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Abstract

An imperfectly expanded supersonic jet, invari-

ably, radiates both broadband noise and discrete fre-

quency sound called screech tones. Screech tones are

known to be generated by a feedback loop driven

by the large scale instability waves of the jet flow.

Inside the jet plume is a quasi-periodic shock cell

structure. The interaction of the instability waves

and the shock cell structure, as the former propa-

gates through the latter, is responsible for the gen-

eration of the tones. Presently, there are formu-

las that can predict the tone frequency fairly ac-

curately. However, there is no known way to pre-

dict the screech tone intensity. In this work, the

screech phenomenon of an axisymmetric jet at low

supersonic Mach number is reproduced by numeri-

cal simulation. The computed mean velocity profiles

and the shock cell pressure distribution of the jet

are found to be in good agreement with experimen-

tal measurements. The same is true with the sim-

ulated screech frequency. Calculated screech tone

intensity and directivity at selected jet Math num-

ber are reported in this paper. The present results

demonstrate that numerical simulation using com-

putational aeroacoustics methods offers not only a

reliable way to determine the screech tone intensity

and directivity but also an opportunity to study the

physics and detailed mechanisms of the phenomenon

by an entirely new approach.

1. Introduction

Supersonic jet noise consists of three princi-

pal components 1. They are the turbulent mixing

noise, the broadband shock associated noise and the

screech tones. Screech tones are discrete frequency

sound. At low supersonic Math number, the screech

tones are associated with the axisymmetric oscilla-

tions of the jet and radiate principally in the up-

stream direction. It has been known since the early

work of Powell 2 that screech tones are generated by a

feedback loop. Recent works 1 suggest that the feed-
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back loop is driven by the instability waves of the

jet flow. In the plume of an imperfectly expanded

jet is a quasi-periodic shock cell structure. Figure

1 shows schematically the feedback loop. Near the

nozzle lip where the jet mixing layer is thin and

most receptive to external excitation, acoustic dis-

turbances impinging on this area excite the instabil-

ity waves. The excited instability waves, extracting

energy from the mean flow, grow rapidly as they

propagate downstream. After propagating a dis-

tance of four to five shock cells, the instability wave

having acquired a large enough amplitude interacts

with the quasi-periodic shock cells in the jet plume.

The unsteady interaction generates acoustic radia-

tion, part of which propagates upstream outside the

jet. Upon reaching the nozzle lip region, they ex-

cite the mixing layer of the jet. This leads to the

generation of new instability waves. In this way, the

feedback loop is closed.

At the present time, there are reliable screech tone

frequency prediction formulas l'a. However, there is

no known way to predict tone intensity and direc-

tivity; even if it is entirely empirical. This is not

surprising for the tone intensity is determined by

the nonlinearities of the feedback loop.

The principle objective of the present work is to

simulate the screech phenomenon numerically for

low supersonic Mach number jets. It will be shown

that numerical simulation is an accurate method

for screech tone intensity and directivity prediction.

Numerical simulation of jet noise generation is not a

straightforward undertaking. Tam 4 had earlier dis-

cussed some of the major computational difficulties

anticipated in such an effort. First of all, the prob-

lem is characterized by very disparate length scales.

For instance, the acoustic wavelength of the screech

tone is over 20 times larger than the initial thick-

ness of the jet mixing layer that supports the insta-

bility waves. Further, there is also a large disparity

between the magnitude of the velocity of the radi-

ated sound and that of the jet flow. Typically, they

are five to six orders different. To be able to com-

pute accurately the instability waves and the radi-

ated sound, a highly accurate computational aeroa-

coustics algorithm with shock capturing capability

as well as a set of high quality numerical boundary

conditions are required.



Therestof this paper is as follows. In Section 2,

the mathematical model, the computation algorithm

and grid design are discussed. Section 3 describes

the various numerical boundary conditions used in

the simulation. Section 4 elaborates on the distribu-

tion of artificial selective damping incorporated in

the computation algorithm. The artificial selective

damping terms are for the elimination of the high

wavenumber spurious waves. They have no effect

on the low wavenumber component (the physical so-

lution) of the computation. They help to maintain

a high quality numerical solution free from contam-

ination by spurious waves and numerical instabil-

ity. Comparisons between numerical results and ex-

perimental measurements are provided in Section 5.

These include the mean velocity profiles, the shock

cell structure, the dependence of the screech tone fre-

quency on jet Mach number and screech tone inten-

sity. Excellent agreements with experimental mea-

surements are found. Computed directivities for the

first two harmonics of the dominant screech tone will

also be provided.

2. Mathematical Model, Computation

Scheme and Grid Design

In this work, we are interested in simulating the

axisymmetric mode jet screech in the jet Mach num-

ber range of 1.0 to 1.25. The axisymmetric mode

is the dominant screech mode for axisymmetric jets

from convergent nozzles at these Mach numbers. For

this purpose, only two dimensional computation in

the x - r plane, where (r, 0, x) are the cylindrical

coordinates, are necessary.

2.1. The Mathematical Model

For an accurate simulation of jet screech genera-

tion, it is essential that the feedback loop be mod-

eled and computed correctly. The important ele-

ments that form the feedback loop are the shock cell

structure, the large scale instability wave, and the

feedback acoustic waves. Since turbulence in the jet

plays only an indirect role in the feedback loop, no

attempt is made here to resolve it computationally.

However, turbulence in the mixing layer of the jet is

responsible for its spreading and the spreading rate

of the jet affects the spatial growth and decay of

the instability wave. To ensure a good simulation

of the spreading rate, the k -e turbulence model is

adopted. In the computation, the modified k -e of

Ref. [5], optimized for jet flows, are used.

Figure 2 shows the physical domain to be simu-

lated. We will use length scale = D (nozzle exit di-

ameter), velocity scale = ao. (ambient sound speed),

time scale = D_D___density scale = p_ (ambient gas
_oo '

density), pressure scale = p_a_, temperature scale

= Too (ambient gas temperature); scales for k, e

and v_ are a_, -_- and a_ D, respectively. The di-

mensionless governing equations in Cartesian tensor

notation are,

0-7+ 0x--T = 0 (1)

O_i _ O_ 0
0---i-+ v._ (Pa_aJ)- 0x_ 0xi (_nj) (2)

O-_ E 0 0

o---7-+ _ (-_E%) = -o_-7(_%)

0 1 0 P v'-_xJ0_ (_ n_) + p_(.i L 1) 0_

_b-_z_l0 (__°k)+ (3)

Op ko___i__ O gi+ (-_k'%) = --_,-,_-_2_,- -_

1o(o )+ _-k0-_'xj PV'_xj (4)

O-_ c 0 e O _i

_2 1 o( a_)- (k+ + (5)
7p=_ (6)

E - 7(7 - 1) + 2 _ +k (7)

rq = _ 6i_ - v, \ Oxj + Oxi 30x_ 60. (8)

k 2 u

v, = C, (_ + _0--------5+ _-----D (9)

where 7 is the ratio of specific heats, v is the molec-

ular kinematic viscosity, k0 = 10 -6 and e0 = 10 -_

are small positive numbers to prevent the division

by zero. The model constants are taken to be _,

C, = 0.0874, a} = 0.324, a, = 0.377,

C_ = 1.4, C,2 = 2.02, Pr = 0.422,

agv = 1.7 x 10-%

It is to be noted that for the range of Mach number

and jet temperature considered the Pope and Sarkar

corrections often added to the k - e model _ are not

necessary. Outside the jet flow both k and e are

zero. On neglecting the molecular viscosity terms,

the governing equations become the Euler equations.

In this work, solutions of the above set of equa-

tions are to be found numerically. For a given jet



operatingcondition,thesolutionis to providethe
shockcellstructurein thejet plume,themeanflow
aswellasthe instabilitywavein themixinglayer
andtheacousticfieldofthescreechtoneoutsidethe

jet.

2.2. Computation schemeand grid design

In thiswork,the7-pointstencilDRPscheme4'6is
usedto time-marchthesolutionto a timeperiodic
statecorrespondingto thescreechcycle.Thecoeffi-
cientsof theschemeincludingthoseofthebackward
differencestencilsaregivenin Ref[4] (thevalueof
a3 should be 0.0208431427703). The DRP scheme

has proven to be nearly nondispersive over a wide

band of wavenumbers. In the acoustic region, the

use of 8 mesh points per wavelength would be ade-

quate. This allows a fairly coarse grid to be used in

the entire region outside the jet flow.

2.3. Grid Design

The mixing layer of the jet is very thin. The small-

est size grid is employed here to provide needed res-

olution. Figure 3 shows the entire computation do-

main. The domain extends 5 diameters back from

the nozzle exit and 35 diameters long in the x-

direction. It is 17 diameters in the r-direction. The

domain is divided into four blocks (or subdomains)

as far as the grid size is concerned. In Figure 3,

these subdomains are separated by black lines. The

black lines represent buffer regions of 3 mesh spac-

ings. Since acoustic waves propagate with no prefer-

ence in direction, square grids are used. The finest

grid in the block right downstream of the nozzle exit

has Az = 6P-_. This block is enclosed by the next

block with Az = D which, in turn, is enclosed by

another block with Az = D. The outer most block

has Az = D__ In Figure 3, the dotted curve rep-
8"

resents more or less the edge of the jet flow. This

is well inside the lightly shaded region in which the

governing equations are the k - _ model turbulent

flow equations. The full Euler equations are used in

the unshaded region.

The buffer region is a narrow region around the

boundaries of a computation subdomain of uniform

size mesh. The change in the mesh size takes place

in the buffer region. The basic design of the buffer

region can be found in Ref [7]. In this work, a slightly

improved version of the basic design is used.

3. Numerical Boundary Conditions

Numerical boundary conditions play a crucial role

in the simulation of the jet screech phenomenon. Re-

cently an in-depth review of this subject was given

by Tam s . For the present problem, several types

of numerical boundary conditions are required. In

Figure 2, outflow boundary conditions are necessary

along boundary AB. Along boundary BCDE, radi-

ation condition with entrainment flow are required.

On the nozzle wall, the solid wall boundary condi-

tion is imposed. The jet flow is supersonic. So the

inflow boundary condition can be prescribed at the

nozzle exit plane. Finally, the equations of motion in

cylindrical coordinates centered on the x-axis have

an apparent singularity at the jet axis (r ---* 0). A

special treatment is needed to avoid the singular-

ity computationally. Below, a brief description of

the different boundary conditions used in the simu-

lations is provided.

3.1. Radiation Boundary Conditions with

Entrainment Flow

For accurate numerical simulation, the numerical

boundary conditions to be imposed along boundary

BCDE must perform three functions. First, it must

specify the ambient conditions for the entire compu-

tation. This information is critical to the correct ex-

pansion of the jet and the development of the shock

cell structure. Second, it must allow the acoustic

waves generated to leave the computation domain

with minimal reflection. Third, it must generate the

entrainment flow induced by the jet. The develop-

ment of such a set of radiation boundary conditions

with entrainment flow is discussed in Ref [8].

3.2. Outflow Boundary Conditions

Along the outflow boundary AB, the mean flow

is nonuniform. For this reason, the nonuniform out-

flow boundary conditions of Tam and Dong 9 is used.

However, as the outflow boundary is only 30 jet

diameters downstream, the instability wave ampli-

tude, although damped at such a far distance, re-

mains quite large. To allow for weak nonlinearities,

we nonlinearized the outflow boundary conditions

of Tam and Dong by replacing the linear terms by

their nonlinear counterparts. In cylindrical coordi-

nates, the complete set of outflow boundary condi-

tions used are,

Op Op Op . 1 (Op Op Op)(lO )o-7+ + ,,o,. - ,,2 + +

c3u Ou c3u 10p (11)
o--?+ + = oz

cgv cgv Ov 10p (12)
p,9,.

1 cgp Op c3p p-p 0 (13)
V(e-----)0--7+ c°s eb-Tz+ sin ebTr + ----if- =



Ok Ok cOk

+ + = o (14)
a¢ 0¢ a_

+ + = o (15)

where V(O) = u cos 0 + a(1 - M 2 sin _ 0)½, M = _. a

is the speed of sound and (19,R) are spherical polar

coordinates (the x-axis is the polar axig); the origin

of R has been taken to be at the end of the potential

core of the jet. The last two equations above are the

nonlinearized form of the linear asymptotic k - ¢

equations (without sources), p is the static pressure

calculated by the entrainment flow model at the edge

of the jet flow at the outflow boundary.

3.3. Inflow Boundary Conditions

At the nozzle exit plane, the flow variables are

taken to be uniform corresponding to those at the

exit of a convergent nozzle. In addition, both k and

¢ are assumed to be zero. In other words, the mixing

layer is regarded to be very thin. Thies and Tam 5, in

their jet mean flow calculation work, found that this

is a reasonably good way to initiate the computation.

For cold jets, the mixing layer evolves rapidly into

a quasi-similar state resembling that in a physical

experiment.

3.4. Boundedness Treatment at the Jet Axis

In cylindrical coordinates, the governing equation

has an apparent singularity at the jet axis (r --+ 0).

Ref [8] discusses two ways to treat this problem. In

the present work, the governing equations are not

used at r = 0. Instead, the formal limit of these

equations as r --_ 0 are used. Our experience is that

this can be implemented in a straightforward man-

ner by extending the 7-point stencil into the negative

region ofr. The flow variables p, p and u in the r < 0

region are determined by symmetric extension about

the jet axis while v is obtained by an antisymmet-

ric extension. These are the proper extensions for

axisymmetric jet screech oscillations.

3.5. Wall Boundary Conditions

On the nozzle wall, the boundary condition of

no through flow is implemented by the ghost point

method of Tam and Dong 1°. For the purpose of

eliminating the generation of spurious waves, extra

amounts of artificial selective damping are imposed

around the nozzle wall region. By judging from the

computed results, this is an effective way to avoid

the generation of short spurious waves.

4. Artificial Selective Damping

The DRP scheme is a central difference scheme

and, therefore, has no intrinsic dissipation. For

the purpose of eliminating spurious short waves and

to improve numerical stability, artificial selective

damping terms 11 are added to the discretized finite

difference equations.

In the interior region, the seven-point damping

stencil 4 (with half-width cr = 0.2r) is used. An in-

verse mesh Reynolds number (R_ 1 - _ where- (a_. txx)

va is the artificial kinematic viscosity) of 0.05 is pre-

scribed over the entire computation domain. This

is to provide general background damping to elimi-

nate possible propagating spurious waves. Near the

boundaries of the computation domain where a 7

points stencil does not fit, the 5 and 3 points damp-

ing stencils given in Ref. [4] are used.

