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Chapter 1

Introduction

Aviation activity has grown strongly over the last twenty years. This has largely
been driven by broader economic growth, increased tourism, regulatory reform,
and greater industry efficiency. The aviation industry predicts that in the next
10 years the number of aircrafts will increase twice. On the other hand, nowa-
days communities are increasingly concerned about the impact of aircraft noise
and gas emissions on the environment. For example, the European commission
published a report, named “European Aeronautics: a vision for 2020”, where as
a main goal for this industry a 50% reduction of the noise and the CO2 emissions
is specified. Moreover, considering the constantly rising fuel prises, another im-
portant aspect is the fuel consumption reduction. All these facts show the need
for rapid development in this area.

The numerical analysis plays an important role in the development of modern
jet engines. The invention of the so called super computers, together with
advanced numerical methods allows the numerical modelling of different aspects
of an engine, thus minimizing the costs for design and construction. Typical
applications are the optimization of the rotor blades of a turbo fan, simulation
of the flame in a combustion chamber, or modeling the cooling/heating of the
turbine walls. In most of the cases the underlying problems have a multiphysics
nature. Thus, for their reasonable description a coupled simulation should be
performed.

With the increase of the computer power during the last several years the
simulation of a coupled fluid–structure interaction becomes a possible task.
However, investigating only the interaction between fluid forces and structural
deformations in a jet engine is not sufficient. In the whole jet engine the tem-
perature is playing an important role. Nowadays the inlet turbine temperature,
for example, is over 1300◦C and in 1947 it was around 800◦C. This progress
resulted from approved turbine materials, but above all from advanced cooling
methods. Therefore developing a model for the heat transport is essential for
the accurate numerical simulation of such problems.

3
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1.1 State of the art

The numerical simulation of fluid–structure interaction problems is one of the
greatest challenges in the modern scientific computing. Typical examples arise
in aeronautics, where air flow around an elastic aircraft or oscillations of air–
foils in air flow are computed (e.g. Dowell et al. [21]), in turbomachinery, where
the transfer of energy between a rotor and a fluid is simulated (e.g. Willcox
et al. [106]), in bio–mechanics, where the elastic behaviour of micro–pumps
or artificial membranes in blood flow is considered (Scotti and Finol [88] or
Tezduyar et al. [100]), or even in the food industry (Nitin and Karwe [63]).

In FSI analysis, the method used to satisfy the geometrical compatibility and
the equilibrium conditions on the interface between the fluid and the structure
is one of the key factors. For this purpose, the direct (monolytical) coupling
method, the partitioned coupling method (iterative method) and the constraint
method can be distinguished.

In the direct coupling scheme the fluid and the structure are treated as ele-
ments of a single dynamic system, and all of the governing equations are inte-
grated simultaneously, and interactively in the time-domain. The main difficulty
origins from the fact that the spatial domain occupied by the fluid changes in
time and the location of the boundary is usually an unknown itself that de-
pends on the fluid flow and the solution of additional equations describing the
motion/deformation of the body. For the boundary formulations different meth-
ods exist, for example moving reference frames (see Li et al. [50]), coordinate
transformations (see Newman and Karniadakis [61]), non-boundary conforming
formulations (see Mittal and Iaccarino [58]) and embedded-boundary formula-
tions (see Yang et al. [112] or Kim et al. [44]).

Another possibility is to enforce the fully coupled interaction constraints
using the augmented-Lagrangian method. This scheme is applied by Rifai et
al. [77]. They employ the finite–element method, based on the Galerkin–Least–
Squares (GLS) method with discontinuity capturing operators for the fluid.
The arbitrary Lagrangian–Eulerian (ALE) method is utilized to account for
deformable fluid domains. The finite element treatment of solids and structures
is based on a three-field variational principle.

The limited flexibility is the main drawback of both the monolytical and
the constraint methods. On the other hand the partitioned time marching algo-
rithms are based on subsequent solutions of the fluid and structure subproblems
and allow one to reuse existing computational codes. Depending on how the
interface conditions are implied in the coupling procedure, explicit (loosely cou-
pled) and implicit (strongly coupled) schemes are distinguished. By a loosely
coupled method (see Farhat et al. [25]) the data transfer between the solvers is
done only once per time step. For stability reasons, often a fully implicit formu-
lation has to be used (see Tallec and Mouro [97]). In this case the data exchange
at every time step is repeated until a certain convergence criterion is satisfied.
Although the advantages of the partitioned coupling methods make them at-
tractive compared with the monolytical coupling methods, it is known that the
convergence problem is more likely to arise because of the so called artificially
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added mass effect (see Causin et al. [13]). In order to overcome this problem,
some ideas to enhance the coupling scheme have been proposed. Belytschko et
al. [6] introduced a moderate amount of damping in the interface element in
the structure solver to include the damping effect from a fluid. Stein [93] used
multi–step and multi–iterations in a structural dynamic solver. Degroote et
al. [18] proposed an interface artificial compressibility method which mitigates
the incompressibility constraint by adding a source term to the continuity equa-
tion in the fluid domain adjacent to the fluid–structure interface. Constant and
adaptive underrelaxation was employed by Yigit [113] who also investigated the
effect of the spatial discretization on the convergence of the coupling procedure.

Similar strategies for handling the convective heat transport between the
fluid and the structure can be employed. Teschauer [99] defines the solid as an
additional flow region and calculates the temperature in the whole domain in an
analogue to the direct coupling methods. This approach is also used by different
authors for a wide range of multiphysics problems, such as heating of vehicles
in hypersonic flow (see Johnson et al. [42]), heating and cooling of turbine
blades in jet engines (see Sondak and Dorney [91]) and thermoelastic deforma-
tion of a structure due to aerodynamic heating (see Lee et al. [47]). Haupt et
al. [35] proposes an iterative solution procedure, based on the classical Dirichlet–
Neumann approach, where transient problems are handled with iterative stag-
gered schemes. Roe et al. [79] analyses the stability of a partitioned thermally
coupled fluid–structure interaction scheme with a moving interface. Two types
of fluid and structural discretizations are investigated finite–difference/finite–
difference, as well as the more traditional finite-volume/finite-element configu-
ration.

Validation of the different numerical procedures for thermal fluid structure
interaction can be rarely found in the literature. In most of the cases a pure FSI
problem is investigated. In Yamamotoa et al. [109] an elastic deformable struc-
ture is used in terms of an Euler–Bernoulli beam. For the studied configuration,
consisting of a cantilever flexible cylinder immersed in a current, a comparison
between numerical and experimental results is shown. Lienhart et al. [51] con-
sidered a more general case, employing an elastic, free vibrating structure with
a full resolution of the structural problem. The temporal courses of front body
angles, trailing edge coordinates, membrane deformations, and the flow field
properties are compared with an experiment. In both situations temperature
effects are not taken into consideration and the fluid flow is laminar.

On the other hand the heat transfer characteristics under single or multiple
impinging turbulent jet flows are investigated numerically and experimentally
by different authors during the last 30 years, without taking into account the
effects of the fluid–structure interaction. Polat and Douglas [73] studied the
numerical simulation of a turbulent flow field of impinging jets over a surface.
Nitin and Karwe [63] used a numerical simulation to predict flow and thermal
fields and calculate the surface heat–transfer coefficient for a single hot air jet
impinging on a cookie–like product. The results from the numerical predic-
tions are compared with experimental measurements. Craft et al. [16] applied
different turbulence models to the numerical prediction of the turbulent imping-
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ing jets discharged from a circular pipe and discussed the characteristics of the
numerical approaches.

1.2 Scope of this work

The aim of this work is to develop and implement a framework for numerical
simulation of fully coupled thermal fluid structure interaction. For the me-
chanical fluid–structure interaction coupling an implicit partitioned approach
which has been already implemented and investigated in the Chair of Numer-
ical Methods in Mechanical Engineering (FNB), is chosen. The scheme allows
to use specifically designed and highly optimized codes on different fields and
offers significant benefits in terms of efficiency. Furthermore it can be easily ap-
plied to various FSI problems which is a crucial aim of this work. For the flow
field the in–house program FASTEST is used. The open–source finite–element
solver FEAP is employed for the solid domain. The interpolation of the prop-
erty values between the numerical grids is done by the quasi–standard coupling
interface MpCCI.

Since in most of the practical situations the flow of interest is in the turbulent
regime, special attention should be paid on the different turbulence models.
Low and high Reynolds averaged Navier–Stokes models, as well as large eddy
simulation models seems to be the natural choice. Advanced techniques for the
grid distortions, especially in the near wall regions, are a crucial point for such
FSI calculation. Different approaches for the mesh movement are implemented
and investigated with respect to grid quality and efficiency.

The thermal fluid–structure interaction problems are highly nonlinear prob-
lems, thus a great amount of computational time is needed for their numerical
simulation. Optimization, in terms of computational time and accuracy, of the
coupled procedure is an important goal of this work. Special attention is paid
to the parallelization of the whole framework.

Validation and verification of the coupling procedure is also an important
aspect. Analytical test cases, as well as representative test configurations for
which experimental data exist, are used. The numerical properties of the scheme
are studied.

1.3 Organization of the thesis

In chapter 2 first the basic governing equations of the continuum mechanics
are presented, together with different material models for both the structure
and the fluid. The scalar transport equation which is used for the simulation
of heat transfer is shown afterwards. The transformation of the Navier–Stokes
equations for fluid flow in a turbulent regime are demonstrated. The low and
high Reynolds RANS methods, as well as the Smagorinsky and its dynamic
variant LES models are discussed. The first part of the chapter ends with the
changes in the equations imposed by the arbitrary Lagrangian–Euler (ALE) de-
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scription. In the second part of chapter 2 the numerical methods used in this
work are introduced. The finite–volume method for solving the equations of
the fluid dynamics are followed by the SIMPLE pressure–correction algorithm,
for coupling of the velocity and the pressure. The principles of the geometri-
cal multigrid method on moving grids for accelerating the computation, as well
as techniques for parallelizing the calculation are then presented. At the end
the finite–elements method which were used for solving the equations of the
structural mechanics, are shown. Chapter 3 starts with a short overview of the
existing strategies for thermal fluid-structure interaction followed by a descrip-
tion of the developed coupling algorithm. Special attention is paid to the grid
distortion concept and to the flux correction scheme. Results for the validation
and verification of the numerical procedure for laminar and turbulent fluid flow
are presented in chapter 4. The numerical properties of the coupled scheme
are then investigated. Based on this study different acceleration methods are
proposed. At the end of the chapter results for applying a dynamic LES model
on a moving grid framework are shown. In chapter 5 conclusions and outlook
are given.
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Chapter 2

Basic concepts

The mathematical fundamentals of this work are presented in this chapter.
First the basic model equations of continuum mechanics are shown. As, in
practical relevant cases, no analytical solution of those equations can be found,
a numerical approach is needed. Therefore different numerical methods and
their characteristics are discussed in the second part of the chapter.

