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Numerical Simulation of the 
Overrolling of a Surface Feature in 
an EHL Line Contact 
In this paper a Multigrid extension of a stationary solver is outlined for the EHL 
solution of a line contact under transient conditions. The solver is applied to calculate 
pressure and film thickness profiles at each time step when an indentation is moving 
through the contact, which results in an asymmetric pressure profile. The time-
dependent results are compared with the stationary solutions. The pressure as a 
function of time is presented as well as the integrated pressure (over time) as a 
function of the spatial coordinate. These time-dependent pressures are used to 
compute the sub-surface stress field, which shows higher stresses below the trailing 
edge of the indentation. Therefore the risk of fatigue is higher below the trailing 
edge of the indentation, as is experimentally observed. The transient pressures can 
be used for a fundamental study of the emitted frequency spectrum of rolling 
bearings, as used in condition monitoring. 

1 Introduction 
Over the last decades the theoretical analysis of elastohy-

drodynamically lubricated contacts has received much atten­
tion in tribological literature. Because of the limitations in 
available computer resources, classical studies were restricted 
to the macrogeometry of the contact, i.e., they assumed per­
fectly smooth surfaces [1,2] and attempts to study the effects 
of the microgeometry were based on averaged equations, e.g., 
the flow factor method [3,4]. Because of the constant increase 
in computer power the total number of calculational points 
has grown steadily, enabling scientists to model the contacting 
surfaces more accurately and to study contact features on a 
micro scale. 

However, the analysis of such features introduces the need 
for a time-dependent approach since both surfaces move in 
general. An accurate transient analysis requires the solution 
of the model equations at a large number of time steps. As 
the computing time needed for each time step is approximately 
equal to the time required for the solution of the steady state 
problem, it is obvious that an accurate transient simulation 
requires a fast algorithm for the solution of the pressure and 
film shape in the contact. Moreover, to simulate situations of 
practical importance, that is with a maximum Hertzian pres­
sure of some 2.0 GPa, the algorithm should also be stable. 

However, most algorithms for the solution of the steady 
state line and point contact problem presented over the years 
are of relatively high complexity. When extended to study 
transient situations the accuracy that can be obtained is rather 
limited even when high speed computers are used. Hence, the 
transient results presented so far have been obtained using a 
relatively small number of nodes in spatial direction(s) and 
only a few time steps [5,6,7]. Furthermore, most likely because 

Contributed by the Tribology Division for publication in the JOURNAL OF 
TRIBOLOGY. Manuscript received by the Tribology Division July 23, 1990. As­
sociate Editor: B. J. Hamrock. 

of stability problems, only relatively lightly loaded situations 
have been studied. To avoid the aforementioned computational 
complexities, many papers deal only with the steady state prob­
lem. 

Recently, Venner et al. [8] presented a fast and stable al­
gorithm for the computation of the pressure distribution and 
film shape in EHL line contact situations. The algorithm en­
abled the solution of the steady state problem, even for highly 
loaded situations with a large number of nodes on a mini 
computer (HP 9000/800). This algorithm has been extended 
to solve transient problems, and some results with respect to 
the overrolling of a surface indentation are presented in this 
paper. The low complexity of the algorithm enabled a simu­
lation using a relatively large number of nodes in spatial di­
rection combined with a small time step. 

The results of the simulation and their implications for the 
fatigue life of the contact are discussed. It is demonstrated 
that extrapolation of results from a stationary analysis to prac­
tical conditions where the surface feature is moving can be 
misleading. Furthermore, the relation of the simulation results 
with the detection of surface defects using vibration analysis 
in the condition monitoring of bearings is discussed. 

2 Equations 
After substitution of the following dimensionless variables: 

p = p/p0 

X=x/b 

P=p/ph 

H=hR/b2 

T=tus/(2b) 
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with: b = Hertzian half width: 

b = 
8wR 

•KE' 

and ph = maximum Hertzian pressure: 

%b 

the one-dimensionless Reynolds equation reads: 

d_ 

dX 

dP\ • d(pH) d(pH) 
= 0 (1) 

dXj dX dT 

where the cavitation condition P > 0 should be satisfied in the 
entire domain, and the boundary conditions are P = 0. 
e is given by: 

where 

6r]0usR 

b'ph 

The dimensionless lubricant density p is assumed to depend 
on the pressure according to the Dowson and Higginson re­
lation [1]. Besides, the Roelands viscosity pressure relation is 
used. It reads: 

i j = - 2L. = exp 
ap0 1+-

^o, 
1 (2) 

where P0=p0/ph and pQ= 1.98 108 [Pa]. 
Substitution of the same dimensionless variables in the film 

thickness equation gives: 

X2 

H(X, T) = H&T) + — + <R(X, T) 

IT J _ 
P(Y,T)\n\X-Y\dY (3) 

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 

Xd-X 

Fig. 1 Dent geometry 

where: H0(T) = integration constant determined by the 
force balance condition. 