Spurious numerical waves are usually generated

at the boundaries of a computation domain. The

boundaries are also favorite sites for the occurrence

of numerical instability. This is true for both exte-

rior boundaries as well as internal boundaries such

as the nozzle walls and buffer regions where there is

a change in mesh size. To suppress both the gen-

eration of spurious numerical waves and numerical

instability, additional artificial selective damping is

imposed along these boundaries. Along the inflow

(radiation) and outflow boundaries, a distribution

of inverse mesh Reynolds number in the form of a

Gaussian function with a half-width of 4 mesh points

(normal to the boundary) and a maximum value of

0.1 right at the outermost mesh points is incorpo-

rated into the time marching scheme. Adjacent to

the jet axis, a similar addition of artificial selective

damping is implemented with a maximum value of

the inverse mesh Reynolds number at the jet axis

set equal to 0.35. On the nozzle wall, the use of a

maximum value of additional inverse mesh Reynolds

number of 0.2 has been found to be very satisfactory.

The two sharp corners of the nozzle lip and the

transition point between the use of the outflow and

the radiation boundary condition on the right side of

the computation domain are locations requiring fur-

ther additional numerical damping. This is done by

adding a Gaussian distribution of damping around

these special points.

As shown in figure 3, the four computation sub-

domains are separated by buffer regions. Here ad-

ditional artificial selective damping is added to the

finite difference scheme. In the supersonic region

downstream of the nozzle exit, a shock cell structure

develops in the jet flow. In order to provide the DRP

scheme with shock capturing capability, the variable

stencil Reynolds number method of Tam and Shen 12

is adopted. The jet mixing layer in this region has

very large velocity gradient in the radial direction.



Becauseof this, the Ustenci I of the variable stencil

Reynolds number method is determined by search-

ing over the seven-point stencil in the axial direction

and only the two immediately adjacent mesh points

in the radial direction. An inverse stencil Reynolds

number distribution of the form,

Rsten¢il-I = 4.5F(x)G(r) (16)

where

( 1, 0 < x < 9
F(z)

"_ l tn 2exp[-_(z- 9)_], 9 < z

1, 0<r<0.8
tr*2

a(r) = exp[-_(r- 0.8)_], 0.8 < r

is used in all numerical simulations. It is possible

to show, based on the damping curve (a = 0.3zr)

that the variable damping has minimal effect on the

instability wave of the feedback loop. Also exten-

sive numerical experimentations indicate that the

method used can, indeed, capture the oscillatory

shocks in the jet plume and that the time averaged

shock cell structure compares favorably with exper-

imental measurements.

5. Numerical Results and

Comparisons with Experiments

We have been able, using the numerical algorithm

described above, to reproduce the jet screech phe-

nomenon computationally. Figure 4 shows the com-

puted density field in the z- r-plane at one in-

stance after the initial transient disturbances have

propagated out of the computational domain. The

screech feedback loop locks itself into a periodic cy-

cle without external interference. As can be seen,

sound waves of the screech tones are radiated out

in a region around the fourth to fifth shock cells

downstream of the nozzle exit. Most of the promi-

nent features of the numerically simulated jet screech

phenomenon are in good agreement with physical

experiments 13'14'15.

5.1. Mean Velocity Profiles and Shock Cell

Structure

To demonstrate that the present numerical simula-

tion can actually reproduce the physical experiment,

we will first compare the mean flow velocity profile of

the simulated jet with experimental measurements.

For this purpose, the time averaged velocity profile

of the axial velocity of a Mach 1.2 jet from 1 diam-

eter downstream of the nozzle exit to 7 diameters

downstream at one diameter interval are measured

from the numerical simulation. They are shown as

a function of q* = _ in figure 5 where r0.5 is
X

the radial distance from the jet axis to the location

where the axial velocity is equal to half the fully

expanded jet velocity. Numerous experimental mea-

surements have shown that the mean velocity profile

when plotted as a function of r/* would nearly col-

lapse into a single curve. The single curve is well

represented by an error function in the form,

U

-- = 0.511 - erf(ar/*)] (17)
u1

where _ is the spreading parameter. Extensive jet

mean flow data had been measured by Lau 16. By in-

terpolating the data of Lau to Mach 1.2, it is found

that experimentally 6r is nearly equal to 17.0. The

empirical fit, formula (17), with cr = 17.0 is also

plotted in figure 5 (the circles). As can readily be

seen, there is good agreement between the empiri-

cal mean velocity profile and those of the numerical

simulation.

One important component of the screech feedback

loop is the shock cell structure inside the jet plume.

To ensure that the simulated shock cells are the same

as those in an actual experiment, we compare the

time averaged pressure distribution along the cen-

terline of the simulated jet at Mach 1.2 with the ex-

perimental measurements of Norum and Brown 17

Figure 6 is a plot of the simulated and measured

pressure distribution as a function of downstream

distance. It is clear from this figure that the first five

shocks of the simulation are in good agreement with

experimental measurements both in terms of shock

cell spacing and amplitude. Beyond the fifth shock

cell, the agreement is less good. At this time, we are

unable to determine the cause of the discrepancy.

However, it is known that screech tones are gener-

ated around the fourth shock cell. Therefore, any

minor discrepancies downstream of the fifth shock

cell would not invalidate our screech tone simula-

tion.

During a screech cycle, the shock cell is not sta-

tionary. In the past, Westley and Woolley 13 had

made extensive high speed stroboscopic schlieren ob-

servations of the motion of the shock cells and the

disturbances/instability wave in the mixing layer of

the jet. Figure 7a is their hand sketch of the promi-

nent features inside the jet plume. Figure 7b is the

density field in a plane cutting through the center-

line of the simulated jet. In comparing figures 7a and

7b one must be aware that the lighting in schlieren

observation gives an integrated view of the density

field across the jet. Despite this inherent difference,

there are remarkable similarities between the two fig-



ures.Not onlythegrossfeaturesof the largetur-
bulencestructure(in theformof toroidalvortices)
andshockcellsarealike,thedetailedfeaturesof the
curvedshocksarenearlythe same.Basedon the
abovecomparisons,it isbelievedthat thenumerical
simulation,indeed,canreproduceall theimportant
elementsofthescreechphenomenon.

5.2. ScreechToneFrequencyand Intensity

It iswellknownthat at lowsupersonicjet Mach
number,therearetwoaxisymmetricscreechmodes;
theAl and the As modes. Earlier, Norum 14 had

compared the frequencies of the A1 and As modes

measured by a number of investigators. His com-

parison indicates that the screech frequencies and

the Mach number at which the transition from one

mode to the other takes place (staging) vary slightly

from experiment to experiment. It is generally

agreed among experimentalists that the screech phe-

nomenon is extremely sensitive to minor details of

the experimental facility and jet operating condi-

tions.

In the present numerical simulation, both the A1

and As axisymmetric screech modes are reproduced.

Figure 8 shows the variation of _, where _ is the

acoustic wavelength of the tone, with jet Mach num-

ber obtained by the present numerical simulation.

Since DA- -- _ where f is the screech frequency,(ID)'
this figure essentially provides the frequency Mach

number relationship. Plotted on this figure also are

the measurements of Ponton and Seiner is. The data

from both the numerical simulation and experiment

fall on the same two curves, one for the A1 mode and

the other for the As mode. This suggests that the

calculated screech frequencies are in complete agree-

ment with experimental measurements; although the

Mach number at which staging takes place is not the

same.

Ponton and Seiner Is mounted two pressure trans-

ducers at a radial distance of 0.642D and 0.889D,

respectively, on the surface of the nozzle lip in their

experiment. By means of these transducers, they

were able to measure the intensities of the screech

tones. Their measured values are plotted in figures

9a and 9b. The transducer of figure 9b is closer

to the jet axis and hence shows a higher dB level.

Plotted on these figures also are the corresponding

tone intensities measured in the numerical simula-

tion. The peak levels of both physical and numerical

experiments are nearly equal. Thus, except for the

difference in the staging Mach number, the present

numerical simulation is, indeed, capable of providing

accurate screech tone intensity prediction as well.

5.3. Directivity

The directivity patterns of the simulated screech

tones have been measured. Typical directivities for

the A1 and A2 modes are shown in figures l0 and

11. A search over the literature fails to find directiv-

ity measurements for the axisymmetric mode screech

tones. Validation of these results, therefore, cannot

be carried out at this time.

Figure 10a shows the directivity of the A1 screech

mode (fundamental frequency) at jet Mach number

1.18 scaled to a distance of 65D. The directivity of

the second harmonic is given in figure 10b. Those

for the A2 mode at Mach 1.2 are shown in figures

lla and llb. Overall, the directivity patterns of the

A1 and As modes are similar. However, there are

differences in detailed features. For the fundamen-

tal tone, the directivity pattern consists of two prin-

cipal lobes. One lobe radiates upstream and form

part of the screech feedback loop. The other radi-

ates downstream peaked at a relatively small angle

from the jet flow direction. This is not sound gener-

ated by the interaction of instability wave and shock

cells. It is Mach wave radiation generated directly

by the instability wave as it propagates down the jet

columnl, is.

The directivity pattern of the second harmonic,

figures 10b and llb, also displays two principal

lobes. One lobe peaks around the 90 deg. direction.

This is the principal lobe. The sound is generated by

the nonlinearities of the source (nonlinear instabil-

ity wave shock cell interaction). The other lobe is in

the upstream direction. We believe this is generated

by the nonlinear propagation effect of the upstream

propagating feedback acoustic waves. The screech

tone intensity is quite high. This leads immediately

to wave steepening and the generation of harmon-

ics. An examination of the waveforms measured at

upstream locations confirms that they are not sinu-

soidal but somewhat distorted. Thus the main lobes

of the second harmonic are of entirely different ori-

gin.

Concluding Remarks

Recently, rapid advances have been made in the

development of computational aeroacoustic meth-

ods. In this work, we have demonstrated that it is

now possible to perform accurate numerical simula-

tion of the jet screech phenomenon by the use of one

of these methods, namely, the DRP scheme with ar-

tificial selective damping. Numerical boundary con-

ditions are also crucial to the success of the simula-

tions. At the present time, such numerical boundary

conditions are available in the literature. In a pre-



viousreview4,it waspointedout,unliketraditional
computationalfluid dynamicsproblems,numerical
simulationofjet noisegenerationissubjectedto the
difficultiesof largelengthscaledisparityandthe
needto resolvethemanyordersof magnitudedif-
ferencesinsoundandflow.Thisworkindicatesthat
theseproblemscanbeovercomebya carefuldesign
ofthecomputationgridandtheuseofan optimized

high order finite difference scheme.

The present work is restricted to the low super-

sonic Mach number range for which the screech tones

are axisymmetric. Future plans call for the exten-

sion of the work to three dimensions to allow the

simulation of flapping modes at higher Mach num-

bers.
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Figure 1. Schematic diagram of the screech tone feedback loop.
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Figure 2. The physical domain to be simulated.
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Figure 5. Comparison between mean velocity profiles of numeri-

cal simulation at Mj = 1.2 . --, x/D = 1.0, - - - -, x/D = 2.0,

--. --, x/D = 3.0,-- - --, x/D = 4.0,-- .. --, x/D = 5.0, --- -
--, x/D = 6.0,. ..... , x/D -- 7.0, and U/Uj -- 0.511 -er.f(arf )],

0, a = 17 from experiment (Lau 1981).
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Figure 6. Comparison between calculated tlme-averaged pressure

distribution along the centerline of a Mach 1.2 cold jet and the

measurement of Norum and Brown (1993). -- simulation, O

experiment.
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Figure 3. The computation domain in the r - x plane showing
the different subdomain and mesh sizes.



nozzle shock cells

Figure 4. Density field from numerical simulation showing the generation and

radiation of screech tone associated with a Mach 1.13, cold supersonic jet from a

convergent nozzle.
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Figure 7. Unsteady shock cell structureand large scale distur-

bances inside the jet plume at an instant. (a) Experimental ob-

servation by Westley and Woolley (1968). (b) Numerical simu-

lation.
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Figure 9. Intensity of axlsymmetrlc screech tones at the nozzle

exit plane. (a) r/D = 0.889, (b) r/D = 0.642 . Experiment

(Ponton and Seiner, 1992): O AI mode, [] A2 mode. Numerical

simulation: • AI mode, • A2 mode.
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Figure 8. Comparison between the acoustic Wavelengths of sim-

ulated screech tones and the measurements of Ponton and Seiner

(1992). O, [] Measurements; 0, • simulation.
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Figure 10. Directlvity of the At mode screech tone at Mj = 1.18,

r -- 65D. (a) Fundamental frequency, (b) second harmonic.
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Figure 11. Directivlty of the A2 mode screech tone at Mj = 1.2,

r = 65D. (a) Fundamental frequency, (b) second harmonic.
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Abstract

Advances in Computational Aeroacoustics (CAA)

depend criticallyon the availabilityof accurate,

nondispersive,leastdissipativecomputation algo-

rithm as well as high qualitynumerical boundary

treatments. This paper focuses on the recent de-

velopments of numerical boundary conditions. In

a typicalCAA problem, one often encounters two

types of boundaries. Because a finite computation

domain is used, there are external boundaries. On

the external boundaries, boundary conditions simu-

lating the solution outside the computation domain

are to be imposed. Inside the computation domain,

there may be internal boundaries. On these inter-

nal boundaries, boundary conditions simulating the

presence of an object or surface with specific acoustic

characteristics are to be applied. Numerical bound-

ary conditions, both external or internal, developed

for simple model problems are reviewed and exam-

ined. Numerical boundary conditions for real aeroa-

coustic problems are also discussed through specific

examples. The paper concludes with a description of

some much needed research in numerical boundary

conditions for CAA.

1. Introduction

A physical problem is defined mathematically

by the governing equations and boundary condi-

tions. When the governing equations are dis-

cretized to be solved computationally, the result-

ing finite difference equations are usually of higher

order than the original partial differential equa-

tions. This is because high order schemes are

needed to minimize numerical dispersion, an im-

portant requirement of Computational Aeroacous-

tics (CAA). The use of high order schemes will

be assumed throughout this paper. High order fi-

nite difference equations support extraneous solu-

tions that are not solutions of the partial differ-

ential equations. Thus to ensure a quality solu-

tion, a set of numerical boundary conditions must

t Copyright C)1997 by C.K.W. Tam. Published by the Amer-

ican Institute of Aeronautics and Astronautics, Inc. with

permission.

* Distinguished Research Professor, Department of Mathemat-

ics. Associate Fellow AIAA.

be specified such that not only the physical bound-

ary conditions are faithfully reproduced but also the

amplitude of the extraneous solutions, if generated,

would be minimized.

A computation domain is inevitably finite in size.

