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Abstract

Components in composite materials are progressively replacing metals for crash-

worthy applications in the automotive, railway and aeronautical industries. The

numerical simulation of the crushing process for composite structures is a recent re-

search area. Due to the complex mechanical behaviour of advanced composites, the

capability of the existing analytical and numerical models to predict the crushing

behaviour of composite materials is still limited.

A numerical model for the crushing simulation of fibre-reinforced composite ma-

terials is proposed in this work. The progression of the main cracks is modelled using
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a new formulation of finite decohesion elements, that allows to correctly account for

the energy involved in the crushing process. The intralaminar damage is modelled

taking into account the specificities of each material system, degrading the elastic

properties in accordance with the different predicted physical damage phenomena.

After the validation of the decohesion element, this concept is used as part of

a model for simulation of composite tubes crushing. A good agreement between

the numerical results and the experimental data is achieved. The need for further

improvements on the physical basis of the intralaminar failure criteria used, as well

as on the numerical solution methods for the non-linear problem, is identified.

1 Introduction

Accidents and collisions between vehicles, where human lives are in danger, justify

the study of the added-value offered by new structural concepts and new mate-

rials for the protection of occupants during crash situations. This field of study,

crashworthiness, deals with how materials and structures deform, fail and absorb

energy in a controlled form during a crash event. Controlled form means, in this

context, a deformation mode where the crushing force is kept to an approximately

constant level during the collision, in such a way that a maximum amount of energy

is absorbed at bearable levels of acceleration for the passengers.

The composite materials used in crashworthy applications are of polymeric ma-

trix (polyester, epoxy or thermoplastic) strengthened with fibres (typically glass or

carbon). The number of applications of structures in composite materials (compos-

ite structures) destined to the absorption of energy and consequent protection of
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people is already considerable in the aeronautical, automobile and railways indus-

tries. The number of applications will certainly continue to grow in the future. This

gradual replacement of metallic structures by composite ones is motivated by the

higher capacity of energy absorption per unit of weight of the later. The profit in

energy absorbed per unit of weight can exceed 500%, in comparison with structures

in steel or aluminum [1].

In crushing situations, composites and metals behave very differently. While

metals absorb energy by plastic deformation, the process of crushing in composites

is more complex. Composites are often constituted by layers and these tend to

separate during the crushing (delamination); on the other hand, in each one of

these layers, fibre rupture and matrix cracking might take place, either in tensile or

compression (intralaminar damage). These damage mechanisms are represented in

Figure 1.

(Figure 1 around here)

In the comparison between different geometries and materials for energy absorp-

tion, tubular structures–Figure 2a)–are the more often studied in the literature.

While easily manufactured, tubes are very similar to the structures in fact used for

energy absorption–Figure 2b). Thus, they become a preferred geometry to evalu-

ate and test different lay-up solutions, as well as to validate models, both analytical

or numerical. These structures are normally conceived so that a crushing zone

progresses in a steady form during the crushing. This destructive zone is located

next to the loaded extremity of the tube, and is characterized by the opening of a

set of fronds–Figure 2a). During the crushing, the walls of the tube split axially
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and delaminate circumferentially. Among the circumferential delaminations, one

is distinguished for having the largest dimensions. It is located nearly at half the

thickness of the wall and designated as main delamination. In both sides of this

delamination, the material form several fronds. These fronds are formed essentially

by shear stresses, while the main delamination progresses in an opening mode. The

crushing of the material also leads to the formation of a debris wedge between the

impacting surface and the tube. This debris wedge remains with an approximately

constant size during the process of steady crushing. The friction has an important

role, essentially between the surfaces of the fronds and the crushing surface, as well

as between the fronds and the debris wedge. During the progression of the crushing

process, the tube supports an approximately constant load, whose value determines

its capacity of energy absorption–Figure 2c). For this reason, the ability to predict

the value of this force is important.

(Figure 2 around here)

The crushing simulation of composites is particularly difficult due to the complex-

ity of its physics. However, the ability to model the crushing and energy absorption

of composite structures is particularly important. Indeed, the current knowledge

in this field comes from experimental, analytical and numerical sources. The ex-

perimental tests suffer from two main limitations: on the one hand, they are rather

expensive when one has to model several impact orientations; on the other hand, it is

difficult to carry through experimental tests in the initial design stages. Purely ana-

lytical models continue to be developed, but its applications are restricted to simple

cases. The alternative is therefore numerical modelling. Using numerical models it
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is expected to predict the mechanical behaviour of the structures being crushed, as

well as a more detailed knowledge of the sequence of events leading to final failure.