2.1 Governing equations

Here the basic governing equations of the continuum mechanics are presented.
The equations are derived from the fundamental conservation laws of mass,
momentum, momentum of momentum and energy, together with problem spe-
cific material laws. The interested reader can find a detailed derivation of the
equations in [55]. Based on these equations, several possibilities of modeling
turbulence are then shown. At the end of the section the changes in these
equations, needed for modeling a fluid–structured interaction are presented and
discussed.

2.1.1 Equations of structural mechanics

General task of the structural mechanics is the computation of deformations,
deflections, and internal forces or stresses within structures. Normally one dis-
tinguishes between linear and non–linear models, where the non–linearity can
be of geometrical and/or physical nature. Geometrically linear problems are
characterized by the linear strain-displacement relations, whereas physically lin-
ear problems are based on material models involving a linear relation between
strains and stresses. In the following, the equations for two linear and one non–
linear models are outlined. In the whole work we use the Einstein summation
convention of summing on repeated indices.

9
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Linear models

In this work only the linear elasticity and the linear thermo–elasticity models
are used. The theory of linear elasticity is a physically and geometrically linear
one and the equations governing such boundary value problems are based on
three tensor equations (see [24]):

• Equation of motion (an expression of Newton’s second law)

∂σs
ij

∂xj
+ ρsfi = ρs

D2ui

Dt2
(2.1)

• Strain–displacement relation

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(2.2)

• Constitutive equation (Hooke’s law)

σs
ij = Cijklεkl + εth

ij , (2.3)

where xi, i = 1, 2, 3 are the components of the position vector x, t is the time,
σs

ij = σs
ji is the Cauchy stress tensor, fi are the body forces, ρs is the mass

density, ui is the displacement vector, εij = εji is the strain, εth is the thermal
part of the strain tensor and Cijkl is the elasticity tensor.

For isotropic materials the Cauchy stress tensor, as well as the infinitesimal
strain tensor are symmetric and they can be expressed as six–dimensional vec-
tors. In this case Cijkl = Cjikl and Cijkl = Cijlk. The model is defined by two
independent elastic parameters for C and two parameters for εth. Here we take
the Young’s modulus E and the Poisson’s ratio ν for the elastic parameters.
The elasticity tensor can be written as:

C =




1

E − ν
E − ν

E 0 0 0
− ν

E
1

E − ν
E 0 0 0

− ν
E − ν

E
1

E 0 0 0
0 0 0 1

G 0 0
0 0 0 0 1

G 0
0 0 0 0 0 1

G ,




(2.4)

with the shear modulus G related through

G =
E

2(1 + ν)
. (2.5)

The thermal strain is given by

εth =




α
α
α
0
0
0




∆T, (2.6)
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where α is the coefficient of linear thermal expansion and ∆T = T − T0, where
T0 is the temperature where the thermal strains vanish and T is the curent value
of the temperature.

Finite deformations

In the theory of finite deformations usually the Lagrangian formulation is used.
This means that an observer is located in a fixed position in space and the
deformation is given by a function χ:

xi = χ(Xj , t), (2.7)

where Xj are the components of the position vector X of a particle in the
reference (undeformed) configuration and the current position of this particle is
given by the spatial coordinates xi (See Fig. 2.1).

Figure 2.1: Deformation of continuum body

The actual displacements in this case can be written as:

ui = xi −Xi = χ(Xj , t) −Xi. (2.8)

Other important kinematic measure is the material deformation gradient tensor
Fij which characterizes the local deformation at a material point with position
vector X, i.e. deformation at neighboring points, by transforming (linear trans-
formation) a material line element emanating from that point from the reference
configuration to the current or deformed configuration:

Fij =
∂xi

∂Xj
=
∂χ(Xi, t)

∂Xj
, (2.9)

as well as the Green–Lagrange strain tensor:

Eij =
1

2
(Fkifkj − δij), (2.10)

with δij the delta Kronecker simbol, defined as

δij =

{
1, if i = j
0, if i 6= j

. (2.11)
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The equation of motion can be written using the 2nd Piola–Kirchhoff stress
tensor Sij in the following maner:

ρs
∂2χ(Xj , t)

∂t2
=
∂SjiFij

∂Xj
+ ρsfi. (2.12)

In order to close the system of equations a material model is needed. In the case
of finite deformations several models exist like Fung model, Neo–Hooke model,
Mooney–Rivlin model, etc. More information can be found in Eschenauer et
al. [24]. In this work we use the simplest hyper-elastic model, the Saint Venant–
Kirchhoff model which is just an extension of the linear elastic material model
to the nonlinear regime. For the 2nd Piola–Kirchhoff stress tensor the model
states

Sij = λEkkδij + 2µsEij , (2.13)

where the λ and µs are the Lamé parameters which can be expressed in terms
of Young’s modulus and Poisson’s ratio as

E =
µs(3λ+ 2µs)

λ+ µs
and ν =

λ

2(λ+ µs)
. (2.14)

The last step is prescribing proper boundary conditions which typically are
of Dirichlet (prescribed deformation) or Neumann (prescribed stress) type.

2.1.2 Equations of fluid mechanics

The fluid mechanics characterize the flow behavior of liquids and gasses. In
this work we concentrate only on one special class of problems – linear vis-
cous isotropic fluids, known as Newtonian fluids which are characterized by the
following material (Newton’s) law for the Cauchy stress tensor σf

ij

σf
ij = µf

(
∂υi

∂xj
+
∂υj

∂xi
−

2

3

∂υk

∂xk
δij

)
− pδij , (2.15)

where υ is the velocity vector with components υi, i = 1, 2, 3, µf is the dynamic
fluid viscosity and p is the pressure.

Moreover we restrict ourselves to the incompressible case which means that
the divergence of the velocity is zero and the Cauchy stress tensor in that case
transforms to

σf
ij = µf

(
∂υi

∂xj
+
∂υj

∂xi

)
− pδij . (2.16)

From the conservation laws of mass and momentum one can derive the so
called Navier–Stokes equations for incompressible Newtonian flow which de-
scribe the fluid motion:

∂(υi)

∂xi
= 0, (2.17)

∂(ρfυi)

∂t
+
∂(ρfυiυj)

∂xj
=

∂

∂xj

[
µf

(
∂υi

∂xj
+
∂υj

∂xi

)]
−

∂p

∂xi
+ ρffi, (2.18)
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with ρf the density of the fluid.
The Navier–Stokes equations are nonlinear partial differential equations in

almost every real situation. Due to this fact, most problems are difficult or
impossible to solve analytically. The nonlinearity of the equations is also the
main contributor to the turbulence. Several ways of handling this phenomenon
will be discussed in section 2.1.4. For detailed derivation of the Navier–Stokes
equations and discussion on their properties see Markov [55] or Zaprianov [115].

2.1.3 Heat transfer

An important class of problems in the mechanical engineering represent prob-
lems in which heat transfer occurs. A general definition of heat transfer can be
formulated as: the energy in transit due to a temperature difference. Classical
transfer of thermal energy takes place only through conduction, convection, ra-
diation or any combination of these. When a temperature gradient exists in a
stationary medium which may be solid or fluid, the term conduction is used to
refer to the heat transfer that will occur across the medium due to atomic and
molecular activity. The law of heat conduction, also known as Fourier’s law,
states that the time rate of heat transfer through a material is proportional to
the negative gradient of the temperature:

qi = −κ
∂T

∂xi
, (2.19)

where q is the heat flux, T the temperature and κ the heat conductivity of the
material.

While the conduction represents the transfer of energy by vibrations at a
molecular level, the convection is a mechanism of heat transfer occurring because
of bulk motion of fluids and cannot be observed in solids. The last mode of heat
transfer is the radiation which is the transfer of heat through electromagnetic
radiation. In this work radiation will be not considered.

Using the Fourier’s (Eq. 2.19) and the energy conservation laws one can
formulate the so called Convection–Diffusion equation for the temperature T :

∂ρcpT

∂t
+

∂

∂xi

(
ρcpυiT − κ

∂T

∂xi

)
= ρQ, (2.20)

with thermal source Q, specific heat cp and density ρ. For solids and stationary
medium the convective part disappears and the transport equation (Eq. 2.20)
transforms to:

∂ρcpT

∂t
−

∂

∂xi

(
κ
∂T

∂xi

)
= ρQ (2.21)

2.1.4 Turbulence modeling

Presenting the equations of the fluid dynamics, we mentioned the term tur-
bulence. Turbulent flow is a fluid regime characterized by chaotic, stochastic
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property changes. This includes low momentum diffusion, high momentum con-
vection, and rapid variation of pressure and velocity in space and time. Flow
that is not turbulent is called laminar. The Reynolds number Re is a dimen-
sionless number defined as Re = (U ·L)/νf , with characteristic (mean) velocity
U , characteristic length L and kinematic viscosity νf . It gives a measure of the
ratio of inertial forces to viscous forces and is used to characterize different flow
regimes. Turbulent flow occurs at high Reynolds numbers (the exact value is
problem dependent, see Pope [74]), where the inertial forces are dominant.

Turbulence causes the formation of eddies of many different length scales.
Most of the kinetic energy of the turbulent motion is contained in the large scale
structures. The energy ”cascades” from these large scale structures to smaller
scale structures by an inertial and essentially inviscid mechanism. This process
continues, creating smaller and smaller structures which produces a hierarchy
of eddies. Eventually this process creates structures that are small enough that
molecular diffusion becomes important and viscous dissipation of energy finally
takes place. The scale at which this happens is the Kolmogorov length scale
named after the Soviet Russian mathematician A.N. Kolmogorov, whose work
(see [45]) had a significant influence on this field.

Because of their chaotic characteristics, turbulent flows are hard to simulate.
The whole range of spatial and temporal scales of the turbulence must be re-
solved and that’s why extremely fine space and time discretization is needed. If
properly resolved, the direct numerical solution of the Navier–Stokes equations
(DNS) solution represents a real picture of turbulence containing all scales of
motion, from the largest scales to the smallest dissipative scales. Since DNS re-
solves all sizes of the motion, the computational cost increases with the Reynolds
number enormously, roughly with Re3, thus restricting it to low-to-moderate
Reynolds number in relatively simple geometries. In contrast, in a turbulence
model, equations are solved for some mean quantities. Such models are based on
the Reynolds–averaged Navier–Stokes equations (RANS) and the Large–eddy
simulation (LES).

