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NUMERICAL SIMULATION OF THE COUNTERCURRENT 

FLOW IN A GS.S CENTRIFUGE 

by 

L. D. Cloutman and R. A. Gentry 

ABSTRACT 

Me present a finite difference method for the numerical simulation 
of the axisymmetric countercurrent flow in a gas centrifuge. A time-
marching technique is used to relax an arbitrary initial condition to 
the desired steady-state solution. All boundary layers can be re¬ 
solved, and nonlinear effects may be included. Numerical examples are 
presented. We conclude that this technique is capable of predicting 
accurately the performance of a wide variety of machines under all 
operating conditions of interest. 

I. INTRODUCTION 

Our approach to solving the countercurrent problem is a partially implicit, 

finite difference, time-marching method applied to the linearized Navier-Stokes 

equations. In some applications nonlinearities are important, and some have been 

restored to the equations. Mass feed and scoop effects have been modeled by 

source terms as described by Wood and Sanders, but these will not be discussed 

in detail in this report. We obtain a solution by specifying an arbitrary ini¬ 

tial condition, then marching through time until a steady state is reached. Sep-
2 

arative work is then calculated by a method described by Park, which will not be 

discussed in this report. 

Section II presents the governing equations. The numerical algorithm is 

presented in Sec. Ill, and two numerical examples are discussed in Sec. IV. 

II. GOVERNING EQUATIONS 

Assume that the countercurrent in a gas centrifuge is adequately described 

by the equations of continuum fluid dynamics. The full nonlinear equations in 

cylindrical coordinates are 
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where p, u, v, w, I , and p are, respectively, the gas density, the radial, tan¬ 
gential, and axial velocity components, the specific internal energy and the 
pressure. We have assumed axial symmetry although all three velocity cfcrniponents 
are retained. The f i r s t and second viscosity coefficients and the thermal con¬ 
ductivi ty, M, X, and T, respectively, are assumed to be constant. The ideal gas 
equation of state, 
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p = (Y-DPI , (6) 

is used in our calculations. 

We linearize the flow equations by separating the solution into a zeroth 

order part and a perturbation term, and then keep only those terms linear in the 

perturbation quantities. For the zeroth order solution, denoted by the subscript 

o, we assume rigid body rotation and hydrostatic equilibrium in an isothermal 

fluid. Then 

9Pr 
= p/r , (7) 

3r "o 

where a) is the angular velocity of the centrifuge. This can be integrated to 

give 

=- P w a l l n , (8) 

where 

2 2 
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Here, Y is the ratio of specific heats and a is the centrifuge rotor radius. 

From the equation of state and the isothermal ass-umption, 

po = pwall n • 

The complete solution may be written 

u « uQ + u
1 = (0, urt 0) + (u1, v1, w1) , (11) 



p = 

(12) 

(13) 

and 

P = Po + P1 
p w a l l n + p ' 

(14) 

where primes denote perturbations from the zeroth order solution. We linearize 

Eqs. ( l )-(5) by substituting in Eqs. (11)-(14) and dropping all terms that are 

quadratic in primed quantities. (Details are given by Cloutman. ) The resulting 

linear equations are 
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We transform our equations to diinensioniess form using the following defini¬ 

tions: 

(u1, v1, w1) = u>a(6u, 6v, Sw), 

(r, z) = a(r', z1) , 

T' - TQ 69 , 

P1 = Po 

ait = t 1 

B = 1 + X/u 

and 

Re = P 
wall 

The resulting equations are 
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and 

where the Prandtl number Pr is defined as Pr = c V/T. 

We have retained all of the linear terms. For certain problems, we must 

also include some of the nonlinear terms. Order of magnitude analysis suggests 

that PdV work, the Coriolis force, and convection of internal energy and angular 

momentum are the most important nonlinear terms. By dropping the primes and del¬ 

tas to make the notation less cumbersome, we obtain the final scaled equations 

$ - H + Tn-F <™> + £ " 1- ' (32) 
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The scaled source terms in the rotating reference frame, q , etc., are introduced 

to allow calculation of solutions that include the effects of feed and scoops. 

