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Numerical simulation of the settling behaviour of particles
in thixotropic fluids
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A numerical study on the settling behaviour of particles in shear–thinning thixotropic

fluids has been conducted. The numerical scheme was based on the volume of fluid

model, with the solid particle being likened to a fluid with very high viscosity.

The validity of this model was confirmed through comparisons of the flow field

surrounding a sphere settling in a Newtonian fluid with the analytical results of

Stokes. The rheology model for the fluid was time–dependent, utilising a scalar

parameter that represents the integrity of a “structural network,” which determines its

shear thinning and thixotropic characteristics. The results of this study show that the

flow field surrounding the settling sphere is highly localised, with distinct regions of

disturbed/undisturbed fluids. The extension of these regions depends on the relaxation

time of the fluid, as well as its shear thinning characteristics, and reflects the drag

force experienced by the sphere. As the sphere settles, a region of sheared fluid that

has significantly lower values of viscosity is formed above the sphere. This region

slowly recovers in structure in time. As a result, a sphere that falls in a partially

recovered domain (e.g., due to the shearing motion of an earlier sphere) tends to

attain a greater velocity than the terminal velocity value. This was found to be true

even in cases where the “resting time” of the fluid was nearly twice the relaxation time

of the fluid. The results of this study could provide a framework for future analysis

on the time–dependent settling behaviour of particles in thixotropic shear–thinning

fluids. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866320]

I. INTRODUCTION

Suspensions of fine mineral particles that are encountered in the mineral processing indus-

try generally possess non–Newtonian flow characteristics, usually in the form of viscoplasticity,

thixotropy, and/or shear thinning flow behaviour, or various combinations of these characteristics.

As can be expected, the settling behaviour of particles suspended in slurries and suspensions is

greatly dependent on the rheology of the suspending fluids (Ref. 1). In turn, the design and per-

formance of many slurry based units of operations, most notably the tertiary grinding circuits, are

highly influenced by the tendency of suspended particles to settle and fall through the suspension.

Therefore, to improve the efficiency of these units of operations, a greater understanding of the

movement of particles through suspensions and slurries needs to be obtained.

The settling behaviour of particles in viscous fluids has been examined extensively by Gumulya

et al.,2, 3 using solutions of polyacrylamide in water. These solutions were identified as highly

shear thinning with thixotropic characteristics. Under short timescales, the existence of a critical

value of shear stress that has to be exceeded for the fluid to start to flow (generally termed as

yield stress) is apparent, indicating that the fluids can be represented by a simple viscoplastic fluid

model. However, in cases where longer time frames are involved (e.g., in experiments involving the

settling of consecutive particles with a finite time lapse between them (Refs. 2 and 3)), it was found

that both the thixotropic and shear thinning characteristics of the materials need to be considered.

a)Deceased.
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Gumulya et al.2, 3 observed that a sphere that is released into a fluid medium that has recently been

subjected to shear tends to possess a settling velocity that is significantly higher than a sphere that

is settling through a fluid medium that has been rested for some time. This finding suggests that the

settling motion of a sphere through the fluid introduces changes in the structure of the fluid (it was

hypothesised that this network results from hydrogen bonding between polyacrylamide and water

molecules in the fluid), which in turn requires some “resting” time for its full recovery. It was thus

concluded that the analysis of the settling behaviour of particles through complex fluids requires the

shear induced changes in the internal structures of the fluids to be characterised.

While various studies have been conducted on the characterisation of the flow field surrounding

particles settling in yield stress fluids (Refs. 4–8), such studies on shear thinning, thixotropic

fluids are still very scarce, despite the fact that some yield stress fluids are known to possess a

combination of all these characteristics. Gueslin et al.9, 10 and Putz et al.11 have conducted flow–

visualisation experiments on the flow surrounding spheres settling in thixotropic yield stress fluids

with viscoelastic properties. Yu et al.12 have presented a numerical study on the sedimentation and

aggregation of particles in shear–thinning thixotropic fluids, and concluded that the aggregation

of two particles settling one above the other is caused by the time–dependent and shear thinning

characteristics of the fluid. In addition, it was also observed that the aggregation of randomly

distributed particles in such fluids into stable clusters or columns, which is a phenomenon that has

been observed in some non–Newtonian fluids (Refs. 13 and 14), requires the suspending fluid to

exhibit a degree of elasticity. The dynamics of shear thinning, thixotropic fluids in other systems

have been analysed by Derksen,15 Potanin,16 and Møller et al.17

In order to characterise the dependency of the viscous parameters of a fluid on its internal

structural network, Gumulya et al.3 utilised a fluid model that is similar to the model of thixotropy

proposed by Møller et al.17 The fluid model assumes that the fluid is completely non–elastic.