Reynolds–averaged Navier–Stokes equations

The idea behind the Reynolds–averaged Navier–Stokes equations is to consider
the velocity and the pressure fields as a random variables and to present them
as sum of mean value < ∗ > and fluctuation ∗′ (Reynolds decomposition):

υi(xj , t) = 〈υi(xj , t)〉 + υ′i(xj , t), (2.22)

p(xj , t) = 〈p(xj , t)〉 + p′(xj , t), (2.23)

T (xj , t) = 〈T (xj , t)〉 + T ′(xj , t). (2.24)

For steady flow the mean value, for instance for the pressure p, is defined by

〈p(xj)〉 = lim
It→∞

1

It

∫ It

0

p(xj , t)dt, (2.25)

where t is the time and It is the averaging interval which should be larger than
the time scale of the fluctuations. In case of unsteady flow ensemble averaging
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should be used, i.e.

〈p(xj , t)〉 = lim
N→∞

1

N

N∑

n=1

p(xj , t), (2.26)

where N is the number of tests and it must be large enough to eliminate the
effects of the fluctuations.

Taking the mean of the continuity (Eq. 2.17), momentum (Eq. 2.18) and
scalar transport (Eq. 2.20) we have:

∂ρ 〈υi〉

∂xi
= 0 (2.27)

ρf
∂(〈υi〉)

∂t
+ ρf 〈υj〉

∂ 〈υi〉

∂xj
= µf

∂

∂xj

[(
∂ 〈υi〉

∂xj
+
∂ 〈υj〉

∂xi

)]
− ρf

∂
〈
υ′iυ

′

j

〉

∂xj

−
∂ 〈p〉

∂xi
+ ρffi (2.28)

∂ρcp 〈T 〉

∂t
+ ρcp

∂

∂xi
(〈υi〉 〈T 〉 + 〈υ′iT

′〉) =
∂

∂xi

(
κ
∂ 〈T 〉

∂xi

)
+ ρQ, (2.29)

which are the same equations as the Navier–Stokes equations, except for the
terms

〈
υ′iυ

′

j

〉
and 〈υ′iT

′〉, called Reynolds stress and turbulent thermal stress
respectively (for the derivation of the equations see Markov [55]). The presence
of the later means that the equations are not closed and in order to do that
we must introduce a turbulence model. A widely used model is the k–ε model
which lays on the approximation, introduced by Boussinesq that the deviatoric
Reynolds stress (−ρf

〈
υ′iυ

′

j

〉
+ 2

3
ρkδij) is proportional to the mean rate of strain:

−ρf

〈
υ′iυ

′

j

〉
+

2

3
ρkδij = ρµT

(
∂ 〈υi〉

∂xj
+
∂ 〈υj〉

∂xi

)
, (2.30)

where the scalar coefficient µT is the turbulent viscosity and k is the turbu-
lent kinetic energy (k ≡ 1

2
〈υ′iυ

′

i〉). The equation (Eq. 2.30) is also known as
turbulent–viscosity hypothesis. For the thermal stress the eddy–diffusion model
is used:

−ρf 〈υ′iT
′〉 = ΓT

∂ 〈T 〉

∂xi
, (2.31)

with ΓT the turbulent diffusivity. The turbulent Prandtl number PrT can be
used to relate ΓT and µT , i.e. ΓT = µT /PrT .

The k–ε model belongs to the class of two–equation models. In addition to
the both mentioned hypothesises it consists of model transport equation for two
turbulence quantities – the turbulent kinetic energy k:

ρf
∂k

∂t
+ ρf 〈υj〉

∂k

∂xj
=

[
µT

(
∂ 〈υi〉

∂xj
+
∂ 〈υj〉

∂xi

)
−

2

3
ρfkδij

]
∂ 〈υi〉

∂xj

−ρfε+
∂

∂xj

[(
µf +

µT

σk

)
∂k

∂xj

]
(2.32)
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and the dissipation ε:

ρf
∂ε

∂t
+ ρf 〈υj〉

∂ε

∂xj
= Cε1

ε

k

[
µT

(
∂ 〈υi〉

∂xj
+
∂ 〈υj〉

∂xi

)
−

2

3
ρfkδij

]
∂ 〈υi〉

∂xj

−Cε2ρf
ε2

k
+

∂

∂xj

[(
µf +

µT

σε

)
∂ε

∂xj

]
(2.33)

and specification of the turbulent viscosity as:

µT =
Cµk

2

ε
, (2.34)

with the following model parameters:

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3. (2.35)

The equations (Eq. 2.27 – 2.35) form a closed system of equations for the un-
knowns 〈υi〉, 〈p〉, k and ε which is ready to be numerically solved.

The presented k–ε model is not valid in the near wall regions. In this work
two different strategies were used to overcome this problem – the wall functions
model proposed by Launder [46], and the low Reynolds model proposed by
Chien [14], where the damping functions f1, f2 and f3 are applied in the equation
for the dissipation:

ρf
∂ε̄

∂t
+ ρf 〈υj〉

∂ε̄

∂xj
=

Cε1f1
ε̄

k

[
µT

(
∂ 〈υi〉

∂xj
+
∂ 〈υj〉

∂xi

)
−

2

3
ρfkδij

]
∂ 〈υi〉

∂xj

− Cε2f2ρf
ε̄2

k
+ ρff3 +

∂

∂xj

[(
µf +

µT

σε

)
∂ε̄

∂xj

]
, (2.36)

where ε = ε0 + ε̄ and ε0 = 2µf
k
δ2 . The model constants in that case are set as

follows:

Cµ = 0.09, Cε1 = 1.35, Cε2 = 1.80, σk = 1.0, σε = 1.3. (2.37)

Large–eddy simulation

The RANS models need much less computational efforts than the DNS, but it
provides only averaged results. Another approach for simulating a turbulent
flow which requires more effort than the RANS methods, but is able to predict
instantaneous flow characteristics and resolve turbulent flow structures, is the
large–eddy simulation (LES).

In large–eddy simulation, the larger three–dimensional unsteady turbulent
motions are directly represented, whereas the effects of the smaller scale motions
are modelled. For this purpose a filtering operation is defined to decompose the
velocity into sum of a filtered and residual components:

υi(x, t) =

∫
G(x, x′)υi(x

′, t)dx′, (2.38)
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where G(x, x′) is the filter kernel which is a localized function.
Filtering the Navier–Stokes equations (Eq. 2.17 – 2.18), one obtains a set of

equations very similar in form to the RANS equations:

∂ρυi

∂xi
= 0 (2.39)

ρf
∂(υi)

∂t
+
∂ρfυiυj

∂xj
=

∂

∂xj

[
µf

(
∂υi

∂xj
+
∂υj

∂xi

)]
−

∂p

∂xi
+ ρffi, (2.40)

where p is the filtered pressure field. This equations differ from the Navier–
Stokes equations because the filtered product υiυj is not equal to the product
of the filtered velocities υiυj . The difference is the subgrid scale Reynolds stress:

τs
ij = υiυj − υiυj , (2.41)

which have to be modeled in order to close the equations. In this work only
the simplest model, proposed by Smagorinski (1963) and its dynamic variant
are used. The Smagorinsky model is an eddy viscosity model. It relates the
anisotropic residual stress tensor with the filtered rate of strain:

τs
ij −

1

3
τs
kkδij = −µt

(
∂υi

∂xj
+
∂υj

∂xi

)
= −2µtSij (2.42)

The form of the subgrid scale eddy viscosity µt can be derived by dimensionless
argument and is:

µt = C2
Sρ∆

2|S|, (2.43)

where |S| = (2SijSij)
1/2, CS is the model parameter and ∆ = (∆1∆2∆3)

1/3 is
the filter length, with ∆i the filter width in spatial direction xi.

The dynamic model proposed by Germano et al. [31] is based on the idea
that the smallest resolved scale motions can provide information that can be
used to model the largest subgrid scale motions. The Smagorinsky constant in
this case is determined dynamically from the results of the LES. Thus we can
define it as a function of space and time CS = CS(x, t). The procedure starts
with filtering the velocity field υi by a filter broader than one used in the LES
itself. A standard choice for its width is ∆̂ = 2∆. Analogously as before, we
define the subtest scale stresses τ t

ij :

τ t
ij = υ̂iυj − υ̂iυ̂j (2.44)

and approximate it using the Smagorinsky model as

τ t
ij −

1

3
τ t
kkδij = −2C2

Sρ∆̂
2|Ŝ|Ŝij . (2.45)

The two subgrid scale stress terms are related by the Germano identity

Lij = τ t
ij − τ̂s

ij , (2.46)
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where
Lij = υ̂iυj − υ̂iυ̂j (2.47)

is the resolved turbulent stress. Inserting (2.42) and (2.45) in the Germano
identity and employing the approximation

Ĉ2
SA = C2

SÂ, (2.48)

where A = ρ∆2|S|Sij , yields

Lij = 2C2
SMij , (2.49)

where Mij is defined by

Mij = Â− ρ∆̂2|Ŝ|Ŝij . (2.50)

For solving the system of equations (2.50) for the parameter Cg = C2
S the least-

squares method is used, as proposed by Lilly [52]. As Cg may take also negative
values a simple clipping is used, i.e. Cg(x, t) = max {Cg(x, t), 0}.

2.1.5 Fluid–structure interaction

We consider a problem domain Ω consisting of a fluid part Ωf and a solid part
Ωs which regarding the shape as well as the location of fluid and solid parts can
be arbitrary. As the Lagrangian description of motion is used for Ωs, we can
apply the different models (e.g. linear–elasticity model, Saint Venant–Kirchhof,
etc. see Section 2.1.1) without any changes.

The arbitrary Lagrangian–Euler (ALE) description of motion is used in the
fluid domain. The deformation of Ωf , caused by the deformation of the solid,
is taken into account by the use of the velocity υg

i , with which the surface of
a control volume moves (more information can be found in Donea et al. [20]).
The Navier–Stokes equations 2.17 and 2.18, together with the transport equation
2.20 then transform to:

∂υ∗i
∂xi

= 0 (2.51)

ρf
∂υi

∂t
+ ρfυj

∂υ∗i
∂xj

=
∂

∂xj
σf

ij + ρffi (2.52)

ρcp
∂T

∂t
+ ρcp

∂

∂xi
υ∗i T =

∂

∂xi

(
κf

∂T

∂xi

)
+ ρq (2.53)

where υ∗i = υi − υg
i .