(R(X,T) = geometry of surface feature 
In the most general situation (R(X, T) consists of all features 

on both surfaces that result in a deviation of the undeformed 
gap from its usual parabolical shape, i.e. surface roughness, 
surface waviness, bumps, indentations, etc. However, this pa­
per is restricted to the situation of a single indentation on one 
of the running surfaces moving through the contact. The fol­
lowing dent geometry is assumed, e.g. see Fig. 1: 

(R(X,T) = a 10 
x-xX 

cos I 2ir 
X-X, 

W 
(4) 

where: Q, = dimensionless amplitude of the dent 
"W = dimensionless wavelength of the dent 
Xd = dimensionless position of the center of the dent 

at time T 
This specific shape was preferred over a simple harmonic dent 
because it models a physical dent more realistically, i.e., it also 
contains the bulged-out shoulders resulting from the inden­
tation of the material. 

The dent is assumed to be located on the surface moving 

N o m e n c l a t u r e 

G, = dimensionless amplitude, 

half-width Hertzian contact b = 

region, b = 

E = 

E' 

j8wR 

•wE' 
elasticity modulus (Young's 
modulus) 
reduced modulus of elastic­

ity, 
2 1 - v\ \-v\ 

G 
h 

H 

E' Ei E2 

material parameter, G = aE' 
film thickness 
dimensionless film thickness, 

3 = 

H0lk = integration constant in di­
mensionless film thickness 
equation 
integral of pressure over time 
discretized kernel in film 
thickness equation 
dimensionless material pa­
rameter (Moes), L = G(2U)m 

dimensionless load parameter 
(Moes), M = W(2U)~W2 

*!f-
L = 

M 

p = pressure 
ph = maximum Hertzian pressure, 

2w 
Ph=Vb 

pQ = constant in Roelands' rela­
tion 

P = dimensionless pressure, 

Ph 
P0 = dimensionless constant, 

Pa- — 
Ph 

R = reduced radius of curvature, 
R[=R^l+R2[ 

(R = geometry of surface feature 
t = time 

T = dimensionless time, T= 
2tus/b 

us = sum velocity, M s=u1+u2 

U = dimensionless speed parame-

E'R 
w = load per unit width 

Vf 
W = dimensionless load, W= 

E'R 
W = dimensionless wavelength 

x = coordinate 

ter, 2C/=-

X = dimensionless coordinate, 

H 
z = Roelands' pressure viscosity 

parameter 
a = pressure viscosity index 

Ax = distance between two neigh­
boring gridpoints 

A, = time step 
6 = coefficient in Reynolds equa­

t ion, e-
TJX 

X = dimensionless velocity 
t , e y0usR

2 

parameter, X = 6 — ; — 
b Ph 

v = Poisson's ratio 
•q = viscosity 

7)0 = viscosity at atmospheric pres­
sure 

— — V 
•q = dimensionless viscosity, r/ = — 

Vo 
p = densi ty 

p 0 = densi ty a t a tmospher i c pres­
sure 

p = dimensionless density, p = — 
Po 
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with velocity u2 = us/2. If the position of the dent Xd at t = 0 
is given by xs then its location at time t is given by: Xd = xs + u2t. 
Hence, in terms of the dimensionless variables its position at 
time T is given by: 

Xd = Xs + 2-T 
Us 

At all times the solution is subject to the condition of force 
balance, i.e. the integral over the pressure equals the externally 
applied contact load. Expressed in the dimensionless variables 
this condition reads: 

Table 1 Values of parameters and dimensionless parameters 
employed in the calculation 

P(X,T)dX-- = 0 VT (5) 

The equations (l)-(5) are discretized on a uniform grid with 
mesh size Ax extending over a domain Xa<X<Xb. Using sec­
ond order central discretization for the poiseuille-term, first 
order upstream discretization for the wedge term, and first 
order backward discretization of the squeeze term, the ap­
proximation of Reynolds equation at time step k in node i 
reads: 

