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A periodic density reinitialization smoothed particle hydrodynamics (PDRI-SPH) method is proposed to treat the generalized
Newtonian free surface �ows, which is based on the concept of Taylor series expansion. Meanwhile, an arti�cial stress term is
also presented and tested, for the purpose of eliminating the unphysical phenomenon of particle clustering in �uid stretching. 
e
free surface phenomena of a Cross model droplet impacting and spreading on an inclined rigid plate at low impacting angles are
investigated numerically using the proposed PDRI-SPHmethod. In particular, the eect of the surface inclination and the dierent
regimes of droplet impact, spreading and depositing on an inclined surface, are illustrated; the in�uence of surface inclination on
the tensile instability is also concerned. 
e numerical results show that the accuracy and the stability of the conventional SPH are
all improved by the periodic density reinitialization scheme. All numerical results agree well with the available reference data.

1. Introduction


eproblems of free surface �ows for polymers are important
in today’s industry, such as the structured reactors, surface
coating, container �lling in the food, and pharmaceutical
industries of polymers. All the �ows involved almost exhibit
nonlinear behavior, for example, the viscoelastic or shear-
thinning behavior. In these processes, the impacting, spread-
ing, and depositing of liquid droplets on solid surface play a
crucial role.

In the early stage of research, many methods based on
the Eulerian description of motion are mainly presented
to capture the complex free surface of polymers, including
particle in cell (PIC) [1], marker and cell (MAC) [2], volume
of �uid (VOF) [3], level set [4], and phase-�eld [5] meth-
ods. 
ese methods are based upon grid-based numerical
methods such as �nite dierence methods (FDM) and �nite
element methods (FEM) that are commonly used to solve
the Navier-Stokes equations. However, it is di�cult for the
simulation of large deformation.

In order to overcome the shortcomings of grid-based
methods and eectively handle the problem of large

deformation, the variousmesh-freemethods [6–8] or particle
methods have been proposed in a Lagrangian framework.
Among the various particle methods [9–12], the smoothed
particle hydrodynamics (SPH) method [9, 13] is the earliest
one and it is alsomost widely used.
e SPHhas the following
main advantages over grid-based methods. (1) It handles
convection dominated �ows and large deformation problems
without any numerical diusion. (2) Complex free surfaces
are modeled easily and naturally without the need of explicit
surface tracking technique. (3) It is easy to program for
complex problems compared with grid-based methods. In
1994, it was �rstly used to deal with �uid mechanic problems
[14]. Since then, it has been extensively studied in many
areas such as viscous �ows [15, 16], incompressible �uids
[17, 18], multiphase �ows [19, 20], geophysical �ows [21, 22],
viscoelastic �ows [23, 24], and viscoelastic free surface �ows
[25].

Unfortunately, the consistency between mass, density,
and occupied area cannot be enforced exactly (see [15,
26]) when the evolved particle density is obtained by the
continuity equation in standard SPHmethod [23–25]. In this
work, a periodic density reinitialization method based on
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the corrective kernel estimate [27] of a Taylor series expan-
sion is proposed to overcome the problem of the consistency
between mass, density, and the occupied area. Moreover, we
can know that the tensile instability is related to the sign
of both the stress and the second derivative of the kernel
function as noticed by [28]. And then, a changing arti�cial
stress term is presented and tested to remove the unphysical
phenomenon of particle clustering in the simulations of a
generalized Newtonian droplet impact and spreading on an
inclined rigid plate, which is dierent from the one in [25].


is paper has been directly motivated by the polymer
industry where materials tend to be shear-thinning but
not necessarily viscoelastic. Due to the fact that the Cross
model [29] or some similar model can describe the shear-
thinning behavior better, then here we choose the Cross
model. In general, the phenomena of free surface can be
complex.
erefore, the two-dimensional shear-thinning free
surface �ows of a Cross droplet impact and spreading on an
inclined rigid plate are discussed. During these processes, the
eect and ability of the mentioned above periodic density
reinitializationmethod and arti�cial stress term for capturing
the complex polymer free surfaces are also analyzed.


e structure of this paper is organized as follows. 
e
governing equations for the Cross model are introduced in
Section 2. Section 3 describes the PDRI-SPH discretization
of the Navier-Stokes equations, including arti�cial viscosity,
boundary conditions, and temporal discretization of the
governing equations. In particular, the density reinitializa-
tion method and tensile instability are also discussed in
Section 3. In Section 4, the validity of the proposed PDRI-
SPH combined with the mentioned arti�cial stress term is
�rst tested. Subsequently, a numerical example of a Cross
model droplet impacting on an inclined dry surface is solved
to demonstrate the capability of the PDRI-SPH method in
handling generalized Newtonian free surface �ows. Some
concluding remarks are reported in Section 5.