Furthermore, it does not include a constant yield stress value. However, through a series of numerical

studies, it was found that the transient response predicted by the model towards a variety of changes

in shear conditions (under short time scales) tends to resemble the observed rheological response of

typical viscoplastic fluids (Ref. 18).

In this paper, a numerical study of the flow field of a thixotropic, shear thinning fluid surrounding

a settling spherical particle will be presented. The utilised numerical method is the Volume–of–Fluid

(VOF) method, where the solid particle is likened to a fluid with very high viscosity. While this

method is more commonly applied to immiscible fluids with deformable interfaces, the use of VOF

to model the movement of a non-deformable material in a fluid domain has previously been examined

by Chen et al.19 (in yield–stress fluids), as well as Gumulya18 (in Newtonian fluids of Re ≤ 4.2).

The apparent agreement shown by Gumulya18 in the case of a solid particle settling in Newtonian

fluids with published experimental data suggests that this method can be used to analyse the flow

fields surrounding a particle settling in a fluid domain, without prior knowledge of the drag force

experienced by the particle. Further discussion on the validation of this method will be presented

in Sec. II B, and the use of this method to analyse the highly coupled and non–linear equations

surrounding the settling of a spherical particle in time–dependent non–Newtonian fluids will be

examined in this paper. In Sec. II C, the details of the rheology model and its implementation in the

VOF framework will be presented. Furthermore, the parameters required for the modelling of the

solid particle as a highly viscous fluid will also be discussed (Sec. II D). Section III presents the

resulting flow fields and drag force, along with comparisons to relevant experimental data.

II. NUMERICAL MODEL

A. Mathematical formulation and numerical method

Consider an initially stationary metal sphere in a cylinder filled with fluid. The metal sphere

exerts a downward shear force on the fluid due to gravitational effects, inducing changes in viscosity

and flow in the fluid medium. If the metal sphere is likened to a fluid with very high viscosity (see

Sec. II B), this flow problem can be considered to be a dual–phase problem, with the two phases

possessing vastly different values of density and viscosity.
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Navier–Stokes equations are applied over the whole domain,

∇ · U = 0, (1)

∂

∂t
(ρU) + ∇ · (ρUU) = −∇ p + ∇ · τ + ρg, (2)

where U is the velocity vector, ρ is the density, p is the pressure, and g is the gravitational acceleration.

The stress tensor τ is given by

τ = μ(γ̇ )γ̇ , (3)

where γ̇ is the second invariant of the rate-of-deformation tensor (γ̇ ). At each control volume, the

density and viscosity (μ) are

ρ =
∑

αqρq , (4)

μ =
∑

αqμq , (5)

where αq is the volumetric fraction of the qth phase. In the current study, a value of unity for α

indicates that the cell is full of the fluid phase, whereas α = 0 indicates that the cell is occupied by

the “metal” phase.

In addition, the tendency of the particle to distort from its spherical shape was minimised by

the incorporation of a surface tension parameter between the two phases, implemented through the

continuum surface force (CSF) model of Brackbill et al.,20

F =
ρσ∇α

0.5 (ρ1 + ρ2)
∇.

(

∇α

|∇α|

)

, (6)

where σ is the surface tension coefficient between the “metal” and fluid phases. The magnitude

of this coefficient in relation to the viscous and inertial forces in the two phases will be discussed

further in Sec. II C.

The flow problem described above was spatially discretised on a two–dimensional axisymmetric

numerical grid, which was divided uniformly such that there were 40 control volumes across the

diameter of the sphere. An implicit differencing scheme was employed for the temporal discretisation

of all the governing equations, whereas the convection terms were discretised using the standard

central differencing scheme. The coupled method was adopted for the velocity-pressure coupling

in conjunction with the PRESTO (Pressure Staggering Option) scheme for the interpolation for the

pressure field in the momentum equation. The resulting equation was implemented into the ANSYS

FLUENT 13.0 through a series of user-defined functions (UDFs). Throughout the calculation process,

the motion of the sphere was tracked through the Piecewise-Linear Interface Calculation (PLIC)

interface–tracking scheme suggested by Youngs.21 The time step used throughout the calculation

process was set such that the global Courant number is less than 0.1.

B. Model validation

The validity of the proposed numerical method was examined through comparisons of the

predicted drag force experienced by spheres (ρs = 7638 kg/m3; d = 6.25 mm) settling in Newtonian

fluids with the representative Stokes drag value. The viscosity of the Newtonian fluid ranges from

0.4 to 5 Pa s, and the fictional surface tension parameter between the two phases was set to 3.5 N/m.

The resulting Capillary number
(

Ca = μ f Vt / σ
)

for these simulations ranges from 0.027 to 0.033.