These functions are constant in time and were introduced by the authors in some 

earlier unpublished work. Wood and Sanders subsequently described this proce¬ 

dure as adapted to their pancake model. We include them for completeness al¬ 

though they are not used in the present numerical examples. 

III. THE NUMERICAL METHOD 

Two features of the centrifuge countercurrent problem increase the difficul¬ 

ty of obtaining numerical solutions. First, the density can vary by a large fac¬ 

tor across the radius of the machine. This forces the use of implicit diffusion 

terms to make the scheme efficient. 

The second feature of the problem is the importance of the thin boundary 

layers on the endcaps and rotor wall. Our algorithm employs a nonuniform grid 

that allows resolution of all boundary layers. Computational cells are required 

to be rectangular, but the widths can be varied to obtain sufficient resolution 

next to the rotor wall and endcaps. The small cells in the boundary layers also 

require the use of implicit diffusion terms to avoid unacceptably small time 

steps. For computational convenience in applying boundary conditions, a single 

row of "fictitious" cells surrounds the grid. 

The radial and axial cell edge locations r. k and z._3L are specified by the 
I "* 2 J "" 2 

user. The centers of our rectangular cells are defined by (r,,z.) = (0.5(r._1 + 
, J ' 2 

r. +.), 0.5(z._l + z.+,)J. It is also necessary to distinguish between the cell 

edge positions, for example r. t, and the average position of two adjacent cell 

centers, for example r. , = 0.5(r. + r ^ K The variables e, p, and v are de¬ 

fined at the cell centers. The velocity components u and w are defined on the 

left and bottom cell edges respectively. 

It is convenient (and efficient in the computer program) to define a series 

of coefficients that represent the mesh-dependent parts of the various finite 

difference operators. Let 
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The difference equations for the advanced time (denoted by a superscript 
n+1) radial and axial velocities are 

Ji-|j «f) 

¥ 
Re n. '1+iJ 

(61) 

and 

(62) 

Next, define o, fl, a, and r by writing Eqs. (61) and (62) as 

- p .. 
(63) 
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and 

The first step in each cycle is to evaluate a, n, a, and E for each cell face. 

Next we convert. Eq. (32) into a Poisson equation for the advanced time pres 

sure. First, difference Eq. (32) to obtain 

n+1 n fin+l fin 
p i . i " P iJ . V i " 9i.i + 1 r r n u"+ l 

«t fit ri W i " ri-jJ i + i 1+* i+*J 

Let Q.: • be defined by 

(65) 
w1?!1 -n+1 

= p1? + e 1 ? ^ - 9 n + 5 t { B ^ ° a V - B 9 . . = p1?. + e 1 ? ^ - 9 n . + ^ ° a . v . V. . . - B 9 a . , . T 

By substituting Eqs. (63) and (64) into (65) and by simplifying with the aid of 

Eq. (66), we obtain ., 

n+1 r-i . £.2 / ' o i l , O 12 , O 1 3 , n 1 4 \-\ n 



The boundary condition is zero pressure gradient normal to each boundary. This 
is accomplished in the code by requiring the pressure in each f ic t i t ious cell 
just outside the mesh boundary to be equal to the pressure just inside. We also 
require ^ , , = sL. , = 0 and o i_, . = a.. - = 1 on the boundaries. Eq. (67) may 
be solved by any [standard iterative technique, such as successive over taxat ion 
(SOR). 

Although this approach is computationally efficient for a single computa¬ 
tional cycle, the solution usually contains slowly-damped waves init iated by the 
in i t i a l conditions; These waves may be eliminated by setting the time deriva¬ 
tives of e and pi to zero in Eq. (65), which requires deletion of the f i r s t three 
terms on the right-hand side of Eq. (66) and deletion of the 1 from the quantity 
in square brackets in Eq. (67). 