2. Governing Equations for the Cross Model

2.1. Governing Equations. In a Lagrangian frame, the gener-
alized Newtonian �uid is governed by the conservation of
mass and momentum equations, together with a nonlinear
constitutive equation.
e isothermal, incompressible �uid is
usually described by the following equations:

���� = −� �V���� , (1)

�V��� = 1� ������� + ��, (2)

where � denotes the �uid density, V� the 	th component of

the �uid velocity, ��� the (
, 	)th component of the total
stress tensor, �� is the 
th component of the gravitational

acceleration, and the �/�� = �/�� + V
� ⋅ (�/���) is the

material derivative. 
e spatial coordinates �� and time � are
the independent variables.


e total stress tensor in (2) is commonly made up of the
isotropic pressure� and the components of extra stress tensor��: ��� = −���� + ��, (3)

where ��� = 1 if 
 = 	 and ��� = 0 if 
 ̸= 	. In order to study
a shear-thinning polymer material, the relating constitutive
equation must be provided.

2.2. Cross Model. In this paper, the surface problem based
on the generalized Newtonian �uid is mainly considered.

e generalizedNewtonian �uid displaysmore complex �uid
characters than the Newtonian �uid, and the constitutive
model for describing the generalized Newtonian �uid can
be derived from the Newtonian model; that is, the viscosity
is variable for the generalized Newtonian �uid. Several con-
stitutive models for describing generalized Newtonian �uid
have been proposed, in which the Cross �uidmodel with four
parameters (see (6)) [29, 30] is usually used to represent the
polymer material and describe the shear-thinning behavior
during polymer processing. 
en the typical constitutive
model of Cross �uid with four parameters is employed
to study the in�uences of shear-thinning behavior on the
free surface in polymers impact process. It is worth noting
that the surface tension is not considered in the following
simulations. 
e measure of �uid droplet is centimeter level
in the following simulations, so that the eect of surface
tension can be omitted according to the physical knowledge.
In addition, the detailed description of Crossmodel with four
parameters can also be found in [29, 30].


e extra stress tensor � for the generalized Newtonian
�uid based on the Cross model [29, 30] is expressed as

� = 2� ( ̇�) d, (4)

where �( ̇�) = ��( ̇�) is the dynamic viscosity and the �( ̇�) is
the kinematic viscosity. 
e symmetric strain rate tensor d is
de�ned as

d = [���] = 12 [ �V���� + �V����] . (5)


e kinematic viscosity �( ̇�) represents the shear-thinning
nature of the �uid; it is de�ned as� ( ̇�) = �∞ + �0 − �∞(1 + (� ̇�)�) , (6)

where�, �0, �∞, and � are given positive constants. 
e ̇� is
the local shear rate de�ned by

̇� = [2 tr (d2)]1/2 , (7)

and the symbol “tr” denotes the trace of matrix. Here, the
positive constants� and� are all chosen equal to 1.0.
2.3. Equation of State. 
e incompressible �ows were some-
times treated as slightly compressible �ows by adopting
a suitable equation of state in many previous works (see
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Figure 1: 
e sketch of wall particle and ghost particle at impact
angle of 
.
Monaghan [14] and Morris et al. [15]). Here, the incompress-
ible �ows are also treated as weakly compressible �ows using
the following equation of state [24]:

� (�) = �2�22�0 , (8)

where � is the speed of sound and �0 is reference density.
An arti�cial, lower sound speed is usually used to avoid the
instability and extremely small time steps. To keep the density
variation of �uid less than 1% of the reference density, the
Mach number ( ≡ "/�, where " is a typical reference
velocity) [9] must be smaller than 0.1. In other words, the
sound speed must be ten times higher than maximum �uid
velocity.

3. PDRI-SPH Formulation

3.1. Discretization Schemes of Standard SPH. 
e SPH
method [9, 13] is based on the interpolation theory, which
is the theory of integral interpolates using a kernel function.
Namely, the �uid domainΩ is discretized into a �nite number
of particles, where all the relevant physical quantities are
approximated in terms of the integral representation over
neighboring particles. Each particle carries amass�, velocity
k, and other physical quantities depending on the problem.
Any function $(r) de�ned at the position r = (�, %) can be
expressed by the following integral:⟨$ (r)⟩ = ∫

Ω
$ (r�)-(r − r�, ℎ) �r�, (9)

where- represents the kernel function (or smoothing func-
tion) and ℎ denotes the smoothing length de�ning the in�u-
ence area of-. 
e kernel function- is usually required to
meet three properties, namely, the regular condition, Dirac
delta function property, and compactly supported condition
[9, 13]. In addition, the smoothing function is also usually
chosen as an even function overΩ.

According to (9), the integrating principle by parts and
the divergence theorem, the particle discretization scheme of

standard SPH for a function $(r), and its �rst derivative at
the position r = (�, %) of the particle 5 can be written in the
following condensed forms:

$� = ∑
	

�	�	 $	-�	, (10)

( �$�r�) = ∑	 �	�	 ($	 − $�) �-�	�r� , (11)

where�	 and �	 are the mass and density of the 9th particle,
and $	 = $(r	). 
e �	/�	 represents the occupied volume
by the 9th particle. 
e -�	 = -(|r� − r	|, ℎ), �-�	/�r� =−�-	�/�r	.