After developing a numerical model for a specific situation, several crash orienta-

tions and impact velocities can be investigated at low cost. This allows to establish

response maps, that characterize the structure’s crashworthiness. This information

can be used iteratively to improve the product, much before manufacturing it.

In the current stage of development, numerical models are still too simplistic to

simulate all the mechanical processes relative to the crushing of composite struc-

tures. Delamination, for example, is rarely modelled due to the intrinsic numerical

difficulties, even though the behaviour of a component is considerably different when

delaminated.

In this work, an attempt is made to incorporate a sound physical basis into exist-

ing numerical models, allowing for a more realistic simulation of the crushing process.

In this context, a tool for delamination modelling has been developed. Meant to be

used with the finite element method, a new decohesion element with geometric non-

linearity is formulated [2—8]. The geometric non-linearity implemented in this work

is necessary to handle the large displacements and rotations that take place during

the crushing of composite structures. Indeed, this is essential in applications where

structures can undergo important rotations before delaminating. The formulation is

implemented in FORTRAN as an 8-noded element and as an 18-noded element, to

be used with the software ABAQUS [9]. Furthermore, the intralaminar damage (fi-

bre breaking and matrix cracking in each layer) is also modelled taking into account

the specificities of the material being modelled (long aligned fibres/short random
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fibres). For long fibres reinfoced composites, the Hashin criterion [10] is accepted as

one of the best in describing failure. For short random fibres reinforced composites,

several criteria are implemented and compared (maximum stress, maximum strain

and Mohr). When the failure criterion is verified, the elastic properties are degraded

according to the different predicted damage modes (fibre or matrix failure in tension

or compression). The failure criteria and post-failure behaviour is also implemented

in FORTRAN, and ABAQUS software.

After validating the decohesion element, by simulating situations for which there

is an analytical solution, the element is included in a numerical model for the simula-

tion of the crushing behaviour of tubular structures. The model comprises, besides

the decohesion element, the in-plane failure criteria and elastic properties degra-

dation. It is also shown that the decohesion element is well suited to model the

formation and propagation of splitting cracks in the walls of the tubes during the

crushing process.

The results obtained through the proposed model are compared with experi-

mental data, and it is concluded that the mean post-crushing load is effectively

predicted. The main contributions of this work include:

- formulation and implementation of a decohesion element with geometric non-

linearity. This element can be used in several fields, to model delamination, crack

propagation and connections between bonded or co-cured components.

- implementation of in-plane failure criteria, and post-failure degradation of the

mechanical properties.

- development of a numerical model for crush simulation, based on the previous
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contributions. The model is validated and can be used as a tool for the comparison

of the crashworthiness value of different materials and geometries; it can also be used

to model the crushing of more complex structures, as those represented in Figure

2b).

2 Decohesion element with geometric non-linearity

2.1 Introduction

One of the main limitations in using traditional finite elements to model crack prop-

agation is the problem of mesh dependency. The approach followed in this work to

prevent this dependency consists in the use of decohesion elements. The element

formulation and implementation is briefly described. Further details are presented

in Reference [11].

2.2 Kinematics

(Figure 3 around here)

In a decohesion element–Figure 3a), for each point P in the closed configuration

(frequently corresponding to the initial configuration), there are two corresponding

points, P− and P+ in any other generic configuration. These two points are desig-

nated as homologous. A mid point Pm defined as

P
m =

P
− +P+

2
. (1)

corresponds to each pair of homologous points. The set of all the points Pm in a

element defines its mid surface. Thus, designating by r the updated position vector
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of a point in the middle surface, by x its initial position vector, by u+ and u− the

displacements of the (considered) top and bottom surfaces, the i-th coordinate of

the middle surface can be written:

ri = xi +
1

2
(u−i + u+i ). (2)

The relative displacement between two points P+ and P− is, for the coordinate

i,

∆i = u+i − u−i . (3)

The displacements u+i and u−i are obtained through interpolation of the nodal values

uki, resulting for ∆i

∆i = u+i − u−i = Nkuki (4)

where Nk are shape functions. For fracture mechanics applications, it is convenient

to express the relative displacement in a local coordinate system–(ξ, η, ζ) , Figure

