η(x, t) = a

[

cos(kx − ωt) +
1

2
µ cos{2(kx − ωt)} + 3

8
µ2 cos{3(kx − ωt)} + . . .

]

. (1)

Here we introduced steepness µ and frequency ω

µ = ka, ω =
√

gk

(

1 +
1

2
µ2 +

1

8
µ4 + . . .

)

. (2)

Stokes found two algorithms for the calculation of all terms in series (1)

and (2) (see Sretenskii [2]). Convergence of these series was proven by Nekrasov [3,

4] in 1921. Another proof was found by Levi-Chivita [5]. Recently shapes of dif-

ferent Stokes waves were obtained numerically with high precision [6, 7], their

analytic structure was revealed [7] and explained [8].

It has been known since 1965 [9] that stationary waves on the surface of deep

water are unstable. The theory of instability [10, 11, 12, 13] was developed for

waves of small amplitude within the limit µ → 0. A history of this question

is described in the article [14]. Recent advances can be found in [15]. In the

present paper, we study the instability of stationary waves numerically through

the direct solution of the Euler equation which describes a potential flow of ideal

fluid with free surface. This approach has two important advantages. Firstly,

through numerical simulation we can study waves with finite amplitudes. While

this paper focuses only on cases of small amplitude, such and advantage will be

crucial for other applications, e.g. wave breaking simulation. Secondly, the use

of numerical simulation allows us to study not only linear, but also nonlinear

stages of instability development. Even in integrable systems like the NLSE,

analytical study of the monochromatic wave is a very nonlinear problem and

can be solved only by methods of algebraic geometry [16]. In more realistic

models, development of a nonlinear theory of modulational instability for waves

is a hopeless problem. In the long run, we have to expect that instability will lead

to the formation of a stochastic wave field described by a kinetic equation for

squared wave amplitudes and formation of Kolmogorov-Zakharov (KZ) spectra,

governed by the energy flux in high wave numbers [17].

The article is organized as follows. Chapters 2 and 3 are devoted to analytical

theory of stability of weakly nonlinear stationary waves. To develop this theory,

we use Hamiltonian formalism as this approach is the most compact and suitable.

We start with presenting the Euler equation of ideal fluid with free surface in the

Hamiltonian form. Surface tension is also included in the Hamiltonian. In the

presence of surface tension, the dispersion relation is:

ωk =
√

gk + σk3,
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where σ – the surface tension coefficient (here and further we consider fluid of

unit density).

Wave vectors of small-amplitude stationary waves are solutions of the equa-

tion

ωk = ck. (3)

This equation has two solutions (we omit trivial solution k = 0):

k1,2 =
c2 ±

√

c4 − 4gσ

2σ
, (4)

if c > c0, where c0 = (4gσ)1/4. For water, c0 ≃ 23cm/sec. In a generic case c ∼
c0 stationary waves comprise a complicated four-parameter family. However,

in the limiting case c ≫ c0 one can split it in two periodic families of “pure

gravitational” and “pure capillary” waves.

The Stokes wave is “pure gravitational”. Now, with k1 = g/c2 capillary

effects can be neglected. In the “pure capillary” case k2 = c2/σ, effects of gravity

can be ignored. All stationary waves on the surface of deep fluid are unstable.

However, the instabilities of short capillary waves and long gravity waves are

significantly different and described by different “efficient Hamiltonians”. The

case of “pure capillary” waves is the simplest. The instability can be studied

if Hamiltonian contains only quadratic and cubic terms. This is the subject of

Chapter 2. A situation is more complicated for gravitational waves. In this

case, fourth order terms must be included in the Hamiltonian. Then, one has to

exclude the cubic terms through a proper conformal transformation. As a result,

we get so-called “Zakharov equation” [13]. In the framework of this equation,

the problem of the Stokes wave stability can be solved exactly. This is the subject

of Chapter 3.

In Chapter 4, we give a detailed description of the numerical code which we

used for the solution of the Hamiltonian Euler equation. This code was used in

many papers but was never described in detail [18, 19, 20, 21, 22, 23, 24, 25].

We should stress that in our numerical experiments we worked with the Euler

equation written in “natural variables”. These equations are not as good for

the direct analytical study as they are good for the implementation of numerical

method. The structure of nonlinear parts of the Hamiltonian in “natural vari-

ables” is relatively simple, and numerical implementation through standard Fast

Fourier Transform (FFT) is quite feasible.

In Chapter 5 we present our results on the modeling of capillary wave in-

stability. We show that an initial stage of instability is described pretty well by
3



the linear analytical theory. Further development of instability leads to the ap-

pearance of “secondary instabilities” and a tendency toward the formation of a

chaotic wave field, which should be described by statistical methods.

In Chapter 6, we study the instability of the Stokes wave. We show that this

instability is mostly “modulational”. In other words, the wave remains quasi-

monochromatic for a long time after the development of the instability.

Finally, in Chapter 7 we present first results on the development of the stand-

ing wave instability. We show that this instability leads to fast isotropization of

the wave field. This mechanism can be used in experiments for generation of an

isotropic wave field.

2. Theory of decay instability

In this section, we develop the simplest version of the theory of stationary

wave instability. This simple theory is applicable if triple-wave nonlinear pro-

cesses governed by the resonant conditions

ωk = ωk1
+ ωk2

, (5)

k = k1 + k2.

are permitted. Let us briefly describe how the theory of surface waves can be

embedded into the general Hamiltonian theory of nonlinear waves, before we

use conditions (5).

Suppose that ideal incompressible fluid fills the space −∞ < z < η(r, t),

here r = (x, y) — two dimensional vector. A flow is potential v = ∇Φ, hence

hydrodynamical potential Φ satisfies the Laplace equation

∇2Φ = 0. (6)

Let us define ψ = Φ|z=η and impose a natural boundary condition Φz → 0

at z → −∞. It is known [10] that η(r, t) and ψ(r, t) are canonically conjugated

variables satisfying evolutionary equations

∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −δH

δη
. (7)

Here H = T + U — total energy of the fluid, consisting of kinetic energy

T =
1

2

∫

d2r

η
∫

−∞

(∇Φ)2dz, (8)
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and potential energy

U =
g

2

∫

η2d2r + σ

∫

(
√

1 + (∇η)2 − 1)d2r. (9)

The Hamiltonian H in terms of η and ψ is given by the infinite series

H = H0 + H1 + H2 + . . . (10)

Here

H0 =
1

2

∫

{

ψk̂ψ + gη2 + σ(∇η)2
}

d2r, (11)

here k̂ψ =
√
−∇2ψ,

H1 =
1

2

∫

η{|∇ψ|2 − (k̂ψ)2}d2r, (12)

H2 =
1

2

∫

η(k̂ψ)[k̂(ηk̂ψ) + η∇2ψ]d2r +
1

2
σ

∫

(∇η2)2d2r. (13)

Thereafter, we will neglect the last term in (13).