In this paper, the cubic spline function is chosen as the
smoothing function which is the function about :�	 = |r� − r	|
and ; = :�	/ℎ. 
en it reads for 2-D as follows:

-�	 = -(:, ℎ) = 157?ℎ2
{{{{{{{{{{{
23 − ;2 + (12) ;3, 0 ≤ ; < 1,(16) (2 − ;)3 , 1 ≤ ; < 2,0, ; ≥ 2.

(12)

In order to have an accurate interpolation, the smoothing
length ℎ should be chosen bigger than the mean interparticle
distance. Here, the smoothing length ℎ is given by 1.5�0 with�0 as the initial distance between neighboring particles. 
e
compact support domain size is 2ℎ.

Considering the discrete gradient equation (11) and the

following identity: (1/�)(����/���) = �(���/�)/��� +(���/�2)(��/���), the particle discretization schemes of the
governing equations can be obtained at the particle 5:

(���� )� = ��∑	 �	�	 (V�� − V�	 ) �-�	���� , (13)

(�V��� )� = ∑	 �	(�����2� + �
��
	�2	 ) �-�	���� + ��. (14)

Introducing the velocity gradient

L��� = ( �V����)� = ∑	 �	�	 (V�	 − V�� ) �-�	���� , (15)

then the particle approximation schemes of constitutive
equation for the Cross model can be obtained as���� = −����� + � ( ̇��) (L��� + L��� ) ,̇�� = [2 tr (d2� )]1/2 . (16)

3.2. Density Reinitialization Method. In the standard SPH
method, each particle has a �xed mass. If the number
of particles is constant, mass conservation is intrinsically
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Figure 2: 
e position of particles calculated by PDRI-SPH method at the time 0.01 s.

satis�ed. However, the consistency between mass, density,
and the occupied area could not be enforced exactly (see
[15, 26]) if the evolved particle density is determinated by the
evolution equation (1) for simulating theweakly compressible
�ows. Although the density �eld is periodically reinitialized
by applying the following equation for removing this problem
in [15]:

�� = ∑
	
�	-�	, (17)

the particle approximations (17) do not have �rst order
accuracy and M0, M1 consistency for boundary regions or
irregularly distributed particles (see [31]). 
erefore, the
above periodic density reinitialization method (see (17))
cannot well alleviate the above problem.

In order to well overcome this problem, we use a second-
order accurate particle approximation scheme based on Tay-
lor series expansion (see [27, 31]) to periodically reinitialize
the density �eld:

�� = ∑
	
�	-Tay
�	 , (18a)

where the corrected kernel function-Tay
�	 is given by

-Tay
�	 = N[[∑	 Q (r�) "	]]

−1-, (18b)

Q (r�) =((
(

-�	 �	� ⋅ -�	 %	� ⋅ -�	�-�	��� �	� ⋅ �-�	��� %	� ⋅ �-�	����-�	�%� �	� ⋅ �-�	�%� %	� ⋅ �-�	�%�
))
)
,

N = (1, 0, 0) , - =((
(

-�	�-�	����-�	�%�
))
)
. (18c)

Here �	� = �	 − ��, %	� = %	 − %�, and "	 is replaced by�	/�	. 
e particle approximations scheme (18a)–(18c) pos-

sesses M0, M1 consistency for boundary regions or irregularly
distributed particles (see [31]).

When the density reinitialization method is applied in
above standard SPH method, an inversion matrix of 3 × 3
should be solved for each �uid particle; thus, the computing
time is increased slightly. Considering the computational cost
and the e�ciency of using periodic density reinitialization,
we can apply this procedure every �xed (about 10∼40,
see Section 4.1) time step in our numerical simulations. In
particular, for the purpose of preserving that the corrected

particle approximations (18a) at least have M0 consistency on
the whole domain, the matrix∑	 Q(r�)"	 may be replaced by∑	-�	"	 if the matrix of (18b) is singular (it occurs occasion-

ally). Now, the above discretization schemes of standard SPH
combined with the periodic density reinitialization method
may be called the “PDRI-SPH” method.

3.3. Arti	cial Viscosity Model. According to previous works
[15, 32], the arti�cial viscosity is �rst introduced to enhance
the numerical stability and accuracy in the simulations of
strong shock problems [32]. On the other hand, the arti�cial
viscosity term guarantees the conservation of the angular
momentum without external force when it is added into
the momentum equation of TSPH schemes. For that reason,
the arti�cial viscosity term is usually also considered and
employed in the SPH simulations of viscous or viscoelastic
�uid �ows problems with large deformation, which can be
seen in recent works [18, 25, 33]. 
rough the simulations
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Figure 4: 
e comparisons of numerical results obtained using
PDRI-SPH method about the semiminor axis varying with time.

of viscoelastic droplet impact problem in [25] and our
numerical simulation experience of using SPH or improved
SPH method, we �nd that it is necessary to employ an
arti�cial viscosity term in the discrete momentum equation
(14) for improving the numerical stability (see Section 4.2).
Here, the arti�cial viscosity term is also added to the discrete
momentum equation (14) of PDRI-SPH method, which is
usually chosen as [32, 34]