The development of spurious/parasitic currents in the interface of the two phases, which have been

known to occur in CSF-based models with considerable imbalance in viscous and surface tension

forces (Ref. 22), is therefore expected to be minimal.

The effect of the fictional viscosity parameter for the “solid” material (μs) on the development

of the flow field around the settling sphere was first examined, based on a fluid viscosity value,

μf, of 5 Pa s (Figure 1). The settling velocity of the sphere in this case can be seen to be highly
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FIG. 1. The development of settling velocity of the “solid” sphere, using several different ratios of μs/μf. The viscosity of

the “fluid” phase is constant (i.e., Newtonian) at 5 Pa s.

dependent on the μs value. At higher values of μs/μf, the development of the velocity field around

the sphere tends to be sluggish, as reflected by the lower settling velocity of the sphere at μs/μf

= 250. With lower μs/μf values, the development of the velocity field around the sphere was found

to be considerably more rapid. However, a velocity overshoot was found in the case where μs/μf

= 2.5, indicating that the low value of μs tends to cause considerable diffusion within the “solid”

phase, leading to the formation of a secondary flow within the solid sphere.

The formation of the secondary flow within the “solid” sphere can be inspected further in

Figure 2, where the development of the velocity field within the “solid” sphere has been presented.

In this figure, it can be seen that while the case with μs/μf = 250 presents minimal distribution of

velocity within the “solid” phase, the opposite is true with the case where μs/μf = 2.5. In the latter

case, the diffusion of momentum within the “solid” phase can be seen to cause the velocity distribution

within the sphere to be in excess of 20%, with the highest velocity being at the centre of the sphere.

The selection of the fictional solid viscosity parameter therefore requires careful consideration of

the velocity and flow field development within the two phases. Within the parameters of this study,

a μs/μf ratio of 25 has been found to present a satisfactory balance of rapid flow field development

and minimal secondary flow development within the solid phase.

FIG. 2. Magnitude of the velocity field within the “solid” sphere, in a Newtonian fluid (μf = 5.0 Pa s). The velocity parameter

has been normalised against the average settling velocity of the sphere, and the x axis represents the distance from the centre

of the sphere in the radial direction, normalised against the radius of the sphere.
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FIG. 3. Axial velocity (normalised against the terminal settling velocity of the sphere) above and below a sphere

(d = 6.25 mm) settling in Newtonian fluid (μf = 5.0 Pa s) along the axial direction (normalised as distance/sphere ra-

dius). D represents the diameter of wall boundary.

The velocity of the fluid surrounding a sphere settling in a 5 Pa s Newtonian fluid has been

compared directly with the analytical solution of Stokes (see Figure 3). As expected, the velocity

of the fluid tends to decrease with increasing distance from the sphere. Furthermore, the velocity

of the fluid medium in a domain where the width of the geometry is 10 times the diameter of the

sphere (D/d = 10) tends to decrease more rapidly than in the case where D/d = 20. The approach

of the fluid velocity towards the theoretical Stokes values as the extent of the domain is increased

indicates that the discrepancies in the numerical and analytical solution of Stokes have been caused

by the extension of the solid wall boundaries in the computational domain.

The resulting drag coefficient experienced by the sphere as presented by the numerical study

can be seen in Figure 4. In this figure, the predicted values of drag coefficient (as a function of

particle Reynolds number) have been compared against those calculated through the widely accepted

correlations of Clift et al.23. As can be seen in this figure, there is a trend of over-prediction in the

numerically predicted drag force, with the predicted values of drag coefficient being approximately

25% higher than the calculated values. This level of discrepancy was as expected, considering

that the settling velocity of spheres in cylindrical geometries of diameter 10 times the diameter of

the sphere has been found to be approximately 20.8% lower than the theoretical Stokes velocity

(Ref. 24). Figure 4 therefore represents an excellent agreement in the theoretical and numerical

FIG. 4. Drag coefficient surrounding a sphere settling in Newtonian fluids of viscosity 0.4 < μf < 5.0 Pa s (D/d = 10).
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TABLE I. Selected fluid and sphere parameters.

μ0 μ∞ κ .θ Vt,Newtonian

Fluids (Pa s) (Pa s) (s) m (m/s) Re Bn

A 75 0.00089 8.6 0.8 0.0804 0.291 3.8

B 75 0.00089 3.3 1 0.0804 0.291 41.5

predictions of drag force in the flow fields surrounding spheres settling in Newtonian fluids at

Reynolds numbers of Re < 4.0, indicating the validity of the proposed numerical model.