One can perform the symmetric Fourier transform

ψk =
1

2π

∫

ψ(r)e−ıkrd2r, ηk =
1

2π

∫

η(r)e−ıkrd2r. (14)

This is the canonical transformation. Equations (7) now take the form

∂η

∂t
=
δH

δψ∗
,

∂ψ

∂t
= −

δH

δη∗
. (15)

Now

H0 =
1

2

∫

(|k||ψk|2 + σ|k|2|ηk|2 + g|ηk|2)dk,

H1 = −
1

4π

∫

Lk1k2
ψk1

ψk2
ηk3
δ(k1 + k2 + k3)dk1dk2dk3,

H2 =
1

16π2

∫

Mk1k2k3k4
ψk1

ψk2
ηk3
ηk4
δ(k1 + k2 + k3 + k4)dk1dk2dk3dk4,

(16)

Here

Lk1k2
= (k1k2) + |k1||k2|,

Mk1k2k3k4
= |k1||k2|

[

1

2
(|k1 + k3| + |k1 + k4|+

+|k3 + k2| + |k2 + k4|) − |k1| − |k2|] .

(17)
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Equations (7) written for the Hamiltonian (12-13) read

η̇ = k̂ψ − (∇(η∇ψ)) − k̂[ηk̂ψ] + k̂(ηk̂[ηk̂ψ])+

+1
2
∇2[η2k̂ψ] + 1

2
k̂[η2∇2ψ],

ψ̇ = σ∇2η − gη − 1
2

[

(∇ψ)2 − (k̂ψ)2
]

− [k̂ψ]k̂[ηk̂ψ] − [ηk̂ψ]∇2ψ.

(18)

These equations were considered for the first time in [26]. Equations (18) are

basic in our numerical simulations. To develop an analytical theory of stationary

wave instability, we use equation (15). It is interesting to note that even for

capillary waves in some cases, it is worthwhile to keep cubic terms in (18) as it

is shown in Appendix C.

Let us introduce the complex normal variables

ak =

√

ωk

2k
ηk + ı

√

k

2ωk

ψk. (19)

As far as η−k = η∗
k
, ψ−k = ψ∗

k
(because these are Fourier transforms of real

functions), we have

ηk =

√

2k

ωk

(ak + a∗−k), ψk = −ı
√

2ωk

k
(ak − a∗−k). (20)

In terms of ak, equations (15) turn into one equation

∂ak

∂t
= −ı δH

δa∗
k

. (21)

Now

H0 =

∫

ωk|ak|2d2k. (22)

Then

H1 = H
(0,3)

1
+ H

(1,2)

1
. (23)

Here

H
(0,3)

1
=

1

6

∫

V
(0,3)

kk1k2
(akak1

ak2
+ a∗ka∗k1

a∗k2
)δ(k + k1 + k2)dkdk1dk2 (24)

H
(1,2)

1
=

1

2

∫

V
(1,2)

kk1k2
(a∗kak1

ak2
+ aka∗k1

a∗k2
)δ(k − k1 − k2)dkdk1dk2. (25)
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In a similar way

H2 = H
(0,4)

2
+ H

(1,3)

2
+ H

(2,2)

2
. (26)

Only the last term in H2 is important for us

H
(2,2)

2
=

1

4

∫

V
(2,2)

kk1k2k3
akak1

a∗k2
a∗k3
δ(k + k1 − k2 − k3)dkdk1dk2dk3. (27)

Explicit expressions for V
(0,3)

kk1k2
, V

(1,2)

kk1k2
, and V

(2,2)

kk1k2k3
are presented in Appendix B.

Now everything depends on the shape of function ω(k). If resonant condi-

tions (5) have real solutions, one can neglect H2 and even H
(0,3)

3
. Now equa-

tions (21) takes a simple form

ȧk + ıωkak =

− ı
2

∫

{V (1,2)

kk1k2
ak1

ak2
δ(k − k1 − k2) + 2V

(1,2)

k1kk2
ak1

a∗k2
δ(k − k1 + k2)}dk1dk2.

(28)

Thereafter, we assume

V
(1,2)

0,k,−k
= 0. (29)

For surface waves, this condition is satisfied.

Equation (28) has a solution which can be treated as a stationary wave

ak =

∞
∑

n=1

[

ane−ınΩtδ(k − nk0) + bneınΩtδ(k + nk0)
]

. (30)

We put a1 = ε. Here k0 — an arbitrary wave vector. Coefficients an are presented

by power series

an = ε
n(a(0)

n + εa(1)
n + . . .),

while coefficients bn look as follows:

bn = ε
n+2(b(0)

n + εb(1)
n + . . .).

The frequency of the stationary wave is presented by a series in even powers of

ε

Ω = ω(k0) + ε2∆1 + ε
4∆2 + . . . (31)

Now, let us suppose ε→ 0. From (31), we see that the first nonlinear correction

to frequency is proportional to ε2. Now we will show that the solution (30) is
7



unstable, and the growth rate of instability is proportional to ε. It means that all

nonlinear corrections to an, bn, and ∆n can be neglected, and one should look for

a solution in the following form:

ak = εe−ıω(k0)tδ(k − k0) + α(t)e−ıω(κ1)tδ(k − κ1) + β(t)e−ıω(κ2)tδ(k − κ2), (32)

where κ1 + κ2 = k0. Then, we linearize the equation (28) and find that α and β

obey the system of ordinary differential equations

α̇ = ıe−ı∆εVβ∗, V = V
(1,2)

k0κ1κ2
,

β̇ = ıe−ı∆εVα∗, ∆ = ω(k0) − ω(κ1) − ω(κ2).
(33)

A general solution of equation (33) is

α = α0e(−ı∆/2±γ)t , β = β0e(−ı∆/2±γ)t . (34)

Here

γ =

√

ε2|V |2 −
1

4
∆2, (35)

and α0, β0 are connected by relation

(

−
ı∆

2
± γ

)

β0 = ıεVα∗0. (36)

Instability takes place if wave vectors κ1, κ2 are posed near the surface (or the

curve)

ω(k0) = ω(κ1) + ω(κ2),

k0 = κ1 + κ2.
(37)

The maximum of the growth rate γ = ε|V | is reached exactly on the resonant

surface, which is represented in Figure 1. The plot of growth rate (35) on a

homogeneous grid of wave numbers for 2π×2π periodic box is given in Figure 2.