The result is that part of the physical domain is lost

in the numerical simulation. It is, therefore, impor-

tant that whatever takes place in the lost domain

should have very little influence on the solution in-

side the computation domain. If this is not the case,

the effects must be simulated by the boundary condi-

tions imposed on the boundaries of the computation

domain. For exterior aeroacoustics problems, a set

of nonreflecting or outflow boundary conditions are

needed at the external boundaries. The purpose of

the nonreflecting or outflow boundary conditions is

to allow the radiated sound waves and the convected

vorticity and entropy waves to leave the computation

domain smoothly without reflection.

The main objective of this paper is to provide an

assessment of the recent advances in the formulation

of numerical boundary conditions for aeroacoustics

problems. In CAA, numerical boundary conditions

are often developed for idealized model problems. In

practical applications, they must be modified or ex-

tended to account for the presence of a nonuniform

and sometimes unknown mean flow. In many cases,

the outgoing wave amplitude is not necessarily small.

So linear boundary conditions would need to be ad-

justed to allow the exit of nonlinear waves. Issues of

this kind will also be examinined and discussed in

this paper.

Broadly speaking, CAA boundary conditions can

be classified into six categories. They are:

1. Radiation boundary conditions.

2. Outflow boundary conditions.

3. Wall boundary conditions.

4. Impedance boundary conditions.

5. Radiation/outflow boundary conditions with in-

coming acoustics or vorticity waves.

6. Radiation boundary conditions for ducted envi-

ronments.

The first three categories of boundary conditions are

also needed in standard Computational Fluid Dy-

namics (CFD). However, owing to the presence of

acoustic and vorticity waves, the actual boundary

conditions used in CAA are very different from those



usedin traditionalCFD.Thelast threecategories
ofboundaryconditionsappeartobeuniquetoCAA
problems.

Theneedfor theabovetypesof boundarycondi-
tionsisbestillustratedbyconsideringthetwocom-
putationalaeroacousticsproblemsshownin figures
1and2. Figure1showsthecomputatidndomainfor
numericalsimulationofjet noisegeneration.Thejet
flowleavesthecomputationdomainalongboundary
AB. Here the imposition of a set of outflow bound-

ary conditions to allow the jet flow, sound, vortic-

ity and entropy waves to exit smoothly would be

most appropriate. Along boundary BCDE, radia-

tion boundary conditions are required. Along the

nozzle wall, wall boundary conditions are necessary.

Figure 2 shows the computation domain for numeri-

cal simulation of fan noise radiation from a jet engine

inlet. An important component of fan noise is gen-

erated by the interaction of the ingested vorticity

waves and the rotor inside the engine. To suppress

fan noise, a standard practice is to install sound ab-

sorbing liners on the inner surface of the engine inlet

as shown in figure 2. These liners are represented

mathematically by an impedance boundary condi-

tion. Along the exterior boundary CDEF, radiation

boundary conditions with incoming vorticity waves

are needed for the numerical simulation. Along in-

ternal boundary AB, radiation boundary conditions

for ducted environment are required to simulate the

internal propagation of acoustic duct modes inside

the jet engine.

The rest of this paper is as follows. In Section

2, numerical boundary conditions developed using

idealized flow models will be examined and com-

pared. In Section 3, boundary conditions developed

for more realistic aeroacoustics problems are pre-

sented. These two sections form the main part of

this paper. Section 4 concludes with a discussion of

the challenges and future directions of development

in numerical boundary conditions for CAA.

2. Boundary Conditions Based on Idealized

Model Problems

Most numerical boundary conditions available in

the literature were developed for idealized model

problems. Idealization, in some cases, are necessary

to make it possible for a rigorous derivation of the

boundary conditions. From the point of view that

boundary conditions are local relations, the use of

local approximations to formulate first-order bound-

ary conditions is quite justified. The development of

numerical boundary conditions for the acoustic wave

equation has continued for many years. A recent re-

view was given by Givoli 1. For numerical boundary

conditions relevant to CAA for which the Euler or

Navier-Stokes equations are used, brief reviews can

be found in the articles by Tam s and Lele 3.

2.1 Radiation/Inflow and Outflow Boundary

Conditions

It is well known that in a uniform mean flow the

linearized Euler equations support three types of dis-

turbances. They are the acoustic waves, the vor-

ticity waves and the entropy waves. The acoustic

waves propagate at sound speed relative to the mean

flow. The vorticity as well as the entropy waves are

frozen patterns convected downstream by the mean

flow. Because of the presence of the three types of

wave disturbances, each having distinct propagation

characteristics, the outgoing disturbances present at

the inflow and outflow boundaries are very differ-

ent. At an inflow boundary, the only outgoing dis-

turbances are acoustic waves. At an outflow bound-

ary, in addition to the acoustic waves, both vorticity

and entropy waves are convected out by the mean

flow. Due to this distinctive difference, some au-

thors choose to separate radiation/inflow boundary

conditions and outflow boundary conditions as two

different types of boundary conditions. Here we will

do so whenever clarity demands.

There have been many proposed radiation/inflow

and outflow boundary conditions based on totally

different considerations. For convenience, we will

group them into five types as follows.

(a) Characteristics Based Boundary Condl-

tions

Thompson 4,s and Poinsat & Lele s proposed to

treat the problem as one-dimensional near the

boundary of the computation domain. The coor-

dinate in the direction normal to the boundary is

taken as the spatial coordinate. For Euler equations

in one dimension, a full set of characteristics can

be easily found. Thompson, Poinsat 8z Lele used

these characteristics to form boundary conditions in-

volving only outgoing waves. However, in two- or

three-dimensional problems, there are no true char-

acteristics. The characteristics boundary conditions

work well for acoustic disturbances incident nearly

normally on the boundary. They do not give good

results at grazing angle of incidence or when there

is a strong mean flow tangential to the boundary.

(b) Boundary Conditions Derived from

Asymptotic Solutions

Bayliss _z Turkel T's, Hagstrom _ Hariharan 9



and Tam & Webb 1° derived radiation and outflow

boundary conditions by means of the asymptotic

solutions of the governing equations. In the case

of small amplitude disturbances superimposed on a

uniform mean flow of density P0, pressure P0 and

velocity u0 in the x-direction, the linearized Euler

equations in two dimensions are,

OU #E OF

--_--+ -O--z-x-F-_--_-y=H (I)

where

/ u°"+£ /
U= : , E= | uov |, F= po

p Luop + 7pouJ L- po,J

The nonhomogeneous term H on the right side of (1)

represents distributed unsteady sources. By using

Fourier-Laplace transforms, Tam _z Webb l° showed

that the initial value problem of (1) has asymptotic

solutions consisting of acoustic, vorticity and en-

tropy waves. These asymptotic solutions have the

form

(1) Acoustic waves

P

where (r, 0) are the polar coordinates. V(O) =

uocosO+ao(1-M2sin20) ½,M= u_a a0= (p:_o) ]
a 0 }

is the speed of sound.

(ii) Vorticity waves

p=p=0

[:] i°-'l= (3)
t @y J

where

= [ _(x - uot, y), x -_ +oo

( O, x -+ --co

Oil) Entropy waves

u=v=p=0

- uot,u), x +co (4)P = O, x --_ --co

In (2) to (4), the functions F, @ and X depend on

the initial condition and the unsteady source distri-

bution.

At boundaries where there are only outgoing

acoustic waves, a set of radiation boundary condi-

tions can be derived by eliminating the unknown

function F from (2) by first taking the t (time) and

r derivatives. The resulting radiation boundary con-

ditions are,

1 0 0 1)+ + :
P

At the outflow region, the outgoing disturbances

consist of a combination of acoustic, vorticity and

entropy waves, that is, a direct sum of (2), (3) and

(4). It turns out, it is possible to eliminate the un-

known functions F, @ and X, and upon using the

linearized momentum equations of (1), to obtain the

following set of outflow boundary conditions.

Op Op l (Op Op)+ = gi +

Ou Ou 10p

0--[ + u°-_z = po Oz

Ov Ov 10p

0"--[+ Uo Ox - Po Oy

(6)

10p Op + Op p
V(O---)O-'-t+ cos 0_-_ sin 0_--_ + _r = 0.

Extensive numerical experiments testing the accu-

racy of (5) and (6) have been carried out. The results

indicate that radiation boundary conditions (5) and

outflow boundary conditions (6) are extremely ef-

fective, provided the sources are sufficiently far from

the boundary of the computation domain. When

there are sources located close to the boundary, the

quality of the numerical solution is somewhat de-

graded.

(c) Absorbing Boundary Conditions

A different idea to deal with exterior boundary

conditions is to use an absorbing layer. An ab-

sorbing layer usually consists of 10 to 20 mesh

points in which damping terms are introduced to

damp out the incident waves. The development

of absorbing boundary conditions has been pur-

sued by many investigators including Engquist _z

Majda n, Higdon 1_J3, Kosloff & Kosloff 14 and Jiang

Wong is.

In a more recent work, the idea of absorbing the in-

cident wave was extended and refined by Colonius et



al. into a sponge and exit zone with grid stretching

and filtering. Their work is directly related to the

earlier work by Rai & Moin 17. Similar proposal but

without grid stretching was advanced before by Is-

raeli and Orszag 18. A somewhat different approach

was suggested by Ta'asan & Nark 19. They artifi-

cially modified the governing equations in a buffer

zone so that the mean flow becomes supersonic in the

outward direction. This idea was further extended

by Hayden and Turkel 2° to the full Euler equations

in conservation form. Most recently Freund 21 pro-

posed a zonal approach combining the absorbing

boundary idea and the technique of Ta'asan & Nark.

(d) Perfectly Matched Layer

In an absorbing layer, the addition of artificial

damping terms to the governing equations for the

purpose of damping out the incidence disturbances

also can lead to substantial reflections at the inter-

face. Berenger 22'23, in his work on computational

electromagnetic.s, found that it is possible to formu-

late an absorbing layer without reflection. Such a

layer has come to be known as a perfectly matched

layer (PML). It has found applications in computa-

tional aeroacoustics, elastic wave propagation 24 and

other areas. Hu 25 was the first to apply PML to

acoustics problems governed by the linearized Eu-

let equations with uniform mean flow. He has since

extended his work to nonuniform flow and for the

fully nonlinear Euler equations 26. Further applica-

tions of PML can be found in the recent works of

Hu and coworkers 27'2s. One great advantage of the

PML method is that if the mean flow is uniform the

boundary of the computation domain can be put

very close to the acoustic sources. This sometimes

allows the use of a small computation domain.

Although PML has been demonstrated to perform

exceedingly well computationally yet the PML equa-

tions with a mean flow are unstable. Consider the

computation of small amplitude disturbances super-

imposed on a uniform mean flow in a computation

domain as shown in figure 3. Let's use Ax ---- Ay

(the mesh size) as the length scale, a0 (the sound

speed) as the velocity scale, _---_ as the time scale,

poa2o (where p0 is the mean density) as the pres-

sure scale. The dimensionless governing equations

in the PML are formed by splitting the linearized

Euler equations according to the spatial derivatives.

An absorption term is added to each of the equations

with spatial derivative in the direction normal to the

layer. For example, for the PML on the right bound-

ary of figure 3, region (1), the governing equations

are 25,

Ot
0__ 0+ crul + M_: (ux + u2) + _xx(Pl

+P2) =0

--&--+ (.1 + = o

oVl0--t- + o'vl + M_: (Vl + v2) = 0
(7)

Or2 __y Oo-5-+ (.1 + + N(pl

Opl M 0
-N- + +

+p_) = 0

+ +  (ul + =0

Op2 _._ 0W + My (Pl + P2) + _--_y(va + v2) = 0

where M_ and M u are the mean flow Mach num-

bers in the x and y directions, o" is the absorption

coefficients.

Suppose we look for solutions with (x, y, t) depen-

dence in the form exp[i(ax + fly - wt)]. It is easy

to find from (7) that the dispersion relations of the

PML region are,

w+ia (w+ia) 2 w2 --0 (8)

1 c_M_ _6My _ 0 (9)
w+ia w

In the limit a -+ 0, (8) and (9) become the dispersion

relations of the acoustic and the vorticity waves of

the linearized Euler equations. (8) is a quadric equa-

tion in w. It has two extra roots in addition to the

two modified acoustic modes. For small a, the two

spurious roots are damped but one of the modified

acoustic roots is unstable. For larger o', numerical

solutions indicate that one of the spurious roots be-

comes unstable. In any case, the equation splitting

procedure and the addition of an absorption term,

both are vital to the suppression of reflections at the

interface between the computation domain and the

PML, inadvertently lead to instabilities.

For small a, the roots of (8) and (9) can be found

by perturbation. Let,

w(°) =w_ ") +aw_ a) +a_w_ ") +... (10)

°)+... (11)

where the roots of (8) and (9) are designated by

a superscript 'a' (for acoustic waves) and 'v' (for



vorticitywaves).Substitutionof (10)and(11)into
(8)and(9),it isstraightforwardto find,

o, o (12)

where

w+ = (aMx +flMy) + (a 2 +f12)½

-w_: + (aMx + #Mu)w+

+(1 - M2)I_ 2 - v_flMxM u

w_(w_ - aM. - _M_)

(13)

= aM. + 0 (14)

w_V) _ -i (15)
1 + ( M-_-_tp-_

M= J_, a/

Clearly if w[ a) or w_v) has positive imaginary part,

the mode is unstable. (13) has a simple interpreta-

tion in the case M r = 0. In this special case, (13)

reduces to

w_.) = i [132a2M_ -aw+M. ]-+-d-J_-M_=-_-M2J "
(16)

For acoustic waves with negative phase velocity; i.e.,

aw+ < 0 (the group velocity can, however, be posi-

tive) the numerator of (16) is positive, there will be

values of/_2 for which w_") is purely positive imagi-

nary. Similarly, from (15), for _ < 0 and IS[ > M_,

w_v) is also purely positive imaginary. Thus the

PML equations in the presence of a uniform flow

with Mx ¢ 0 support unstable solutions.

In a finite difference computation the dimension-

less wavenumbers a and fl are restricted to the range

of -Tr to rr. Following the work of Hu 25, we will as-

sume a PML of width equal to 10 mesh spacings.