3 b)–as an opening and two sliding modes. The relative displacement in a local

coordinate system, δs, is obtained through the displacement in the global coordinate

system, ∆i, and a transformation tensor θsi :

δs = θsi∆i. (5)

Finally, defining Bsik = θsiNk, the expression for the relative displacement in the

local coordinate system as a function of the nodal displacements (in a global coor-

dinate system) is written as

δs = Bsikuki. (6)
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2.3 Constitutive law

In the local coordinate system, the relative displacements, δr, are related to the

tractions acting on the surfaces by the constitutive law

τ s = Dsrδr. (7)

(Figure 4 around here)

The generic shape of the constitutive law for pure opening or pure shear be-

haviour is presented in Figure 4a), while the mixed-mode behaviour is presented

in Figure 4b). For pure mode loading, the traction τ i increases with the relative

displacement δi up to a maximum value N , S or T (according to the mode) and

then decreases to zero.

For mixed-mode situations, a stress-based interaction criterion is used for damage

initiation at the interface:

³τ 1
S

´2
+
³τ 2
T

´2
+

µ
hτ 3i

N

¶2
= 1 (8)

where hxi is the McCauley operator defined as hxi = 1

2
(x+ |x|) .

This criterion has been shown by other authors [6],[12] to be in good agreement

with experimental data. The area under the traction-displacement curve–i.e. the

energy absorbed during failure at that point–in a mixed mode situation is defined

by an energy-based interaction criterion. Two different criteria are implemented.

The power law criterion [13, 14]

µ
GI

GIC

¶α

+

µ
GII

GIIC

¶α

= 1 (9)
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and the B-K criterion [15]

GIC + (GIIC −GIC)

µ
GII

GI +GII

¶η

= GI +GII . (10)

The parameter α in the power law criterion and the parameter η in the B-K can be

regarded as material properties that reflect how mode I and mode II interact in a

mixed-mode situation.

2.4 Equilibrium of the element

The virtual work method is applied to derive the stiffness tensor of the element

Kkizv =

Z

A

DsrBrvz

µ
∂Bspy

∂uki
uyp +Bsik

¶
dA, (11)

and the equilibrium of the element can thus be expressed as

Kkizvuzv = fki. (12)

However, this is a geometric and material non-linear problem. As a result, incre-

mental iterative methods, such as Newton-Raphson and Riks, are the most suited

for its resolution. Therefore, the tangent stiffness tensor KT
kizv defined by the differ-

entiation of Equation 12 is necessary to achieve fast convergence, especially in more

complicated problems:

KT
kizvduzv = dfki (13)

The full mathematical deduction of the expression for the tangent stiffness tensor

is presented in Reference [11].
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2.5 Validation of the decohesion element - MMB test

The decohesion element is used to simulate the delamination in a MMB test (Mixed

Mode Bending [16]) and a comparison with the analytical solution is carried to

validate the element. The specimen geometry and loading are presented in Figure

5a).

(Figure 5 around here)

The value of the lever length c–Figure 5a)–is used to define the relative con-

tribution of mode I and mode II. The specimen has typical properties for a car-

bon/PEEK material. The Young modulus is 1.5×105 N/mm2 and the Poisson ratio

is 0.33. The geometric parameters and the properties of the interface are shown in

Table 1.

(Table 1 around here)

Figure 5b) presents the numerical and analytical load-displacement curves for

this specimen. The small difference in the elastic region is due to a unreallystic

assumption in the analytical curve1. For the region corresponding to crack propa-

gation, the agreement obtained is excellent. This result (with others for pure mode

I and II presented in Reference [11]) prove the suitability of the element to model

crack propagation regardless of the mode ratio.

3 In-plane failure criteria

The criteria presented in this section are expressed as functions (f) of the compo-

nents of the stress tensor and of the ply strengths.