3. Four-waves instability.

The theory developed in the previous chapter is applicable to the study of

capillary wave instability. In the case of gravity waves, resonant conditions (37)
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Figure 1: Resonant curve for decay of monochromatic capillary wave with k = (68, 0).
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Figure 2: Growth rate for decay instability of monochromatic capillary wave with k0 = (68, 0)

and average steepness µ = 0.05 on the homogeneous grid. Left panel: isometric projection; right

panel: contour of the surface at the level 10−23; dashed line – resonance curve.
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have no real solutions. It means that cubic terms in the Hamiltonian can be

excluded by a proper canonical transformation given by power series [27, 28]

ak = b
(0)

k
+ b

(1)

k
+ b

(2)

k
+ . . .

b
(0)

k
= ak.

(38)

Next terms b
(1)

k
, b

(2)

k
are presented in Appendix B.

After canonical transformation, the Hamiltonian is reduced to the form

H = H0 + H̃2, (39)

H̃2 =
1

4

∫

Tkk1k2k3
b∗kb∗k1

bk2
bk3
δ(k + k1 − k2 − k3)dkdk1dk2dk3. (40)

The explicit and complicated expression for Tkk1k2k3
is given in Appendix B.

Tkk1k2k3
is a homogeneous function of the third order.

Now, canonical variable bk obeys the so called “Zakharov’s equation” [13]

ḃk + ıωkbk = −
ı

2

∫

Tkk1k2k3
b∗k1

bk2
bk3
δ(k + k1 − k2 − k3)dk1dk2dk3. (41)

Equation (41) has the exact solution

bk = Aδ(k − k0)e−ıΩ0 t,

Ω0 = ω(k0) +
1

2
Tk0
|A|2, (42)

Tk0
= Tk0k0k0k0

=
1

2π
k3

0.

This solution is nothing but the stationary Stokes wave. It gives the right expres-

sion for the two first terms in series (1) and (2).

Equation (41) has also a reach set of approximate quasi-periodic solutions.

Let κ1 and κ2 are two arbitrary wave vectors. In the limit of small |A1|2, |A2|2
equation has the following solution:

bk = A1δ(k − κ1)e−ıΩ̃1t + A2δ(k − κ2)e−ıΩ̃2 t + . . . (43)

Ω̃1 = ω(κ1) +
1

2
Tκ1
|A1|2 + Tκ1,κ2

|A2|2,

Ω̃2 = ω(κ2) + Tκ1 ,κ2
|A1|2 +

1

2
Tκ1
|A2|2.

(44)

Here Tκ1,κ2
= Tκ1κ2,κ1κ2

. Equations (43), (44) are valid if nonlinear terms in (44)

are much less that linear.
10



In the particular case κ2 = −κ1, |A2| = |A1|, the solution (43) is just a standing

wave.

Both propagating wave (42) and standing wave (43) are unstable. To study

the instability of propagating wave (42), we will look for a solution in the fol-

lowing form

bk = A0δ(k − k0)e−ıΩ0t + αδ(k − k0 − κ)e−ıΩ1 t + βδ(k − k0 + κ)e
−ıΩ2 t. (45)

Here

Ω1 = ω(k0 + κ) + 2T (k0, k0 + κ)|A|2,
Ω2 = ω(k0 − κ) + 2T (k0, k0 − κ)|A|2.

(46)

By plugging (43) into (41) and linearizing over α and βwe set system of ordinary

differential equations, similar to (33)

α̇ = ı
2
e−ı∆|A0|2Tβ∗, T = Tk0,k0,k0+κ,k0−κ,

β̇ = ı
2
e−ı∆|A0|2Tα∗,

∆ = 2ω(k0) − ω(k0 − κ) − ω(k0 + κ) + 2(Tk0
− Tk0 ,κ1

− Tk0 ,κ2
)|A0|2.

(47)

Solutions of equation (47) are given by formulae (34) where

γ =

√

|A|4|T |2 −
1

4
∆2. (48)

One can see that instability occurs in a vicinity of the curve ∆ = 0. For waves on

a deep water, we can put k0 = i, κ = xi+ yj. Then the condition ∆ = 0 is reduced

to the famous Phillips curve [29]

[(1 + x)2 + y2]1/4 + [(1 − x)2 + y2]1/4 = 2. (49)

Here −5/4 ≤ x ≤ 5/4. The Phillips curve is plotted in Figure 3. The coupling

coefficient T (k0, x), evaluated on the Phillips curve, can be presented in the form

T (2k0, k0 + κ, k0 − κ) = k3
0 f (x), x =

κx

k0

,

f (−x) = f (x) symmetric function. It is important to mention that f (5/4) = 0.

This fact was first discovered by Dyachenko and Zakharov in 1994 [30]. The

decrease of f (x) with growth of x means that the four-wave instability is mostly

modulational because the most unstable modes are concentrated at κ → 0. In

this region

γ ≃ 1

2

√

−2T |A|2 ∂2ω

∂kα∂kβ
κακβ −

(

∂2ω

∂kα∂kβ
κακβ

)2

. (50)
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Figure 3: Phillips curve for k0 = (30, 0).

Instability is concentrated inside the angle where

∂2ω

∂kα∂kβ
κακβ < 0.

The plot of growth rate (48) on a homogeneous grid of wave numbers for 2π ×
2π periodic box is given in Figure 4. The four-wave instability of propagating
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Figure 4: Growth rate for Phillips instability of monochromatic gravity wave with k0 = (30, 0)

and average steepness µ = 0.1 on the homogeneous grid. Left panel: isometric projection; right

panel: contour of the surface at the level 10−23; dashed line – resonance curve.

Stokes waves was studied in detail in many papers (e. g. [9, 10, 11, 12, 13, 14,

31]).

Let us study instability of by-harmonic wave (45). We concentrate only on

the case of standing wave κ2 = −κ1 = k0. The standing wave is unstable due to

a different mechanism. Firstly, each propagating wave composing the standing

wave endure its own modulational instability. Then, another instability appears.

In this new type of instability, we have the simultaneous excitation of two waves

with wave numbers ±κ such that |κ| = |k0|. The maximal growth-rate of this

12



instability is:

γmax ≃
1

2
T̃ |A|2.

Here

T̃ = Tk0,−k0,κ,−κ = k3
0 f (cos θ), (51)

and θ is an angle between k0 and κ.