For a mean :flow of M_ = 0.3, a value of cr = 1.5

would be quite sufficient to reduce the intensity of

the incident acoustic waves by a factor of 105. Fig-

ure 4 shows a contour map of the growth rate of the

most unstable wave (Im(w) is largest) in the a - fl

plane for such a mean flow. The maximum growth

rate is 0.035. In carrying out numerical simulation

over a long period of time, even a weak instability

could be a source of trouble. It is, therefore, desir-

able to suppress the instability. One way to suppress

the instability and, at the same time, retain per-

fectly matched condition at the edge of the compu-

tation domain is to add artificial selective damping

terms 29 to the discretized form of (7). The design of

the artificial selective damping stencil is such that

there is almost no damping on the long (physical)

waves. Thus the inclusion of these terms in the fi-

nite difference scheme should not alter the perfectly

matched condition for the physical waves. With arti-

ficial damping included, the discretized form of the

first equation of (7) according to the 7-point sten-

cil Dispersion-Relation-Preserving (DRP) scheme 1°

is (Note: all the other equations are to be treated in

a similar way),

3

K (n) _ru (n) Mx _ r (n)= -- aj l u lt+j,rnl,m -- 1/fin

j=--a

(,,) _ (n) p(n) 1
u2t+j,m '-I- Plt+j,m Jr 2l+j,rnJ

'R_ p=_3 d_ k_+_'"_ + u (17)

3

u(n+t) = u(n) k-" b "K ("-j) (18)
lt,m lt,m + At _ :1 t,rn

j=0

where Ra is the artificial mesh Reynolds numbers.

By applying Fourier transform analysis to (17) and

(18) following Ref. [29], the damping rate intro-

duced by the last term of (17) is

3

1 a " e-O") (19)
Z) = j +

Figure 5 shows the contours of constant damping

rate for Rzx = 1.0. The coefficient dj's are those

corresponding to a = 0.3rr given in the appendix of

Ref. [2]. Figure 6 shows the combined growth and

damping rate of figures 4 and 5 for Ra = 0.46. As

can be seen, the instability is completely suppressed.

Note that for a PML with a width of 10 mesh spac-
21r

ings, waves with a wavenumber a smaller than $-6

cannot be excited. This band of wavenumbers lies

within the two vertical dotted lines of figure 6.

(e) Other Methods

In addition to the above four types of meth-

ods, nonrefiecting boundary conditions have also

been developed by a number of investigators us-

ing special methodology. This includes the works

of Giles 3°, Atkins & Casper 3x, Colonius s2, Scott et

ai. 33, Kroner 34 and Roe 35. Giles used a Fourier se-

ries approach. His work appears to have been moti-

vated by turbomachinery noise and flow considera-

tion.



(f) Evaluation of Radiatlon/Inflow and Out-

flow Boundary Conditions

During the last few years, there have been a

number of papers reporting the results of evalua-

tions of the performance and accuracy of a number

of proposed radiation and outflow boundary condi-

tions. Hixson et al. 36 employed a CAA problem

with known exact solution to evaluate the quasi-

one-dimensional characteristic boundary conditions

of Thompson 4'5, the Fourier series boundary con-

ditions of Giles and the asymptotic boundary con-

ditions of Tam & Webb t° and Bayliss & Turkel 7,s.

They reported that the Tam & Webb boundary con-

ditions gave satisfactory results whereas the Thomp-

son's boundary conditions produced significant re-

flections.

Hayden & Turkel a7 reported their experience

in using the boundary condition of a number of

investigators 4,5,7,s,9,1°,aa,a4,3s. However, the vari-

ous proposed boundary conditions were not imple-

mented in the computation in an identical man-

ner. A definitive comparison becomes impossible.

Dong as, in a study of radiation boundary conditions

for nonuniform mean flow, performed a direct com-

parison of the results using his method and those of

the Thompson's and Tam & Webb's boundary con-

ditions. The numerical results confirm the finding of

Hixson et al. 36, namely, the quasi-one-dimensional

characteristics boundary conditions can cause sig-

nificant reflections and inaccuracies.

It is also worthwhile to mention that two CAA

workshops on benchmark problems have been held

since 1994. Some of the benchmark problems

were designed to test radiation/inflow and outflow

boundary conditions. In each of the workshop

proceedings 39,4°, there is a section on comparisons

of computed results and exact (nearly exact) solu-

tions. They provide a measure of the quality of the

various numerical boundary conditions used.

2.2 Wall Boundary Conditions for High-

Order Schemes

In CAA, high order finite difference schemes are

used because they have less numerical dispersion.

However, a high order finite difference equation sup-

port spurious solutions that have no relationship to

the original partial differential equation. These spu-

rious solutions are unavoidably excited at a wall.

For aeroacoustics problems, the spurious waves are

of two types, propagating waves with short wave

lengths and spatially damped waves. Thus when

an acoustic wave pulse impinges on a wall, in ad-

dition to the reflected waves, spurious short waves

will also be emitted in a high order finite difference

solution. Furthermore, the spatially damped waves

would also be generated. But they decay as they

propagate away from the wall. Effectively they form

a numerical boundary layer on the wall surface.

There are two major difficulties in developing wall

boundary conditions for high order finite difference

schemes. First, high order finite difference equations

require additional boundary conditions, beyond the

physical boundary conditions of the original pro[_

lem, to define a unique solution. These additional

boundary conditions, or the way to handle the need

for these boundary conditions, must be found so that

only very small amplitude spurious waves are ex-

cited. Second, in the discretized system, each flow

variable at either an interior or boundary mesh point

is governed by an algebraic equation (discretized

form of the partial differential equation). The num-

ber of unknowns is exactly equal to the number of

equations. Thus there will be too many equations

and not enough unknowns if it is insisted that the

boundary conditions at the wall mesh point are sat-

isfied also. This is, perhaps, one of the major dif-

ferences between partial differential equations and

finite difference equations.

In the literature, there is an absence of suggestions

as how to impose wall boundary condition for high

order schemes except for the work of Tam & Dong 41.

They proposed to use backward difference stencils as

a wall is approached. This eliminates the need for

extra boundary conditions. To provide enough un-

knowns to enforce the physical wall boundary con-

ditions as well as to allow the discretized govern-

ing equations to be satisfied at mesh points on the

wall, they suggested including ghost values at ghost

points. Ghost points are mesh points immediately

outside the computation domain. The number of

ghost values to be included is equal to the num-

ber of physical wall boundary conditions per en-

forcement point. Tam & Dong carried out an anal-

ysis of the problem of reflection of plane acoustic

waves by a plane wall using the ghost point method.

They found that the intensity of the reflected spuri-

ous short waves is largest for normal incidence but

is less than 0.4% of the amplitude of the incident

wave if a resolution of 10 mesh spacings per acoustic

wavelength is used. The thickness of the numerical

boundary layer (defined as the distance from the wall

at which the spurious damped numerical wave solu-

tion drops to 0.1% of the magnitude of the incident

wave) is a little over one mesh spacing. The ghost

point method has since been extended by Kurbatskii

Tam 42 for applications to curved wall surfaces us-



ingCartesianmesh.Numericalresultsobtainedin
anumberof testcasesagreedwellwithexact solu-

tions.

For acoustic wave scattering problems, Chung

& Morris 43 proposed an Impedance Mismatched

Method (IMM). In this method, solid bodies are re-

placed by a new fluid medium with a large char-

acteristic impedance, pa. When the characteristic

impedance of the new fluid medium is infinite, it can

be shown that the incident waves are completely re-

flected. The advantage of the IMM method is that

the entire computation domain including the scat-

tering bodies can be regarded as a continuous fluid

region making the programming exceedingly simple.

However, unlike the ghost point method, the IMM

cannot be used for viscous problems.

2.3 Impedance Boundary Condition

One of the most successful methods for suppress-

ing fan noise radiating out the inlets of jet engines is

to install acoustic liners inside the front part of the

engine inlet as shown in figure 2. Mathematically, a

liner is represented by an impedance boundary con-

dition. The impedance, Z, is a complex quantity. If

the time dependence is taken to be e -i_t then Z is

related to the two real parameters of the liner R, the

resistance, and X, the reactance, by

Z=R-iX.

Ref. [44] provides a good introduction and many

references to the impedance of liners. In the past,

impedance boundary condition was analyzed in the

frequency domain. For time marching computa-

tion, an equivalent time-domain impedance bound-

ary condition is required.

Presently, two entirely different approaches for de-

veloping time-domain impedance boundary condi-

tion are available. Both approaches have limita-

tions. Ozyoruk & Long 45'46, following the works

of Sullivan 47 and Penny 4s in computational electro-

magnetics, employed the z-transform method in im-

plementing the impedance boundary conditions in

the time-domain. This method provides more flexi-

bility in fitting the frequency dependence of the re-

sistance and reactance of the liner to experimental

measurements. Tam & Auriault 49 used a differen-

tial formulation of time-domain impedance bound-

ary condition. Both methods are constrained by

spurious numerical instability. For treatment of

broadband noise problems, the formulation of Tam

& Auriault is restricted by numerical instability to a

3 parameter model. Further improvements on these

methods are obviously desirable.

2.4 Radiation and Outflow Boundary Condi-

tions with Incoming Acoustic and Vortlclty

Waves

As depicted in figure 2, there are aeroacoustics

problems for which unsteady incoming acoustic or

vorticity waves are an important part of the prob-

lem. For this class of problems, the boundary condi-

tions must allow the incoming disturbances to prop-

agate in and the outgoing disturbances to leave the

computation domain smoothly. There are two ways

to treat these boundary requirements. We will refer

to them as the nonhomogeneous boundary condi-

tions method and the split variable method.

The nonhomogeneous boundary conditions ap-

proach recognizes that the computed variables are

the direct sum of the incoming and outgoing distur-

bances. Thus on using subscripts 'in' and 'out' to

denote the part of the flow variables associated with

the incoming and outgoing disturbances, the outgo-

ing disturbances can be expressed as the difference

between the computed variables and the prescribed

incoming disturbances; e.g.,

Pout = P -- Pin" (20)

Now at the inflow boundary, the outgoing acous-

tic waves satisfy the radiation boundary condition

(5). Therefore, by substitution of (20) and similar

expressions into (5), a set of nonhomogeneous radi-

ation boundary conditions is obtained,

+ v0r b7
p

Pin ]

0 1] /._°/.

I. Pin J

(21)

In (21) the nonhomogeneous terms on the right

side represent the known incoming waves. In Ref.

[42], the plane acoustic wave scattering problem was

calculated numerically using (21) as the boundary

conditions. It has been found that if the compu-

tation is to be carried out with low spatial resolu-

tion, then an improvement in the numerical accuracy

is obtained if the exact finite difference solution of

the incoming disturbances is used on the right side

of (21). At an outflow boundary, nonhomogeneous

outflow boundary conditions similar to (21) may be

derived from (6).



Anotherway to generate the incoming waves is

to divide the computation domain into an interior

and a boundary region. In the interior region, the

computed variables are the sum of the outgoing and

incoming disturbances. In the boundary region (3

mesh points for the 7-point DRP scheme), the gov-

erning equations are either the boundary conditions

derived from asymptotic solutions of Section 2. l(b)

or the absorbing boundary conditions of Section

2.1(c) or the PML equations of Section 2.1(d). The

computed variables are the outgoing disturbances

only. Whenever a derivative stencil extends to the

other region, the value of the variable required can

be obtained by using (20) and similar equations.

Here the inflow variables are given so either p or

Pout, whichever is appropriate can be easily found.

In this way, the incoming disturbances are generated

at the stencil overlapping part (overlapping with the

boundary region) of the interior region.

2.5 Radiation Boundary Conditions for

Ducted Environment

For the fan noise radiation problem illustrated in

figure 2, when the sound waves, generated by the

cutting of the ingested vorticity waves by the ro-

tor, reach the opening of the jet engine inlet, part of

them are reflected back. The reflected waves would

be propagating in the form of duct modes if the in-

ternal area of the engine inlet varies slowly. Unlike

acoustic waves in the free field, duct modes are dis-

persive. They are formed by the continuous reflec-

tion of sound waves by the walls of the duct. Their

propagation characteristics are very different from

acoustic waves in free space. As a result, not all the

radiation and outflow boundary conditions discussed

in Section 2.1 are applicable along boundary AB of

figure 2.

In the Second CAA Workshop on Benchmark

Problems 4°, several benchmark problems require the

use of radiation boundary conditions in a ducted en-

vironment for their solutions. For single frequency

time periodic problems, Tam et al. 5° developed a

set of such radiation boundary conditions using the

duct modes as the basis. Hu and Manthey 2s, on

the other hand, used the PML and variable splitting

method to form such radiatiofi boundary conditions.

It is necessary to point out that in a ducted environ-

ment, the dispersion relation of the PML equations

are not the same as those given in (8) and (9). They

are related to the duct modes. To ensure numeri-

cal stability, artificial selective damping is again re-

quired in the PML. The value of the artificial mesh

Reynolds number, Ra, necessary to ensure stability

can be found in much the same way as in Section

2.1(d).

3. Boundary Conditions for Real Problems

The numerical boundary conditions discussed in

the above section are based largely on simplified

models. Real problems, however, are generally more

complex. In many of these problems, numerical

boundary conditions do not simply play a single

role such as letting the outgoing disturbances exit

smoothly with minimal reflections. They are to per-

form multiple tasks. In most problems that are of

technological significance, the mean flow is nonuni-

form. Further, because of computer memory con-

straint and run time limitation, the size of the com-

putation domain is usually smaller than ideal. The

small computer domain, forcing the boundary to be

closer to the source or objects in the flow, puts addi-

tional demand on the design of high quality numer-

ical boundary conditions. There does not appear

to have a systematic way of classifying numerical

boundary conditions for real problems. We will il-

lustrate, by specific examples, below how some of

the model boundary conditions can be modified and

extended for applications in practical CAA problems

of current interest.

3.1 Radiation Boundary Conditions for Sim-

ulating Jet Noise Generation

Let us return to the computation domain for sim-

ulating jet noise generation in figure 1. For practical

reasons, the size of the computation domain is typ-

ically 30 to 40 diameters in the axial direction and

20 to 30 diameters in the radial direction. These

dimensions are smaller than those of the anechoic

chambers in most physical experiments. Because of

the proximity of the computation boundary to the

jet flow, the boundary conditions along boundary

BCDE are burdened with multiple tasks. Obvi-

ously, the boundary conditions must be transparent

to the outgoing acoustic waves radiated from the jet.

In addition, the boundary conditions must impose

the ambient conditions on the numerical solution.

In other words, they specify the static conditions far

away from the jet. Furthermore, the jet entrains a

large volume of ambient fluid. The entrainment flow

velocity at the computation boundary is although

small yet not entirely negligible. For high quality nu-

merical simulation, the boundary conditions must,

therefore, allow the entrainment flow to enter the

computation domain smoothly as well.