C. Fluid model

The dependence of fluid viscosity on both shear rate and time is characterised through the

incorporation of a scalar variable that represents the structure of the fluid, λ. A fluid medium with a

fully intact structure is represented by a λ value of 1.0, whereas a λ value of 0.0 represents a medium

where its internal structure has been completely destroyed. Under the assumption that the fluid has

a constant characteristic relaxation time, θ , and that the rate of destruction is linearly dependent on

the rate of shear, the rate of change in λ could be written:

∂λ

∂t
+ U · ∇λ =

1 − λ

θ
− κγ̇ λ, (7)

where κ is a constant. Gumulya et al.3 has coupled Eq. (1) with a viscosity equation,

μ = μ∞ + (μ0 − μ∞) λm, (8)

where μ0 is the maximum viscosity at zero shear rate and μ∞ the limiting viscosity at high values

of shear rate. As the value of μ∞ is generally much smaller than μ0 (see Table I), the viscosity

equation can generally be approximated as

μ = μ0λ
m . (9)

Under steady–state conditions, Eqs. (1) and (2) become

∂λss

∂t
→ 0 ⇒ λss =

1

1 + κθγ̇
(10)

and

μ = μ0 (1 + κθγ̇ )−m , (11)

respectively.

The following set of non-dimensional parameters was incorporated into the analysis of the flow

field development surrounding a settling sphere:

De = θ
Vt,Newtonian

d
, (12)

Re =
ρ f Vt,Newtoniand

μ
, (13)

where d is the diameter of the sphere, μ is the apparent steady–state viscosity of the fluid, evaluated

at a shear–rate of
(

Vt,Newtonian / d
)

. The parameter Vt,Newtonian is the calculated value of terminal

settling velocity of a particle settling in a Newtonian fluid. The viscosity of the Newtonian fluid is

determined through the steady–state viscosity equation of the thixotropic fluid (see Eq. (11)). De

in this case represents the ratio of the time scale of the liquid over the flow time scale. It will be

shown in Sec. III that the viscosity distribution around the settling sphere, and hence the drag force

and terminal settling velocity of a particle settling in shear–thinning thixotropic fluids is highly

dependent on the relaxation time of the fluid.
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FIG. 5. Steady-state rheology (see Eq. (10)) and the evaluation of τY.

Another dimensionless parameter was needed to describe the rheological properties of the fluid:

Bn =
τY d

ηVt,Newtonian

. (14)

Bn is the pseudo–Bingham number that signifies the ratio of the pseudo–yield stress of the fluid

(if its rheogram was interpreted as a Bingham fluid, see Figure 5) to the actual viscous parameters

of the study. The parameter η represents the gradient of the steady–state rheogram, evaluated at the

characteristic shear rate value. The pseudo yield stress τY is evaluated by extrapolating the shear

behaviour at the characteristic shear conditions to γ̇ value of 0.

Based on the considerations stated above, a set of parameters were selected for the rheological

properties of the fluids (see Table I). In all of the simulations, the density and diameter of the ball

were set to 7638 kg/m3 and 6.25 mm, respectively, and the density of the fluid medium was 998

kg/m3. The distance of the centre of the sphere to the wall boundary is 62.5 mm. An initial value of

λ of 1.0 is used to represent a completely undisturbed fluid medium, whereas its value within the

“metal” sphere is 0.0. The simulations were carried out until a steady–state solution is obtained, i.e.,

until the sphere reaches a steady settling velocity.

D. Numerical parameters

Based on the results of the numerical study with Newtonian fluids, a solid viscosity parameter

of 25 times the maximum viscosity of the fluid has been selected throughout all the study with the

thixotropic, shear-thinning fluids. The effect of the fictional parameter of surface tension between

the two phases can be inspected in Figure 6, where the deformation of the spheres at 3 different

values of σ has been presented. As can be seen in this figure, σ = 0.35 N/m (Figure 6(a)) imparted

significant deformation in the sphere. On the other hand, at σ = 3.5 N/m, the deformation of the

sphere as it settles down through the shear-thinning fluid can be seen to be minimal. As can be

expected, lower levels of sphere deformation are obtained, as the “surface tension” between the two

phases is increased.

The effect of the surface tension force as the σ parameter is increased further from 3.5 N/m

can be seen in Figure 7, where the development of velocity field surrounding the sphere for cases

where σ = 1.0, 3.5, and 10 N/m has been presented. It can be seen that although the velocity fields

below the sphere are very similar across the 3 cases, considerable differences are evident with the

flow field above the settling sphere. In the case of σ = 10 N/m, a significant overshoot in velocity

tends to occur immediately downstream of the sphere. This could be caused by the development of

spurious/parasitic currents, which have been known to occur in CSF-based models with considerable

imbalance in viscous and surface tension forces (Ref. 20). In the region above the sphere, the value of
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FIG. 6. The deformation of the sphere in fluid of Case A, with De = 128 (see Table I): (a) σ = 0.35 N/m (Ca = 0.295);

(b) σ = 1.0 N/m (Ca = 0.103); (c) σ = 3.5 N/m (Ca = 0.0295).