A;2(e,_i ,*/>,„ u - (e,_I ,* + e,+i ,k)Pitk 
2 2 2 

+ £/ + - ,kPi+l,k) - &x (Pi,kHi,k-Pi-l,kHi-l,k) 
2 

~ A," \~Pi,kHi,k ~ Ptf-iHjj..,) = 0 (6) 

with the cavitation condition Pj^O. 
The discretized film thickness equation reads: 

Hi,k = #o,* + V + « (* ' • Tk) ~ ~ E Ktfxpj,k (7) 

where 

K?f* i-j + ~) Ax[ln I-J + -, 

-\i-J- A J l n i-J- A J - 1 

The dimensionless force balance equation reads after dis­
cretization: 

J=I 

(Pj,k + PJ+i,k) ir 
= 0 Vk (8) 

3 Numerical Solution 
Before the dent reaches the position Ar

d=Ar
fl-0.5'W, the 

squeeze term in the Reynolds equation will be almost zero in 
all nodes on the grid because of the large power in (4). Hence, 
film thickness and pressure profile are identical to the sta­
tionary smooth surface solution. An algorithm allowing fast 
and accurate calculation of this solution was presented in [8]. 
The algorithm is based on a combined Gauss-Seidel, Jacobi 
dipole relaxation scheme for solving the pressure from Reyn­
olds equation whereas convergence of the process is accelerated 
using coarser grids, i.e. using Multilevel techniques. In addi­
tion, the computation of the elastic deformation integrals is 
accelerated using the same coarser grids. As a result, the com­
puting time for the solution of the stationary problem is 0(n 
In ri) if n is the number of nodes on the grid. For details of 
the algorithm the reader is referred to [8]. 

From the moment the dent enters the domain the squeeze 
term will no longer be negligible. At each time step the pressure 
and film thickness are to be solved from Eqs. (6) to (8) using 
the solution of the previous time step for the evaluation of the 
squeeze term. When the trailing edge of the dent passes the 

Parameter 

E' 

R 

a 

Z 

Vo . 

Pi, 

us 

b 

*W 

a 
M 

L 

Value 

2.26-10" 

1.4-10"2 

2.2-10"8 

0.68 

40-10"3 

2.0-109 

1.97 

5.0-10-" 

1.0 

0.11 

100 

11.08 

Dimension 

[Pa] 

[m] 

[Pa"1] 

[Pa s] 

[Pa] 

[ms-'l 

[m] 

exit boundary of the domain (Xd> Xb + 0.5%)̂ ) the steady-state 
solution slowly returns. 

The relaxation process solving the stationary problem is also 
suitable for the solution of the equations at each time step, 
provided the squeeze term is properly accounted for in the 
algorithm. Convergence of the process can be accelerated using 
the coarser grids. Hence, given a first approximation of the 
solution at a specific time step the equations can be solved by 
repeating coarse grid correction cycles until the desired ac­
curacy has been obtained. The required number of cycles de­
pends of course on the accuracy of the first approximation. 

The most straightforward approach is to use the pressure 
profile of the previous time step as a first approximation to 
the solution on the current time step. Such an algorithm was, 
for example, employed by Woods et al. [9] when solving the 
dynamically loaded journal bearing problem. Hence, at each 
time step the coarser grids are only used to accelerate conver­
gence of the relaxation process on the finest grid. The dis­
advantage of this technique is that the error in the first 
approximation at the finest grid contains all frequency com­
ponents the grid can represent and at each time step the starting 
residual is rather large. 

A more accurate first approximation, and consequently a 
reduction in the number of coarse grid correction cycles needed 
per time step, can be obtained if the coarser grids are employed 
in a way rather similar to the Full Multi Grid process for 
stationary problems. This alternative, the so-called F cycle, 
was developed by Brandt and co-workers (see Appendix). 

4 Results 

The calculational results presented in this section apply to 
the conditions shown in Table 1. These conditions have been 
derived from a practical bearing application. Under these con­
ditions the dimensionless parameters "W = 1 and (£ = 0.11 de­
scribe a dent of 250 micrometer wide and 2 micrometer deep. 