In a recent work, Tam & Dong 51 considered the

need to formulate a set of radiation as well as out-



flow boundary conditions for situations where the

mean flow was nonuniform. They provided a gener-

alization of the asymptotic radiation boundary con-

ditions (5) and outflow boundary conditions (6). Let

p, u, v and _ be the weakly nonuniform mean flow

at the boundary of the computation domain, an ap-

propriate set of radiation boundary conditions, in 3

dimensions, was found to be,

v(o, r) ot

P

Q2

32 2[(z- x,)2+ r ]2

u. Q(x - x,)

= 4.[(x- + r2] +""

v_ Qr

a"_ = 4_r[(x- x°) 2 + r2]] +""

Pe 1 Q2
'1- . . °

pooaL 7

(23)

+ sinO +cos Ox + (r 2+x2)½

:0
p-_

where (r, ¢, x) are the cylindrical coordinates, 0 is

the polar angle (in spherical coordinates) with the

z-axis as the polar axis. (u, v) are the velocity com-

ponents in the axial (x) and radial (r) directions.

V(O, r) = _ cos 0 + _ sin 0 + [_2 _ (_ cos 0 - _ sin 0) 2] ½

and _ is the speed of sound.

In their work on numerical simulation of the gener-

ation of axisymmetric screech tones from imperfectly

expanded supersonic jets (see Ref. [52] for a descrip-

tion of the jet screech phenomenon) Tam & Shen 53

considered a computation domain nearly identical

to that of figure 1. They used (22) as the basis

to develop the necessary radiation-entrainment flow

numerical boundary conditions. It was recognized

that the entrainment flow at the boundary of the

computation domain would be influenced by the jet

flow outside the computation domain. To develop an

asymptotic entrainment flow solution Tam & Shen

divided the jet into many evenly spaced segments

as shown in figure 7. The jet extended beyond the

computation domain to 60 diameters downstream.

The mass fluxes across the boundaries of each seg-

ment was found using empirical jet flow data. The

difference of the mass fluxes.at the two ends of each

segment of the jet gave the amount of entrainment

flow for the particular segment. This entrainment

was then simulated by a point source located at the

center of the segment. The asymptotic solution for

a point sink located on the z-axis at z° in a com-

pressible fluid is given by (a subscript 'e' is used to

indicate entrainment flow),

where poo, aoo and 7 are the ambient gas density,

sound speed and the ratio of specific heats. Q, the

strength of the sink, has dimensions of pooaoo D2; D

is the jet diameter. On replacing (_, _,_,p) of (22)

by (p,, u,, ve,p,) of (23) and by summing over the

contributions from all the sinks, the desired radia-

tion entrainment flow boundary conditions are ob-

tained.

Figure 8 shows the entrainment flow streamline*

of a Mach 1.13 cold jet from a convergent nozzle ob-

tained by numerical simulation. It is worthwhile to

point out that along the right-hand boundary BC,

the mean flow actually flows out of the computation

domain, exactly as observed experimentally in the

case of a free jet. This streamline pattern would be

very different had the entrainment flow outside the

computation domain not been included in the sink

flow calculation. If a cut-off were imposed at the

right boundary of the computation domain, a recir-

culation flow pattern would emerge. This, however,

is inconsistent with experimental observation.

3.2 Outflow and Jet Axis Boundary Condi-

tions for Simulating Jet Noise Generation

Jets are inherently unstable. The instability

waves of jets play an important role in jet noise

generation 52. The instability waves, once excited at

the nozzle lip region, grow rapidly as they propagate

in the downstream direction. Since the jet spreads

out in the downstream direction, it follows that the

shear gradient and hence the instability growth rate

decreases farther and farther downstream. Eventu-

ally the wave would reach a location downstream

where it becomes damped. From this point on, the

wave amplitude decreases continuously all the way

to the outflow boundary. In the work of Tam &

Shen 53 the outflow boundary was located at 30 jet

diameters downstream. At this distance, the ampli-

tudes of the decaying instability waves (sometimes



referred to as large turbulence structures when there

is less coherence) are not small. To account for the

weak nonlinearities of the outflow disturbances, it is

possible to nonlinearize the outflow boundary con-

ditions (6) by replacing the linearized terms by their

nonlinear counterpart. This yields (in cylindrical co-

ordinates), J

ap cOp l ( Op cOp)+ = -j -g-i+

cOu cOu cOu 1 cOp (24)
=- pox

Ov Ov Ov 10p

O--i+ + - pot

10p Op Op P - P = 0

V(O) Ox + c°S0_z + sin0_r + (x 2 + r2)½

where _ is the static pressure calculated by the en-

trainment flow model at the edge of the jet flow at

the outflow boundary. In their jet screech tones sim-

ulation work, Tam &Shen 53 reported that (24) pro-

vided very satisfactory numerical results. No reflec-

tion of any significance had been detected.

In cylindrical coordinates, the governing equations

have an apparent singularity at the jet axis (r --> 0).

For instance, the continuity equation may be written

in the form,

Op copv copu 1 Opw pv = 0. (25)
N + -g7 + -b-7 + + V-

To handle the apparent singularity, a jet axis bound-

ary condition may be derived by taking the formal

limit of (25) as r_ 0. On noting that asr _ 0,

v _ 0 while w --+ 0 faster than r, the formal limit of

(25) is,

Op 20PV Opu
0-7+ Or + = o. (26)

(26), which has no apparent singularity at r = 0, is

to be enforced at all the mesh points along the jet

axis.

Experience indicates that the use of (26) at r : 0

inevitably leads to the generation of spurious short

waves at the x-axis in a time marching simulation.

The reason for this is simply that there is an abrupt

change in the governing equations between the jet

axis and the first row of mesh point off the axis.

Such discontinuous change always leads to the radia-

tion of short waves. For problems with axisymmetry,

one may use the half-mesh displacement method s°

to avoid the discontinuity. The half mesh displace-

ment method does not involve a change in governing

equations. It depends on the extension of the com-

putation domain to the region r < 0 by symmetry

and antisymmetry arguments.

3.3 Numerical Simulation of Airframe Noise

Generation

During landing with the wing flaps of an aircraft

down, the unsteady flow over the airframe is an im-

portant source of noise. In a series of experimental

investigation, Kendall & Ahtye 54 identified a num-

ber of airframe noise sources; referred to as the flap

side-edge noise, gap noise and trailing edge noise.

One possible gap noise generation mechanism is un-

steady flow separation around the gap between the

wing and the flap. This possibility was investigated

using a 2-D numerical simulation by Thies, Tam &

Reddy ss. For simplicity, both the wing and flap

were approximated by fiat plates as shown in fig-

ure 9. This figure, from the numerical simulation,

shows large unsteady separation on the suction side

of the flap. In performing the numerical simulation,

a relatively small computation domain was used. At

a speed of Mach 0.15 and an angle of attack of 6

degrees, there is a steady loading on the wing-flap

combination. The steady loading produces a dis-

tortion on the mean flow that extends all the way

to the boundary of the computation domain. To

achieve a reasonably accurate simulation, the nu-

merical boundary conditions must not only allow the

unsteady disturbances to leave the computation do-

main but also account for the mean flow distortion.

Unlike the model problems of section 2 or the work

of Ref. [51], the difficulty here in formulating a set

of radiation boundary conditions is that the mean

flow is unknown a priori.

In order to take into consideration the change in

the mean flow at the boundary of the computation

domain due to the presence of the wing-flap com-

bination, one can first determine the forms of the

asymptotic solutions of both the mean flow and the

unsteady disturbances. This can be done by solving

the linearized Euler equations. On using the wing

chord L as the length scale, uoo (incoming velocity)

as the velocity scale, L__L_as the time scale, p_ (the

ambient gas density) as density scale and poou_ as

the pressure scale, the dimensionless linearized Euler

equations are,

Op
Ov)_- + cos ctoz-- + sm a =--0y+ -_z + _y

0

Ou Ou Ou _ Op (27)
_- + cos a_ + sin a COy Ox
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Ov Ov Ov Op

N- + sin'  = -N

Op Op . Op l(Ou Ov)_-+cosa_--_x+Slna_---- +Oy .-_ --_x N+ =0

where M is the Mach number and ct is.the angle of

attack. The time independent solution of (27) can

be found by introducing a velocity potential ¢(x, y)

defined by

00 0O

U= _"X' _= --0y

( oop=- costr-ff_-z+sina , p= M2p.

Substitution of (28) into (27) gives,

(28)

Since only the leading term is kept in (30), (31) is

valid to order r -2 for large r. On the other hand, the

asymptotic radiation boundary conditions for acous-

tic waves in a uniform mean flow, from (5), is

x ;
p

A combined asymptotic boundary conditions in 2

dimensions that reduces to (32) for the time depen-

dent component and (31) for the time independent

component is,

( 190t Orr01) (r-I) (33)+ =0+o
P

(cos a _----_+ sin a_----_) •

1(92, 02¢ 
M2 _-O--_x_ + Oy 2] =0.

(29)

(29) can be manipulated into the Laplace equa-

tion by introducing a rotation and dilation of coordi-

nates. The general solution of the Laplace equation

can be expressed in the form of a Fourier series in po-

lar coordinates. The lowest order nontrivial solution

for large r is in the form of a logarithmic function.

When rewritten in the Cartesian coordinates, it is

found,

(30)

On following the same reasoning, it is easy to de-

rive a corresponding set of outflow boundary con-

ditions suitable for use in a relatively small com-

putation domain where weakly nonuniform twc_-

dimensional mean flow is present. The equations

are,

Bp 8p . Op

Ot + cos a _z +sm a _---Oy

= M 2 -- + cosa_ + sina_yy

Ou Ou Ou Op

O--t-+ cos a Oxx + sin a _ -Oy Oz

Ov Ov Ov Op

+ cos a_-_x + sin aw-- = -9-7 aV OV

10p Op p

v ( 9-7+ + -,.= o.

(34)

where A is an unknown constant. In the gap noise

problem, A represents the as yet unknown loading

on the wing-flap combination.

It is straightforward to find by substituting (30)

into (28), after some algebra, the following asymp-

totic results.

_r + : = O. (31)

P

Thies et al. ss implemented (33) and (34) in their

numerical simulations of gap noise and obtained very

satisfactory results. Figure 10 shows the sound-

pressure-level (SPL) contours in dB from the numer-

ical simulation. The SPL contours below the wing

form nearly concentric circles centered at the gap

between the wing and the flap. This indicates that

the source of noise originates from the gap region

in agreement with the experimental observations of

Kendall &: Ahtye 54.
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4. Concluding Remarks

During the last few years, a good deal of progress

has been made in the development of numerical

boundary conditions for CAA. Numerical examples

have shown that many of these boundary conditions,

when used in conjunction with high order finite dif-

ference schemes, are capable of providing high qual-

ity computational results. However, a closer scrutiny

reveals that the predominant fraction of these recent

works is devoted primarily to radiation and outflow

boundary conditions. Other equally important types

of boundary conditions such as wall boundary con-

ditions, impedance boundary conditions do not ap-

pear to have received enough attention. The need

for these other types of boundary conditions would

definitely be greater in the future. For they are cru-

cial to the application of CAA methods to fan noise,

duct acoustics, propeller and turbomachinery noise

problems.

In this paper, two very important items directly

related to numerical boundary conditions have not

been satisfactorily discussed. The first is the dis-

cretization and implementation of the numerical

boundary conditions. Needless to say, the discretiza-

tion process affects the accuracy and performance

of a proposed boundary condition in a differential

form. The implementation of the discretized bound-

ary condition in relation to the time marching high

order finite difference scheme used for the interior

points would also have a significant impact on the

overall accuracy and stability of the numerical solu-

tion. The second item is error estimate. From the

point of view of designing a computational algorithm

for the solution of a class of aeroacoustics problems,

a priori estimate is essential. Here order of magni-

tude estimate is not very helpful. The real need is a

quantitative error estimate. Most unfortunately, so

far, very little work has been done. It is hoped that

investigators interested in CAA would accept these

two items as their immediate challenges.
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Abstract

Recently, perfectly matched layer (PML) as an ab-

sorbing boundary condition has found widespread

applications. The idea was first introduced by

Berenger for electromagnetic waves computations.

In this paper, it is shown that the PML equations

for the linearized Euler equations support unstable

solutions when the mean flow has a component nor-

mal to the layer. To suppress such unstable solutions

so as to render the PML concept useful for this class

of problems, it is proposed that artificial selective

damping terms be added to the discretized PML

equations. It is demonstrated that with a proper

choice of artificial mesh Reynolds number, the PML

equations can be made stable. Numerical examples

are provided to illustrate that the stabilized PML

performs well as an absorbing boundary condition.

In a ducted environment, the wave mode are dis-

persive. It will be shown that the group velocity

and phase velocity of these modes can have opposite

signs. This results in a band of transmitted waves

in the PML to be spatially amplifying instead of

evanescent. Thus in a confined environment, PML

may not be suitable as an absorbing boundary con-

dition.

1. Introduction

Recently, Berenger 1'_ succeeded in formulating

an absorbing boundary condition for computational

1' Copyright C)1998 by C.K.W. Tam. Published by the Amer-

ican Institute of Aeronautics and Astronautics, Inc. with

permission.

* Distinguished Research Professor, Department of Mathemat-

ics. Associate Fellow AIAA

** Graduate Student, Department of Mathematics.

*** Visiting Scholar, Department of Mathematics, Florida State

University.

electromagnetics that has the unusual characteris-

tic that when an outgoing disturbance impinges on

the interface between the computation domain and

the absorbing layer surrounding it, no wave is re-

flected back into the computation domain. In other

words, all the outgoing disturbances are transmit-

ted into the absorbing layer where they are damped

out. Such a layer has come to be known as a per-

fectly matched layer (PML).

Since its initial development, PML has found

widespread applications in elastic wave propaga-

tion a, computational aeroacoustics and many other

areas. Hu 4 was the first to apply PML to aeroa-

coustics problems governed by the linearized Euler

equations; linearized over a uniform mean flow. He

has since extended his work to nonuniform mean flow

and for the fully nonlinear Euler equations s. Further

applications of PML to acoustics problems including

wavemodes in ducts can be found in the most recent

works of Hu and coworkers 6'7. In these references,

examples are provided that indicate that high qual-

ity numerical solutions could be found with PML

used as radiation or outflow boundary conditions.

In open unbounded domains, acoustic waves are

nondispersive and propagate with the speed of sound

relative to the local mean flow. Inside a duct, the

situation is completely different. Acoustic waves are

repeatedly reflected back by the confining walls. For

ducts with parallel walls, the continuous reflection of

the acoustic waves by the wall leads to the forma-

tion of coherent wave patterns called duct modes s'9.