1the analyitical solution neglets the rotation of the specimen’s arms at the crack tip
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3.1 Layers reinforced with continuous fibres

For layers reinforced with continuous fibres, the Hashin criterion [10] has the ad-

vantage of distinguishing between different failure modes. For a three-dimensional

situation, it is expressed as:

fibre tensile failure

f t
f =

µ
σ1
Xt

¶2
+

µ
σ12 + σ13

Sσ

¶2
, σ1 ≥ 0 (14)

fibre compressive failure

f c
f =

−σ1
Xc

, σ1 < 0 (15)

matrix tensile cracking

f t
m =

µ
σ2 + σ3

Yt

¶2
+

σ212 + σ213 + σ223 − σ2σ3
S2σ

, σ2 + σ3 ≥ 0 (16)

matrix compression cracking

f c
m =

µ
σ2
2Sσ

¶2
+

µ
σ12
Sσ

¶2
+

"µ
Yc
2Sσ

¶2
− 1
#
σ2
Yc

, σ2 + σ3 < 0 (17)

In Equations 14-17, σi represent normal stresses, σij represent shear stresses; Xt

and Xc represent the strength in the fibre direction (traction and compression); Yt

and Yc represent the strength in the transverse direction (traction and compression);

Sσ is the in-plane shear strength.

3.1.1 Effect of damage in the elastic properties

When failure is detected (Equations 14-17), some material properties are affected.

Based on existing micromechanical analyses, [17—19], Camanho et al. [20] have

proposed the following reduction, used in this work:
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matrix tensile cracking

Ed
2 = 0.2E2, Gd

12 = 0.2G12 and Gd
23 = 0.2G23 (18)

fibre tensile failure

Ed
1 = 0.07E1 (19)

matrix compression cracking

Ed
2 = 0.4E2, Gd

12 = 0.4G12 and Gd
23 = 0.4G23 (20)

fibre compressive failure

Ed
1 = 0.14E1 (21)

where Ei is the Young modulus in the i direction and G12 is the shear modulus; the

upper index d represents damaged mechanical property.

3.2 Layers reinforced with short random fibres

For composites reinforced with short random fibres, three different criteria are im-

plemented and compared:

Maximum strain

f = max

µ
hεP1i

Xεt
,
h−εP3i

Xεc
,

¯̄
¯̄ε
max
shear

Sε

¯̄
¯̄
¶

(22)

Maximum stress

f = max

µ
hσP1i

Xt
,
h−σP3i

Xc
,

¯̄
¯̄τ
max

Sσ

¯̄
¯̄
¶

(23)
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Mohr

f =
hσP1i

Xt
+
h−σP3i

Xc
(24)

where εPi (σPi) represent the i-th principal strain (stress); Xεt and Xεc maximum

strains (traction and compression); εmaxshear and τmax are the maximum shear strain

and stress; and Sε is the maximum shear strain.

3.2.1 Effect of damage in the elastic properties

When failure is detected, the elastic properties are degraded according to

Ed = DE (25)

Gd = DG (26)

where the damage variable D should ideally be obtained from experimental data

or micromechanical models. In the absence of those, its value should be realistic,

i.e., the elastic properties should be reduced according to the real, experimental

material behaviour. Furthermore, in an implicit finite element analysis, there are

some restrictions to the magnitude in the reduction of the elastic properties, for

numerical reasons. Tay et al. [21] refer that in a tube crush simulation, convergence

was not achieved for reductions higher than 50%. Johnson and Picket [22] refer that

the numerical instabilities are too accentuated for reductions higher than 90%. In

this work, the values D = 0.1 and D = 0.15 are used (corresponding to reductions

of 85 and 90%).
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4 Crushing simulation

The numerical model developed is applied to five different tube crushing situations.

Experimental data for all these cases is available in published literature. The sim-

ulations use the decohesion element to model delamination and propagation of the

main cracks in the tube walls (axial splitting), as well as the intralaminar failure

criteria previously presented.

4.1 Carbon/PEEK - continuous fibres

Hamada et al. present in Reference [23] the results of an experimental work on tube

crushing. The authors used carbon/PEEK (AS4/APC-2) with 20 layers, being the

fibres aligned with the cylinder’s axe. The mean diameter of the tube is 55mm and

the wall thickness is 2.66mm. The elastic properties are presented in Table 2.