The same modification is needed for the RANS equations. For the low-
Reynolds model, for example, we get:

ρf
∂(〈υi〉)

∂t
+ ρf 〈υj〉

∂ 〈υ∗i 〉

∂xj
=µf

∂

∂xj

[(
∂ 〈υi〉

∂xj
+
∂ 〈υj〉

∂xi

)]
(2.54)

− ρf

∂
〈
υ′iυ

′

j

〉

∂xj
−
∂ 〈p〉

∂xi
+ ρffi,
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∂ρfcp 〈T 〉

∂t
+ ρfcp

∂

∂xi
(〈υ∗i 〉 〈T 〉 + 〈υ∗i

′T ′〉) =
∂

∂xi

(
κ
∂ 〈T 〉

∂xi

)
+ ρfq. (2.55)

ρf
∂k

∂t
+ ρf

〈
υ∗j

〉 ∂k

∂xj
=

[
µT

(
∂ 〈υi〉

∂xj
+
∂ 〈υj〉

∂xi

)
−

2

3
ρfkδij

]
∂ 〈υi〉

∂xj

− ρfε+
∂

∂xj

[(
µf +

µT

σk

)
∂k

∂xj

]
(2.56)

ρf
∂ε

∂t
+ ρf

〈
υ∗j

〉 ∂ε

∂xj
= Cε1f1

ε

k

[
µT

(
∂ 〈υi〉

∂xj
+
∂ 〈υj〉

∂xi

)
−

2

3
ρfkδij

]
∂ 〈υi〉

∂xj

− Cε2f2ρf
ε2

k
+ ρff3 +

∂

∂xj

[(
µf +

µT

σε

)
∂ε

∂xj

]
. (2.57)

The same additional terms appear exactly in the same manner in both, the
equations of the high-Reynolds models and the LES.

The problem formulation has to be closed by prescribing suitable boundary
and interface conditions. On solid and fluid boundaries Γs and Γf standard
conditions as for individual solid and fluid problems can be prescribed. For the
velocities and the stresses on a fluid-solid interface Γi we have the conditions:

〈υi〉 = ub
i and σs

ij =
〈
σf

ij

〉
nj , (2.58)

where ub
i is the interface velocity. In addition, the temperatures as well as the

heat fluxes have to be identical on Γi. How these conditions are implied in the
numerical scheme is discussed later in this work.
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2.2 Numerical methods

The partial differential equations which were presented in the last chapter can
not be solved analytically in most practical cases. In the last decades, with the
appearing of the computers, the numerical methods for solving PDEs received
a great attention. A lot of different methods were developed and investigated
by different authors. The most widely used are the finite–difference methods,
where the derivatives are approximated using a finite–difference formula, the
spectral and pseudo–spectral methods which represents functions as a sum of
particular basis functions, for example using Fourier or Chebyshev series, the
finite–element methods, and the finite–volume methods. In this work the last
two were used and they will be presented in this chapter. First the finite–volume
method for solving the equations of the fluid dynamics will be introduced. Then
the SIMPLE pressure–correction algorithm, for coupling of the velocity and
pressure will be discussed, together with the geometrical multigrid method for
accelerating the computation. At the end the finite–elements method which were
used for solving the equations of the structural mechanics, will be described.

2.2.1 Finite–volume methods

For illustrating the finite–volume methods we will use the heat transport equa-
tion (Eq. 2.20). Here we assume that the velocity field is known. How the
non–linear Navier–Stokes equations are solved and the velocity and the pres-
sure fields are found we show in the next chapter. For more detailed information
on the methods see Schäfer [84] or Ferziger and Perić [28].

We discretize the solution domain into a finite number of control volumes, as
for the sake of simplicity we suppose that the grid is Cartesian. A typical control
volume, together with the notation which is used is shown in Figure 2.2. The
center of the CV is marked with P and the neighbour CV’s centers from top,
bottom, east, west, south and north with T, B, E, W, S and N, respectively.
With low-case letters the centers of the plane faces are denoted.

Integrating (Eq. 2.20) over all control volumes and applying the Gauss inte-
gral formula gives the equation:

∫

V

ρfcp
∂T

∂t
dV +

∫

S

ρfcpT (υini)dS =

∫

S

κ
∂T

∂xi
nidS +

∫

V

ρfQdV, (2.59)

where ni are the components of the normal to the surface vector. For approx-
imation of the surface integrals we first present them as sum of integrals over
the six CV faces:

∫

S

fdS =
∑

k

∫

Sk

fdS, k = e, w, n, s, t, b, (2.60)

where f is the component of the diffusive or convective flux vector. In what
follows, only the east face will be considered. Analogous expressions for all
faces can be derived straightforward.
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Figure 2.2: A typical CV and the notation used for a Cartesian 3D grid
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Applying the midpoint rule for the surface integrals we get:
∫

Se

fdSe ≈ feSe, (2.61)

where fe is the value of the function in the cell face center, and Se is the area of
the east face. Analogously the volume integrals are replaced by the product of
the value of the integrand at the CV center fP and the volume of the CV δV :

∫

V

fdV ≈ fP δV. (2.62)

The next step is approximation of the cell–face values in terms of CV center
values. In this work three interpolation techniques are used – the upwind dif-
ferencing scheme (UDS) (Eq. 2.63), the linear central difference scheme (CDS)
Eq. 2.64, and the multi–dimensional linear interpolation (MULI) (Eq. 2.65),
which unlike the first two preserves its second order even for noncartesian grids.
The derivation of the formulas and the values of the coefficients λE , λNS and
λTB can be found in Lehnhäuser [49].

fUDS
e ≈

{
fP if (υini)e > 0
fE if (υini)e < 0

(2.63)

fCDS
e ≈ fEλE + fP (1 − λE) (2.64)

fMULI
e ≈ λEfE + (1 − λE)fp + λNS(fN − fS) + λ)TB(fT − fB). (2.65)

The simplest approximation of the gradients which is needed for the evalu-
ation of the diffusive fluxes, is the linear interpolation:

(
∂f

∂xi

)

e

≈
fE − fP

xE − xP
, (2.66)
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which for distorted grids is only a first order method. In contrast the Taylor–
based interpolation (TBI) (see [48]) is always second order:

(
∂f

∂xi

)

e

≈γ1fE + γ2fP + γ3fN + γ4fS + γ5fT + γ6fB

+γ7fNE + γ8fSE + γ9fTE + γ10fBE , (2.67)

where γ1–γ10 are interpolation factors.
The last step is the time discretization in Eq. 2.59. Here different strategies

can be applied, as Runge–Kutta methods, Euler methods, etc (see [84]). In this
work we use a three–point backward method which use the information from
the previous two time steps:

∫

V

ρfcp
∂T

∂t
dV ≈ ρfcpδV

∂T

∂t

∣∣∣∣
P

≈ ρfcpδV
3Tn+1

P − 4Tn
P + Tn−1

P

2∆t
. (2.68)

By summing all the flux approximations, the source terms and the time
terms we derive an algebraic system for the temperature T in the CV centers:

aT
PTP −

∑

c

aT
c Tc = bT . (2.69)

2.2.2 Pressure–correction scheme

In this chapter we will address the application of the finite–volume methods
for the numerical computation of incompressible fluid flows described by the
Navier–Stokes equations (Eq. 2.17 – Eq. 2.18). The discretization principles
which were presented in the previous chapter, can be directly applied to both,
the momentum and continuity equations. As a result we get:

∑

c

ṁc = 0, (2.70)

aυi

P υi,P +
∑

c

aυi
c υi,c = −δV

(
∂p

∂xi

)

P

+ Sυi

︸ ︷︷ ︸
bυi

, (2.71)

where ṁc = (ρυini)cδSc is the mass flux through the cell face c.
For incompressible flows the computation of the pressure is not trivial. A

standard approach to solve the system of equations is to construct a coupled
matrix Acpl which contains the coefficients for both equations. As the gradient
of the pressure contributes to each of the three momentum equations but on
the other hand the continuity equation does not have a dominant variable and
represent a kinematic constraint on the velocity field, rather than a dynamic
equation, Acpl is ill–conditioned. Furthermore the memory requirements in that
case are enormous. Alternatively, there are artificial compressibility methods,
where an additional pressure term is introduced in the continuity equation (for
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more details see Hirsch [38]). Another approach, proposed by Patankar and
Spalding [66] is to decouple the pressure and the velocity fields and to use a
predictor–corrector scheme.

In this work a semi–implicit method for pressure–linked equations (SIMPLE)
is applied. The idea behind this approach is to solve the Navier–Stokes equa-
tions independent from each other in an iterative process. First the momentum
equation is solved using some predicted values for the pressure and for the mass
fluxes (prediction step). The resulting values for the velocity field then does not
satisfy the continuity equation. In the next (correction) step the new values for
the velocity components and for the pressure are searched, such that the conti-
nuity equation is fulfilled. In what follows a short description of the SIMPLE
pressure–correction algorithm is shown. For more details see Schäfer [84].

For the prediction step, we consider the discrete momentum equations with
an estimated pressure field p∗:

aυi

P υ
∗

i,P +
∑

c

aυi
c υ

∗

i,c = −δV

(
∂p∗

∂xi

)

P

+ Sυi
(2.72)

The predicted velocity components υ∗i are then used for the calculation of the
mass fluxes ṁ∗ which substituted into the discrete continuity equation (Eq. 2.70)
yields a mass source bm ∑

c

ṁ∗

c = bm. (2.73)

The correction step starts with defining the corrections for the velocity and
pressure:

υ′i = υk+1 − υ∗i p′ = pk+1 − p∗, (2.74)

with k + 1 the actual iteration. By subtracting equations (Eq. 2.72) from
(Eq. 2.71) we obtain the following relations for the velocity corrections :

υ′i,c = −
1

aυi

P

∑

c

aυi
c υ

′

i,c −
δV

aυi

P

(
∂p′

∂xi

)

P

. (2.75)

Analogously for the continuity equation we get:
∑

c

ṁ′

c = −bm. (2.76)

Now we neglect the sum term in (Eq. 2.75) and insert the velocity corrections
into (Eq. 2.76)

∑

c

ṁ′

c =
∑

c

ρυ′i,cniδSc =
∑

c

−ρ

(
δV

aυi

P

)

c

(
∂p′

∂xi

)

c

niδSc = −bm. (2.77)

Applying one of the interpolation techniques, discussed in the previous chapter
for all parameters on the cell face centers an equation for the pressure correction
is obtained

ap
P p

′

P +
∑

c

ap
cp

′

c = −bm. (2.78)
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From the computed values for the pressure correction the velocity corrections
can be obtained and the searched quantities υk+1

i and pk+1 determined. The
last step is the determination of the temperature from the equation

aT,k+1

P T k+1

P −
∑

c

aT,k+1
c T k+1

c = bT,k+1. (2.79)

In case of a steady RANS calculation the scalar transport equations for the
turbulent kinetic energy k and the dissipation ε should be also computed. A
schematic representation of the pressure–correction scheme is shown in Fig-
ure 2.3.