We have been unable to find;a suitable iterative scheme for solving the mod¬ 
i f ied pressure equation, so we (ise a special linear system solver written specif¬ 
ical ly for this sparse, five-striped matrix. This scheme uses LU decomposition, 
and the L and U factors are iaved from cycle to cycle when 6t is constant, which 
greatly improves efficiency. The zero normal gradient condition is coded into 
the coefficient matrix so the solution automatically satisfies boundary condi-

ii .' : 

tions. 

This modified pressure equation has an infinite number of solutions, each 

differing by an additive constant. For linear calculations, only Vp enters the 

calculation and the value of the constant is irrelevant. For nonlinear calcula¬ 

tions, the magnitude of p enters the PdV work term and the constant is not arbi¬ 

trary. The linear system solver finds one particular member of the family of so¬ 

lutions, p... The normalization constant is chosen so that the integral of the 

density perturbation over the volume of the rotor vanishes. In scaled finite 

difference form, this condition is 

z H ) = 0 ' { 5 8 ) 

where the sums are over al l real cel ls. Eq. (68) is solved f o r h , and 
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This procedure requires more time per cycle than the iterative, fully time-

dependent scheme, but fewer cycles are required to relax a solution to steady 

state. Computational times for a given problem are approximately the same for 

the two methods. Separation theory requires that v«(p u) = 0 to a high degree of 

accuracy. The matrix solution satisfies this condition to within computer round¬ 

off on every cycle, which makes the matrix approach preferable to the iterated 

method if computer memory does not seriously limit the size of L and U factors 

that may be stored. 

The next step in the computational cycle is to calculate u? ,. and w?._, 

from Eqs. (63) and (64). 

The angular momentum equation is solved next. The finite difference approx¬ 

imation is 

, r n+1 . 
£( u. , . + u ( , | D9 9 n+1 ( n+1 , n+1-. 

j * 

wn + 1 f v n + 1 + v n + 1 ] - wn + 1 f v n + 1 + v n + 1 
w i j + i L i j+1 i j J w i j i l v i j v i j 

(70) 

This equation is fu l ly implicit in v and i t is readily solved by SOR. Similarly, 
we solve 

n+1 
Vij 

+ u? 
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(71) 

by SOR for the advanced time temperature. The parameter ? is zero or unity for 

linear and nonlinear solutions respectively* This completes a computational cy¬ 

cle. 

The boundary conditions on the variables other than p depend on the problem 

being solved, and they are straightforward to implement. As an example, we give 

the boundary conditions for a thermally driven solution, which is one of our nu¬ 

merical examples in t ie next section. 

(1) Left edge: 

$ • £ • # • « • • • <»> 

(2) Rotor wall: 

w = v = u = 0 (73) 

and 

9 = eQ(L-z)/L , (74) 

where 8 is a constant and L is the machine half-length in rad i i . 
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(3) Bottom endcap (z = 0): 

u = v = w = 0 (75) 

and 

8 = 9o . (76) 

(4) Top endcap (z = 2L): 

u = v = w = 0 (77) 

and 

9 = - eQ . (78) 

Now we discuss how the boundary conditions are applied numerically. Three 

examples serve to explain a l l types of numerical boundary condit ions. 

(1) u = 0 on rotor wa l l : Since u is defined on the wa l l , i t is kept at 

that value for the ent i re ca lcu la t ion . 

(2) j - = 0 on the l e f t edge of the mesh: This condit ion is imposed by 

(3) e = ±e on the endcaps. 