λ is considerably lower than 1.0, and therefore the viscosity of the fluid in this region is significantly

lower than that below the sphere.

A fictional surface tension parameter of 3.5 N/m has therefore been selected for all of the simula-

tions conducted for this study. The resulting range of Capillary numbers
(

Ca =
(

μ f Vt,Newtonian

)

/ σ
)

for Fluids A and B was 0.0295–0.033, which is consistent with the range of Capillary numbers se-

lected for the study with the Newtonian fluids.

A series of grid independence tests was conducted to determine the convergence of the current

numerical problem. The results of this study are presented in Figure 8, where the development of

sphere settling velocity over time has been shown for cases using d/20, d/40, and d/80 numerical

grids. As can be seen, the case with d/40 numerical mesh tends to approach the results of d/80,

indicating that a grid independent result has been obtained. A numerical grid of d/40-sized cells was

thus selected for this study.

III. RESULTS AND DISCUSSION

For particles settling in shear–thinning, thixotropic fluids, the development of drag force sur-

rounding it is expected to be highly dependent on the rates of deformation and reconstitution of the

fluid structural parameter, i.e., the response time of the fluid, which in this study is characterised by

De. This is shown in Figure 9, where the development of settling velocity of a particle in Case A

fluids with different De values has been presented. As expected, the time required for the particle

FIG. 7. Axial velocity above and below the sphere along the axial direction (normalised as distance/d), using σ = 1.0, 3.5,

and 10 N/m (Case A, De = 28.2, see Table I).
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FIG. 8. Normalised axial velocity above and below the sphere along the axial direction (normalised as distance/d), using

d/20, d/40, and d/80 numerical grids (Case A, De = 28.2, see Table I).

to achieve a terminal settling condition increases with increasing values of De. Furthermore, the

terminal settling velocity in the thixotropic fluids appears to be inversely proportional to De. As will

be shown later, this is due to the distribution of apparent viscosity surrounding the sphere, which

tends to become more localised as the De value is increased. This is consistent with the findings of

Derksen,15 who found that the drag force experienced by random particles suspended in thixotropic

suspensions tends to increase with increasing fluid response time.

The distribution of λ around particles settling in fluids of Case A has been presented in

Figure 10. These figures were obtained in cases where the particles have reached their respec-

tive terminal settling velocities, such that they represent the steady–state flow fields of the fluids.

It can be seen that the distribution of λ, and hence viscosity, around the particles depends greatly

on the De value of the fluid. Fluids with shorter response times (Figures 10(b)–10(d)) tend to have

greater areas of disturbance (i.e., fluid regions with low viscosity) in comparison to fluids with the

higher values of θ (Figure 10(a)). This is especially pronounced in areas immediately surrounding

the sphere. A particle settling through a fluid with De = 561 (Figure 10(a)) thus experiences a greater

viscous resistance and drag force in the flow field immediately surrounding it in comparison to a

particle settling in fluids with lower De values. This is reflected by the terminal settling velocity of

the particles, which has been shown to decrease with increasing values of De (see Figure 9).

FIG. 9. The development of settling velocity of a sphere (d = 6.25 mm, ρs = 7368 kg/m3) in Case A fluids of different De

values as a function of time.
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FIG. 10. Contours of the fluid structural parameter (λ) in Case A fluids: (a) De = 560; (b) De = 128; (c) De = 12.8; (d) De

= 1.3.

Figure 10 also shows that in cases with higher values of De, strong fore–aft asymmetry tends

to be developed around the settling spheres. In the case of the fluid presented in Figure 10(d),

the De value (De = 1.3) is in the same order as the characteristic time scale of the experiment

(t∗ = 1/γ̇ = 0.58, with γ̇ being evaluated at the terminal settling velocities of the spheres), and

highly symmetrical flow field is obtained in the fore–aft region of the sphere. On the other hand, in

the case of the fluid presented in Figure 10(a), the value of De (De = 561) is much larger than t∗.

The flow field in this case shows the formation of a “tail,” where the structure of the fluid gradually

recovers after being sheared by the movement of the sphere.