M and L are the Moes dimensionless load and materials 
parameter. They relate to the Dowson and Higginson param­
eters as: 

M=W(2U)~ln 

L = G(2U)lM 

The solution has been calculated using some 200 time steps 
(A, = 0.03125) with 1409 nodes in spatial direction. Figure 2(a) 
shows the steady-state solution at T=0 whereas Figs. 2(b) to 
(2d) show the solutions at the times w h e n ^ d = - 0 . 5 , 0.0, 0.5, 
respectively. 

For reasons of comparison Fig. 3 shows the solution for 
pressure and film thickness under steady-state conditions with 
the dent located in the center of the contact, i.e., at X-0. 
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-4.00 -a5o -aoo -250 -200 -150 -100 -050 0.00 050 too 150 
X 

•4.00 -3.50 -3.00 -250 -200 -150 -100 -050 0.00 050 100 150 
X 

F i g . 2(c) 

MO 

-4.00 -350 -3.00 -250 -200 -150 -100 -050 0.00 050 100 150 
X 

2(b) 

-4.00 -350 -3.00 -250 -200 -150 -100 -050 0.00 0.50 100 150 
X 

2(d) 

Fig. 2 Solution M=100, 1 = 11.08. Pressure and film thickness as a 
function of X. (a) Stationary solution. Transient solutions with dent at 
location: (b) Xd= - 0.5, (c) Xd = 0.0, (d) Xd = 0.5. 

Steady_State 

-4.oo -350 -aoo -z&'"-im"'-i3'"-iM""^"''m'"''<& 100 150 
X 

Fig. 3 Stationary solution M = 100, L = 11.08 with dent at Xd = O.O. Pres­
sure and film thickness as a function of X. 

Comparison of this steady-state solution with the transient 
solution shown in Fig. 2(c) clearly illustrates the effect of the 
squeeze term. Under steady-state conditions the Reynolds 
equation in the contact region reduces to: 

d{pH) 

dX 
• 0 (9) 

Since Dowson and Higginson's equation limits the com­
pressibility of the lubricant to about 30 percent, the result is 
a nearly uniform film thickness in the contact region that hardly 
deviates from the smooth surface solution. In the transient 
situation, however, because of the squeeze term, the change 
in dent geometry is much smaller. Furthermore, the pressure 
profile in Fig. 3 is almost symmetrical, the pressure rise at the 
trailing edge of the indentation equals the pressure rise at the 
leading edge. As can be seen from Fig. 2(c), in the transient 
situation the pressure rise at the trailing edge is larger whereas 
the pressure rise at the leading edge of the dent is smaller than 
it is in the steady state situation. These differences show the 
importance of the squeeze term, i.e. of the transient calcula­
tion. 

An alternative way of presenting the results of the simulation 
is to monitor the pressure or film thickness at a certain point 
on one of the surfaces during its motion through the contact. 
As an example, the pressure variations experienced by two 
points at equal distance from the center of the dent are pre­
sented in Fig. 4(a). The curve on the left is for the point on 
the leading edge whereas the curve on the right is for the trailing 
edge. Both points are at a relatively large distance from the 
center of the dent, \Xd-X\ =0.5. Note that these are exactly 
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|Xd-X|=0.5 

0.00 050 100 150 200 250 3.00 3.50 4.00 4.50 500 5.50 6.00 6.50 

T 

Fig. 4(a) 

•XhO.1875 

000 050 100- 150 200 250 3.00 ,,S'',,'4O0,,'450,,,'5O0,r''S''''a&o'''650 

T 

4(b) 

Fig. 4 Pressure as a function of T for two points at location (a): 
Xd-X= -0 .5 and Xd-X=0.5, (b): Xd-X= -0.1875 and X„ -X=0.1875 
on the indented surface. 

the curves that a transducer on the surface at these locations 
would measure. Because they are relatively far removed from 
the center of the dent, both points experience a pressure signal 
over time that is equal to what any point would experience 
under smooth surface conditions. Similarly, Fig. 4(b) shows 
the pressure as a function of time for \Xd-X\ =0.1875, thus 
located closer to the center of the dent. In that case the max­
imum pressure experienced by the point at the trailing edge is 
obviously larger than the maximum pressure observed by the 
point at equal distance from the center of the dent on the 
leading edge. 