Π�	 = {{{{{{{
−
Π��	]�	 + 	Π]2�	��	 , k�	 ⋅ r�	 < 0,0, k�	 ⋅ r�	 ≥ 0, (19a)

where

]�	 = ℎu�	 ⋅ r�	^̂̂̂̂
r�	
^̂̂̂̂2 + 0.01ℎ2 , ��	 = �� + �	2 ,
��	 = �� + �	2 ,

k�	 = k� − k	, r�	 = r� − r	.
(19b)


e 0.01ℎ2 term is included to prevent numerical divergence
when two particles get too close to each other. 
e 
Π
and 	Π are usually chosen approximately equal to 1. In the
arti�cial viscosity, the �rst term associated with 
Π involves
shear and bulk viscosity, while the second term associated
with 	Π is similar to the von-Neumann-Richtmeyer viscosity
for resolving shocks and is very important in preventing
unrealistic particle penetration.

3.4. Arti	cial Stress Model. In 1995, the “tensile instability”
was �rst investigated in detail by Swegle et al. [28], which
pointed out that the phenomenon of unphysical clustering
of particles arises when the standard SPH method is applied
to Euler problem. At present, a number of methods have
been proposed to remove the tensile instability in elastic
dynamics of solid materials. 
e arti�cial stress method [35,
36] is one of the most successful approaches, which has
been successfully extended and applied to non-Newtonian
�uid free surface �ows [25]. In [35, 36], the authors think
the “tensile instability” is mainly caused by tension (positive
stress in tension), so that the adopted arti�cial stress term
[25, 35, 36] is only related to the positive stress. As noticed by
[28], the “tensile instability” is related to the sign of both the
stress and the second derivative of the kernel function, which
implies that the instability is caused by not only the tension
but also the compression (negative stress in compression).

erefore, we use the following arti�cial stress term by
extending the conclusions in [28, 36] to eliminate the “tensile
instability”:

$��	 (_��� + _��	 ) , (20a)

where ` = -(0, ℎ)/-(�0, ℎ), $�	 = -�	(|r� − r	|, ℎ)/-�	(�0, ℎ).

e components of the arti�cial stress tensor _��� are given as

_��� = {{{{{{{
−a�����2 , if (∑

	
-�����	 ) ⋅ ���� > 0,0, other, (20b)

where a is a positive parameter (0 < a < 1), and the-�����	 =�2-�	/(��� ⋅ ���).
Introducing the��	 = $��	(_��� +_��	 ), the arti�cial viscosity

term (19a) and the arti�cial stress term (20a) are added to the
discrete momentum equation (14) of PDRI-SPH and we can
obtain

(�V��� )� = ∑	 �	(�����2� + �
��
	�2	 − Π�	��� + ��	) �-�	���� + ��.

(21)

Usually, the particle positions are updated by the follow-
ing equation: ������ = V�� . (22)

3.5. Boundary Condition Treatment. In most engineering
problems, the physical boundarymight be the surface of rigid
bodies enclosing �uid or enclosed by �uid, fully or partially.

e boundary can be stationary or in motion. We know that
the treatment of boundary conditions is very important in the
numerical simulation process using SPH method.

Several methods for treating rigid wall boundary condi-
tions have been presented in previous work.
ere are mainly
two methods; that is, (1) the solid walls may be simulated
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Figure 5: 
e initial state of a droplet impact (a) and side view of a droplet on an inclined rigid plate (b).

�II = 0, �II = 0

�II = 1, �II = 2

Figure 6: 
e particles distribution predicted by standard SPH
method for a Newtonian droplet impact on horizontal rigid plate
at dimensionless time � = 5.2. Without arti�cial viscosity (�rst row),
arti�cial viscosity (second row).

by particles, which exert repulsive force by employing an
arti�cial repulsive force (see [14]) on inner �uid particles
to prevent them from penetrating the wall. (2) 
e wall
boundary conditions can also be modeled either by �xed
particles [37] or by virtual particles that mirror the physical
properties of inner �uid particles. 
e above methods of
boundary treatment have been discussed in 2009 [38], and
the literature shows that the virtual particles approach has
better stability and aectivity than the arti�cial repulsive
force method. So, the boundary particles in this work do not
employ an arti�cial repulsive force instead of adopting the
virtual particles on approaching real particles to prevent �uid
particles from penetrating rigid walls.

As shown in Figure 1, two types of virtual particles are
used to implement the boundary conditions on a rigid wall.

e �rst type virtual particles are located right on the rigid
wall, namely “wall particles.” 
e density of wall particles is
not evolved unlike Morris et al. [15]. Meanwhile, the nonslip
condition is enforced on the solid wall and the positions of
wall particles remain �xed in time. If the no-slip condition
was not considered in the simulations, the �uid particles

may penetrate the wall and the numerical simulations will be
terminated. 
e pressure on the wall particles is calculated
according to the following approximation formulation:

�� = ∑	 �	 (2ℎ − :�	)∑	 (2ℎ − :�	) , (23a)

where 5 represents the index of a wall particles and 9 denotes
the index of its neighboring �uid particles only.


e second type virtual particles are placed just outside
the solid wall and �ll a domain with at least a range of depth
comparable with the compact support of the kernel used in
the computations, which are called “ghost particles” and have
�xed density and positions. 
e velocity and the pressure on
the ghost particles are computed in the following way.