(Table 2 around here)

Some properties needed for the proposed numerical model are not specified by

Hamada et al. [23]. In these cases, typical values for the corresponding material

were used, as specified in Table 3; the mode I and mode II energy release rates are

respectively 0.28 and 1.42 N/mm. Following work from Mamalis et al. [24] the value

of the friction coefficient used is 0.3. Possible models simulating the tests of Hamada

et al. [23] could aim at simulating the stable crush propagation, or at simulating

the peak forces during initiation (see Figure 6). Modelling both aspects with only

one model is bound to be a very difficult task, due to the considerable geometric

transformations during initiation. For its relevance in terms of the energy absorbed,

the model developed in this work is applied to crush propagation–Figure 6 f).
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(Figure 6 around here)

The three-dimensional model for this case intends to simulate the splitting of the

cylinder into several fronds, the main delamination that opens the wall in two, and

the intralaminar damage (fibre breaking and matrix cracking). Taking into account

the experimental observation that the tube splits into 12 approximately equal fronds,

only 1/12th of the tube is modelled, corresponding to half of two consecutive fronds

(and the crack between them, see Figure 7). Decohesion elements are used in the

boundary between the two fronds that are formed in the experimental tests, in order

to simulate their formation. More decohesion elements are used at half the thickness

of the wall, to model the main delamination. Furthermore, Hashin’s criterion is used

for the intralaminar damage, with the degradation of the elastic properties presented

in section 3. In the simulation, the impacting surface includes already the debris

wedge resulting from initiation, as well as the bend layers at the top. Figure 7

shows the mesh of the specimen, as well as the impacting surface, in the initial and

a deformed configuration.

(Figure 7 around here)

For the boundary conditions, the bottom part of the tube is fixed, and appropri-

ated symmetry conditions are applied to the central part of each frond. The central

part of each frond corresponds to the left and right ends (two planes) in the finite

element mesh. A symmetry condition relative to that plane is applied to each node

in these planes.

A displacement is applied to the (rigid) impacting surface. Figure 7 presents the

crushing evolution.
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Intralaminar damage also occurs during the crushing. Figure 8 presents the

different damage modes at a fixed moment.

(Figure 8 around here)

(Figure 9 around here)

(Table 4 around here)

Figure 9 and Table 4 present the main results. The numerical results obtained

by Tay et al. [21] and by the present model are compared to the experimental mean

post-crushing load obtained by Hamada et al. [23] in Figure 9a). In the present

model, two different tube lengths are considered: L = 40mm and L = 100mm. It

can be concluded that the post-crushing load is not affected by the length of the

tube. The initial elastic stiffness in the decohesion element formulation (penalty)

is known to be a critical parameter on what concerns convergence capability, and

is therefore studied in more detail. Several values are compared: K = 106N/mm3,

K = 105N/mm3 and K = 104N/mm3 (K6, K5 and K4 in Figure 9b)). It can

be concluded from 9b) that reducing the penalty value increases the convergence

capability of the model. Furthermore the mean post crushing load is predicted with

considerable accuracy, even though there is a limited convergence capability during

the crushing process.

4.2 Glass/polyester - short random fibres

Mamalis et al. [24] carried a comprehensive experimental work on the crushing

behaviour of glass/polyester tubes. The dimensions of three specimens types tested

by Mamalis are here designated as Case 1, Case 2 and Case 3, and are presented in
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Table 5. The experimental mean post crushing load for these cases is 33.5, 41.6 and

62.4 kN respectively.

(Table 5 around here)

(Table 6 around here)

The mechanical properties are presented in Table 6. The friction coefficient used

is also 0.3.

Several simulations are carried, differing mainly in (i) the failure criterion: the

Mohr, maximum stress and maximum strain criteria are compared; (ii) the influence

of damage in the elastic properties, where residual stiffness values of 10% and 15%

of the initial one are considered. It should be noticed that there are limitations on

the amount of reduction to the elastic properties possible in numerical simulations

[21, 22].

4.2.1 Case 1

The numerical model includes the debris wedge, just like in the previous case anal-

ysed. Figure 10 shows both the mesh and the impacting surface. The results ob-

tained with the Mohr (M-C), maximum stress (Mσ) and maximum strain (Mε)

criteria for 10% residual stiffness are presented in Figure 11 and Table 7. Consider-

ing that the convergence capability for the Mohr and maximum strain failure criteria

is not very good, simulations for these two criteria with 15% residual stiffness, are

also presented in Figure 11 and Table 7.