Unlike the open domain, duct modes are disper-

sive with phase and group velocities vary with ax-

ial wavenumber. Because of the dispersive nature

of the duct modes many radiation boundary con-

ditions that work well in open domains are known

to be inappropriate for ducted environments. For

this reason, Tam 1° in a recent review on numerical



boundaryconditionsfor computationalaeroacous-
tics,suggestedthat boundaryconditionfor ducted
environmentberegardedasacategoryofitsown.

Therearethreeprimaryobjectivesin thiswork.
First,weintendto showthat in thepresenceof a
meanflow normal to a PML, the standard PML

equations of the linearized Euler equations support

unstable solutions. Earlier Tam l° had pointed out

that the PML equations with mean flow have un-

stable solutions. However, he did not show that the

existence of instabilities is due to the mean flow com-

ponent normal to the layer. The origin and char-

acteristics of these instabilities are investigated and

analyzed. It is interesting to mention that in his

earliest work, Hu 4 reported that his computation

encountered numerical instability. But by applying

numerical filtering, he was able to obtain stable so-

lutions. In light of our finding, we believe that what

Hu encountered was not instability of his numerical

scheme but that his numerical solution inadvertently

excited the intrinsic unstable solution of the PML

equations. Not directly related to the instability of

the PML equations, Abarbanel and Gottlieb 11 re-

cently analyzed the electromagnetic PML equations.

They concluded that the equations are only weakly

well-posed.

Second, we will show that the instability is not

very strong, namely, the growth rates are small.

Also the instabilities are confined primarily to short

waves. It is, therefore, possible to suppress the insta-

bilities by the addition of artificial selective damping

terms 12 to the discretized PML equations. It is im-

portant to point out that artificial selective damping

eliminates mainly the short waves and has negligible

effect on the long or the physical waves. Thus the

addition of these damping terms does not effect the

perfectly matched conditions of the PML.

Third, we will show that a perfectly matched layer

may not be suitable as an absorbing boundary con-

dition for waves in a ducted flow environment. The

major difference between acoustic waves in an open

domain and acoustic waves inside a duct is that in an

unbounded region acoustic waves are nondispersive

whereas duct modes are dispersive. It will be shown

that in the presence of a mean flow the group and

phase velocity of the duct modes can have opposite

signs. Because of this, a band of transmitted waves

will actually grow spatially instead of being damped

in the PML. In other words, the PML equations do

not damp these wave modes as absorbing boundary

condition ought to do. The exception is when there

is no mean flow in the duet. In this special case, all

the transmitted waves are spatially damped.

In section 2, the use of PML for open domain prob-

lems is discussed. The stability of the PML gov-

erning equations are investigated. It will be shown

that the addition of damping terms to form the PML

equations can actually cause the vorticity and acous-

tic wave modes to become unstable. The splitting

of the variables in formulating the PML equations

leads to a higher order system of equations. This

higher system supports extra solutions. These extra

or spurious solutions are found to become unstable

when the damping coefficient is large. Numerical ex-

amples are provided to illustrate the spread of the

unstable solution from the PML back into the inte-

rior of the computation domain.

In section 3, the effect of the addition of artifi-

cial selective damping terms to the discretized PML

equations is investigated. It is shown that with an

appropriate choice of mesh Reynolds number, the

unstable solutions of the PML equations can be sup-

pressed. Numerical examples are given to demon-

strate the effectiveness of the modified PML as a

radiation/outflow boundary condition.

Section 4 deals with the theory and application of

PML to ducted internal flow problems. An eigen-

value analysis is carried out to show the existence

of a band of frequency for which the PML exerts no

damping on the acoustic duct modes. These wave

modes actually would grow in amplitude as they

propagate through the PML. Numerical results are

provided to illustrate the existence of this kind of

amplifying ducted acoustic modes.

2. Open Domain Problems

Let us consider the use of PML as absorbing

boundary condition for the solution of the linearized

Euler equations (linearized over a uniform mean

flow) in a two-dimensional open domain as shown

in figure 1. We will use Ax = Ay (the mesh size) as

the length scale, a0 (the sound speed) as the veloc-

ity scale, _ as the time scale, p0ao2 (where P0 is the
u o

mean denmty) as the pressure scale. The dimension-

less governing equations in the PML are formed by

splitting the linearized Euler equations according to

the spatial derivatives. An absorption term is added

to each of the equations with spatial derivative in

the direction normal to the layer. For example, for

the PML on the right boundary of figure 1, the gov-

erning equations are 4,

Oul 0

"--_ + O'U 1 + Mx _--_x (I11 + u2)

+ O(pl + p_) = 0
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Ot

into the entire F plane except for the slit ADC. But

since/32 is real and positive, for subsonic mean flow

the point/32 lies outside the image. Thus no value of

to in the upper-half to-plane would satisfy equation

(2) indicating that there is no unstable solution.

+ v2) + _(pl + p_)
=0

vp.____£,+ Crpl + Mx _7(Pl + P2)
Ot

(1)

+ _(Ul + u2) =
0

@2 cOcO'-'-['+My"_yy(Pl+P2)+ (Vl +v2) =0

where Mx and My are the mean flow Mach num-

bers in the x and y directions, a is the absorption

coefficient.

Suppose we look for solutions with (x, y, t) depen-

dence in the form exp[i(c_x +/3y - tot)]. It is easy

to find from (1) that the dispersion relations of the

PML equations are,

aM_ __ - 0 (2)
1 - _5¥_-_ - _ (to+/_)2 _ -

1 aM_ /3My = O. (3)
to+ icr to

In the limit a _ 0, (2) and (3) become the well-

known dispersion relations of the acoustic and the

vorticity waves of the linearized Euler equations.

2.1. Mean Flow Parallel to PML

2.2. Unstable Solutions of the PML Equa-

tions

For M_ ¢ 0, the PML equations support unstable

solutions. It is to be noted that, unlike the origi-

nal dispersion relation of the acoustic waves, equa-

tion (2) is a quadric equation in to. It has two extra
roots in addition to the two modified acoustic modes.

For small _r, the two spurious roots are damped but

one of the modified acoustic roots is unstable. For

larger tr, numerical solutions indicate that one of the

spurious roots becomes unstable. In any case, the

equation splitting procedure and the addition of an

absorption term, both are vital to the suppression

of reflections at the interface between the compu-

tation domain and the PML, inadvertently, lead to

instabilities.

For small _, the roots of (2) and (3) can be found

by perturbation. Let,

to(o)= 4°)+  to?)+ +... (5)

to(v) = to_)+ crtol _) + (r2to(_) +... (6)

where the roots of (2) and (3) are designated by

a superscript 'a' (for acoustic waves) and 'v' (for

vorticity waves). Substitution of (5) and (6) into (2)

and (3), it is straightforward to find,

to(0°)=to+, to_, 0, 0 (7)

Dispersion relations (2) and (3) behave very differ-

ently depending on whether there is any mean flow

normal to the PML. When the mean flow is parallel

to the layer; i.e., M_ = 0, the solutions are stable.

This is easy to see from (3) for the vorticity wave.

Physically, if the mean flow is parallel to the PML,

the vorticity waves in the computation domain, be-

ing convected by the mean flow, cannot enter the

layer and hence would not lead to unstable solution.

To show that for M_ = 0 all the solutions of (2)

are stable, a simple mapping will suffice. Rewrite

(2) in the form

a2to2 =/32. (4)
Y = (to-/3My)2 (to+ i_)2

Figure (2) shows the image of the upper-half to-plane

in the F plane. The upper-half to-plane is mapped

where

to+ = (aMx +/3My) 4- (a2 +/32)½ (8)

_a2_aM_(a2+/32)_ ]
to_a) = i

_2 +/3_ + (_M_ +/3My)(_ + _2)_ (9)

to(u) = aMx +flMy, 0 (9)

to_v) -i (11)
- t M______(p_._•

1 + _M=]_,a]

Clearly ifto_ °) or to__) has a positive imaginary part,

the mode is unstable. It is easy to show, especially

in the case M_ = 0, that there are always values of

a and/3 such that to_°) of (10) is purely imaginary



andpositive.Similarly,from(11)for _ < 0 and

[_[ > M_ w_)is also purely positive imaginary.
My '

Thus the PML equations in the presence of a uniform

flow with M_ :_ 0 support unstable solutions.

The unstable solutions of dispersion relations (2)

and (3) can also be found numerically. For a given

(a, fl) the growth rates, wi, of the unstable solutions

can be calculated in a straightforward manner. Fig-

ure (3) shows the wl contours of the most unstable

solution of equation (2), the acoustic mode, in the

a - fl-plane for the case Mx = 0.3, My = 0.0 and

a = 1.5. Figure 4 shows a similar plot for the vortic-

ity wave mode (equation (3)). In these figures only

the unstable regions are shown. It is clear that there

are instability waves over a wide range of wavenum-

bets. Numerical results indicate that, in general, the

Unstable regions expand as the flow Much number or

the damping coefficient a increases.

the excited unstable solution in the PML. Finally,

figure 5d (at t = 130) shows the spread of the un-

stable solution back into the interior computation

domain. Figure 6 gives the corresponding waveform

of the vorticity wave pulse. Figure 6d clearly indi-

cates that the spread of the unstable vorticity waves

in the PML can quickly contaminate the entire com-

putation domain.

Figures 7 and 8 are similar plots illustrating the

excitation of the acoustic mode unstable solution in

the PML. The Much number and damping coeffi-

cient are Mx = 0.5, My = 0.0 and o" = 1.5. The

initial disturbance consists of a pressure pulse given

by,

exp[
9 (11)

U_Y_O.

2.3. Numerical Examples

The nature and characteristics of the unstable

waves associated with the acoustic mode and the

vorticity mode are quite different. To illustrate the

excitation of these unstable solutions in the PML by

disturbances propagating or convecting from the in-

terior computation domain, a series of numerical ex-

periments has been carried out. Figure 5 shows the

results of the case of a vorticity pulse convected into

the PML when Mx = 0.3, My = 0.2 and _ = 1.0.

The initial conditions for the pulse are (same as the

initial conditions used by Tam & Webb lz)

p=p=O

(10)

-004  x [
The DRP time marching scheme 13 is used in the

simulation. The PML region extends from x = 20

to the right boundary of the computation domain.

At the outermost boundary, the boundary condition

Pl ---- P2 -- Pl _ P2 ---- Ul -" U2 _ Vl _ "v2 "- 0 are

imposed. Plotted in figure 5 are contours of the u

velocity component. Figure 5a shows the initial pro-

file of the contours at t = 0. Figure 5b, at t = 50,

reveals that there is damping of the vorticity pulse

as it begins to enter the PML. This damping is the

result of the built-in damping, or, of the PML. Fig-

ure 5c, at a later time t = 90, shows the growth of

The acoustic pulse generated by the initial distur-

bance propagates at a speed equal to the sound

speed plus the flow velocity. Thus, the pulse leaves

the small interior computation domain (50 x 50) very

quickly. Figure 7a shows the pressure contours at

t = 140. At this time, the acoustic pulse is gone.

The contours are associated with the excited un-

stable waves of the acoustic mode. These unsta-

ble waves move at a slow speed. Figure 7b is at

t = 200. On comparing figures 7a and 7b, it is ev-

ident that there is significant growth of the unsta-

ble waves. Upon reaching the outermost boundary

of the computation domain the unstable waves are

reflected back as short waves. This is illustrated

in figure 7c. The reflected short waves propagate

at ultrafast speed. They contaminate the computa-

tion domain in a short period of time as shown in

figure 7d. Figure 8 shows the growth of the pres-

sure waveform of the unstable acoustic mode waves

in the PML before they reach the outer boundary

of the computation domain. The measured growth

rate has been found to agree with that calculated by

the dispersion relation.

3. Development of a Stable PML

3.1. Artificial Selective Damping

To ensure practicality, the thickness of a PML

would normally be limited to around 15 to 20 mesh

spacings. For a PML with such a thickness, it is easy

to show that if the transmitted wave from the com-

putation domain is to be reduced by a factor of l0 s

in the presence of a subsonic mean flow, the damp-

ing coefficient a of (1) should have a value of about



1.5.Bysolvingthedispersionrelations(2)and(3)
numerically,it hasbeenfoundthat for a = 1.5 the

unstable wave solutions have only a modest rate of

growth. Moreover, these waves, generally, have short

wavelengths. Mild instabilities of this type can be

effectively suppressed by the addition of artificial se-

lective damping terms 12J4 to the discretized govern-

ing equations. The advantage of using artificial se-

lective damping is that the damping is confined pri-

marily to short waves. Thus, the perfectly matched

condition is not adversely affected for the long waves

(the physical waves) of the computation.

Consider the first equation of (1). Let (£,m) be

the spatial indices in the z- and y-directions. The

semi-discretized form of this equation using the DRP

scheme with artificial selective damping terms added

to the right side is,

3
d

-_(ul)t,m + a(Ul)t,m + ___ aj[Mx(ul - u2)t+j,m]
j=-3

+(Pl+P_)t+j,m] (12)

3

= -J--- 3-? +

where dj's are the artificial selective damping

coefficients 14 and RA = aco _ is the artificial mesh

Reynolds number. Terms similar to those on the

right side of (12) are to be added to all the other

discretized equations.

For the purpose of suppressing unstable solutions

in the PML, we recommend the use of a damping

curve with a slightly larger half-width then those

given in ref. [14]. In this work, the following damp-

ing coefficients (half-width = 0.351r) are used.

do = 0.3705630354

dl = d-1 = -0.2411788110

d2 = d-2 = 0.0647184823

(13)

d3 = d-a = -0.0088211899.

The damping rate of the artificial selective damp-

ing terms can be found by taking the Fourier trans-

form of the right side of (12) (see [12]). Let (a,fl)

be the transform variables in the (z,y)-plane. The

rate of damping for wavenumber (a, fl) is,

damping rate = _----_-D(a, fl)
(14)

where

3

= d, ° + e'i').
j=-3

(15)

Contours of the damping function D(a,fl) in the

a - a-plane are shown in figure 9.

To demonstrate that suppression of the unstable

solutions can be achieved by adding artificial selec-

tive damping terms to the discretized form of equa-

tion (1), let us consider the unstable solution with

growth rate given by figure 3. On combining the

growth rate of figure 3 and the damping rate of fig-

ure 9 with RA = 1.421, the resulting growth con-

tours are shown in figure 10. Outside the dotted

lines (wavenumber inside the vertical dotted lines

corresponds to wavelengths too long to fit into a 15

mesh spacing PML) the combined effects result in

damping of the waves. Thus all the instabilities of

the PML equations are effectively suppressed.