Consider the bottom endcap. T rad i t i ona l l y , th is boundary condit ion is han¬ 

dled by sett ing 

8.. = 28rt - 8.9 (79) 
l l O 12 x ' 

However, this definition of 6., gives (for a uniform mesh) 

+ 0(<Sz) , (80) 

Z2 
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e i 3 - 2 9 i 2 + 9 i l 3 328 
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which has a large zeroth order truncation error. We use a scheme proposed by 

Buzbee* to eliminate the zeroth order error. We define 9., so that we get the 
2 
8 6 

correct zeroth order value for — s - at cell center i2: 

rfl ? f l . . i _ 

^ l9 i3 " 2 9 i2 + 9 i l J " 

By solving for 8. . , we obtain 

e n = l e o " 2 9 i 2
 + T ei3 • 

The other boundary conditions may all be treated explicitly, but Eq. (82) must be 

done semi-implicitly for purposes of numerical stability. The coefficients of 

Eq. (82) are also correct for evaluating the fictitious cell quantities for 

IV. NUMERICAL EXAMPLES 

The two numerical examples that we present in this section are the thermally 
5 

driven and mass driven SFg machines described by Nakayama and Usui. Our calcu¬ 

lat ions were performed with the l inear version of the program using the parame¬ 

ters l i s ted below. 
a 

2La 

A2 

Re 

Y 

Pr 

T o 
u>a 

pw 
P 

w 
u 

= 10 cm 
= 80 cm 

= 1.855 

= 1.94 x 

= 1.0935 

= 0.7 

106 

= 320 K 

= 260 m-s"1 

= 1.097 > -3 - J 
< 10 g cm 

= 150 t o r r 

- 1.47 x 10"4 P 

Molecular Weight = 146 

Information provided by B. L. Buzbee, Los Alamos Scientific Laboratory (1973). 
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The f i r s t case is the thermally driven solution with a 10 K end-to-end tem¬ 
perature difference. The endcaps have a constant temperature 0Q = ±5 K, and the 
e profi le on the rotor wall is linear. The calculation was performed on two com¬ 
putational grids. Case A used a grid that f i l l ed the entire rotor in both direc¬ 
tions; that is , 0< r < 1 and 0 < z < 2L. The radial grid was almost uniform in 
the inner 30% of the machine, with <5r « 0.05. The cells were smoothly reduced in 
size at progressively larger radii unti l Sr = 1.56 x 10 at the r tor wal l . The 
axial grid began with <Sz = 1.53 * 10 at the bottom endcap. The cell size was 
allowed to grow by a factor of approximately 1.4 for each succeeding cell unt i l 
6z = 0.222 for about 15 cells covering about 80% of the length of the rotor. The 
cells were gradually reduced in size unti l <5z = 1.53 x 10 at the top endcap. 
This grid was 32 cells by 78 cells. I t allowed us to resolve al l throe boundary 
layers. There were eight cells in the downflow next to the rotor wall and three 
to four cells in the Ekman layers on the endcaps. 

The inner 80% of the machine was essentially inert, so we ran case B with 
the inner boundary at r = 0.7 instead of r = 0. The same number zones and the 
same axial grid were used. Resolution was improved in the radial direction, with 
6r = 0.012 at the inner boundary and Sr = 1.50 x 10 at the rotor wall . The re¬ 
sults are almost indistinguishable from Case A. 

Figure 1 shows streamlines for Case B, which may be compared, to the top hal f 
of Fig. 3 of Nakayama and Usui. Both their solution and ours are symmetric about 
the rotor midplane. The radial locations of the centers of vort ic i ty and the di¬ 
viding streamline between the outer pair of vortices agree well. No difference 
can be seen within the accuracy to which the figures can be read. The contours 
were chosen to be the same as those presented by Nakayama and Usui to the extent 
possible when using existing computer-generated streamline plots. The 0, 10, and 
20 mg/s curves may be compared directly. In particular, the 20 mg/s curves in 
both solution:; occupy almost exactly half the length of the rotor. The -2 mg/s 
streamline of Nakayama and Usui is quite similar to our -2.75 mg/s streamline, 
with both extending a l i t t l e farther axially than the 20 mg/s streamlines. We 
believe that this is excellent agreement. 