The fore–aft asymmetry in the flow fields can be inspected further in Figure 11, where the axial

distribution of λ for cases of fluids with different De values has been presented graphically. In the

region below the settling sphere, the extent of structural disruption caused by the movement of the

settling sphere (represented by fluid regions where λ < 1.0) increases steadily with decreasing values

of De. On the other hand, in the region above the settling sphere, the values of λ tend to decrease

with increasing De values, caused by the delayed recovery of the fluid after being sheared by the

moving sphere. The asymmetry in the regions above and below the sphere is especially apparent

in cases where the De value of the fluid is high (De = 128 and De = 561). While the fluid with

De = 561 appears to have higher values of λ above the sphere in comparison to the fluid with

FIG. 11. Axial profile of the structural parameter (λ) in Case A fluids with different De values. The distance parameter

presented in the x axis was normalised against the radius of the sphere. Negative distance values indicate regions above the

settling sphere, and vice versa.
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FIG. 12. Drag coefficient (normalised against the CD value of a sphere settling in a Newtonian fluid, calculated through the

Stokes CD-Re relation) experienced by a sphere settling in Case A and Case B fluids of different De values. The distance to

the wall boundary relative to the diameter of the sphere is also varied (D/d = 10 and D/d = 20).

De = 128, this could be caused by the increased drag force of the fluid at De = 561, resulting in

a lower level of structural destruction in the fluid. The fluid in this region thus appears to recover

faster than in the case of De = 128.

In Figure 10, it appears that the area of disturbance surrounding spheres settling in fluids of

De ≤ 12.8 is relatively large in comparison to the computational domain. The effects of the wall

boundaries on the velocity development around the sphere in fluids of different De values therefore

needed to be examined. This was conducted through simulations of larger geometries, in which

the distance of the wall boundary to the sphere centre is 20 times the diameter of the sphere

(D/d = 20). The results of this analysis have been presented in Figure 12, where the values of the

drag coefficient have been presented as a function of the De value of the fluid. The CD values in this

case have been normalised against the drag coefficient of a sphere settling in a Newtonian fluid with

a viscosity value equal to the steady–state viscosity of a thixotropic, shear–thinning fluid evaluated

at a shear–rate of
(

Vt,Newtonian / d
)

.

In Figure 12, it is evident that despite the fact that the areas of disruption surrounding the sphere

for cases where De = 12.8 and De = 1.3 are large in comparison to the size of the domain (this

occurs to the extent that the values of λ on the wall boundary at D/d = 10 is less than 1.0), the effects

of the boundary on the development of the flow field are relatively minimal in comparison to cases

involving Newtonian fluids. In Case A fluids, the difference in the CD values of spheres settling in

columns with D/d values of 10 and 20 were found to be less than 8%. The minimal difference in

the drag coefficient of the spheres could be caused by the considerable shear thinning properties

of the fluid, where the localisation of the fluid viscosity is quite severe, such that the presence of

wall boundaries surrounding the sphere/fluid configuration does not greatly influence the drag force

experienced by the spheres.

Figure 12 also shows that the values of CD for spheres settling in Fluid B are considerably

higher than those settling in Fluid A. This was as expected, due to the fact that Fluid B has a higher

Bn value than Fluid A. This is such that while the viscosity of the two fluids
(

μ = τ / γ̇re f

)

at the

reference value of γ̇re f = Vt,Newtonian / d is the same for Fluids A and B (see Figure 5), the apparent

viscosity (η = δτ / δγ̇ ) of the two fluids differ considerably. Fluid regions away from the surface of

the sphere would therefore require higher values of shear stress to reduce the structural parameter

of Fluid B in comparison to Fluid A, resulting in a higher level of flow field localisation in the case

of the fluid with the higher Bn value.

The effects of the Bn values on the flow field surrounding a settling sphere can be seen in

Figure 13, where the contours of the second invariant of the strain-rate tensor in fluids of Cases A

(Bn = 3.8) and B (Bn = 41.5) have been presented. The strain rate parameter has been normalised
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FIG. 13. Contours of the second invariant of the strain-rate tensor. The magnitude of the strain-rate tensor was normalised

against the maximum strain rate value obtained as the De value reaches 0.13 for cases of non-Newtonian fluids ((a)–(g)). For

the case of the Newtonian fluid (1.725 Pa s), the magnitude of the strain-rate tensor was normalised against the maximum

strain rate value (h).

against a maximum strain rate value, which is characteristic of the rheological parameters of the

fluid. In the present study, it was found that there is minimal difference (0.6%) in the CD values of

Cases A and B fluids with De values of 1.3 and 0.13. It was therefore concluded that the minimum

drag coefficient, and hence maximum strain rate value, could be estimated using the flow fields

resulting from cases of De = 0.13 for both of Fluids A and B.

The fluid medium represented in Figure 13(h) is Newtonian with a Bn value of zero. The area

of deformation in the case of the Newtonian fluid can be seen to be significantly larger than in the

cases of the thixotropic, shear-thinning fluids. Away from the surface of the sphere, the rate of strain

experienced by the Newtonian fluid decreases gradually. Shear rate values of less than 0.1 s−1 is

reached at a distance of ∼3 times the diameter of the sphere in the axial direction. In the radial

direction, the extension of the flow field spans ∼4 times the diameter of the sphere.