(Figure 10 around here)

(Figure 11 around here)

(Table 7 around here)
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4.2.2 Case 2

As mentioned previously, Case 2 differs from Case 1 on what concerns to the dimen-

sions of the specimen. The numerical model is thus in this case very similar to the

one presented for Case 1. The Mohr, maximum stress and maximum strain criteria

are also compared for this type of specimen. The residual strength is 10% of the

initial and the penalty values K = 106N/mm3 (K6) and K = 105N/mm3 (K5) are

compared. The numerical results obtained are presented in Figure 12 and Table 8.

(Figure 12 around here)

(Table 8 around here)

4.2.3 Case 3

As mentioned, Case 3 specimens differ from Case 1 and Case 2 specimens only on

what concerns the dimensions. The residual strength is also considered to be 10%

of the initial. The Mohr, maximum stress and maximum strain criteria are again

compared. Three different values for the penalty are compared: K = 106N/mm3,

K = 105N/mm3 and K = 104N/mm3 (K4). The effect of decreasing the maximum

traction in the delamination of the wall to 10MPa (S10) is also investigated, for the

Mohr failure criterion. The numerical results are presented in Figure 13 and Table

9.

(Figure 13 around here)

(Table 9 around here)
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4.3 Glass/polyester - Continuous fibres

Abdel-Haq et al. [25] crushed pultruded glass/polyester tubes, with properties

shown in Table 10. Figure 14 shows the tube and the impacting surface used.

The inner diameter is 44mm and the wall thickness is 3mm. The radius of the

curved part of the crushing surface is 12mm.

(Table 10 around here)

(Figure 14 around here)

The tube opened in 6 fronds, Figure 14. The inner-upper edge crushed due

to the contact stresses–Figure 14a)–and, later on the crushing process, the wall

delaminated, Figure 14b).

This is a particularly interesting case study for the validation of a numerical

model for crush simulation, since it allows to model the initiation and damage prop-

agation in the same run. This is due to the small changes in the geometry during

the initiation. Indeed, no debris wedge is formed, and only the inner-top edge is

crushed.

The model used for the simulation is shown in Figure 14a). and b). Note that the

inner-top edge of the tube is not included, as it was crushed in the early phase of the

crushing process. Furthermore, the existing symmetry is considered, and only half

of two consecutive fronds are modelled. The mechanical properties shown in Table

10 are used. Following the results from References [26, 27] the energy release rates

for mode I and II are 0.2 and 0.5kJ/m2. The penalty value used is K = 105N/mm3.

Several simulations with coefficients of friction µ = 0.4, 0.5 and 0.6 are carried, since

several test results fromMamalis et al. [24] suggest that the coefficient of friction lies
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in the range 0.3-0.7. The Hashin failure criterion is considered for the intralaminar

damage.

Figures 15c) and 16 shows the frond formation (i.e. axial splitting), which is very

similar to the experimental (Figure 14). Figure 16 shows the mode II delamination in

the wall of the tube. This delamination can also be observed in the tests–Figure 14.

From a numerical point of view, it is interesting to note that the decohesion elements

allows to model this delamination and the contact between the fronds, even though

they are rotated from their original position. This could not be achieved without

the non-linear formulation implemented.

(Figure 15 around here)

(Figure 16 around here)

Figure 17 compares the results obtained with different friction coefficients. The

general shape of the numerical load-displacement curves is in good agreement with

the experimental one. Other results [11] indicate that the small oscillations in the

region corresponding to 3-8mm displacement are related to the mesh size. Table

11 compares quantitatively the error in that region for all the simulations. The

friction coefficient is confirmed to have a great influence on the structural response,

as already observed by other authors [24].

(Figure 17 around here)

(Table 11 around here)
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5 Conclusions

The simulation of the crushing behaviour of composite structures is of great impor-

tance for the automotive, railway and aerospace industries. Indeed, the survival of

passengers in crash situations depends on the mechanical behaviour of the crash-

worthy components present in the vehicles. The development of crashworthy com-

ponents should be accomplished using numerical simulation as a part of the design

process.

Crushing of composite components is a physically complex phenomenon. Several

factors contribute for this, among which these can be mentioned: (i) great difference

of scale between the typical wall thickness and other dimensions of the components;

(ii) the great displacements and rotations involved, requiring the use of non-linear

geometric analyses; (iii) the different mechanisms of damage, and material non-

linearities; (iv) deep geometric transformations in the crushing zone; (v) the contact

and (vi) the friction.