Linear system solver

Convergence? STOP

equation

Linearized momentum

Equation for

pressure−correction

Correction of 

pressure and velocity

Linearized 

scalar equation

Linear system solver
Linearized equation

for ε in case of RANS

Linear system solver

Linear system solver

Linear system solver

No Yes

Linearized equation

for k in case of RANS

Figure 2.3: Schematic view of the SIMPLE pressure–correction method

In order to ensure the convergence of the pressure correction algorithm
under-relaxation procedure is applied. This means that at every iteration the
pressure pk+1 is corrected only with a certain portion αp ∈ (0, 1] of the full
pressure correction p′

pk+1 = p∗ + αpp
′. (2.80)

Under-relaxation is also used for the velocity field and for the scalar quantities.
Following Patankar [65] we take the algebraic equation for a generic variable φ
at a point P , solved in an iterative process

aφ
Pφ

n
P +

∑

c

aφ
cφ

n
c = bφ. (2.81)
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At every iteration the new value of φ changes only with a fraction αφ ∈ (0, 1] of
the calculated value i.e.

φn = φn−1 + αφ(φnew − φn−1), (2.82)

where φnew is the result of (Eq. 2.80). After simple transformations we can
write a new equation for the under-relaxated variable φn:

aφ
P

αφ
φn

P +
∑

c

aφ
cφ

n
c = bφ +

1 − αφ

αφ
aφ

Pφ
n−1

P (2.83)

2.2.3 Multigrid method

The use of different grid levels leads to a rapid reduction of the corresponding
error frequencies. This is the idea on which the multigrid methods are built. In
the last decades a variety of multigrid schemes were developed and investigated.
An overview of of the different multigrid approaches can be found in Trottenberg
et al. [101] or Briggs [10]. In both works non–linear cases are also discussed. In
Wesseling [105] multigrid techniques for the incompressible Navier–Stokes equa-
tions in combination with finite volume discretizations are presented. In this
work the so-called full approximation scheme (FAS), proposed from Brandt [9],
is used and will be briefly described in what follows. Detailed information on the
realization and the properties of the method for the prediction of incompressible
flows is given in Durst and Schäfer [22].

For our fluid domain Ωf we consider a general notation

Nυ = bΩ, (2.84)

where N is assumed to be a nonlinear differential operator. We also assume
that (Eq. 2.84) have been discretized on a given grid Ωh

f by

Nhυh = bh, (2.85)

After m SIMPLE iterations one obtains a solution υ̃m
h fulfilling:

Nhυ̃
m
h = bh − rm

h , (2.86)

with rh the residual vector. We construct the defect equation on Ωh
f as follows:

Nh(υ̃m
h + eh) −Nhυ̃

m
h = rm

h , with υh = υ̃m
h + eh. (2.87)

For the transfer between the fine grid h and the coarser grid H we choose a
restriction and an interpolation operator IH

h and Ih
H see Trottenberg et al. [101].

Restricting (Eq.2.87) on ΩH
f one gets:

NH(υ̃m
H + ẽH) −NH υ̃

m
H = rm

H , (2.88)

with υ̃m
H = IH

h υ̃
m
h and rm

H = IH
h r

m
h . Solving this equation for the unknown ẽH

and interpolating the result on the fine grid (ẽh = Ih
H ẽH) gives the correction

of the fine solution:
υm+1

h = υ̃m
h + ẽh. (2.89)

The procedure can be recursively extended for more than two grids.
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2.2.4 Parallelization

Despite the development of the computer technique nowadays, many problems
are so large and/or complex that it is impractical or impossible to solve them
on a single computer, especially given limited computer memory and enormous
computational time needed. Parallel computing offers a solution to these prob-
lems.

Technically, there exist several different programming approaches for the
implementation of parallel computing. Among the most popular are the use
of parallelizing compilers or virtual shared memory. In both cases the code
does not need to be changed and the whole parallelization work is done by the
compiler or by the operating system. The disadvantage of both concepts is that
the characteristic of the problem is not taken into account which leads to lower
efficiency. The other approach, for which special changes in the source code
are needed is the so called message passing. The data exchange between the
different processors is performed by a message oriented communication, based
on protocol like Parallel Virtual Machine (PVM) or Message Passing Interface
(MPI). This way the best efficiency can be achieved and in this work the MPI
standard is used.

Different concepts exist for parallelizing a continuum mechanical computa-
tions. In this work the grid partitioning technique which can be considered as the
most frequently applied in practice, is used. The approach is based on the idea
of the domain decomposition methods. The computational domain is splitted
into non-overlapping subdomains, for which certain portion of the computation
can be performed simultaneously by different processors. The problem formu-
lation is extended with interface conditions which have to be fulfilled on the
boundary between the subdomains, for which purpose data exchange between
the processors is needed. In order to keep this communication effort as small
as possible the idea of the “ghost cells” is used (for more detailed information
on this approach see Schäfer [84]). Along the interface boundaries additional
control volumes (ghost CV) are introduced (see Figure 2.4) which correspond to
adjacent CVs of the neighbouring domain. Depending on the order of the used
discretization scheme several layers of auxiliary CVs can be needed. The infor-
mation in the ghost cells is actualized during exchange subroutines at suitable
time points.

− ghost cell

Figure 2.4: Ghost cells along subdomain interfaces
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A global communication and synchronization over all subdomain is also
needed by the parallel computation. At the beginning of the calculation the
initial data (e.g. size of the subdomains, grid data, boundary conditions, etc.)
have to be read from the user’s input and distributed to all processors. The
second global synchronization point is at the end of every SIMPLE iteration.
In order to check whether the convergence criterion is satisfied the values of the
residuals should be collected from all CPUs. At the end of of the computation
the result data have to be properly merged and stored for post processing. This
is done by only one processor which gathers the needed information, saves the
output and closes the whole calculation process.

The discussed additional processor communication is directly connected with
the efficiency of the parallel algorithm. In order to assess the performance of
the method we define the speed-up SP and the efficiency EP in the following
manner:

SP =
T1

TP
and EP =

T1

PTP
, (2.90)

where P is the number of processors, T1 and TP is the computing for the solution
of the problem with one and P CPUs, respectively.

2.2.5 Finite–element methods

The finite–element methods (FEM) are nowadays, a standard tool for the nu-
merical computation of solid mechanics problems. Here we outline the basic
ideas of the methods. Detailed information can be found in Zienkiewicz et
al. [118] or Wriggers [107].

For illustrating the methods the heat equation (Eq. 2.20) will be used, but
this time for the solid domain, where the convective part drops out:

ρfcp
∂T

∂t
− ρQ+ κs

∂

∂xi

∂T

∂xi
= 0 (2.91)

The finite–element methods are based on the variation form of the equations.
As a beginning the weak form of the equations is constructed. We take arbitrary
test functions v(xi) and multiplicate the (Eq. 2.91) by it:

v(xi)

(
ρfcp

∂T

∂t
− ρQ+ κs

∂

∂xi

∂T

∂xi

)
= 0 (2.92)

Integrating (Eq.2.92) and applying the Green theorem and the integration by
parts rule, yields:

∫

Ωs

v(xi)

(
ρfcp

∂T

∂t
− ρQ

)
dΩs−

∫

Ωs

v(xi)κs
∂T

∂xi
dΩs +

∫

Γs

v(xi)κs
∂T

∂xi
nidΓs = 0 (2.93)

Equation (Eq.2.93) is the so called irreducible weak formulation of (Eq.2.91).
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Now the solution of the weak formulation is searched in a finite dimensional
subspace of Ωs. By the FEM Ωs is subdivided into nonoverlapping subdomains
Ωe, called finite elements

Ωs ≈ Ωh =

Nel∑

e=1

Ωe, (2.94)

where Nel is the number of nodes attached to an element. Integrals can now be
summed over each element:

Nel∑

e=1

∫

Ωh

v(xi)

(
ρfcp

∂T

∂t
− ρQ

)
dΩh−

Nel∑

e=1

∫

Ωh

v(xi)κs
∂T

∂xi
dΩh +

Nel∑

e=1

∫

Γs

v(xi)κs
∂T

∂xi
nidΓs = 0 (2.95)

In the finite–element method isoparametric elements are used which satisfy
the conditions

xi =

Nel∑

I=1

NI(ξ)xI
i (2.96)

for coordinates and

T =

Nel∑

I=1

NI(ξ)T I (2.97)

for the temperature T . NI are the so called shape functions for node I, xI
i are

values of the coordinates at node I and ξ are the natural coordinates of the
element. For the shape functions the condition

Nel∑

I=1

NI(ξ) = 1 (2.98)

is fulfilled. In this work mainly 8 node brick elements are used, for which the
local form function is given by

NI(ξi) =
1

8

(
1 + ξI

1ξ1
) (

1 + ξI
2ξ2

) (
1 + ξI

3ξ3
)
, I = 1, 8. (2.99)

Following the Galerkin method the test functions are expressed as:

v = NI(ξ)vI , (2.100)

where vI are arbitrary parameters.
For the derivatives of the shape functions we have:

∂NI

∂xi
=
∂NI

∂ξj
J−1

ij , (2.101)
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with Jij the Jacobian of the transformation x(xi) → ξ(ξi). The gradients of the
temperature T and the test functions v then can be expressed as:

∂T

∂xi
=
∂NI

∂xi
T I ,

∂v

∂xi
=
∂NI

∂xi
vI . (2.102)

With the above definitions the equation (Eq. 2.95) can be rewritten as

Nel∑

e=1

(MIJ )
∂T J

∂t
+KIJT

J − FI = 0, (2.103)

with

MIJ =

∫

Ωe

NIρscpNJdΩh (2.104)

the element heat capacity matrix,

KIJ =

∫

Ωe

∂NI

∂xi
κs
∂NJ

∂xi
dΩh (2.105)

the element conductivity matrix and

FI =

∫

Ωe

ρ
∂NI

∂xi
QdΩh −

∫

Γs

κsNI
∂T

∂xi
nidΓs. (2.106)

In matrix notation we can write

MṪ + KT = F. (2.107)

Analogously one can derive a matrix equation for the equation of motion (Eq. 2.1):

Müi + Kui = F (2.108)

In the first case we have to solve the problem R(Ṫ , T ) = 0, whereas the second
class is given by R(üi, u̇i, ui) = 0. R is the residual, which in the case of the
heat conduction problem is given by R = F − KT − MṪ . For the first ODE
which is of first order the backward Euler implicit method is used:

Ṫn+1 ≈
Tn+1 − Tn

∆t
. (2.109)

For the second order differential equation which results from the finite deforma-
tions equation of motion (Eq. 2.108) the classical Newmark method (see [62]) is
applied

un+1
i = un

i + ∆tυn
i +

(∆t)2

2

[
(1 − 2β) + 2βan+1

i

]
, (2.110)

υn+1
i = υn

i + ∆t
[
(1 − γ)an

i + γan+1
i

]
, (2.111)

where ai = üi and υi = u̇i. Heck [36] showed in his work, that the values β = 0.5
and γ = 0.8 are a good choise for the two parameters.
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In case of non-linear models (e.q. finite deformations) a linearization of the
equations is needed. In this work we use the iterative Newton–Raphson scheme
(see Sendov and Popov [89]). The method starts with an initial guess and then
the function is approximated by its tangent line:

JF (un
i )(un+1

i − un
i ) = −F (un

i ). (2.112)

Here F is the non-linear operator and n+ 1 the current iteration.
Both the finite–volume and the finite–element methods results in algebraic

systems of equations. More information how these are numerically solved can
be found in Schäfer [84] and Zienkiewicz [118]. More detailed information on
different iterative solvers is presented in Axelson [1].