4. Numerical Simulation Scheme.

The problem of numerical integration of system of equations (18) is rather

complicated. One of the most important questions is what time integration algo-

rithm to choose. According to the property of the equations, it would be natural

to develop a numerical integration scheme conserving the Hamiltonian. Let us

follow the article [32]. One can introduce a discrete variation of Hamiltonian

(16) in one step on time Hn −→ Hn+1

∆H = Hn+1 − Hn. (52)

The Hamiltonian is a function of canonical variables η and ψ. The discrete vari-

ations of these functions on a time step are equal to

∆η = ηn+1 − ηn, ∆ψ = ψn+1 − ψn. (53)

One can expand discrete variation∆H via∆η and∆ψ (that is done in Appendix A)

∆H = Hψ∆ψ + Hη∆η. (54)

It is easy to see that Hη and Hψ are discrete analogues to the continuous variations
δH
δη

and δH
δψ

.

One can demand the conservation of Hamiltonian ∆H/τ = 0 during time step

τ. Obviously, this equality can take place if the following conditions are valid:

∆η

τ
= Hψ,

∆ψ

τ
= −Hη.

(55)

In some sense, this is a discrete analogue of Hamiltonian equations (15). Thus,

if Hamiltonian variation (52) is expanded via variations ∆η and ∆ψ, it is possible

to get equations (55).
13



As it was mentioned above, it is more convenient to rewrite the equations in

terms of Fourier harmonics. Using the results given in Appendix A (A.2-A.7),

one can obtain an implicit difference scheme

ηn+1
k
− ηn

k

τ
= 1

2
|k|

(

ψn+1
k
+ ψn

k

)

−
−1

4
F̂

(

∇, (ηn+1 + ηn)∇(ψn+1 + ψn)
)

−
−1

4
|k|F̂

(

(ηn+1 + ηn)k̂(ψn+1 + ψn)
)

+

+1
4
|k|F̂

[(

ηn+1 + ηn
)

k̂
(

ηn+1k̂ψn+1 + ηnk̂ψn
)]

−
−1

8
|k|2F̂

[

((ηn+1)2 + (ηn)2)k̂(ψn+1 + ψn)
]

+

+1
8
|k|F̂

[

((ηn+1)2 + (ηn)2)∇2(ψn+1 + ψn)
]

.

(56)

ψn+1
k
− ψn

k

τ
= −1

2

ω2
k

|k|

(

ηn+1
k
+ ηn

k

)

−

−1
4
F̂

(

∣

∣

∣∇ψn+1
∣

∣

∣

2
+ |∇ψn|2

)

+

+1
4
F̂

(

(k̂ψn+1)2 + (k̂ψn)2
)

−
−1

4
F̂

[

k̂
(

ψn+1 + ψn
)

k̂
(

ηn+1k̂ψn+1 + ηnk̂ψn
)]

−
−1

4
F̂

[

(ηn+1 + ηn)(∇2ψn+1k̂ψn+1 + ∇2ψnk̂ψn)
]

.

(57)

Here, F̂ is the Fourier transform operator.

It is useful to resolve the linear part of scheme (56-57) with respect to ηn+1

and ψn+1. Let us denote nonlinear terms on the right hand sides of these equations

as:

Rn+1
η = −1

4
F̂

(

∇, (ηn+1 + ηn)∇(ψn+1 + ψn)
)

−
−1

4
|k|F̂

(

(ηn+1 + ηn)k̂(ψn+1 + ψn)
)

+

+1
4
|k|F̂

[(

ηn+1 + ηn
)

k̂
(

ηn+1k̂ψn+1 + ηnk̂ψn
)]

−
−1

8
|k|2F̂

[

((ηn+1)2 + (ηn)2)k̂(ψn+1 + ψn)
]

+

+1
8
|k|F̂

[

((ηn+1)2 + (ηn)2)∇2(ψn+1 + ψn)
]

,

Rn+1
ψ = −1

4
F̂

(

∣

∣

∣∇ψn+1
∣

∣

∣

2
+ |∇ψn|2

)

+

+1
4
F̂

(

(k̂ψn+1)2 + (k̂ψn)2
)

−
−1

4
F̂

[

k̂
(

ψn+1 + ψn
)

k̂
(

ηn+1k̂ψn+1 + ηnk̂ψn
)]

−
−1

4
F̂

[

(ηn+1 + ηn)(∇2ψn+1k̂ψn+1 + ∇2ψnk̂ψn)
]

.

(58)

Using these notations, discrete scheme can be written as follows

ηn+1
k = A(k, τ)ηn

k
+ B(k, τ)ψn

k
+C(k, τ)Rn+1

η + D(k, τ)Rn+1
ψ ,

ψn+1
k = E(k, τ)ηn

k
+ A(k, τ)ψn

k
+ F(k, τ)Rn+1

η + C(k, τ)Rn+1
ψ .

(59)
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Here

A(k, τ) =
1 − 1

4
ω2

k
τ2

1 + 1
4
ω2

k
τ2
, B(k, τ) =

τk

1 + 1
4
ω2

k
τ2
,

C(k, τ) =
τ

1 + 1
4
ω2

k
τ2
, D(k, τ) =

1

2
τB(k, τ),

E(k, τ) = −
ω2

k

k
C(k, τ), F(k, τ) =

1

2
τE(k, τ).

(60)

Thus, we get implicit (terms Rn+1
η and Rn+1

ψ contain ηn+1
k

and ψn+1
k

) difference

scheme. The important feature of this scheme is that conservation of Hamilto-

nian (12)-(13) is embedded in it.

The implicit numerical scheme (59) can be solved by the method of Fixed-

Point Iterations [33]. Let us write this procedure for ηn+1,s

k
and ψn+1,s

k
, here s is an

iteration number. Corresponding to (59) one can get

ηn+1,0

k
= ηn

k
, ψn+1,0

k
= ψn

k
;

ηn+1,s+1

k
= A(k, τ)ηn

k
+ B(k, τ)ψn

k
+ C(k, τ)Rn+1,s

η + D(k, τ)Rn+1,s
ψ ,

ψ
n+1,s+1

k
= E(k, τ)ηn

k
+ A(k, τ)ψn

k
+ F(k, τ)Rn+1,s

η + C(k, τ)Rn+1,s
ψ .

(61)

Iterations continue until the desired accuracy of Hamiltonian conservation ǫ is

achieved. Convergence is ensured by the choice of time step τ to be small

enough. The sufficient condition for the convergence of iterations is the fol-

lowing:

τ2 <
1

max[(∇ψ)2 + (k̂ψ)2]k2 − 1/4 min(ω2
k
)
. (62)

Taking into account that the first factor in the first term in the denominator of (62)

is of the order of maximum velocity on the surface, this condition is similar to

τ < ∆x/vmax. We resolved the linear part of the equation which is why frequency

doesn’t come into play.