To visualize this difference we define: 

3(Xc 'd-x)= \ ' P(Xd-X,T)dT (10) 

to indicate the total "force" experienced by a point on the 
indented surface during overrolling. This integral is constant 
for points far removed from the dent. For pure rolling con­
ditions this constant is -w/2. For points in the vicinity of the 
dent the integral will deviate from this value. The value of the 
integral as a function of the distance from the center of the 
dent is presented in Fig. 5. This graph displays an interesting 
feature. Far from the center of the dent, the integral for a 
point on the leading edge equals the value of the integral for 

o- i 

0.00 
0.00 0.10 0.20 0.30 0.40 0.50 

abs(Xd-X) 

Fig. 5 Value of integral 3 as a function of the distance from the center 
of the dent I X d - X I on the indented surface 

a point on the trailing edge. However, over the entire dent the 
integral for points on the trailing edge is larger than the integral 
for points on the leading edge. The maximum difference be­
tween the two curves is some 8 percent of the smooth surface 
value. Similar calculations have been carried out for smaller 
amplitudes giving the same overall results. However, in the 
case of a smaller amplitude the maximum difference between 
the two curves is also smaller. Hence, the maximum difference 
increases with increasing amplitude. 

These results indicate that the maximum sub-surface stress 
experienced by points below the leading edge will be less than 
the maximum sub-surface stress experienced by points below 
the trailing edge; this is analyzed in detail in the next section. 

5 Sub-Surface Stresses 
The pressure distributions obtained in the previous sections 

can be applied to the study of fundamental tribological features 
like surface initiated fatigue. This phenomenon occurs when 
part of the contacting surfaces is damaged, either by incorrect 
manufacturing handling damage or by the overrolling of debris 
in the oil. These surface features will disturb the pressure in 
the lubricant film and consequently the stresses in the sub­
surface are affected. Generally, the surface imperfections can 
be viewed as local stress raisers, leading to imperfection-related 
fatigue failure and consequently a substantial reduction in 
service life. 

A theoretical model to describe the relations between surface 
features and fatigue life is of great value since the experimental 
investigations are very time-consuming, energy-consuming and 
costly. The theoretical model used is described in detail in [10]. 
For this model to be accurate, the time-dependent behavior of 
the pressure in the lubricant film is essential, resulting in a 
time-consuming series of calculations (5 cpu hours on a SGI 
240). As an example, the directional preference of fatigue 
initiation with respect to an indentation is discussed. Generally, 
a spall is created after (on the trailing edge of) the indentation. 
Using stationary lubricated or dynamic dry contact calcula­
tions, no preference in direction can be found. However, when 
the time-dependent lubricated calculations are performed an 
asymmetry in the pressure profile is observed (see Figs. 4 and 
5). This difference is reflected in the sub-surface stresses, which 
are larger (and much closer to the surface) below the trailing 
edge of the indentation (see Fig. 6). Actually, the quantity 
displayed is not a stress, but a risk-related stress, incorporating 
the maximum shear stress over any angle, the hydrostatic pres­
sure and the fatigue limit of the material (see [11]). For con­
venience we will briefly refer to it as a "stress." 

This stress graph was obtained by computing the sub-surface 
stresses resulting from the pressure distribution at each time 
step. For this purpose the indented surface is monitored while 
the pressure profile is sweeping over it, and at each location 
in the material the maximum stress is recorded. It is obvious 
that far removed from the dent the iso-stress contours should 
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Fig. 6 Maximum sub-surface stresses below a dent during overtoiling. 
Conditions as in Fig. 2. 

P(X=0,T) 

0.00 0.50 100 i50 200 250 3.00 350 4.00 450 5.00 550 d00 650 

T 

Fig. 7 Pressure in the center of the contact (X=0) as a function of T 

become straight horizontal lines, only close to the dent will 
these contours be modified. Note that the stress concentration 
below the trailing edge of the dent is larger and extends much 
closer to the surface. As is explained in [10] the stresses can 
be converted to a (fatigue) risk integral. The risk integral over 
the left part of Fig. 6 is almost twice as high as the integral 
over the right part. Since the difference in stress is concentrated 
in a small region only (say 10 percent) the risk of spalling will 
be much higher for the trailing edge of the dent, explaining 
the experimentally observed preference. In real applications 
the depth of the indentations will be larger, and by extrapo­
lation of the theoretical results obtained from shallower dents 
the asymmetry will be even more pronounced. 