Chapter 3

Thermal fluid–structure
interaction

Thermal fluid–structure interaction (TFSI) occurs in many engineering applica-
tions, as for example in the design of aircraft turbines, car engines or in biome-
chanical applications. In all these cases a full set of interaction phenomenon
between the fluid and the solid is observed. This includes flow acting on a solid
(during drag, lift or movement), as well as solid acting on flow (during defor-
mation or/and movement) and additional heat transfer in the whole system.
Moreover, in most cases the fluid flow is turbulent. Developing a numerical
model for simulating such problems is an important and complex task. In this
chapter we present the developed numerical scheme for simulating thermal fluid–
structure interaction. In the first two sections a short overview of the existing
strategies is presented, together with a discussion of their properties. Then the
chosen coupling algorithm is described.

3.1 Strategies for FSI

There exist two major techniques for numerical simulation of fluid–structure in-
teraction. To the first one belong the direct coupling methods, also referred to
by some other authors as monolithical coupling, in which the variable vector of
the coupled system is solved simultaneously (see Hron and Turek [40], Matthies
et al. [57], Heil [37], Blom [7] or Bathe and Zhang [3]). Although these meth-
ods show great stability, their use is limited mainly because of three reasons:
the need for modification of the existing fluid and structure solvers (which is
not always possible, the codes are often black boxes), less flexibility between
both solvers and requirements of more storage and computational time for one
iteration.

Paritioned approaches (for an overview see Felippa et al. [27]), on the other
hand, allow to use specifically designed and highly optimized codes on different
fields and offer significant benefits in terms of efficiency. The different solvers for

31
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the structure and fluid dynamics are working separately and instead of one big,
in most of the cases ill–posed system, smaller and better conditioned subsystems
are solved.

The idea behind the partitioned approaches is based on the domain–decomposition
technique (see Quarteroni and Valli [75]). The computation domain is divided
into fluid and solid parts. In order to close the problem formulation, interface
conditions are specified on the fluid–structure boundary. Depending on how
these interface conditions are satisfied we distinguish loosely and strongly cou-
pled partitioned schemes. Loose coupling requires only one solution of either
field per time step in a sequentially staggered manner and is thus particularly
appealing in terms of efficiency. Such methods are successfully applied and used
in the field of aeroelasticity (see the work of Farhat et al. [25], [26] and the refer-
ences therein or Piperno et al. [68], [69]) but in other applications, where large
structural deformations appear, they can suffer from possible instabilities (see
Causin et al. [13]).

For stability reasons, often a fully implicit formulation (also called strong
coupling) has to be used, see Tallec and Mouro [97]. At every time step the
equilibrium is satisfied jointly between fluid and structure, by applying an iter-
ative procedure based on the Dirichlet–Neumann or Neumann–Dirichlet meth-
ods, borrowing the terminology from corresponding domain decomposition algo-
rithms (see Quarteroni and Valli [75]). By Dirichlet–Neumann method we mean
that in each iteration the fluid equations are solved with respect to primitive
variables (υ; p) subject to Dirichlet boundary conditions at the interface (im-
posed displacements or velocities) and the structure equations subject to Neu-
mann boundary conditions (imposed loads). The Neumann–Dirichlet method is
carried out with a procedure dual to the one above. More detailed information
for these approaches can be found in Matthies and Steindorf [56], Matthies et
al. [57] or Yigit [113].

In this work an implicit partitioned solution approach which combines the
advantages of weakly and strongly coupled schemes is used. As shown in Causin
et al. [13] the use of Neumann–Dirichlet method is not of practical use because
of its instability. That is why for the interface coupling procedure a Dirichlet–
Neumann iteration method with constant or adaptive (see Mok [59]) underre-
laxation is chosen. The method is realized on the basis of the finite–volume flow
solver FASTEST (see [64]), the finite–element structural solver FEAP (see [98])
and the quasi–standard coupling interface MpCCI (see [83]). More detailed in-
formation on the implementation and the characteristics of the method can be
found in Sieber [90].

3.2 Strategies for handling the heat transfer

Having chosen the method for the fluid–structure interaction, two different
strategies can be implied for the calculation of the heat transfer. The first
possibility is to calculate the temperature in the whole domain for every FSI
iteration. In this case an extra thermo–mechanical coupling is needed (see
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Teschauer [99]). As this is an analogue to the monolithical procedure for the
force–displacement coupling, it suffers from the same drawbacks as discussed in
the previous chapter. Having two highly optimized solvers for each domain of
interest and partitioned coupling approach for the force–deformation coupling,
a more logical way seems to be the non–overlapping Schwarz domain decom-
position method. In this case the temperature transport equation is solved in
every domain and on the boundary interface a iterative procedure is used which
consists of prescribing alternately boundary conditions of Dirichlet and Neu-
mann type. This algorithm is implemented and investigated in this work and
here we will describe its mathematical idea.

Following Xu and Zou [108] we first split the whole computational domain of
its natural fluid–solid interface, i.e. Ω = Ωf∪Ωs. We denote by Γfsi = ∂Ωf∩∂Ωs

the interface between the two subdomains. For the sake of simplicity in every
computational subdomain we write the equation for the temperature as:

LfT = Qf , with T = t0f on Γd
f and q = q0f on Γn

f

LsT = Qs, with T = t0s on Γd
s and q = q0s on Γn

s , (3.1)

where Lf and Lf are some linear operators, Γd
f and Γd

s are the boundaries of

both fluid and solid domains with prescribed temperature t0f and t0s (Dirichlet
boundary conditions), respectively and Γn

f and Γn
s are the Neumann boundaries

with prescribed flux q0f and q0s . In order to close the whole formulation the clas-
sical two steps iterative Schwarz alternating procedure is applied for prescribing
interface conditions on the boundary Γfsi. For the iteration k the method can
be written as:
STEP 1:

LfT
2k+1 = Qf

T 2k+1 = t0f on Γd
f

q2k+1 = q0f on Γn
f

λ1T
2k+1 + (1 − λ1)q

2k+1 = λ1T
2k + (1 − λ1)q

2k on Γfsi,

(3.2)

STEP 2:

LsT
2k+2 = Qs

T 2k+2 = t0s on Γd
s

q2k+2 = q0s on Γn
s

λ2T
2k+2 + (1 − λ2)q

2k+2 = λ2T
2k+1 + (1 − λ2)q

2k+1 on Γfsi.

(3.3)

Choosing the parameters λ1 and λ2 to be 1 and 0, respectively, we get a
Dirichlet–Neumann alternative Schwarz decomposition method. The calculated
temperature from the previous iteration on the fluid–solid interface is used as
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a Dirichlet boundary conditions for the temperature in the fluid solver. The
resulting boundary thermal flux is then set as a boundary condition in the solid
solver and the procedure continues until fulfilling of a defined convergence cri-
terion. A dual to the described procedure is applied when λ1 = 0 and λ2 = 1.

3.3 An implicit partitioned algorithm for TFSI

In this section we present the full coupling procedure which was implemented
and studied in this work. The scheme is shown only for case of λ1 = 1 and λ2 =
0, i.e. Dirichlet–Neumann alternative Schwarz method for the thermal coupling.
The algorithm for the Neumann–Dirichlet case is analogous. Two different
implicit partitioned approaches for the thermal fluid–structure coupling were
implemented in this work. The first one (ITFSI1) is the natural choice, following
the ideas presented in Section 2.2.2. The scheme contains two outer iterations
(schematic view is shown in Figure 3.1). Every time step consists of an iteration
process for the force–deformation coupling and a nested iteration procedure for
the thermal coupling. In such a manner, for every outer FSI iteration the
interface conditions for the temperature are fulfilled. Every iteration procedure
is controlled by an individual convergence check.

− new boundary conditions

q 

FEAP

− FEM

− unstructured grid

INTERPOLATION (MPCCI)

FEAP

− FEM

− unstructured grid

INTERPOLATION (MPCCI)

Coupling Interface

− thermal flux calculation

F

maxt = t      ?

yes

End

Start

Fluid field
− FVM
− block−structured grid

FASTEST

for the temperature

Coupling Interface

T

convergency
no

next temperature iteration

− wall forces calculation
u, T

− constant
− adaptive

Underrelaxation

yes

u

nonext time step

next FSI outer iteration

− flux correction
− grid generation

convergency

yes

no

T

v , p

Coupling Interface

Grid Movement

CSM CSM

Figure 3.1: Flow chart of the coupling procedure ITFSI1

The obvious drawback ITFSI1 is its efficiency as every FSI iteration contains
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a number of “temperature” iterations. Another variant of the scheme ITFSI2
with only one outer iteration cycle is given in Figure 3.2. Every time step
consists of a nested iteration procedure for both the force–displacement and
the thermal coupling. The fluid solver FASTEST starts first and calculates the
flow and thermal field with the initial geometry. From this the friction and
pressure forces F , as well as the normal thermal flux on the interacting walls q
are computed and passed to the structural code as boundary conditions. The
structural solver computes the deformations, with which then the fluid mesh is
modified. The temperature at the coupling boundary is also computed and set
as a boundary condition in FASTEST before the flow solver is started again.

INTERPOLATION (MPCCI)

F, q 

FASTEST

Start

t = t      ?max

End

Grid Movement

Underrelaxation

next time step

next TFSI iteration

TFSI
convergency

yes

no

yes

no

− flux correction
− grid generation

Coupling Interface

Fluid field

u, Tv , p, T

− FVM

− wall forces calculation
− thermal flux calculation

− constant
− adaptive

u, T

FEAP

CSM

− FEM

− block−structured grid

− unstructured grid

Figure 3.2: Flow chart of the coupling procedure ITFSI2

In all cases the transfer of the data between the two solvers is done via
the quasi–standard coupling interface MpCCI, see [83], that controls the data
communication and also carries out the interpolation of the data from the fluid



36 CHAPTER 3. THERMAL FLUID–STRUCTURE INTERACTION

and solid grids.
The nested iteration procedure continues until reaching two convergence

criteria εFSI and εTEMP, defined as follows:
∥∥um−1 − um

∥∥
∞

‖um‖
∞

< εFSI (3.4)

∥∥Tm−1 − Tm
∥∥
∞

‖Tm‖
∞

< εTEMP, (3.5)

where m is the number of the TFSI iteration and ‖·‖ denotes the uniform norm.
Underrelaxation is not needed for the alternating Schwarz procedure for the

temperature coupling as shown, for example, in Gastaldi and Gastaldi (1994) [30].
Various test computations have shown that the force–deformation coupling
scheme is rather sensitive with respect to the deformations. Here, situations
that are far away from the physical equilibrium can arise which may lead to
instabilities or even to divergence of the FSI iterations. This effect is known
as artificially added mass effect and is very well documented in the literature
(see Causin et al. [13] or Förster et al. [29]). These instabilities occur when the
density of the fluid and the structure are comparable, or when the domain has
a slender shape.