(1) For each ghost particle c, we assign a corresponding
point - just on the rigid wall and point d inside
domain, respectively. Meanwhile, these three kinds of
points lie in a line which is perpendicular to the wall.

(2) In order to calculate conveniently we can de�ne the
normal distances �� and � of the points c and d to
the rigid wall, respectively.

(3) 
e pressure �� and velocity V�I for the ghost particles
can be obtained through the following linear extrap-
olation:

L� = L + (1 + ��� ) (L� − L) , (23b)

where L represents the vector of variables (�, V�). To
specify the values for L, the interpolation formula-
tion (23a) is applied again. Here, we let the � = �0.

Moreover, the following total stress-free condition must
be satis�ed in the computational domain for surface particles:

� ⋅ n = 0, (24)

where n denotes a unit normal vector to the surface. In
this paper, the surface tensor is neglected and a Dirichlet



8 Mathematical Problems in Engineering

b = 0.0

b = 0.0

b = 0.2

b = 0.2

b = 0.4

b = 0.8

Figure 7:
e shape of a Newtonian droplet impact on horizontal (le�) or inclined (
 = 30∘, right) rigid plate obtained by PDRI-SPHmethod
with 
II = 1, 	II = 2 and dierent arti�cial stress parameter a, at dimensionless time � = 6.2.
boundary condition of zero pressure is given to the surface
particles. 
is condition, that is, (24), is satis�ed naturally by
the PDRI-SPH method.

3.6. Time Integration Scheme. In order to better illustrate
the eect of the density reinitialization method, a suitable
time integration schemes is chosen necessarily in practice.
Considering that the predictor-corrector scheme possesses
second-order accuracy and better stability, we chose the
predictor-corrector scheme for solving the systemof ordinary
dierential equations (13), (21), and (22). 
e predictor step
consists of an Eulerian explicit evaluation of all quantities for
each particle

X̃
�+1
� = X�� + Δ�2 Γ�� , (25a)

where X� represents the vector of the unknown variables(��, V�� ) and Γ� denotes the vector of right-hand sides of (13),

(21), and (22). In the corrected step, the updated value of X�
at the end of each time step is given by

X
�+1
� = X�� + Δ�2 (Γ�� + Γ̃�� ) . (25b)

To ensure the numerical stability, the time step and space
step must satisfy the well-known Courant-Friedrichs-Lewy
(CFL) condition. According to [15], we may choose the
following stability condition:

Δ� ≤ min[0.25ℎ� , 0.25 ( ℎd�)1/2 , 0.125ℎ2�0 ] , (25c)

where d� is the hydrodynamical force acting on the particle,
and �0 = i/�0 is the kinematic viscosity.
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Figure 8:
e shape of a Cross droplet impact on horizontal (le�) or inclined (
 = 30∘, right) rigid plate obtained by PDRI-SPHmethod with
II = 1, 	II = 2 and dierent arti�cial stress parameter a, at dimensionless time � = 4.3.
4. Test Examples and Numerical

Simulations for the Cross Model

Firstly, the eect and the validity of modi�ed models for
simulating generalized Newtonian free surface �ows using
the PDRI-SPH method are obviously demonstrated through
applying the periodic density reinitialization method, arti�-
cial viscosity model, and arti�cial stress model. Subsequently,
the capacity of PDRI-SPH method for solving a Cross model
droplet impact, spreading and depositing on an inclined rigid
plate, is shown in Section 4.3.

4.1. E�ect of the Periodic Density Reinitialization Scheme. In
order to show the eect of PDRI-SPH method and compare
with the conventional SPH method, the two-dimensional
benchmark problem of the stretching of an initially circular
water drop is simulated using PDRI-SPH and SPH, respec-
tively, without enforcing the arti�cial viscosity, arti�cial
stress, and rigid boundary condition. 
is example has been

used in the literature [14, 33] of using SPH method, and
its corresponding analytical solution can be obtained from
[14, 33].

All the physical quantities are the same as those in

[33, Figure 1], the reference density �0 = 1000 kgm−3, the
viscosity i = 0.001 kgm−1 s−1, and the speed of sound � =1400ms−1. 
e initial geometry of the water drop is a circle
of radius k = 1m with its center located at the origin (� = 0,% = 0). 
ere is no external forces but initial velocity �eld

V
�
0 = −Q0�, V�0 = Q0% with Q0 = 100 s−1 and the initial

pressure �eld �0 = (1/2)�0Q20[k2 − (�2 + %2)]. 
e number
of �uid particles is 1961 and corresponding to the initial
distance �0 = 0.02m, and the time step �� = 10−5 s. During
the stretching process of water drop, the water drop remains

elliptical shape and the value of õ ⋅ ã (õ is the semiminor

axis and ã is the semimajor axis) remains constant. We let
“num” denote the interval time step of the periodic density
reinitialization of PDRI-SPH, and the PDRI-SPH method
becomes the SPH method if num = ∞.
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Figure 9: 
e distribution of pressure contour for a Newtonian/Cross drop impact on horizontal rigid plate obtained using PDRI-SPH (le�
column) or SPH (right column) at dierent dimensionless time.