6 Condition Monitoring 
As mentioned above surface indentations generally result in 

a significant reduction of the fatigue life of an EHL compo­
nent. Because the unexpected breakdown of one of the bearings 
in a machine may have expensive consequences, the detection 
of surface defects, i.e. indentations, is an important topic in 
the condition monitoring of rolling bearings. One of the tech­
niques employed is based on an analysis of the vibration signal. 
To a certain extent a simulation as presented above can provide 
some theoretical support for the research on this subject, in 
particular with respect to the relation between the indentation 
and its contribution to the vibration signal. For that purpose 
the pressure as a function of time is monitored at a certain 
location fixed in space. Figure 7 displays the pressure in the 
center of the contact as a function of time for the conditions 
and the surface feature considered in this paper. Before the 
leading edge of the dent reaches the specific location, and after 

the trailing edge passes the location the pressure equals the 
steady state value. The passage of the indentation causes a 
pressure variation and the frequency content of this variation 
is characteristic for its contribution to the vibrations in the 
bearing under the full film lubricated conditions assumed in 
this paper. 

7 Conclusion 
The overrolling of a surface indentation under realistic op­

erating conditions was simulated. This simulation was carried 
out using a small time step and a large number of nodes in 
spatial direction. It was demonstrated that transient studies 
are essential in this type of research and that extrapolation of 
results from steady state conditions to practical conditions 
where both surfaces are moving is misleading. Also the sub­
surface stresses in the material were calculated. From the results 
it was concluded that spalling will most likely occur near the 
trailing edge of the indentation. The very same preference that 
has been found in experiments. Furthermore, a transient anal­
ysis as presented in this paper provides information that is of 
particular interest with respect to the condition monitoring of 
rolling bearings using vibration analysis. 

Although strictly speaking the presented results only apply 
to line contact situations they will still give an accurate de­
scription of point contacts, where the Hertzian contact region 
is relatively wide. In the calculations a relatively shallow in­
dentation was assumed. In practical situations the depth of 
the indentation is often much larger than 2 /xrn. In those sit­
uations cavitation will occur at the location of the indentation. 
Since pressure formation from a cavitated zone is not ac­
counted for in this particular algorithm results for larger am­
plitudes were not presented. To simulate the overrolling of an 
indentation with a larger amplitude under these specific lu­
brication conditions an extension of the current algorithm is 
needed. 
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A P P E N D I X A 
The F Cycle 

Consider the following discretized transient problem, where 
Lh,k is a differential operator discretized on a grid with meshsize 
h, time step k, « w i s the solution to be calculated, a n d / ' is 
a right-hand side function: 

Lh,kuh,k =fh,k ( ] 1 ) 

Using the solution at the previous time step k-\ as an 
approximation for the solution at the current time step k, 
residuals can be calculated according to: 

Rh,k=fh,k_Lh,kuh,k-i ( 1 2 ) 

Defining: 
Sh,k = uh,k_uh,k~< ( 1 3 ) 

Equation (11) can be written as: 
Lh,k{uh,k-1 + 5h,k) = Lh,kui,,k-1 + Rh,k 1 4 ) 

In general, Sh,k contains all frequencies the grid can repre­
sent. In fact it is very often dominated by low frequencies. 
Using the normal FAS (Full Approximation Scheme) coarse 

Level 

Fig. A.1 

grid correction cycle 0(lh(n)) cycles are needed to solve the 
problem to the level of the truncation error if n is the number 
of nodes in spatial direction. If the first approximation would 
have been accurate up to the level of the truncation error on 
the coarser grid only O(l) cycles would be needed. To obtain 
a first approximation of this accuracy is the purpose of the F-
cycle. 

Characteristic for the F-cycle is that equation (14) is solved 
on the coarse grid first. Hence solving uH'k from: 

LH\uH'k)=LH\lH
hu

Kk~ X) + rfRKk (15) 
an approximation uh'k is calculated according to: 

ah-k=uh'k-] +ih
H(i<H'k-i"uh-k~') (16) 

Subsequently, normal FAS coarse grid correction cycles can 
be used to reduce the error to the level of the truncation error. 
In case 1 V(vx, c2) cycle is used, the solution process per time 
step is depicted in Fig. A.l using 4 grids. The figures in the 
circles denote the number of relaxation sweeps carried out on 
the grid. Note that in the first coarsening sequence no (0) 
relaxations are performed. On the coarsest grid the equations 
should be solved nearly exactly. Hence, c0 is in general larger 
than vi and c2 which are in general O(l). The double circles 
represent converged solutions. In this figure the first approx­
imation to uh'k is marked by an * . This approximate solution 
is subsequently improved by additional cycles. 
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