Over the past years different techniques for counteracting to this problem
were developed. Degroote et al. [18] proposed an interface artificial compress-
ibility method which mitigates the incompressibility constraint by adding a
source term to the continuity equation in the fluid domain adjacent to the
fluid–structure interface. This source term imitates the effect of the structure’s
displacement as a result of the fluid pressure and disappears when the cou-
pling iterations have converged. Förster et al. [29], however, showed that for
incompressible flow this approach only postpones the outset of the instability.
Another new methodology is based on the reduced order methods (see Viren-
deels et al. [103]), however, this is not in the scope of this work. Here two types
of underrelaxation are employed - the adaptive Aitken procedure (see Mok [59])
and a standard scheme. In both cases the actually computed displacements uact

i

are linearly weighted with the values uold
i from the preceding iteration to give

the new displacements unew
i :

unew
i = αFSIu

act
i + (1 − αFSI)u

old
i , (3.6)

where 0 < αFSI ≤ 1. Note that the underrelaxation does not change the final
converged result.

3.4 Interpolation of the thermal boundary flux

The wall forces and the normal thermal flux on the fluid–solid boundary are
needed by the coupling algorithm. The friction and pressure forces F are cal-
culated in the fluid domain as described in Ferziger and Perić (2002) [28] and
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are then transferred to the solid solver as a boundary conditions. Depending
on whether Dirichlet–Neumann or Neuman–Dirichlet Schwarz method is chosen
for the thermal coupling the thermal flux should be calculated from the fluid
solver or in the finite–element program FEAP. In the second case we just use the
element shape functions for every boundary element (see Section 2.2.5). This
yields:

q =

Nel∑

I=1

∂NI

∂xi
T I . (3.7)

Because of the so called superconvergence (see Barlow [2] or Zhu and Lin [117])
most FEM codes calculate the gradients and stresses at the Gauss quadrature
points of every element and different techniques for the recovery of the nodal
values are then implied. Discussion over this subject can be found in Zienkiewicz
et al. [118].

Here we will show how the thermal flux is interpolated in FASTEST in the
case of Dirichlet–Neumann thermal coupling method. The aim is to have a
second order grid independent interpolation, as in the author’s experience first
order methods can be too diffusive and the error of the simulation can be too
big.

a

−ne

B

T

bs

e

bn
P

S

N

ts

tn

b

M

EM

Figure 3.3: East side of an arbitrary control volume at the coupling interface
(neighboring points are labeled according to the compass notation)

We will show the interpolation of the boundary normal thermal flux only for
the east side of a boundary control volume, see Figure 3.3. The control volumes
centers for the current control volume (P) and its neighbors from the top (T),
bottom (B), south (S) and north (N) sides are denoted. ts, tn, bs, bn are the
coordinates of the vertices of the east side and e(xe, ye, ze) is its center and ~p is
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the vector from e to P . The vectors ~a and ~b connect the centers of the edges
and are used to determine the direction of the normal vector ne(nx, ny, nz).

We need 3 points (P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3)) for a second
order interpolation. As first one we always take P . Depending on the direction
of the normal vector ne for the other two we choose from T, B, N or S in the
following manner:

P2 ≡

{
B if ~p · ~a ≥ 0
T if ~p · ~a < 0

(3.8)

P3 ≡

{
S if ~p ·~b ≥ 0

N if ~p ·~b < 0
(3.9)

Next we find the point M(x, y, z) (see Figure 3.4) as intersection point be-
tween the normal vector ne and the plane defined by P1, P2 and P3:

x = xe + nxt (3.10)

y = ye + nyt

z = ze + nzt,

where t = A/B with:

A =

∣∣∣∣∣∣

xe − x1 ye − y1 ze − z1
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣
(3.11)

B =

∣∣∣∣∣∣

nx ny nz

x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣
(3.12)

P1

P3
P2

M

M’

Figure 3.4: Modified bilinear interpolation using 3 points

The last step is a modified bilinear interpolation of the temperature in point
M using 3 points P1, P2, P3. All four points lie in one plane. First a linear
interpolation between P2 and P3 for the value of the temperature in point M ′

is applied (see Figure 3.4). The same procedure is repeated for the temperature
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in point M using the values of the temperature in P1 and M ′. The thermal flux
now can be approximated with a central differencing formula:

qe = λ
Te − TM

δe
, (3.13)

where δe is the distance between M and e, Te is the temperature in e and TM

is the interpolated temperature in point M . For laminar flow λ is just the
conductivity of the fluid κf . In the case of turbulent flow λ is calculated as:

λ =
ρfC

1/4
µ κfk

1/2

P δe

σt
T

[
ln(Ey+

P ) + Pfκf

] (3.14)

Here σT stands for the Prandtl number, σt
T is the turbulent Prandtl number, kP

is the value of the turbulent kinetic energy at the node P, y+

P is the dimensionless
distance of point M from the wall and Pf is a function given by

Pf = 9.24

[(
σT

σt
T

)3/4

− 1

] [
1 + 0.28e(−0.007σT /σt

T )
]
. (3.15)

The coefficient E is a constant which can be varied to simulate surface roughness
(see Launder and Spalding (1974) [46]).

3.5 Flux correction

In Section 2.1.5 we presented the modified Navier–Stokes equations (2.51 – 2.53)
for the case of moving grids. When the cell faces move, conservation of mass
and all other conserved quantities is not necessarily ensured. Artificial mass
sources may appear and accumulate with time, thus causing serious convergence
problems.

For the arbitrary Lagrangian–Eulerian description, a discrete form of the
space conservation law for a fluid control volume Vf with surface Sf :

d

dt

∫

Vf

=

∫

Sf

υg · ndS (3.16)

should be taken into account (see Demirdzić and Perić [19]), in order to com-
pute additional convective fluxes for the blocks that are moving. The volume
difference between the new and the old CV can be expressed using the so called
swept volumes, the volumes δVc (c = e, w, n, s, t, b) which swept by the CV faces
during the time step:

d

dt

∫

Vf

≈
V n

f − V n−1

f

∆tn
=

∑

c

δV n
c

∆tn
, (3.17)

where n is the actual time and ∆tn is the time step.
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F*using equation

Linearized momentum

Equation for

pressure−correction

Correction of 

pressure and velocity

Linearized 

scalar equation

forces and the thermal flux

Calculating the wall

Linear system solver

Linear system solver

Linear system solver

Coupling

Calculating the new grid

and setting the temperature

on the coupling wall

Calculating 

the swept volumes

Convergence?

F* = F − Fcor

Yes

No

Flux correction

Figure 3.5: Schematic view of one TFSI iteration

Comparing equations 3.16 and 3.17, we see that the volume swept by the
cell face c is:

V̇c = (υg · n)cSc =
δVc

∆t
. (3.18)

The mass flux through this cell face can therefore be calculated as:

ṁc =

∫

Sc

ρf (υ − υg) · ndS ≈ ρf (υ · n)cSc − ρf V̇c. (3.19)

The last step is to introduce the flux correction term Fcor

Fcor =
∑

c

ρf V̇c (3.20)
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into the SIMPLE pressure–correction scheme which is straightforward. A schematic
view of one inner TFSI iteration can be seen in Figure 3.5.

Additionally, after every TFSI iteration the normalized distance to the near-
est wall y+ should be calculated in case of low-Reynolds RANS model. In case
of dynamic Smagorinski model the filterwidth should be also updated.

3.6 Grid movements strategies

As already discussed, the fluid domain changes because of the deformation
and/or movement of the solid. This leads to the need of changing the grid
after every iteration of the coupling algorithm. Different strategies for man-
aging the grid distortions are investigated from many authors during the last
decade. Stein et al. [95] and Dwight [23] model the mesh as an elastic solid using
the equations of linear elasticity. In both works special techniques are used in
order to preserve the quality in boundary–layers and regions of high resolution.
Liu et al. [53] generate Delaunay graph of the solution domain which can be
moved easily during the geometric dynamic deformation, even for very large
distortion. A one to one mapping between the Delaunay graph and the compu-
tational grid is maintained during the movement. The new computational grid
after the dynamic movement is generated through the mapping while main-
taining the primary qualities of the grid. In the work of Zhang et al. [116] the
spring smoothing method is employed to perturb volume grids adapting to mov-
ing and/or deforming surfaces with relatively small displacement. In the spring
smoothing, the grid nodes are assumed to be interconnected with a system of
tension springs. Based on force balance, an equilibrium balance is sought to pro-
vide a smooth mesh. A more detailed and systematic investigation of this grid
generation concepts can be found in the paper from Yang and Mavripilis [111].
Another grid distortion technique is the elliptic mesh generation which is based
on the use of a composite mapping which consists of a nonlinear transfinite
algebraic transformation and an elliptic transformation. The elliptic transfor-
mation is based on the Laplace equations for domains, or on Laplace–Beltrami
equations for surfaces (see [92]).

In this work several different strategies based on linear interpolation, trans-
finite mapping and Laplace equations are used. The aim is to have a dynamic
grid distortion procedure which preserves the grid quality even for large three
dimensional structure deformations. In what follows, we present first some basis
notations and ideas and then the mesh movement techniques.

3.6.1 General information and notation

As mentioned before for the fluid domain the in-house finite–volume solver
FASTEST is used. FASTEST works on a block–structured grid which means
that the grid topology should remain the same after the distortion procedure.

Let us consider a block in the 3 dimensional Cartesian space X = (x, y, z).
Without any restriction we take that the indices of the structured grid nodes
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are i = 1..Ni, j = 1..Nj and k = 1..Nk. Thus, every node in this block has the
coordinates xi,j,k = (xi,j,k, yi,j,k, zi,j,k), for every i, j, k. In a compass notation
the faces are indexed from 1 to 6. The edges are also indexed with E1–E12.