In most cases, it is enough to follow the convergence of the relative error

∑

k

∣

∣

∣η
n+1,s+1

k

∣

∣

∣

2 −
∑

k

∣

∣

∣η
n+1,s

k

∣

∣

∣

2

∑

k

∣

∣

∣η
n+1,s

k

∣

∣

∣

2
< ǫ. (63)

When studying gravity waves, this condition is equivalent to the calculation of

potential energy with desired accuracy. For the weakly nonlinear regime, the
15



quadratic part of Hamiltonian is dominant, so the physical meaning of this con-

dition is quite clear.

The condition on time step (62) is not very practical to use. It is much easier

to control step on time, demanding convergence of the iteration process to the

desired accuracy after a number of iterations less than some given Nmax and more

than some given Nmin.

This numerical scheme can be used for the simulation of freely decaying

waves. For the simulation of turbulence, we should introduce pumping and

damping terms in the equations. It is possible to do that through different ways,

but we have applied the Split-Step Method, which is very popular in the nu-

merical simulation of pulse propagation in optic fibers. Here is a very brief

description of application of this method to our problem.

Let us introduce a linear damping with rate γk into our model

ψ̇k = R.H.S . − γkψk. (64)

It is possible to take into account this damping without significant changes in the

calculations scheme. First, one can obtain a solution of equations (18) without

damping using iteration scheme described above. Let us denote this solution by

ψ̃n+1
k

. Second, the solution of the whole system of equations can be calculated by

the next step

ψn+1
k = ψ̃n+1

k exp(−γkτ). (65)

It is worthwhile to say that for weak turbulence simulation the most interesting

part of the spectrum is in the “inertial interval” where there is no damping or

pumping at all. Even more, the nature of damping and pumping is not important.

In this case, influence of non-conservative terms can be described by such a

rough scheme. As a bonus, we have eliminated the restrictions on time step

max(|γk|)τ < 1, (66)

which would be unavoidable in the case of integration by standard Runge-Kutta

methods. Pumping can be considered in a similar way.

5. Capillary waves

In this section, we briefly review our previous results published in [18] and

report new observations. The system of equations (18) was simulated in the

domain Lx = Ly = 2π, with surface tension coefficient σ = 1. The number
16



of grid points was 512 × 512. A monochromatic wave of amplitude |ak0
| =

2 × 10−3, which corresponds to average steepness µ = 0.05, was taken as the

initial condition. Its wave number vector k0 = (68, 0). All other harmonics were

of amplitude |ak| ∼ 10−12 and with random phase (Figure 5). As was mentioned
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Figure 5: Decay of the monochromatic capillary wave. Initial conditions. Time t = 0.

above, resonant curve almost never passes through grid points (there are two non

trivial points k = (0; 0) and initial wave k = (k0, 0); this process has a zero

growth rate). A detailed picture of the resonant curve on the grid in the region

with the highest grid point density in the vicinity of the curve is shown in Figure

6. One can see that some points are closer to the resonant curve than others.

 26  28  30  32  34  36  38  40
kx

 25

 25.5

 26

 26.5

 27

k y

Figure 6: Part of the resonant curve for the decay of the monochromatic capillary wave with

k0 = (68, 0). The different mismatches for different grid knots are clearly seen.

In the beginning one can see the growth of several harmonics as it is pre-

dicted in (34) and (35). Different stages of the decay process are represented in

Figures 7-10 and time is given in periods of initial wave T0. We represent the

isometric projection of the |ak|2-surface and contour of this surface at the level

10−23 (order of magnitude higher than background noise). The full picture of

the k-plane in the final moment of simulations is represented in Figure 11. A
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Figure 7: Decay of the monochromatic capillary wave. Growth of the harmonics in the vicinity

of the resonant curve has begun. Time t = 318T0.
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Figure 8: Decay of the monochromatic capillary wave. Decay harmonics are well developed.

Time t = 794T0.

-10  0  10  20  30  40  50  60  70  80
kx -30

-20
-10

 0
 10

 20
 30

ky

10-30
10-25
10-20
10-15
10-10
10-5

|ak|
2

-30

-20

-10

 0

 10

 20

 30

-10  0  10  20  30  40  50  60  70  80

k y

kx

Figure 9: Decay of the monochromatic capillary wave. Secondary nonlinear processes are re-

vealed. Time t = 1112T0.
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Figure 10: Decay of the monochromatic capillary wave. Secondary nonlinear processes are well

developed. Time t = 1589T0.
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Figure 11: Decay of the monochromatic capillary wave. Full k-plane. Time t = 144488T0.
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closer snapshot of the most interesting region of Figure 11 (initial decay region)

is represented in Figure 12. One can see that, although the amplitudes of the
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Figure 12: Decay of the monochromatic capillary wave. A closer snapshot of the initial decay

region. Time t = 144488T0.

waves are stochastic, the spectrum is still strongly anisotropic.
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6. Gravity waves.

In the case of gravity waves on the surface of deep fluid, the dispersion is the

following

ωk =
√

gk, (67)

here g is a gravity acceleration. Here and further, let us suppose g = 1.

In this case, dispersion is of non-decay type conditions (37) have no real

nontrivial solutions, and the main process is four-wave scattering. Therefore,

one can make a substitution to eliminate third order terms corresponding to the

decay process. This is the reason why we have to use Hamiltonian expansion up

to forth order in the case of gravity waves.

Let us consider the same initial conditions as in the case of the decay of

the monochromatic capillary wave (i.e. one monochromatic wave and random

phase noise of small amplitude). The main processes correspond to the cases

when a large amplitude of initial wave involved the highest possible number of

times. In this case, one wave to three and inverse processes are much weaker

than scattering of two waves with the same amplitude and the same wave vector

to two other waves.

Resonance conditions for such process are as follows:

ωk1
+ ωk2

= 2ωk0
, k1 + k2 = 2k0. (68)

The resonant curve for this conditions is shown in Figure 3.

The system of equations (18) was simulated in domain Lx = Ly = 2π with

gravity acceleration g = 1. Grid size was equal to 512 × 512 points. As an

initial condition, monochromatic wave of amplitude |ak0
| = 1.3×10−3 with wave

number vector k0 = (30, 0) was used. All other harmonics were of amplitude

|ak| ∼ 10−12 and with random phase (Figure 13). In the beginning, one can
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Figure 13: Instability of the monochromatic gravity wave. Initial condition. Time t = 0.
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observe exponential growth of several harmonics in the vicinity of the resonant

curve (a detailed picture of resonant curve in the surroundings of the initial wave

is shown in Figure 14). This is shown in Figure 15. It is clearly seen that the wave

with wavevector (33, 2) has smallest mismatch and, as a result, growth occurs.