On the other hand, the flow fields of the thixotropic, shear–thinning fluids in Figures 13(a)–13(g)

appear to have distinct areas of sheared fluid, surrounded closely by regions where the shear rate is

close to zero. Fluid B, which has a higher Bn value than Fluid A, appears to have slightly smaller area

of sheared fluid around the spheres in comparison to Fluid A. In both cases, the regions of sheared

fluid extend approximately the 1.25–3 times diameter of the particle in the axial direction, beyond

which the shear rate in the fluid decreases rapidly to values lower than 0.1 s−1. In the radial direction,

the extension of the flow field is even more restricted, spanning ∼1.25–2 times the diameter of the

sphere.

The effects of Bn on the flow fields surrounding the spheres can be inspected further in

Figure 14, where the profiles of the fluid structural parameter (λ) as a function of the axial and

radial distance from the sphere (normalised against the radius of the sphere) have been presented. In

the case of Fluid B, the values of λ can be seen to increase at a greater rate, with increasing values

of r/R, in comparison to the case of Fluid A. This was as expected, as the higher value of Bn in the

case of fluid B means that higher values of shear stress would be required to overcome the structural

parameter of the fluid. The extension of the flow field surrounding the sphere therefore decreases

with increasing values of Bn.

Within the area of deformation, a torus of fluid is formed in the lateral direction, translating

with the settling movement of the sphere. Such formation has previously been hypothesised by Beris

et al.4 in yield–stress fluids, attributed towards the rigid–body rotation of the fluid in regions between

the high–shear zones at the sides of the sphere and the recirculation zone further away from the

sphere. In the current study, although such rigid–body motion is not possible (due to the lack of a

constant yield–stress parameter in the fluid model), the formation of the torus can be explained in

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.7.93.13 On: Tue, 05 Jul 2016

06:28:13



023102-13 Gumulya, Horsley, and Pareek Phys. Fluids 26, 023102 (2014)

FIG. 14. Profile of the structural parameter (λ) in fluids of Cases A and B: (a) Axial distribution in fluids with De = 12.8;

(b) axial distribution in fluids with De = 1.3; (c) radial distribution in fluids with De = 12.8; (d) radial distribution in fluids

with De = 1.3. The distance parameter presented in the x axis was normalised against the radius of the sphere. Negative

distance values in (a) and (b) indicate regions above the settling sphere, and vice versa.

a similar manner, i.e., fluids in regions away from the high–shear zones at the sides of the sphere

do not experience shear stresses that are sufficient to overcome the viscosity of the fluid and further

reduce its structural parameter. This results in a slight rotational flow in the area just outside of

the high–shear zone, causing the onset of the recirculation zone to appear closer to the edge of the

sphere in comparison to the flow fields in Newtonian fluids. The development of the recirculation

zone around the settling sphere can be seen in Figure 15.

The asymmetry of the flow field surrounding the settling spheres in Figures 10 and 11, and

13–15 can be compared to the results of the flow visualisation experiments of Gueslin et al.,9, 10 who

conducted their experiments in colloidal suspensions of clay, which has previously been identified

FIG. 15. Velocity fields for a sphere settling in (a) Newtonian fluid of 1.725 Pa s viscosity; (b) Fluid A (Bn = 3.8; De = 128).
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to exhibit yield stress, shear thinning, and “aging” characteristics. Most notably, the velocity field

presented in Figure 15(b) can be seen to be in excellent agreement to the velocity fields surrounding

an aluminium particle settling in clay suspension (Ref. 9), which also features a strong asymmetry

in the fore-aft region of the sphere.

On the other hand, Gueslin et al.9, 10 also found that there is a tendency for the downstream

flow field to form a “negative wake,” i.e., a region of fluid where the fluid velocity is negative with

respect to the direction of the settling sphere. This was found in cases where a heavier particle is

used (Ref. 9) and/or in cases where the fluid is allowed to “age” prior to the commencement of the

experiment (Ref. 10). Interestingly, it was shown that the development of negative wake in the case

of aging clay suspensions tends to occur only in cases where the fluid is rested for 2 h or more. In

cases where the resting times are less than 2 h, the flow fields surrounding the settling sphere were

found to be comparable to that presented in Figure 15(b). Similarly, Putz et al.11 also found that

Carbopol solutions, which are traditionally considered as yield–stress fluids, tend to form negative

wakes in the area downstream of a settling sphere. The development of negative velocity could not

be reproduced in the present study due to the assumption of negligible elasticity in the fluid model.

