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Numerical solution of the generalized Burger’s-Huxley equation is established uti-
lizing two effective meshless methods namely: local differential quadrature method 
and global method of line. Both the proposed meshless methods used radial basis 
functions to discretize space derivatives which convert the given model equation 
system of ODE and then we have utilized the Euler method to get the required 
numerical solution. Numerical experiments are carried out to check the efficiency 
and accuracy of the suggested meshless methods. 
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Introduction

Non-linear partial differential equations (NLPDE) appear in diverse fields of science, 
mainly in engineering, physics, and chemistry. The NLPDE systems have become increasingly 
important in the research of evolutionary equations that describe wave propagation and in the 
investigation of the Brusselator chemical-diffusion reaction model. One of the most renowned 
NLPDE is the Burger’s-Huxley equation. Satsuma [1] explored a generalised Burger’s-Huxley 
equation:
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The exact solution [2]:
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where α, β, η, and ξ are constants.
Meshless methods are a class of numerical methods that are used to simulate in essen-

tially every field of science, mathematics, and computational biology [3-6]. It has been one of 
the hottest topics in computational mathematics in recent years, with an increasing number of 
scholars dedicating themselves to the study of meshfree methods, which have been suggested 
to solve various types of ODE and PDE. To solve PDE utilizing meshless methods with freely 
distributed collocations in the computational domain, and these collocation points participate to 
the approximation via assumed global or local basis functions. As contrary to most mesh-based 
methods, the spatial domain is represented by a set of nodes in meshless methods. As a result, 
there is no need for predetermined connectivity between the nodes. These methods solve the 
challenges of dimensionality. Meshless methods are efficient and produced better accuracy and 
can compute the solution in both regular and irregular computational domains. Meshless tech-
niques based on radial basis functions have some limitations, the most significant of which is 
choosing the optimal shape-parameter value and dense ill-conditioned matrices. To avoid these 
weaknesses, researchers have introduced several techniques which makes these methods more 
efficient and accurate. These approaches have recently been tested in a variety of applications 
[7-18]. In this study, we have used the local differential quadrature method (LDQM) and the 
global meshless method of line (GMOL) for the numerical simulation of the generalized Burg-
er’s-Huxley eq. (1). 

Methodologies

According to the proposed LDQM, the derivatives of W(x, t) are approximated at the 
centers xh by the neighborhood of 
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Substituting RBF ψ|x – xp|| in eq. (5):
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Matrix form of eq. (6):
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where

 ( )( ) = ,  = 1, 2, ,p k k p hx x x p h h hnψ ψ −  

for each k = i1, h2,..., hnh. The eq. (12) can be written:
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From eq. (8), we obtain:
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eqs. (5) and (9) implies
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According to the global meshless method of line, we approximate the function W(x), 
which is denoted by W(x):
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From eqs. (10) and (11), we have:
1( ) = ( ) = ( )N TW x x W x W−A HΦ (13)

where H(x) = ΦT(x)A–1.
Implementing the aforementioned procedures, we approximate the space derivatives 

of the governing (1), which convert it to system of ODE. Next, we will utilize the classical 
Euler scheme to solve it. The global method of line is a standard meshless procedure which can 
be find in detail in [13, 14].

Numerical discussion

The proposed LDQM and GMOL are tested for applicability, accuracy, and efficiency 
to approximate the solution of model eq. (1). Throughout the paper, we have used MQ RBF 
with shape parameter value c = 10 (for LDQM) and c = 1.1 (for GMOL). The time step size  
dt = 0.001, spatial domain [0, 1] and nodes N = 10 are utilized unless mentioned explicitly. For 
accuracy measurement, we used the following error norms:

( )
( )2

=1

max-error = max | |

=

N

i i
i

W

W
RMS

N

−

−∑

W

W (14)

where W is the approximate solution and Ŵ is exact solution.
Test Problem 1. The proposed LDQM and GMOL are utilized to approximate the nu-

merical results for Test Problem 1 and listed in tabs. 1 and 2 and figs. 1 and 2. In tab. 1, different 
values of final time, t, are used to computed the results whereas in tab. 1 various parameters val-
ues are considered. In viewed the tabulated results, very good agreement with the exact solution 
can be seen. In fig. 1, numerical solution for different time is visualized whereas in fig. 2, error 
is shown for both the methods. From these we can say that resealable good accuracy have been 
obtained in both case but accuracy wise the GMOL is better in this case. 

Table 1. Test Problem 1, numerical results for α = β = ξ = 1, η = 0.001
 LDQM  GMOL
t Max-error RMS Max-error RMS

4.6891 ⋅ 10–08 3.2649 ⋅ 10–08 4.8147 ⋅ 10–08 3.3772 ⋅ 10–08

4.6894 ⋅ 10–08 3.2651 ⋅ 10–08 4.8150 ⋅ 10–08 3.3775 ⋅ 10–08

4.6894 ⋅ 10–08 3.2651 ⋅ 10–08 4.8152 ⋅ 10–08 3.3776 ⋅ 10–08

Table 2. Test Problem 1, the max-error of the LDQM and the GMOL
 α = 0, β = 1, ξ = 1, η = 0.001  α = 0, β = 1, ξ = 2, η = 0.001  α = 0, β = 1, ξ = 3, η = 0.001

 Method t = 1 t = 10 t = 1 t = 10 t = 1 t = 10 
LDQM 6.2506 ⋅ 10–08 6.2508⋅ 10–08 2.7943⋅ 10–06 2.7817⋅ 10–06 9.9144⋅ 10–06 9.8247⋅ 10–06

GMOL 6.3763⋅ 10–08 6.3770⋅ 10–08 2.8505⋅ 10–06 2.8382⋅ 10–06 1.0114⋅ 10–05 1.0025⋅ 10–05
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Figure 1. Test Problem 1, numerical solution for α = β = ξ = 1, η = 2; (a) the LDQM and  
(b) the GMOL

 
Figure 2. Test Problem 1, plot of error for α = β = ξ = 1, η = 2; (a) the LDQM and (b) the GMOL

Conclusion

In the current research work, we have utilized two methods, the local differential 
quadrature and the global method of line which are based on radial basis functions, as a modern 
powerful numerical methods to investigate the generalized Burger’s-Huxley equation. First, 
both the schemes are employed to discretize the problem in the space direction and secondly, 
Euler method is used for time derivative. The proposed algorithms approximated the solution 
with good accuracy and in light of these analyses, we suggest that both algorithms can be im-
plemented to such types non-linear PDE models which appear in physical problems.
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