Figures 2 and 3 present the 9 and v contours for Case B. In Case A, the 
contours of the region 0 < r < 0.7 are a simple extrapolation of the region 0.7< 
r <0.8 shown in the figures; that i s , the variations in e and v are confined 
within the neighborhoods of the endcaps. Both functions are high at the bottom 
endcap, low at the top endcap, and are odd functions about the midplane. 
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Fig. 1. Streamlines for Hhe thermally driven SFfi centrifuge of Nahxyama and 
'"' '' 5 
Usui. The figure covers the region 0.7 < r < 1.0 and 0 < z < 2L. 
Each streamline is labeled wi',th the mass current in mg/s between it 
ana. the dividing streamline labeled 0. 

. 2. Isotherms for the same region as covered in Fig. 1. The extremes are 
—2 

9 = ±1.56 x 10 , ijhiah is ±S K. 'Phe contour spacing is 0.833 K, and 
the low contour has a value of 315.42 K. 8 = 0 at the rotor midvlane. 
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Fig. 3. Contours of v for the same region as shown in Tig. 1. The extremes 

are v = ±8.04 x 10~ , which is 2.09 m/s. The contour svaaing is 0.174 
m/e and the lowest contour shown has a value of -0.784 m/s. Two of , 
the 12 contours, as shown in Fig. 2, cannot be distinguished "because 
they lie on tov of the upper and lower graph boundaries, v = 0 at the 
rotor midplane. 

Figure 4 presents the heat flux through the bottom endcap as a function of 

r. The solid curve is from our calculation and the dashed line is from the ana¬ 

lytic solution by Carrier and Maslen using our Case A numerical solution just 

outside the Ekman layers as boundary conditions on the analytic Ekman layer solu¬ 

tion. The qualitative agreement is good, with almost no error near the peak. 

The relative error becomes large near r = 0.5, although the absolute error is not 

too large. 

The second example is an attempt to reproduce the mass driven solution shown 

in Fig. 6 of Nakayama and Usui. The parameters are the same as in the first ex¬ 

ample, except for the introduction of a net throughput rate of 100 mg/s. Feed is 

introduced at r = 0.5 on the upper endcap. Material is removed from the rotor at 

r = 0.98 on the upper endcap and r = 0.5 on the bottom endcap. The cut is 0.5. 

The grid used is the same as for the Case A thermally driven solution. The most 

striking feature of this solution is the narrow region of downflow between the 

ports at r • 0.5 on both endcaps and the equally narrow region of upflow next to 

the rotor wall that feeds the exit port in the upper endcap. The grid is suffi¬ 

ciently refined next to the rotor wall to resolve the flow there. However, the 

downflow at r = 0.5 is only one cell wide, so the resolution is too crude to pro¬ 

vide a meaningful comparison with the analytic solution. The radial zones need 

19 



0.4 

0.2 -

0.1 -

0.0 
0.0 1.0 2.0 3.0 

Rtin) 
4.0 

Fig. 4. Heat flux through the bottom en£j<xp> The solid curve is owe Case A 
numerical solution and the dashed line is an analytic solution. 

to be narrower in this region, perhaps at the expense of resolution at smaller 

rad i i . 

In addition to the zoning problem, this seemingly innocuous example contains 
a hidden disaster: i t is decidedly nonlinear. First, the f lu id just outside the 
stream at r = 0.5, flowing from the top endcap to the bottom endcap, is not ro¬ 
tating in the laboratory frame (v = -1). In the same region, 8 « 0.1 and p * 
1.5. Near the axis, p becomes as large as 2.1. I t drops to -0.8 at the rotor 
wall. Nakayama and Usui argue that linear analysis may s t i l l be useful, but we 
believe that a more reliable approach would be to adjust our radial grid as dis¬ 
cussed previously and rerun the problem with our nonlinear program. 
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