The implication of the flow fields described above concerns the drag force experienced by

particles settling in partially recovered domain. In experiments involving spheres settling one after

the other in the same flow path, for example, it is expected that the following sphere, which settles

through a partially recovered fluid structure, exhibits a higher settling velocity than the preceding

sphere. This phenomenon has previously been observed in several yield–stress and shear thinning

fluids (Refs. 3, 14, 25, and 26). In Figure 16, the variability of the second invariant of the strain-rate

tensor in fluid A (with De = 128) around a sphere settling through a partially recovered domain

(the case of the “second sphere”) has been presented. In this case, the fluid was previously disrupted

by the movement of an earlier (“first”) sphere, with a time lapse of 5.8 s. Through this figure, it is

evident that the area of disturbance around the settling sphere is now slightly larger than in the case

of a sphere settling through an undisrupted fluid domain, indicating that the drag force experienced

by the second sphere is lower than that experienced by the earlier sphere. The current finding is

therefore consistent with these experimental observations.

The dependency of the drag force experienced by a sphere settling in partially recovered domain

on the recovery time of the fluid can be inspected in Figure 17, where the drag coefficient of the

“second sphere,” normalised against the drag coefficient of a sphere settling in a fully reconstituted

domain (CD,1), has been presented. As can be expected, the drag coefficient of the second sphere

was found to be considerably lower than that of the first sphere, and this parameter decreases with

lower values of t. Interestingly, in cases where the recovery time of the fluid is almost twice the

FIG. 16. Second invariant of the strain tensor around two spheres settling one above the other, normalised against the

maximum strain rate of the first sphere, along the axial direction (normalised as distance/r). Case A fluid with De value of

128 was used, and the first sphere passes through the fluid domain 5.8 s before the movement of the second sphere.
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FIG. 17. Drag coefficient of a sphere settling in the same pathline as another sphere. The time difference presented in

the x–axis denotes the time lapse since the first sphere passes through the current position of the second sphere. The drag

coefficient of the second sphere was normalised against the drag coefficient of the first sphere. The De value of fluids A and

B were 128.

value of its relaxation time (De = 128, or θ = 10 s for both Fluids A and B), the drag coefficient

of the sphere can be seen to still be approximately 20% lower than the drag coefficient of a sphere

settling under terminal (or fully reconstituted) conditions. The full recovery of a thixotropic, shear

thinning fluid may therefore be considerably longer than the relaxation parameter of the rheology

model.

The results of this study highlight the importance of considerations of timeframes and fluid

relaxation times in studies involving the drag force and dynamics of particles settling in highly shear

thinning fluids. The fluid relaxation time influences the localisation of the viscosity field around

the sphere, thus affecting the drag force and the terminal settling velocity, even when the sphere is

settling through a fluid domain with a completely intact structure. In partially recovered domains, as

the development of viscosity field is highly affected by the fluid structure parameter, lower levels of

drag forces are developed around the settling sphere, and hence its settling velocity would be higher

than a sphere settling through a fully structurally intact fluid domain. While full reconstruction of

the flow fields obtained through flow visualisation experiments was still unachievable (mainly due

to the assumption of negligible fluid elasticity in the fluid model), the resulting flow fields can be

seen to provide a closer representation of the actuality of shear-thinning, thixotropic fluids and the

variability of rheological parameters with time. Future studies will further address the variability of

drag force of the particles with the rheological parameters of the fluid.

IV. CONCLUSION

A numerical analysis has been presented, through which the gradual destruction and recovery

of the micro–structural properties of a fluid as it is sheared by the movement of a sphere can be

emulated. Due to the highly shear thinning characteristics of the fluid, distinct regions of disturbed

and undisturbed fluid were formed around the settling sphere, resulting in a localisation of flow field

around the sphere. The extent of this localisation is highly dependent on the fluid relaxation time.

Fluids with high values of relaxation time tend to develop highly localised shear region around the

sphere, causing the sphere to inhibit a greater value of drag force in comparison to spheres settling

in fluids with shorter relaxation times. Further, the drag force experienced by the sphere was also

found to be highly dependent on the shear thinning characteristics and apparent viscosity of the

fluid, which further determines the gradients of strain rate in the flow field surrounding the sphere.

The gradual recovery of the fluid after being sheared by the movement of a sphere tends to

cause the region above the sphere to exhibit lower values of viscosity. The flow fields above and

below the settling sphere are therefore highly asymmetrical. Such asymmetry was found to be in

relative agreement with the results of the flow visualisation experiments of Gueslin et al.,9 although
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some discrepancies exist due to the assumption of negligible elasticity in the current fluid model.

As a result of this gradual recovery, a sphere that settles through a partially recovered domain,

e.g., due to the motion of an earlier sphere, would tend to attain a greater settling velocity than the

terminal velocity value. This finding was found to be consistent to several experimental observations

conducted in highly shear thinning fluids with time–dependent characteristics, whereby under short

time scales, the fluids may be interpreted using yield-stress models.
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