Figure 2 shows the positions of 1961 particles calculated by
PDRI-SPH method with dierent interval time steps num =10, 20, 40, 60,∞ at the time 0.01 s. 
e distributed particles
of using PDRI-SPH (num ̸= ∞) are all more uniform and
the outer surfaces are all far smoother than the ones of SPH
method (num = ∞). From Figure 2, we can observe that
the better results belong to num = 10 and 20. In fact, the
more uniformly distributed the particles are, the better the
numerical accuracy is (see [31]). In other words, the accuracy
of numerical results using SPH can be improved by periodic
density reinitialization with appropriate “num.” For further
exhibiting the merit of the PDRI-SPH method, the pressure
�eld distribution (�/107) and numerical accuracy obtained
using PDRI-SPH are shown in Figures 3 and 4, respectively.
We can know that the problem of pressure oscillations of
using SPH can be eectively reduced by PDRI-SPH (see
Figure 3).
e pressure distribution has certain defect around
the boundary region in Figure 3, due to the reduced particles
on the boundary. Figure 4 demonstrates that the PDRI-SPH
has better accuracy than the standard SPH.

In a word, the eect of the density reinitializationmethod
used in the standard SPH method is obvious. 
rough the
results of Figures 2–4, and considering the computational
cost and the eect of PDRI-SPH with dierent “num,” we
choose the interval time step num = 20 in all the following
numerical simulations.

4.2. Validity of the Arti	cial Viscosity andArti	cial StressMod-
els. In this subsection, the example of a droplet impact and
spreading on a horizontal or an inclined plate is considered.

e initial state of a droplet impact on an inclined surface is
shown in Figure 5(a).When a droplet impacts on the inclined
rigid plate, the shape of the droplet distorts and spreads
symmetrically (
 = 0∘) or asymmetrically (
 ̸= 0∘) relative to
the point of impact, which is shown in Figure 5(b). We de�ne
the positive value of the elongation qback and the negative
value of the elongation qfront (see Figure 5(b)), in which
asymmetry increases with time.
e front edge of the droplet
spreads forward, while the back edge spreads backward or
slips forward.
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Figure 10: Comparison of the numerical results obtained using SPH or PDRI-SPH method for the width of a Newtonian (a) and Cross (b)
droplet impact on horizontal rigid plate varying with dimensionless time.

All the physical parameter values for a Newtonian droplet
are chosen as follows. Its initial diameter and velocity are� =0.02m and r0 = −1ms−1, respectively. 
e total viscosity isi = 4Pa ⋅ s, the reference density is �0 = 103 kgm−3, the
speed of sound is � = 12ms−1, and the gravitational force acts
downwards with �� = −9.81ms−2: in this subsection, 1961
�uid particles, 251wall particles, and 753 ghost particles.
e
initial spacing �0 = 0.0004m and the time-step �� = 1×10−5.

e height of dropping is t = 0.04m from the center of
drop to the center (u) of inclined rigid wall (see Figure 5(a)).

For the Cross model droplet, �0 = 4 × 10−3m2 s−1, �∞ =4 × 10−4m2 s−1, and the other parameter values are the same
as the case of Newtonian droplet.

Although the arti�cial viscosity term (19a) is adopted
for simulating the Newtonian drop case with considering a
horizontal plate in [25], the role of the arti�cial viscosity has
not been obviously demonstrated in [25]. Here, the eect
of arti�cial viscosity is illustrated in Figure 6. And then, we
can obtain three advantages of using the arti�cial viscosity
in the example of droplet impact. (1) 
e particles are
more uniformly distributed than those without using it. (2)

e numerical accuracy and stability are improved. (3)
e
phenomenon of unphysical clustering becomes weakened.
Note that the arti�cial stress term and the density reinitial-
ization method are all not considered in Figure 6. In all sub-
sequent simulations, the arti�cial viscosity (
II = 1, 	II = 2)
is adopted.