3.2. Distributions of _r and RT, t in the PML

In the implementation of PML as an absorbing

boundary condition, Hu 14 suggested letting tr vary

spatially in the form,

),

where D is the thickness of the PML, d is the dis-

tance from the interface with the interior domain

and A is a constant. With the inclusion of artifi-

cial selective damping, we have found that the use

of a well-designed smooth distribution of tr and RT, 1

at the interface region is important if the perfectly

matched condition is to be maintained in the finite

difference form of the system of equations.

Figure 11 shows a distribution of a and RT, 1 we

found to work well with the 7-point stencil DRP

scheme. The R_ 1 curve is zero for the first two

mesh points closest to the interface. It attends its

full value (RTxl)max at the 6 th mesh point. A cubic

spline curve is used in the transition region. With

this arrangement, the first point that artificial damp-

ing occurs is the third point from the interface. This

allows the use of the 7-point symmetric damping

stencil in the PML except the last three points at

the outer boundary. For these points, the 5-point

and the 3-point stencil 14 should be used instead.

The a curve begins with the value a = 0 at

the fifth mesh point from the interface. The full

value trma x is reached at 8 mesh points further away.

Again, a cubic spline curve is used in the transition



region. The choice of starting the a curve at the fifth

point is to ensure that the R_x 1 curve has attained

its full value when cr becomes nonzero.

3.3. Numerical Examples

[Or _Or NOv 2__w] _2

Op
= --- (18b)Or

To demonstrate the effectiveness of using artificial

selective damping terms to suppress the instabilities

of the PML equations, the numerical examples of

section 2.3 are reconsidered here. Artificial damping

is now included in the simulations. Figure 12 shows

the u-contours of the vorticity waves (M_ = 0.3,

M r = 0.2, <rm = 1.0, (RT_l)max = 1.0) as they are

convected from the interior domain to the PML. The

vorticity wave packet is steadily damped. No sign

of unstable waves of the type shown in figure 5 is

detected. Figure 13 shows the corresponding wave-

form of u at a few selected times. It is clear that

the pulse is damped continuously once it propagates

into the PML. The case of the acoustic disturbance

has also been repeated with similar results. Based

on these findings, it is concluded that a stable PML

can be developed by the inclusion of artificial selec-

tive damping. Such a PML performs very effectively

as an absorbing boundary condition in an open do-

main.

-P -_ + Ox + v-_r + -r -_ +

10p

r 0¢ (18c)

Ou _Ou dg _Ou] Op (lSd)3y+uu_ +v_+ 7Nj =-_

Op Op + _ Op -_2
0-7+_ 7_ +-or

[} Ovr low Ou]+77 -_-r+rN+_ =0 (18e)

where 7 is the ratio of specific heats. The boundary

condition at the duct wall is

= 1, v = 0 (19)

4. PML in Ducted Environments

We will now consider the use of PML inside a cir-

cular duct of radius R. Dimensionless variables with

respect to length scale R, velocity scale at (speed of

sound at r = R), time scale & density scale P,
QI '

(mean density at r = R) and pressure scale p_a _' will

be used. The velocity components in the (x,r,¢)

directions of a cylindrical coordinate system are de-

noted by (u, v, w). For an inviscid compressible flow,

the most general mean flow (designated by an over-

bar) is

=_(_), _=0, _=_(_), _=_(_)

,/ r
r

(17)

Solutions of (18) and (19) representing propagat-

ing wave modes in the duct may be written in the

form,

P

I_(_)I
=Re | g(r) | exp[i(kx + me -- wt)] .

/_(_)/
L_(_) _1

(20)

Substitution of (20) into (18) and (19) leads to the

following eigenvalue problem.

P+_(-P_")- ,,,--V ,,,

_ m _ k
(21a)

Small amplitude

mean flow (17) are

let equations. They

disturbances superimposed on

governed by the linearized Eu-

are, - _ _or / - "-"_-'_rj _or

Op 1 0 _ Op Op

07 + -;_ (-P'_)+ -;-_ + _ o--g w dr
(21b)

(10_ 0u)+Fk_o¢ + _ =0
(lSa)



m

= --p (21c)
_.or

i- _---LV _+-_ _ = _-_(21d)

I mw I " __1

[i d(_r) m _ k_]_0 (21e)-I-Tp a_r dr wr

r= 1, 6=0 (22)

For a given azimuthal mode number m and fre-

quency w, k (the wavenumber) is the eigenvalue.

Corresponding to an eigenvalue is an eigenvector

_, ii, ii, u), _, which describes the radial profile of the

wave mode.

4.1. Perfectly Matched Condition in Ducted

Flows

Suppose a perfectly matched layer is to be set

up as a termination boundary of a computation do-

main inside a duct. By splitting the variables; e.g.,

P -- Pl + P2, etc. in the standard manner, the

PML equations corresponding to the linearized Eu-

ler equations ((18a) to (18e)) are,

Opl 1 O _ O(pt + P2)

o-T + 7_ [_('_ + v_)d +- r 0¢

+ "fiO(wl + w2) _ 0 (23a)
r 0¢

Op2

Ot
-- + ap2 +

O(pl+p_)

OX

O(ul + u2) _ 0
+ P Ox

(23b)

P[ o°--_t' + w °(v` +v2)_ 0¢ 2 _(w, +w2)r

] 10(pl+p=) (23e)+ (v,+v_) = r 0¢

Ow2 + w_)]-fi _ + aw2 + _ O(w;x = 0 (230

[ Ou, . d_ _ O(u_ +us)]-_- + (_ + _)-_; + -_r 0¢

=0 (23g)

o(p, +p_)
Oz

(23h)

Opl wO(plWp2)

O-Z+ --r 0¢
+ --(v, + v2)

r

10(w, + w2)]
+ Jr 0¢

= 0 (23i)

Op_ + _p2 + _ O(m + p_) O(u_ + u2)
Ot Oz + 7 _ Oz

= 0 (23j)

where a is the damping coefficient in the PML. The

boundary condition is

r = 1, vl + v2 = O. (24)

In the PML, the duct modes are represented by

solutions of the form (similar to (20)),

p,(r,_,,_,O = Re[_',(r)_'("+""-")], (25)

etc., where x is the wavenumber. On substituting

(25) into (23) and (24) and on defining

w2 0

--(Pl +P2) r -- fir (p'Wp2)

[ O'v2 U O('O''[-v2)] = 0-fi[ Ot + av_ + - Oz

d@ _ O(W 1 "_- W,)

-P[ O_-'_'{-(Vl-l'v2)--_r -I- r 0¢

(23c)

(23d)

_: _i+_

(26)



it is straightforward to find that the duct modes in

the PML are given by the solutions of the following

eigenvalue problem.

^ i d _^ m_^ _

_( - __wrp+ pvr) p w+ia'fi

-_ w +w--_-_ u =0
(27a)

the interior region of the computation domain is the

same as that in the PML assures that there is perfect

matching. That is, a propagating duct mode inci-

dent on the PML will be totally transmitted into

the PML without reflection. If the mean flow is

nonuniform, some of the duct modes may involve

Kelvin-Helmholtz or other types of flow instability

waves. However, the perfectly matched condition is

still valid for these waves.

[( too) 1-fi 1 w+ia_ _ _ i 2_- --LT--,j

i_ 2 i d_

wr w dr
(27b)

,,,+ia _ _r ,Z+ _d--V

-]tw m ^ (27c]+ --_ = --p
_Mr tdr

"1

+
_j = _--_-_P

mN) ^ i _N21 w+i_ _r P+_'r

+7_
[_r d('6r) m^w tz]dr wr w + icr

= O. (27e)

The boundary condition is

r= 1, _=0. (28)

The eigenvalue is to. On comparing eigenvalue prob-

lem (21) and (22) with eigenvalue problem (27) and

(28), it is immediately clear that they are the same if

_k in (21) is replaced by _-'47"g'_Thus the eigenvalues

are related by

_=k(l+_). (29)

On the other hand, the eigenvectors are identical.

The fact that the eigenvectors of a duct mode in

4.2. The Case of Uniform Mean Flow

From (25) and (29), the transmitted wave mode

has the form

[_(r),_(r),V(r),_(r),_Cr)]e i[kO+-_)_:+m¢-_q. (30)

If the wave mode is nondispersive, then k_, the in-

verse of the phase velocity, is positive for waves prop-

agating in the z-direction and negative in the op-

posite direction. For these nondispersive waves, the

transmitted waves are spatially damped; a condition

needed by the PML if it is to serve as an absorbing

boundary condition. However, inside a duct, the

wave modes are dispersive. The direction of prop-

agation is given by the group velocity "_-k" We will

now show that in the presence of a uniform mean

flow there is a band of acoustic duct modes for which

the group velocity and the phase velocity have op-

posite signs. Therefore, for this band of waves, the

transmitted waves would grow spatially instead of

being damped.

By eliminating all the other variables in favor of

iY(r), it is straightforward to find, in the case of a

uniform mean flow of Mach number M, (21) and (22)

reduce to the following simple eigenvalue problem.

+7_+ (_-Mk) _-k_ -_- -_- _'= 0(31)

d_
r = 1 -- = O. (32)

' dr

The eigenfunction is

"_= Jm(Amnr) (33)

where J,_( ) is the mth order Bessel function and

Am, is the n th root of

J£ (_m_) = o. (34)

By substitution of (33) into (31), it is found that

the dispersion relation or eigenvalue equation for the

(m, n) th acoustic duct mode is

(w Mk) 2 k 2 2-- -- _ )_mT1. " (35)



Theaxialwavenumberof themodeat frequencyw
are given by the solution of (35). They are,

initial condition is,

-toM + [w2 - (1 - M2)A_mn] ½

k+ = (1 - M 2)
(36)

The group velocity of the duct mode may be deter-

mined by implicit differentiation of (35). This gives,

dw +[w 2 - (1 - M2)A2,_]½(1 - M s)

d"k = w =t=M[w 2 - (1 - M2)A_n]½
(37)

In (37), the upper sign corresponds to k = k+ and

the lower sign corresponds to k = k_. For subsonic
dw

mean flow, clearly _-k > 0 for k = k+ and _- < 0

for k = k_. Therefore, the downstream propagat-

ing waves have wavenumber given by k = k+, while

the upstream propagating waves have wavenumber

equal to k_.

From (37), it is easy to show that for (1-

M2)½$mn < w < _mn the phase velocity _ is nega-

tive although the group velocity is positive. Accord-

ing to (29), for waves in this frequency band, the

transmitted wave in the PML will amplify spatially.

This renders the PML useless as an absorbing layer

except for M = 0. In the absence of a mean flow

normal to the PML (M = 0), k+ will not be neg-

ative by (36). Thus, the transmitted waves in the

PML are evanescent. For this special condition, the

PML can again be used as an absorbing boundary

condition.

4.3. Numerical Examples

To demonstrate that a PML in a ducted environ-

ment actually supports a band of amplifying wave

modes, a series of numerical simulations has been

carried out. In the simulations, a uniform mesh with

Az = Ar = 0.04 covering the entire computation

domain from z = -6.0 to x = 12.0 is used. The

PML in the upstream direction begins at x = -3.0

and extends to x = -6.0. In the downstream di-

rection, the PML occupies the region from z = 3.0

to z = 12.0. The dimensionless damping constant

(nondimensionalized by _) cr is set equal to 25.0.

The results of two simulations, one with a mean flow

Mach number 0.4, the other with no mean flow are

reported below.

For convenience, only the axisymmetric duct

modes are considered. The computation uses the

7-point stencil DRP scheme is. The acoustic distur-

bances in the computation domain is initiated by a

pressure pulse located at z = 0 and r = 0.5. The

t=0, u=v=0,

(38)

Figure 14 shows the time evolution of the acous-

tic disturbance inside the computation domain at

M = 0.4. Specifically, the pressure waveforms along

the line r = 0.38 are shown at t = 10, 13, 15 and 16.

As can be seen, once the pressure pulse is released,

it spreads out and propagates upstream and down-

stream. Figure 14a indicates that at time t = 10 the

front of the acoustic disturbance has just entered the

PML in the downstream direction. There is no evi-

dence of wave reflection at the interface between the

PML and the interior computation domain. The

transmitted wave grows spatially as shown in fig-

ure 14b. The amplitude of the transmitted wave in-

creases steadily as they propagate across the PML.

This is shown in figures 14c and 14d. When the am-

plified waves reach the outermost boundary of the

PML, large amplitude spurious waves are reflected

back. This quickly contaminates the entire compu-

tation domain.

Figure 15 shows the same simulation except that

there is no mean flow. In the absence of a mean

flow, the PML acts as an absorbing layer. Figure 15a

shows the entry of the acoustic pulse into the down-

stream PML. Figures 15b to 15d show the damping

of the acoustic pulse in time in the PML. The slowest

components to decay are the long waves. This is in

agreement with the analysis of the previous section.

5. Concluding Remarks

In this paper, we have shown that the application

of PML as an absorbing boundary condition for the

linearized Euler equations works well as long as there

is no mean flow in the direction normal to the layer.

For open domain problems, the PML equations, in

the presence of a subsonic mean flow normal to the

layer, support unstable solutions. The growth rate of

the unstable solutions is, however, not large. These

unstable solutions can, generally, be suppressed by

the addition of artificial selective damping. In the

case of a ducted environment, we find that because

of the highly dispersive nature of the duct modes, a

band of the transmitted waves in the PML amplifies

instead of being damped. This seemingly renders the

PML totally ineffective as an absorbing boundary

condition.



Oneof theimportantadvantagesof usinganab-
sorbingboundaryconditioninsteadofothernumer-
icalboundarytreatmentsis that the boundaryof
thecomputationdomainmaybeputmuchcloserto
thesourceof disturbances.In thisway,a smaller
computationdomainmaybeusedin a numerical
simulation.Foropendomains,suchanabsorbing
boundaryconditioncanbedevelopedby theuseof
PMLwithartificialselectivedampingterms.Unfor-
tunately,thesameisnotpossibleforinternalducted
flow. An effectivenumericalanechoictermination
forducteddomainshasyetto bedeveloped.
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Figure 12. Damping of a vorticlty wave packet in the PML in-

Figure 10. Contours of combined growth and damping rates, eluding artificial selective damping terms. Ms = 0.3, M I = 0.2,
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ABSTRACT

This paper examines the effectiveness of jet noise reduction by the use of different

nozzle exit geometry. Since there will be thrust loss associated with a nozzle of complex

geometry, consideration is confined to practical configurations with reasonably small

thrust loss. In this study, only jets with a single stream are considered. The nozzle

configurations examined are circular, elliptic and rectangular. Included also are plug

nozzles as well as a suppressor nozzle. It is shown that the measured turbulent mixing

noise of the jets from these nozzles consists of two independent components. The noise

spectrum of each component is found to fit the shape of a seemingly universal similarity

spectrum. It is also found that the maximum levels of the fitted noise power spectra of

the jets are nearly the same. This finding suggests that nozzle geometry modification

may not be an effective method for jet noise suppression.