As we already know, four-wave scattering growth-rate has the highest values in
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Figure 14: Gravity waves. Part of the resonant curve. Different mismatch for different grid points

is clearly visible.
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Figure 15: Gravity waves. Growth of harmonics amplitude as a function of time. One can see

that harmonic k = (33, 2) is in almost exact resonance, and the others are not.
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the vicinity of k0 = (k0, 0). Due to this, the initial growth is concentrated about

the cross of the resonant manifold. Different stages are represented in Figures 16-

21. We represent the isometric projection of the |ak|2-surface and contour of this

surface at the level 10−23 (order of magnitude higher than background noise).
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Figure 16: Instability of the monochromatic gravity wave. Growth of the harmonics in the

vicinity of the resonant curve has began. Time t = 43T0.
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Figure 17: Instability of the monochromatic gravity wave. Growth of the harmonics in the

vicinity of the resonant curve continues. Time t = 87T0.
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Figure 18: Instability of the monochromatic gravity wave. Harmonics on the resonant curve are

well developed. Time t = 174T0.

The full picture of the k-plane in the final moment of simulations is represented

in Figure 22. A closer snapshot of the most interesting region of Figure 22 (initial

instability region) is represented in Figure 23. One can observe a still weak but

visible downshift of the spectrum.

23



-10  0  10  20  30  40  50  60  70
kx -20

-15
-10

-5
 0

 5
 10

 15
 20

ky

10-30
10-25
10-20
10-15
10-10
10-5

|ak|
2

-15

-10

-5

 0

 5

 10

 15

-10  0  10  20  30  40  50  60  70

k y

kx

Figure 19: Instability of the monochromatic gravity wave. Beginning of the secondary processes.

Time t = 261T0.
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Figure 20: Instability of the monochromatic gravity wave. Secondary processes are well devel-

oped. Time t = 348T0.
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Figure 21: Instability of the monochromatic gravity wave. Secondary processes hide the structure

of the resonances. Time t = 435T0.
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Figure 22: Instability of the monochromatic gravity wave. Full k-plane. Time t = 1204T0.
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Figure 23: Decay of the monochromatic capillary wave. A closer snapshot of the initial instabil-

ity region. Time t = 1204T0.
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7. Instability of the standing wave.

Maybe the most practically important case of surface wave instability is the

case of instability of the standing wave when we have interaction of two waves

ak0
and a−k0

. In this case, the resonant curve is a circle with the center at zero

k = 0 and of radius |k0|. It is clear that such a process is general for any isotropic

dispersion. The theory for similar (although in some remote way) instability in

plasma was developed in [34].

7.1. Standing capillary wave.

Simulation results for the standing capillary (µ = 0.1) wave are represented

in Figures 25-29. Contour plots correspond to the level |ak|2 = 10−23, which is an

order of magnitude higher than the background noise. The full picture of the
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Figure 24: Instability of the standing capillary wave. Initial conditions. Time t = 0.
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Figure 25: Instability of the standing capillary wave. Beginning of growth on the resonant curves.

Some nonresonant absorption is noticeable. Time t = 14T0.

k-plane in the final moment of simulations is represented in Figure 30. A closer
26
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Figure 26: Instability of the standing capillary wave. Growth on the resonant curves continues.

Time t = 57T0.
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Figure 27: Instability of the standing capillary wave. Unstable harmonics are well developed.

Time t = 283T0.
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Figure 28: Instability of the standing capillary wave. One can notice the formation of the forced

harmonics as copies of the initial circle shifted by ±k0 vectors. Time t = 509T0.
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Figure 29: Instability of the standing capillary wave. Isotropization started. The plane is filled

by secondary decay processes. Time t = 1018T0.
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Figure 30: Instability of the standing capillary wave. Full k-plane. Time t = 2587T0.
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snapshot of the most interesting region of Figure 30 (initial instability region)

is represented in Figure 31. We observe isotropization of the wave field, but in
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Figure 31: Instability of the standing capillary wave. A closer snapshot of the initial instability

region. The inner circle corresponds to instability of the standing waves produced in the points

of the maximum of the growth rate for decay of every individual initial wave. Compare position

with the most developed harmonics inside the main circle in Figure 27. Time t = 2587T0.

order to obtain a smooth spectrum we need to wait much longer.
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7.2. Standing gravity wave.

Simulation results for the standing gravity wave of steepness µ = 0.1 are rep-

resented in Figures 33-37. Contour plots correspond to the level |ak|2 = 10−23,

which is an order of magnitude higher than the background noise. The
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Figure 32: Instability of the standing gravity wave. Initial conditions. Time t = 0.
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Figure 33: Instability of the standing gravity wave. Unstable harmonics on the resonant curves

begin to grow. Time t = 116T0.

full picture of the k-plane in the final moment of simulations is represented in

Figure 38. A closer look at the most interesting region of Figure 38 (initial insta-

bility region) is represented in Figure 39. Finally, we observe almost complete

isotropization of the wave field, although we started from just two waves. Weak

angle dependence resembles the cos(θ) of coupling coefficient (51). The ob-

served process can be used for the generation of an isotropic wave field through

initial generation of the standing wave, which in turn through the discussed in-

stability will generate an isotropic spectrum. This is quite a nontrivial problem

for direct wave generation.
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Figure 34: Instability of the standing gravity wave. Unstable harmonics are well developed.

Time t = 232T0.
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Figure 35: Instability of the standing gravity wave. Formation of forced harmonics correspond-

ing to initial circle shifter with ±k0 vectors. Time t = 348T0.
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Figure 36: Instability of the standing gravity wave. Secondary processes reveal themselves. Time

t = 463T0.
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Figure 37: Instability of the standing gravity wave. Stochastization of the wave field begins.

Time t = 580T0.
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Figure 38: Instability of the standing gravity wave. Full k-plane. Time t = 3068T0.
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Figure 39: Instability of the standing gravity wave. A closer look at the initial instability region.

Time t = 3068T0.

In our simulation, we observed start of formation of the weakly turbulent

spectrum tail (see Figure 40) and formation of Kolmogorov-Zakharov weak tur-

bulent spectrum of direct cascade [31].

In conclusion, we have to note that although the wave amplitudes should be

high enough to make grid discreteness unimportant, at the same time they must

be low enough to satisfy weak nonlinearity conditions.
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Figure 40: Instability of the standing gravity wave. Beginning of the formation of the weakly

turbulent spectrum tail. Solid line: angle averaged spectrum from simulation results; dashed line:

theoretically predicted KZ-spectrum [31]; dotted line: the best fit with power-like function. Time

t = 3068T0.
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8. Conclusion.