Figures 7 and 8 show the eect of the arti�cial stress
for simulating a Newtonian/Cross model droplet impact

on horizontal/inclined (
 = 30∘) rigid plate using PDRI-
SPH method with dierent arti�cial stress parameters. It
can be seen that the droplet fractures unrealistically for
the problem of droplet impact without the arti�cial stress
term (a = 0), and the simulations may be eventually
diverged. 
e phenomenon of fracture is observable for the
Newtonian droplet impact on horizontal rigid plate with
arti�cial stress a = 0.2, but it is much severer when the
Newtonian droplet impacts on inclined plate. For the Cross
model droplet, the unphysical fracture is obvious no matter
how the droplet impacts on horizontal or inclined rigid plate
even if the arti�cial viscosity is adopted. Observing Figures
7 and 8, we can get the following. (1)
e problem of tensile
instability occurs more evidently for the Cross droplet than
the Newtonian case when the droplet impacts on horizontal
rigid plate. (2) A droplet impacts on rigid plate fracture
more likely at low impact angles 
 ̸= 0∘ than 
 = 0∘. In
fact, the tensile instability is also related to the ratio of the
kinematic viscosity �0, �∞ for a Cross droplet impact on plate.
Here, we can �nd that the fracture is avoided completely by
increasing the value of a up to 0.8 for the Newtonian/Cross
model droplet impact on inclined plate. In other words, it
is necessary that the arti�cial stress parameter a is chosen
appropriately for simulating a droplet impact on inclined
rigid plate at low impact angles using PDRI-SPH method.

4.3. Numerical Simulations Based on CrossModel Using PDRI-
SPH. In this subsection, we mainly focus on the PDRI-
SPH/SPH method combined with the arti�cial viscosity
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Figure 11: Numerical convergence of the PDRI-SPH results with dierent smoothing length ℎ and particles number v� (along the �-axis
direction): (a1)-(a2) Newtonian droplet; (b1)-(b2) Cross droplet (which corresponds to Figure 10).
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Figure 12: 
e shape of a Newtonian droplet at impact angles of 15∘ (�rst column), 30∘ (second column), and 45∘ (third column) obtained
using PDRI-SPH, varying with short dimensionless time.

(
II = 1, 	II = 2), arti�cial stress (a = 0.8), and boundary
condition for simulating a Cross droplet impact on inclined
rigid plate at dierent low impact angles 
 = 15∘, 30∘, 45∘,
respectively. For the purpose of comparison, the Newtonian
droplet case is also considered. 
e number of �uid particles
is set to 7845, corresponding to the initial spacing �0 =0.0002m, 501 wall particles, and 1503 ghost particles. 
e

time-step is 5 × 10−6. 
e other physical parameters values
are the same as those in Section 4.2.


e eect of the proposed periodic density reinitializa-
tion method is obviously shown by predicting the pressure
distribution for the problem of droplet impact in Figure 9. At
the short time of droplet impact, the phenomenon of pressure
oscillations occurs for the SPH method combined with the
above improved models. 
e pressure oscillations grow near
the rigid plate varying with time and later progressively
destroy the whole pressure �eld, resulting in making its
physical interpretation and possible practical use di�cult.
However, the pressure �ledmaintains amuch smoother char-
acter obtained using the proposed PDRI-SPH method than
the SPH, especially on the boundary regions. We can also
know that the wall particles and ghost particles contribute to

the evolution of the density of the �uid particles; pressures on
both �uid and virtual particles increase when �uid particles
are near the rigid wall. 
e presented boundary treatment is
strong enough to prevent �uid particles from penetrating the
rigid wall without employing an additional arti�cial repulsive
force.

Figure 10 shows the comparison of the numerical results
obtained using SPH or PDRI-SPH method for the width of
a Newtonian and Cross droplet varying with dimensionless
time. 
e Newtonian/Cross droplet spreads symmetrically
along the wall a�er impact with time. 
e PDRI-SPH results
much closer to the results in [39] than the SPH results in the
numerical simulations of Newtonian droplet impact. 
ere
are also certain dierences between the numerical results
of using PDRI-SPH and those of using SPH for solving the
width of a Cross droplet impact on horizontal rigid plate with
time in Figure 10(b). Considering the analysis of Section 4.1
and the results in Figure 9, it is not di�cult to believe that
the results obtained using the PDRI-SPH method are more
reliable than those using SPH method. From Figure 10, we
also can observe that the width of a Cross droplet becomes
much larger than the corresponding Newtonian droplet case
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Figure 13: 
e shape of a Cross droplet at impact angles of 15∘ (�rst column), 30∘ (second column), and 45∘ (third column) obtained using
PDRI-SPH, varying with short dimensionless time.

at the short time (about dimensionless time � ≤ 3) of droplet
impact, due to the shear-thinning behavior of the Cross
model droplet (see [29, 30]).

In order to further demonstrate the feasibility and the
credibility of the proposed method to simulate the impact
problem, the numerical convergence of the PDRI-SPH results
with dierent smoothing length ℎ and particles number v�
(along the �-axis direction) is shown in Figure 11. From
Figures 10 and 11, we can get that (a) the proposed method
is convergent to simulate the Newtonian or Cross droplet
impact on horizontal rigid plate under dierent smoothing
length; (b) the results of Newtonian droplet for ℎ = 1.5�0

are more accurate than those for ℎ = 1.2�0 by observing
Figures 10(a) and 11(a), which implies that it is credible to
adopt the ℎ = 1.5�0 in the simulations of Section 4.3; (c)
the credibility of the PDRI-SPH for simulating the impact
problem based on the Cross �uid is further veri�ed by
Figure 11(b).