The approach followed in this work consists on: (i) modelling the progression

of the main macro-cracks (main delamination and axial splitting of the wall) using

decohesion elements, with a formulation that uses a traction/relative-displacement

constitutive law, introducing a non-linear geometric formulation, which allows to

correctly account for the energy consumed during crack propagation; (ii) using an

intralaminar damage model (adapted for each type of material considered) to sim-

ulate the deterioration caused by each damage mode predicted (fibre breaking and

matrix cracking, in tensile and compression); (iii) to use an implicit finite element

method, which correctly solves the equilibrium equations.
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The proposed numerical model is used to predict the post-crushing load in com-

posite tubes. The deep geometric transformations that often take place in the

crushing zone during the initial crushing stages–and result in the formation of

a debris wedge–are directly included in the models. Different material systems

(Carbon/PEEK and Glass/Polyester) and different fibre architectures (continuous

fibres and random short fibres) are modelled. In most cases, the model predicts the

post-crushing load within an error of 10%, even though the error values have occa-

sionally reached about 20%. Given the complexity of the physical process simulated,

this error magnitude can be considered good for this type of problems. The error in

the prediction of the post-crushing load results from the combination of several fac-

tors: (i) the values of the properties introduced (in some cases, those properties are

only typical values for the material system under consideration), (ii) simplifications

implicit in the model (for instance, not all the interfaces on the wall of the tubes are

modelled); (iii) the intralaminar failure models are only approximations for the real

material behaviour and finally (iv) discretization and numerical errors in general.

For glass/polyester composites, with short random fibres, the Mohr criterion

proves to be more adequated than the Maximum Stress and the Maximum Strain

criteria for all three cases studied. For long aligned fibre composites, either car-

bon/PEEK or glass/polyester, the Hashin criterion proves to be well suited. Resid-

ual strength values of about 10% of the original values seem to correctly represent

the real material behaviour, and are in the limit range of values for which conver-

gence under an implicit solution can still be achieved. The penalty value of the

decohesion elements (i.e. the elastic ’stiffness’) and the maximum stress at onset of
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damage are shown to significantly affect the convergence capability of the models,

without considerable effect on the post-crushing load.

In one case, the model was used to simulate all the crushing process, including

initiation. The correlation with the experimental results during the elastic and the

damage evolution phases, is a remarkable proof that the most relevant physical

aspects are incorporated in the model.

The proposed model is thus in a phase where it can be used directly in the design

of tubes for crashworthiness applications, or even in more complex crashworthy com-

ponents. It can also be used to compare different material systems or reinforcement

architectures.

The main limitations associated with the proposed model are related to its con-

vergence capabilities. Hence, further work in this field should focus on this particu-

lar aspect. More specifically, further work should be carried on: (i) the form of the

constitutive law of the interface element (polynomial, instead of bilinear); (ii) the

solution scheme for the equilibrium equations (in this work, the Riks method was

used as it proved to be the best suited in these problems, from those available on

ABAQUS); and (iii) the exploitation of the possible advantages of explicit formula-

tions. Another aspect that should deserve some attention on future research is the

physical basis of the intralaminar failure criteria used, as well as the micromechanics

of damage propagation.
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Tables

Table 1: Geometric parameters and properties of the interface for the MMB speci-

men

Geometry Interface

(mm) properties

length 100 K 106 N/mm3

initial crack 30 GIC 0.28 N/mm

thickness 3 GIIC 1.42 N/mm

width 10 N 30 N/mm2

c 43.7 S 40 N/mm2
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Table 2: Elastic properties for carbon/PEEK (AS4/APC-2), from Hamada et al.

[23]

E1 (GPa) E2 = E3 (GPa) ν12 = ν13 ν23 G12 = G13 (GPa) G23 (GPa)

139 10 0.26 0.03 4.5 1.3
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Table 3: Strength of carbon/PEEK (AS4/APC-2), from [8]

Xt Xc Yt Yc S12 Zt/c = S13 = S23

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

2070 2070 90 160 115 90
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Table 4: Current numerical results and comparison with References [21, 23]

Mean post crushing load Error

P̄ (kN)

Experimental (Hamada, 1995) 110.7 −

3D implicit model (Tay, 1998) 149.5 35.1%

Proposed model

(L = 40 mm; K = 1E6 N/mm3) 104.6 −5.5%

Proposed model

(L = 100 mm; K = 1E6 N/mm3) 103.9 −6.1%

Proposed model

(L = 40 mm; K = 1E5 N/mm3) 109.1 −1.4%

Proposed model

(L = 40 mm; K = 1E4 N/mm3) 117.6 6.2%
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Table 5: Dimensions of the tubes tested by Mamalis et al. [24]