We gave a complete theoretical description of the three- and four-wave in-

stabilities due to the resonant interactions of waves. In order to simulate wave

turbulence, these mechanisms have to work, even on homogeneous grid where

the exact resonance conditions are never fulfilled. We demonstrated the possibil-

ity to achieve resonant interactions on homogeneous grid in numerical simula-

tions. Simulation results are in good agreement with the theoretical predictions.

Stochastization of the capillary wave field was recently observed in the labora-

tory experiment [35]. It is interesting to note, that formation of the spectrum

tail corresponding to the flux of energy was obtained only over some threshold

value of pumping force. This is in good agreement with our estimations: only

after waves reach some critical amplitude, discreteness of the wavenumber grid

become negligible. Numerical observation and some theoretical estimations for

similar behavior of gravity waves are given in [21].

Also, we described in details the algorithm for the simulation of weakly non-

linear gravity-capillary surface waves. The numerical scheme, which was used

in the code, conserves Hamiltonian of the system. Features of the algorithm

are used to conveniently control the adaptive time step. The described pseudo-

spectral method allowed us to simulate wave turbulence in numerous cases.

We discussed and simulated the instability of standing wave for both capillary

and gravity waves. Numerical simulations show that the instability of propagat-

ing waves leads to the formation of anisotropic, weakly-turbulent spectra while

the instability of standing waves leads to the generation of almost isotropic spec-

tra, demonstrating the tendency to formation of Kolmogorov-Zakharov tails. We

conclude that the numerical simulation of wave instability is a perfect tool for

the study of Wave Turbulence Theory. For experimental wave tanks, this insta-

bility provides a very simple and robust approach, which allows the production

of isotropic wave fields through excitation of just one standing wave.

Current experimental science in the field of surface waves is on the rise. Re-

cent advances allow to perform such state of the art experiments, like formation

of the “tractor beam” using the propagating surface waves [36]. For observation

of the standing wave circular instability the ability to reconstruct wavenumbers

spectrum is crucial. Currently authors interact with one of the group of exper-

imentalists in order to perform an experiment. An idea is very simple: using

parametric excitation generate a standing wave in the rectangular cell and then

follow the change of the wavenumbers spectrum. What is interesting, parametric

excitation of waves is a standard technique in surface waves laboratory experi-

ments (e.g. see [35]), so essentially even processing of the already existing data

35



would be sufficient. The preliminary results are very promising. A complete

report will be published separately.

This paper as a whole can be used as a comprehensive guide for theoretical

and computational approaches to simulation of weakly nonlinear waves on the

surface of fluids.
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Appendix A. Discrete Hamiltonian variation.

Let us derive a variation of Hamiltonian (Hn+1 − Hn). The k̂ operator is self-

adjoined

∫

gk̂ f d2r =

∫

f k̂g d2r. (A.1)

Let us perform a variation in detail for the quadratic part of the Hamiltonian

(12) in the case of surface gravity waves.

H0 =
1

2

∫

(ψk̂ψ + gη2)d2r
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∆H0 = Hn+1
0 − Hn

0 =

=
1

2

∫

(ψn+1k̂ψn+1 − ψnk̂ψn)d2r +
g

2

∫

(ηn+12 − ηn2)d2r =

=
1

2

∫

(ψn+1k̂ψn+1 − ψnk̂ψn+1 + ψnk̂ψn+1 − ψnk̂ψn)d2r+

g

2

∫

(ηn+1 − ηn)(ηn+1 + ηn)d2r =
1

2

∫

[

(ψn+1 − ψn)k̂ψn+1 +

+ ψnk̂(ψn+1 − ψn)
]

d2r +
g

2

∫

(ηn+1 − ηn)(ηn+1 + ηn)d2r =

=
1

2

∫

(ψn+1 − ψn)k̂(ψn+1 + ψn)d2r +
g

2

∫

(ηn+1 − ηn)(ηn+1 + ηn)d2r =

=
1

2

∫

∆ψk̂(ψn+1 + ψn)d2r +
g

2

∫

∆η(ηn+1 + ηn)d2r =

Here and further ∆ψ = (ψn+1 − ψn) and ∆η = (ηn+1 − ηn).

Similar calculations give us all other variations.

For short, let us omit integral signs in varied expressions.

Quadratic terms

∆

(

1

2

∫

ψk̂ψd2r

)

−→ 1
2
∆ψk̂

(

ψn+1 + ψn
)

; (A.2)

∆

(

1

2

∫

ω2
k

|k|
|ηk|2 dk

)

−→ 1
2
∆ηk

ω2
k

|k|

(

ηn+1
k
+ ηn

k

)

. (A.3)

Cubic terms

∆

(

1

2

∫

η |∇ψ|2 d2r

)

−→ −1
4
∆ψ

(

∇, (ηn+1 + ηn)∇(ψn+1 + ψn)
)

+

+1
4
∆η

(

∣

∣

∣∇ψn+1
∣

∣

∣

2
+ |∇ψn|2

)

;

(A.4)

∆

(

1

2

∫

η
(

k̂ψ
)2

d2r

)

−→ −1
4
∆ψk̂

(

ηn+1 + ηn)k̂(ψn+1 + ψn)
)

−

−1
4
∆η

(

(k̂ψn+1)2 + (k̂ψn)2
)

.

(A.5)

Quartic terms

∆

(

1

2

∫

(

ηk̂ψ
)

k̂
(

ηk̂ψ
)

d2r

)

−→ 1
4
∆ψk̂

[(

ηn+1 + ηn
)

×

× k̂
(

ηn+1k̂ψn+1 + ηnk̂ψn
)]

+

+1
4
∆ηk̂

[(

ψn+1 + ψn
)

×
× k̂

(

ηn+1k̂ψn+1 + ηnk̂ψn
)]

;

(A.6)
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∆

(

1

2

∫

(∇2ψ)(k̂ψ)η2d2r

)

−→ 1
8
∆ψ∇2

[

((ηn+1)2 + (ηn)2) ×

× k̂(ψn+1 + ψn)
]

+

+1
8
∆ψk̂

[

((ηn+1)2 + (ηn)2) ×
× ∇2(ψn+1 + ψn)

]

+

+1
4
∆η(ηn+1 + ηn)×

×(∇2ψn+1k̂ψn+1 + ∇2ψnk̂ψn).

(A.7)

Appendix B. Matrix elements

We repeat formulae from [28].