We can observe the shapes of aNewtonian drop spreading
over inclined rigid surfaces (
 = 15∘, 30∘, 45∘) at dierent
dimensionless times from Figure 12. It can be seen that the
�rst phase of impact involving the initial deformation of
the droplet for all the cases of 
 = 15∘, 30∘, 45∘ is similar to
that of impact angle 
 = 0∘; namely, the front edge spreads
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Figure 14: Evolution of the elongation of a Newtonian (a) and a Cross (b) spreading droplet at dierent impact angles, obtained using PDRI-
SPH.
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Figure 15: Numerical convergence of evolution of a Newtonian droplet (a) and a Cross droplet (b) spreading on an inclined plate with impact
angle 30∘ and smoothing length ℎ = 1.5�0 obtained using PDRI-SPH method.
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forward and the back edge spreads backward. Subsequently,
the front edge spreads forward and the back edge slips
forward, which can be clearly observed in Figure 14(a). 
e
phenomenon of precipitation appears versus time, which
becomes more evident with an increase of impact angle. 
e
PDRI-SPH results are similar to the results of a water droplet
impact on inclined surface obtained using VOF in [40, 41].

From Figure 13, we can get that the shapes of the Cross
drop spreading over inclined rigid surfaces (
 = 15∘, 30∘, 45∘)
at dierent dimensionless time are dierent from the case
of Newtonian (see Figure 12) under the same total viscosity.

ere are some obvious dierences between the Newtonian
drop and the Cross model droplet case, which are shown in
Figures 12–14. 
e speed of a Cross droplet spreading over
inclined rigid plate is faster than its Newtonian counterpart.
Moreover, an indentation is formed only for the Cross droplet
with time at lower impact angle (
 = 15∘) because of the
shear-thinning of the Cross �uid.

To further exemplify the reliability of the proposed
method for simulating the droplet spreading over inclined
rigid surface, Figure 15 shows the numerical convergence of
evolution of a Newtonian droplet and a Cross droplet spread-
ing on an inclined plate with impact angle 30∘ and smoothing
length ℎ = 1.5�0. Observing Figure 15, the numerical results
for v� = 81 are very close to those for v� = 101, which
demonstrates that the proposed method possesses preferable
numerical convergence for simulating the impact problem. In
short, it is feasible and reliable to simulate the impact problem
of a Newtonian or Cross droplet spreading on an inclined
plate using the proposed PDRI-SPH method.

5. Conclusions

Aiming at the de�ciency of standard SPHmethod, a periodic
density reinitialization method which is called the PDRI-
SPHmethod is proposed to preserve the consistency between
mass, density, and the occupied area. In order to verify
the validity and ability of the proposed PDRI-SPH, the
benchmark problem of drop stretching is simulated by PDRI-
SPH. Due to the density reinitialization, the PDRI-SPH has
better accuracy than the SPH, and the distributed pressure
�eld is much smoother likewise. Meanwhile, an arti�cial
stress is successfully presented and tested to simulate a Cross
droplet impact onto an inclined rigid plate of using PDRI-
SPH.
e eect of the proposed PDRI-SPH combinedwith an
arti�cial viscosity, an arti�cial stress, and boundary condition
treatment is further shown in the physical problem of impact
of droplet onto inclined rigid plate and compared with the
standard SPH. All the numerical results declare that the
proposed PDRI-SPH has some merits comparing with the
SPH, and it is a powerful tool to simulate the complex free
surface for generalized Newtonian �uid. It is expected to
be widely used and further improved to solve complex free
surface �ows in future.
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[23] M. Ellero,M. Kröger, and S. Hess, “Viscoelastic �ows studied by
smoothed particle dynamics,” Journal of Non-Newtonian Fluid
Mechanics, vol. 105, no. 1, pp. 35–51, 2002.

[24] M. Ellero and R. I. Tanner, “SPH simulations of transient
viscoelastic �ows at low Reynolds number,” Journal of Non-
Newtonian Fluid Mechanics, vol. 132, no. 1–3, pp. 61–72, 2005.

[25] J. Fang, R. G. Owens, L. Tacher, and A. Parriaux, “A numerical
study of the SPH method for simulating transient viscoelastic
free surface �ows,” Journal of Non-Newtonian Fluid Mechanics,
vol. 139, no. 1-2, pp. 68–84, 2006.

[26] W. Benz, “Smooth particle hydrodynamics: a review,” in e
Numerical Modelling of Nonlinear Stellar Pulsations: Problems
and Prospects, J. R. Buchler, Ed., vol. 302 of NATO ASI Series,
pp. 269–288, Kluwer Academic Publishers, Boston, Mass, USA,
1990.

[27] J. K. Chen and J. E. Beraun, “A generalized smoothed parti-
cle hydrodynamics method for nonlinear dynamic problems,”
Computer Methods in Applied Mechanics and Engineering, vol.
190, no. 1-2, pp. 225–239, 2000.

[28] J. W. Swegle, D. L. Hicks, and S.W. Attaway, “Smoothed particle
hydrodynamics stability analysis,” Journal of Computational
Physics, vol. 116, no. 1, pp. 123–134, 1995.
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