1. INTRODUCTION

Reducing high-speed jet noise is currently a high priority research and development

effort of the aircraft industry. Despite many years of jet noise research, noise reduction is

a highly empirical endeavor. Since the early work of Westly and Lilley 1 many attempts

have been made to modify the shape of the nozzle exit in the belief that this would

reduce the turbulence intensity of the jet leading to a reduction in the radiated noise.

On following this concept, plug nozzles, corrugated nozzles as well as nozzles with multi-

chute elements have been introduced for noise suppression purpose.

The objective of this paper is to examine the effectiveness of jet noise reduction

by nozzle exit geometry modification. Of course, there will be thrust loss in using a

nozzle with complex geometry. Our consideration is, therefore, confined to practical

geometries for which the thrust loss is reasonably small. In order to focus attention



on nozzle geometry alone, we will only consider jets formed by a single stream. Multi-

stream jets, invariably, would introduce thermodynamic and other flow parameters as

variables. Under this circumstance, a simple statement on the effectiveness of nozzle

configuration for noise suppression cannot be easily made.

In Section 2 of this paper, the effect of nozzle geometry on the turbulent mixing

processes in jets is discussed. For high-speed jets the mixing process is influenced only

by upstream events. Thus the normal expectation is that the nozzle exit configuration

would exert considerable influence on the development of the large and fine scale turbu-

lence of the jet flow and hence its noise. In Section 3, turbulent mixing noise data from

a variety of nozzles will be examined and analyzed. It will be shown that the noise level

is, to a large extent, insensitive to the nozzle shape. This is true even for jets embedded

in open wind tunnel flows simulating forward flight effects. This result seems to suggest

that modification of a nozzle exit configuration may not be an effective method for noise

suppression.

2. NOZZLE GEOMETRY AS AN INITIAL CONDITION

Tam and Chen a, based on their observation of the noise directivity and spectrum

measurements of Seiner et al. 4, were the first to clearly suggest that turbulent mixing

noise from high-speed jets is made up of two components. One component is in the form

of Mach wave radiation generated by the large turbulence structures of the jet flow.

This component radiates only in the downstream direction. The other component is

generated by the fine scale turbulence of the jet. The radiated noise has a more uniform

directlvity. Experimental confirmation of the existence of the two noise components

was not available until the recent investigation of Tam, Golebiowski and Seiner 2. By

analyzing the entire data bank of axisymmetric jet noise spectra measured in the Jet

Noise Laboratory of the NASA Langley Research Center, they were able to extract the

shapes of two self-similar spectra from the data. They then demonstrated that all the

noise spectra were made up of a combination of the two similarity spectra. Let S be the

noise power spectrum (S has the dimensions of pressure squared per unit frequency)

then S can be expressed in the following similarity form,

2

(1)

where F (/If-L-L)and G (//-F) are the similarity spectra of the large turbulence structure

noise and the fine scale turbulence noise respectively, fL is the frequency at the peak

of the large turbulence structures noise spectrum and fF is the frequency at the peak

of the fine scale turbulence noise spectrum. The spectrum functions are normalized

such that F(1) = G(1) = 1. In equation (1), A and B are the amplitudes of the

independent spectra. They have the same dimensions as S. Dj is the fully expanded

jet diameter and r is the distance between the noise measurement point and the nozzle

exit. The amplitudes A and B and the peak frequencies .fL and fF are functions of

the jet operating parameters -Y/-, _ and the direction of radiation X (measured from
nO_ • ICQ • °

the jet inlet), v i and aoo are the jet velocity and the ambmnt sound speed. Tr and Too

are the reservoir and ambient temperature. One remarkable feature of the similarity

spectra is that they fit the data well regardless of jet velocity, jet temperature, direction



of radiation, and whether the jet is perfectly or imperfectly expanded (in the case of

supersonic jets). These spectra are used extensively in the present investigation.

In high-speed jet flows, there is practically very little upstream influence. Thus

the turbulence level near the end of the core region, where most of the jet noise is

generated, is affected primarily by the mixing processes upstream and the conditions at

the nozzle exit. From this point of yiew, the nozzle geometry may be regarded as an

initial condition on the spatial evolution of the jet velocity profle and the turbulence

intensity and spectral content downstream. For noise suppression purposes, the crucial

question to ask is how sensitive the turbulence level of the jet flow near the end of

the potential core is to the initial condition at the nozzle exit. There is no question

that by changing nozzle geometry the entrainment flow and hence jet turbulence in

the region immediately downstream of the nozzle exit is affected. However, turbulent

mixing is a highly nonlinear process. It is known, nonlinear process can lead to the

same asymptotic state regardless of initial conditions. (For a discussion of the lack of

influence of initial conditions on self-similar turbulent flows, see the work of Tam and

ChenS.) For high Reynolds number jet flows, it is possible that a jet issued from a

noncircular nozzle evolves quickly into a more or less axisymmetric jet before the end

of the core is reached. In such a case, the radiated noise would be similar to that of a

circular jet both in intensity and spectral content. In the next section, it will be shown

that this appears to be the case.

3. EVALUATION AND COMPARISONS OF DATA

Supersonic jet noise data from two sources are used in the present study. The first

set of data is taken from the data bank of the Jet Noise Laboratory of the NASA Langley

Research Center. This set of data consists of noise spectra from a Mach 2 aspect ratio

3 elliptic jet and a Mach 2 aspect ratio 7.6 rectangular jet. These are high quality data;

comparable to those used in the work of Tam, Golebiowski and Seiner 2.

The second set of data is taken from the published measurements of Yamamoto et

al. 6. In this series of experiments, six nozzles are used. They include a conical nozzle,

a convergent-divergent (C-D) round nozzle, a convergent annular plug nozzle, a C-D

annular plug nozzle, a 20-chute annular plug suppressor nozzle with convergent flow

segment terminations and a 20-chute annular plug suppressor nozzle with C-D flow el-

ement terminations. The noise spectra of the jet from the fifth nozzle, however, are

strongly different from the same configuration suppressor nozzle but with C-D flow ele-

ment terminations and the other nozzles. Without knowing the cause of the difference,

it is decided to ignore the data associated with this nozzle.

3.1 COMPARISONS WITH SIMILARITY NOISE SPECTRA

Figure I shows direct comparisons between the measured elliptic and rectangular

jet noise spectra at Mach 2 and _- = 1.8 from the NASA Langley Research Center

and the similarity spectrum for the large turbulence structures noise of Tam et al. _ at

X = 150 deg. The elliptic jet noise data are measured on three planes containing the

jet axis. One is on the minor axis plane, one on a plane at 58 degrees to the minor

axis plane and the third on the major axis plane. They are the top three curves in the

figure. The bottom two curves are from the rectangular jet noise data measured on the

minor and major axis planes. As can be seen, there is good agreement between the



measured spectrum shapes and the similaritynoise spectrum (the F(yJ-[)function of

equation (i)).This isso despite the fact that the nozzle geometries are very different.

Comparisons between the measured spectra at X = 90 deg. and the similaritynoise

spectrum or the fine scaleturbulence noise (the G(4-) function of equation (i)) for the

ellipticand rectangular jetsare given in Figure 2. _gain, the top three curves are those

of the ellipticjet and the bottom two curves are of the rectangular jet measured on the

same azimuthal planes as in Figure i. Itisevident that there isgood agreement overall

regardless of nozzle shapes.

Figure 3 shows the noise spectrum shapes of the Yamamoto et al.data 6 at X = 150

deg. The jet velocity in each case isvery closeto 2420 ft/secand the total temperature

is approximately 1715 deg. Rankine. The four spectra are (from the top down) from

the C-D round nozzle,the convergent annular plug nozzle,the C-D annular plug nozzle

and the 20-chute annular suppressor nozzle. The data from the conicalnozzle isnearly

the same as the C-D round nozzle and is,therefore,not displayed. The fullcurves are

the similarity noise spectrum (the F(_) function) of Tam et al. 2. On ignoring the very

low frequency part of the noise spectrum, it is clear that the agreement between the

measured data and the similarity spectrum is good for all the cases.

Figure 4 shows similar comparisons as in Figure 3 but at X = 90 deg. By compar-

ing the several spectra shown, the facility noise contamination at low frequencies can

be readily detected. The full curves are the similarity spectrum given by the G(IJ-7)

function. Overall, there is again good fit between the data and the similarity spectrum.

3.2 COMPARISONS OF MAXIMUM SOUND PRESSURE LEVELS

To assess whether nozzle geometry has significant influence on high-speed jet noise,

we compare the sound pressure levels at the peaks of the fitted noise spectra, SPLmax,

in dB/Hz at r = 100Dj from the various jets with the level of the simple circular C-D

nozzle. The results are shown in Tables 1 to 4.

(T_) of 1.0,Table 1 compares the SPLmax of the elliptic jet at temperature ratio T..T_r_

1.37, 1.80 and 2.27 at jet Mach number 1.98 with the corresponding values of a circular

jet. We have chosen the microphone measurements at X = 150 deg. to characterize

the large turbulence structures noise component and the microphone measurements at

X = 90 deg. to characterize the fine scale turbulence noise component. The first row

of data is measured in the minor axis plane. The second row is measured in a plane

at 58 degrees to the minor axis plane. The third row is measured in the major axis

plane. The last row is the data from a circular jet at the same jet velocity and total

temperature. Within experimental uncertainty, it is clear from the table that the noise

from the elliptic jet is, first of all, quite axisymmetric. Further, it is nearly the same

as the circular jet. Table 2 provides direct comparisons between the SPLmax of the

rectangular jet and a circular jet. Again, within experimental uncertainty, there is very

little difference in the noise levels.

Tables 3 and 4 show the SPLmax data at X -- 150 and 90 deg. for the various

nozzles of the Yamamoto e_ al. experiments. It is worthwhile to remind the readers
1

that the data are converted from _ octave band measurements and possibly slightly

contaminated by shock and facility noise. The experimental uncertainty could be as

large as 2 to 3 dB by our estimate. By comparing all the data with those of the C-D

nozzle, it is evident that the differences are well within the experimental uncertainty.

Thus, in spite of the large differences in nozzle geometry, the noise from supersonic jets
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are remarkably the same. Based on these results, it is possible to surmise that nozzle

exit geometry may not have significant control over the noise of high-speed jets.

4. CONCLUSION

Extensive comparisons between the noise radiated by supersonic jets operating at

various temperatures and velocities with and without simulated forward flight and the

noise from a circular jet at the same conditions have been carried out. Seven nozzles

of practical geometries axe included in the study. It is found that regardless of nozzle

geometry, turbulent mixing noise of all the jets is comprised of two components. One

component is the noise from the large turbulence structures and the other is noise

from the fine scale turbulence of the jet flow. Further, the radiated sound is largely

axisymmetric and that the shapes of the spectra of the two noise components are nearly

the same as those of the similarity spectra of Tam, Golebiowski and Seiner 2 . In addition,

the noise levels are essentially independent of nozzle configuration. Based on these

results, it is concluded (bearing in mind the limited scope of this study) that nozzle

geometry modification may not be an effective method for jet noise suppression.
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Table 1. Elliptic jet (aspect ratio 3, ij -- 1.98)

X = 90 deg. X - 141 deg.

Tr/Too 1.00 1.37 1.80 2.27 1.00 1.37 1.80 2.27

SPLmax 74.3 75.5 77.0 96.8 99.5 101.7

at r = 100Dj 74.3 75.7 76.8 78.3 96.1 98.8 100.3 101.3

(dB/Hz) 74.5 75.5 77.0 78.6 94.4 97.5! 101.7 101.7

75.5 76.2 77.3 78.5 97.3 99.3 100.7 102.1

measurement plane

minor axis plane

58 deg. plane

major axis plane

circular jet

Table 2. Rectangular jet (aspect ratio 7.6, Mj = 2.0)

X -- 90 deg. X = 150 deg.

iT,./Too 1.10 1.82 2.26 1.10 1.82 2.26 measurement plane

SPLmax 74.9 76.9 77.5 98.5 ! 102.1 102.4 minor axis plane

at r - 100Dj 74.9 75.9 77.0 98.1 100.2 100.6 major axis plane

(dB/Hz) 76.0 77.7 78.8 98.4 101.5 102.6 circular jet
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Table 3. Yamamoto et al. data

(vj __ 2420 ft/sec, Tr -_ 1715 deg. R)

nozzle

type

conical C-D nozzle

nozzle Md = 1.4

convergent

plug nozzle

C-D plug
nozzle

suppressor
nozzle

inlet angle

X, degree

SPLmax at 98.8 97.7 98.7 99.0 97.4 150

r = 100Dj (dB/Hz) 77.6 75.0 76.6 77.2 74.5 90

Table 4. Yamamoto et al. data

(vj __ 1720 ft/sec, Tr _- 870 deg. R)

nozzle C-D nozzle convergent C-D plug lsuppressor

type Md = 1.4 plug nozzle nozzle nozzle

95.0 96.2 97.1 92.5SPLmax at

r = 100Dj (dn/Hz) 70.3 73.0 74.0 70.0
inlet angle[

X, degree

150

90
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Figure 1. Comparisons between elliptic and rectangular jet noise

data and the similarity spectrum at X = 150 deg., _ = 1.8

Aspect ratio 3 elliptic jet: (a) minor axis plane, (b) 58 degree

plane, (c) major axis plane.

Aspect ratio 7.6 rectangular jet: (d) minor, (e) major axis plane.
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Figure 2. Comparisons between elliptic and rectangular jet noise

data and the similarity spectrum at X = 90deg., _ - 1.8

Aspect ratio 3 elliptic jet: (a) minor axis plane, (b) 58 degree

pla he, (c) major axis plane.

Aspect ratio 7.6 rectangular jet: (d) minor, (e) major axis plane.
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Figure 3. Comparisons between Yamamoto et ai. data and the sim-

ilarity spectrum. _ __ 2420 ft/sec, Tr _ 1715 deg R, X = 150 deg;

o data, -- similarity spectrum. (a) C-D nozzle, (b) conver-

gent plug nozzle, (c) C-D plug nozzle, (d) 20-chute C-D suppressor

nozzle.
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Figure 4. Comparisons between Yamamoto et al. data and the

similarity spectrum. 1,_ __ 2420 ft/sec, Tr _ 1715 deg R, X = 90

deg; o data, -- similarity spectrum. (a) C-D nozzle, (b) conve

rgent plug nozzle, (c) G-D plug nozzle, (d) 20-chute G-D suppressor

nozzle.