V (1,2)(k, k1, k2) =
1

4π
√

2















(

AkBk1
Bk2

BkAk1
Ak2

)1/4

L(1)(k1, k2)

−
(

BkAk1
Bk2

AkAk1
Ak2

)1/4

L(1)(−k, k1) −
(

BkBk1
Ak2

AkAk1
Bk2

)1/4

L(1)(−k), k2)















, (B.1)

V (0,3)(k, k1, k2) =
1

4π
√

2















(

AkBk1
Bk2

BkAk1
Ak2

)1/4

L(1)(k1, k2)

+

(

BkAk1
Bk2

AkBk1
Ak2

)1/4

L(1)(k, k1) +

(

BkBk1
Ak2

AkAk1
Bk2

)1/4

L(1)(k), k2)















. (B.2)

Ak = |k|, bk = g + σk2. (B.3)

V
(2,2)

k,k1,k2,k
= 3. (B.4)
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a
(0)

k
= bk, (B.5)

a
(1)

k
=

∫

Γ(1)(k, k1, k2)bk1
bk2
δ(k − k1 − k2)dk1dk2

− 2

∫

Γ(1)(k2, k, k1)b∗k1
bk2
δ(k + k2 − k2)dk1dk2

+

∫

Γ(2)(k, k1, k2)b∗k1
b∗k2
δ(k + k1 + k2)dk1dk2, (B.6)

a
(2)

k
=

∫

B(k, k1, k2, k3)b∗k1
bk2

bk3
δ(k − k1 − k2 − k3)dk1dk2dk3 + · · · ,

(B.7)

Γ(1)(k, k1, k2) = −1

2

V (1,2)(k,k1,k2)

ωk − ωk1
− ωk2

, (B.8)

Γ(2)(k, k1, k2) = −
1

2

V (0,3)(k,k1,k2)

ωk − ωk1
− ωk2

, (B.9)

B(k, k1, k2, k3) = Γ(1)(k1, k2, k1 − k2)Γ(1)(k3, k, k3 − k)

+ Γ(1)(k1, k3, k − k3)Γ(1)(k2, k, k2 − k)

− Γ(1)(k, k2, k − k2)Γ(1)(k3, k1, k3 − k1)

− Γ(1)(k1, k3, k1 − k3)Γ(1)(k2, k1, k2 − k1)

− Γ(1)(k + k1, k, k1)Γ(1)(k2 + k3, k, k1)

+ Γ(2)(−k − k1, k, k1)Γ(2)(−k2 − k3, k2, k3). (B.10)
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T1234 =
1

2
(T̃1234 + T̃2134), (B.11)

T̃1234 = −
1

16π2

1

(k1k2k3k4)1/4

×
{

−12k1k2k3k4 − 2(ω1 + ω2)2[ω3ω4((k1 · k2) − k1k2)

+ ω1ω2((k3 · k4) − k3k4)]
1

g2

− 2(ω1 − ω3)2[ω2ω4((k1 · k3) + k1k3) + ω1ω3((k2 · k4) + k2k4)]
1

g2

− 2(ω1 − ω4)2[ω2ω3((k1 · k4) + k1k4) + ω1ω4((k2 · k3) + k2k3)]
1

g2

+ [(k1 · k2) + k1k2][(k3 · k4) + k3k4]

+ [−(k1 · k3) + k1k3][−(k2 · k4) + k2k4] (B.12)

+ [−(k1 · k4) + k1k4][−(k2 · k3) + k2k3]

+ 4(ω1 + ω2)2 [(k1 · k2) − k1k2][−(k3 · k4) − k3k4]

ω1+2 − (ω1 + ω2)2

+ 4(ω1 − ω3)2 [(k1 · k3) + k1k3][(k2 · k4) + k2k4]

ω1−3 − (ω1 − ω3)2

+4(ω1 − ω4)2 [(k1 · k4) + k1k4][(k2 · k3) + k2k3]

ω1−4 − (ω1 − ω4)2

}

.

Appendix C. On the stability of the weakly nonlinear free surface hydro-

dynamic model

In detail, this question was considered in [39], but here we shall follow the

original consideration which was done by A. I. Dyachenko in 1995 (result was

mentioned in [40]) with some changes for 3D hydrodynamics.

Let us consider a large scale solution (η0, ψ0) of (18) with small scale pertur-

bations (δη, δψ)

η = η0 + δη, ψ = ψ0 + δψ. (C.1)

After the substitution of (C.1) into (18) we perform linearization with respect to

small amplitude perturbations. In order to do this, we take into account difference

of scales, which results in “frozen coefficients” (terms with η0 and ψ0 can be

factored out from the expressions with operator k̂ and derivatives). Also, we

keep only first nonlinear terms in (18), which originate from cubic or three-wave
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terms in Hamiltonian (16). All these steps yield the following dispersion relation

for perturbations:

(ωk − v0k)2 = ω2
0k − (k̂ψ0)2k2, (C.2)

here we introduced v0 = ∇ψ0, which is similar to the velocity on the surface of

the fluid and ω2
0k
= σk3 + gk which is the squared linear dispersion relation for

gravity-capillary waves on the surface of fluids with infinite depth. Correction

v0k on the left hand side is nothing else but Doppler frequency shift. As one

can see, for small enough scales (large enough k-s), the second term on the right

hand side of (C.2) will prevail resulting in a non-zero imaginary part for ωk. This

means that we have small scale (or high frequency) instability.

If we consider the cubic terms in (18), which originate from quartic or four-

wave terms in Hamiltonian (16), the equation for perturbations (keeping only the

first nonlinear terms) yields:

(ωk − v0k)2 = ω2
0k + (k̂ψ0)(∇2ψ0)k. (C.3)

As one can see, the dispersion relation (C.3) has no instability, at least in the

first order of nonlinearity. It means that even in the case of capillary waves,

where three-wave interactions are the major process, the presence of terms cor-

responding to four-wave processes stabilizes the equation. If we consider the full

expression for dispersion relation resulting from (18) with cubic terms:

(ωk − v0k)2 =ω2
0k + (k̂ψ0)(∇2ψ0)k + 2(k̂ψ0)(k̂[η0k̂ψ0] + η0∇2ψ0)k2 (C.4)

−
{

(k̂[η0k̂ψ0])2 + 2k̂[η0k̂ψ0](η0∇2ψ0) + (η0∇2ψ0)2
}

k2,

one can see, that instability reappears only with fourth-order nonlinearity terms,

which means that it can influence only computations with relatively high steep-

ness or with very high values of k. This instability can be eliminated by proper

canonical change of variables, as shown in [39].
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