Case 1 2 3

Number of layers 3 4 5

Thickness tp (mm) 3.4 4.4 5.7

Mean diameter D̄ (mm) 55.0 57.0 61.2
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Table 6: Mechanical properties of the specimens testd by Mamalis et al. [24]

E (GPa) Xt (MPa) GIC (kJ/m
2) GIC (kJ/m

2) K

(Delamination) (Wall) N/mm3

9 180 0.11 0.2 1E6
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Table 7: Numerical results for Case 1 and comparison with Reference [24]

Post-crushing Error

load, P̄ (kN)

Experimental, Case 1

(Mamalis, 1998) 33.5 −

M-C, 10% 34.5 2.8%

M-C, 15% 36.1 7.7%

Mσ, 10% 34.8 3.9%

Mε, 10% 29.3 −12.6%

Mε, 15% 31.6 −5.6%
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Table 8: Present numerical results for Case 2, and comparison with Reference [24]

Post-crushing Error

load, P̄ (kN)

Experimental, Case 2

(Mamalis, 1998) 41.6 −

M-C, K5 48.2 15.9%

M-C, K6 47.8 15.0%

Mσ, K6 52.0 24.9%

Mε, K6 32.8 −21.2%
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Table 9: Present numerical results for Case 3, and comparison with Reference [24]

Post-crushing Error

load, P̄ (kN)

Experimental, Case 3

(Mamalis, 1998) 62.4 −

M-C, K4 66.3 6.2%

M-C, K5 66.9 7.3%

M-C, K6 64.6 3.5%

M-C, K6, S10 66.0 5.8%

Mσ, K5 73.4 17.7%

Mσ, K6 70.9 13.7%

Mε, K5 55.9 −10.5%

Mε, K6 56.1 −10.1%
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Table 10: Mechanical properties of the glass/polyester tubes tested by Abdel-Haq

et al. [25]

E1 E2 G12 ν Xt Yt Xc Yc S12

(GPa) (GPa) (GPa) (MPa) (MPa) (MPa) (MPa) (MPa)

17 5.4 2.9 0.33 204 48 204 102 50

38



Table 11: Present numerical results, and comparison with Habdel-Haq et al. [25]

Post-crushing Error

load, P̄ (kN)

Experimental

[25] 3.86 −

µ = 0.4 3.09 −19.9%

µ = 0.5 3.31 −14.3%

µ = 0.6 3.67 −4.8%
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Figure 1: Different failure mechanisms in composites, from [28]
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Figure 2: a) Crushing of a composite tube, after [24]; b) real structure for energy

absorption, after [29]; c) typical load-displacement curve
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Figure 7: Crushing progression showing opening of the fronds and the evolution of

the main delamination
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a) b) c) d)

Figure 8: Damage modes (dark regions): a) matrix tensile cracking; b) matrix

compressive cracking; c) fibre tensile failure; d) fibre compressive failure
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Figure 9: a) Comparison of the present results with the the numerical results from

Reference [21]; b) effect of te penalty value (experimental post-crushing load from

[23])
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Figure 10: a) Finite element mesh for Case 1; b) damage ploted on the deformed

mesh (the dark zones are damaged, according to the Mohr-Coulomb criterion)
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Figure 11: Present numerical results for Case 1, and comparison with the experi-

mental post-crushing load from Reference [24]
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Figure 12: Present numerical results for Case 2, and comparison with the experi-

mental post-crushing load from Reference [24]
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Figure 13: Present numerical results for Case 3, and comparison with the experi-

mental results from Reference [24]
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a)

b)

Figure 14: a) Detail showing the crushing of the inner-top edge during the initial;

b) delamination of the wall. Original fotographs from Abdel-Haq et al. [25]
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a)                                                    b)                                                     c)

Figure 15: Mesh for the model corresponding to the tests by Abdel-Haq et al. [25].

In a) and b) not-deformed, and in c) deformed
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Figure 16: Deformed mesh of the model corresponding to the tests by Abdel-Haq et

al [25]
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Figure 17: Numerical results with different friction coefficients, and comparison with

Abdel-Haq et al. [25].
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