The procedure starts with defining the edges of the distorted block. In order
to avoid negative volumes not only linear interpolation was implemented but
also a cubic spline interpolation which preserves the angle between the edge
and the faces which it connects. The second step is distorting the block faces.
Linear interpolation, transfinite interpolation, as well as, elliptic grid generation
on minimal surface are implemented, as well as the possibility to move the face
parallel to the opposite wall. At the end the new coordinates of the walls are
used as boundary conditions for the distortion of the whole block. This is
done via three dimensional linear interpolation, TFI or elliptic method. More
information on every step of the process is shown in the following chapters.

3.6.2 Distortion of the edges

Three different interpolations are implemented for the edges. The first is a
simple linear interpolation. Suppose that the edge is over the i direction and j
and k are fixed to 1, i.e. the points xi,1,1, i = 1, .., Ni are from this edge and
x1,1,1 and xNi,1,1 are its end points which have been already distorted. For the
internal points we have:

xi,1,1 = (xNi,1,1 − x1,1,1)ki + x1,1,1, (3.21)

where

ki =
1

len

i∑

m=2

‖xm,1,1 − xm−1,1,1‖ , len =

Ni∑

i=2

‖xi,1,1 − xi−1,1,1‖ . (3.22)

For the interpolation with cubic spline the derivative vectors T1(x, y, z) and
T2(x, y, z) at the end points of the edge are needed. We define:

a1 = −3x1,1,1 + 3xNi,1,1 − 2T1 + T2 (3.23)

a2 = 2x1,1,1 − 2xNi,1,1 + T1 − T2. (3.24)

The internal points we distort as:

xi,1,1 = x1,1,1 + a2k
3
i + a1k

2
i + T1ki. (3.25)

The derivative vectors T1(x, y, z) and T2(x, y, z) are chosen, that the angles
between the edge and the faces it connects remain the same as in the initial
geometry. Here we will describe shortly how this is done only for the T1(x, y, z).
The second vector T2(x, y, z) can be found analogously.

We first define the vectors ~a, ~b and ~c in the initial geometry:

~a = x1,2,1 − x1,1,1, ~b = x1,1,2 − x1,1,1, ~c = x2,1,1 − x1,1,1, (3.26)
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i.e. these are the vectors between the corner point and its neighbour edge nodes.
The vector ~c lies on the edge which should be distorted and ~a and ~b lie in the
face A (x1,j,k ∈ A, j = 1, .., Nj and k = 1, .., Nk). Vector ~e we define as a

vector product between ~a and ~b, thus it is orthogonal to A. ~a1 we take to be the
projection of ~c into ~a, i.e.

~a1 = ~a
(~c · ~a)

|~a|
2
. (3.27)

Additionally two more vectors are defined:

~f = ~b− ~a
~b · ~a

|~a|
2
, ~f1 = ~f

~c · ~f

|~f |2
. (3.28)

The direction of the edge in 3–dimensional space can be uniquely defined by
the three angles α, β and γ:

cosα =
(~a · ~c)

|~a| |~c|
, cosβ =

(~b · ~c)

|~b| |~c|
, cos γ =

(~e · ~c)

|~e| |~c|
(3.29)

and those should be also preserved in the new geometry.
After one or more coupling iteration the face can be changed and the vectors

~a and~b transform to ~a′ and~b′. Following the same procedure as before we define
the following vector in the distorted geometry:

~e ′ = ~a ′ ×~b ′, ~a1
′ = ~a ′

|~a1|

~a
sign(cosα), (3.30)

~f ′ = ~b ′ − ~a ′

~b ′ · ~a ′

|~a ′|2
, ~f1

′ = ~f ′
|~f1|

|~f |
sign(cosβ), (3.31)

where

sign(ψ) =

{
1 if ψ ≥ 0
−1 if ψ < 0.

(3.32)

With those definitions the angles between the vector ~d = ~a1
′ + ~f1

′ and ~a ′

and ~b ′ are exactly α and β, respectively. In order to fulfill the last condition,
namely to preserve the angle γ, we define ~u = (ux, uy, uz):

~u =
~d× ~e ′

|~d× ~e ′|
(3.33)

and use it to rotate ~e ′ around it by an angle of γ. The rotation matrix with the
given rotation axis and angle is defined as following:

MR =



u2

x + (1 − u2
x)c uxuy(1 − c) − uzs uxuz(1 − c) + uys

uxuy(1 − c) + uzs u2
y + (1 − u2

y)c uyuz(1 − c) − uxs
uxuz(1 − c) − uys uyuz(1 − c) + uxs u2

z + (1 − u2
z)c,


 (3.34)
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where c = cos γ and s = sin γ. The vector T1 is now defined as:

T1 =
MR~e

′

|MR~e ′|
. (3.35)

The so defined vector preserves the angles α, β and γ without any restrictions
for the both, initial and distort geometries.

3.6.3 Distortion of the faces

Three different types of faces are distinguished in the procedure. A block can
have coupling faces, faces which should remain the same and faces which should
be distorted. In the last case we suppose that the edges of the wall have been
already changed. The simplest technique is to use linear interpolation, i.e.
the Equations 3.21 – 3.22 along one of the parametrical directions. Another
algebraic solution is the 2 dimensional transfinite interpolation.

ξ

η

x

y

x = x (ξ)

Figure 3.6: 2D TFI procedure. Computational domain (left) is mapped onto
the Physical domain (right).

We consider a mapping between the physical domain in terms of (x, y, z)
and the computational domain parametrized with (ξ, η, ζ) (see Figure 3.6). The
vectors in the computational space will be represented by bold symbol as follows:
ξ = (ξi), where i = 1 . . . 3. The mapping is one-to-one nevertheless that 0 ≤
ξ ≤ 1, 0 ≤ η ≤ 1 and ζ is a constant. We construct the mapping function using
the formula of the linear 2D TFI:

x (ξ) = U + V − U · V, (3.36)

where

U = (1 − ξ)x (0, η) + (1 + ξ)x (1, η) , (3.37)

V = (1 − η)x (ξ, 0) + (1 + η)x (ξ, 1) (3.38)



3.6. GRID MOVEMENTS STRATEGIES 45

and U · V is the binary product of the two terms

U · V = (1 − ξ)(1 − η)x (0, 0) (3.39)

+ (1 + ξ)(1 − η)x (1, 0)

+ (1 − ξ)(1 + η)x (0, 1)

+ (1 + ξ)(1 + η)x (1, 1) .

ξ

η

Computational space C

s

t

Parameter space P

x

z

y

Minimal surface S

E1 E2

E3

E4

Figure 3.7: 2D elliptic procedure.

The last implemented technique is an elliptic grid generation method on
minimal surface. A minimal surface is defined as a surface bounded by four edges
and with zero mean curvature. Following Spekreijse [92] we define a parameter
system with two parameters (see Figure 3.7). We consider four curved edges
E1, E2, E3 and E4 situated in the 3-dimensional physical space. The parameter
space P we define as a unit square with Cartesian coordinates s = (s, t), where
s is the normalized arclenght along edges E3 and E4 and t – the normalized
arclenght along edges E1 and E2. The mapping s : C → P we define by two
algebraic equations:

s = sE3
(ξ)(1 − t) + sE4

(ξ)t (3.40)

t = tE1
(η)(1 − s) + tE2

(η)s (3.41)

We introduce consequently the two covariant base vectors a1 and a2, the
contravariant base vectors a1 and a2 and the contravariant metric base vectors
aij , i = 1, 2, j = 1, 2:

a1 =
∂x

∂ξ
(3.42)

a2 =
∂x

∂η
(3.43)

(ai,aj) = δij (3.44)

aij = (ai,aj) (3.45)

We define three control functions:

P11 = −T−1

(
sξξ

tξξ

)
, P12 = −T−1

(
sξη

tξη

)
, P12 = −T−1

(
sηη

tηη

)
,

(3.46)
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where

T =

(
sξ sη

tξ tη.

)
(3.47)

With these definitions we can write a Poisson equation for the grid coordinates:

a11xξξ + 2a12xξη + a22xηη + (a11P1
11 + 2a12P1

12 + a22P1
22)

+ (a11P2
11 + 2a12P2

12 + a22P2
22) = 0. (3.48)

Together with the requirement which follows from the condition of minimal
surface ∆x = 0 we have a closed set of equations for the grid coordinates. To
solve this system we use the Picard iteration procedure. We first rewrite the
Poisson equation as:

Axξξ + 2Bxξη + Cxηη +Dxξ + Exη = 0, (3.49)

where

A = (xη,xη), B = −(xξ,xη), C = (xξ,xξ)

D = AP 1
11 + 2BP 1

12 + CP 1
22 (3.50)

E = AP 2
11 + 2BP 2

12 + CP 2
22

and then using a Picard iteration for the kth iteration we get:

Ak−1xk
ξξ + 2Bk−1xk

ξη + Ck−1xk
ηη +Dk−1xk

ξ + Ek−1xk
η. (3.51)

The iteration process contains the following steps:

• computing of the coefficients Ak−1, Bk−1, Ck−1, Dk−1, Ek−1 using CDS.

• Discretize xk
ξξ, xk

ξη, xk
ηη, xk

ξ and xk
η using CDS.

• Solving the linear system of equations for the unknowns xk using the
Gauss–Seidel method.

The process is repeated until fulfilling of a fixed convergence criterion.

3.6.4 Distortion of the blocks

The same three techniques as in the previous chapter, but this time in the,
3–dimensional space, are used for the distortions of the whole block. The Equa-
tions 3.21 – 3.22 applied in every parametrical directions give a linear distortion
procedure. The transfinite interpolation (TFI) in 3D can be written as:

x (ξ) = U1 + U2 + U3 − U1 · U2 − U2 · U3 − U3 · U1 + U1 · U2 · U3, (3.52)

where
Ui = (1 − ξi) x|ξi=0

+ (1 + ξi) x|ξi=1
. (3.53)
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The elliptic grid generation is obtained by solving the following Poisson equa-
tion:

a11xξξ + 2a12xξη + a13xξζ + a22xηη + 2a23xηζ + a33xζζ

+(a11P1
11 + 2a12P 1

12 + 2a13P1
13 + a22P1

22 + 2a23P 1
23 + 2a33P1

33)xξ

+(a11P2
11 + 2a12P 2

12 + 2a13P2
13 + a22P2

22 + 2a23P 2
23 + 2a33P2

33)xη (3.54)

+(a11P3
11 + 2a12P 3

12 + 2a13P3
13 + a22P3

22 + 2a23P 3
23 + 2a33P3

33)xζ = 0,

with the following control functions P11, P12, P13, P22, P23, P33:

P11 = −T−1




sξξ

tξξ

uξξ


 , P12 = −T−1




sξη

tξη

uξη


 , P13 = −T−1




sξζ

tξζ

uξζ


 ,

P22 = −T−1




sηη

tηη

uηη


 , P23 = −T−1




sηζ

tηζ

uηζ


 , P33 = −T−1




sζζ

tζζ

uζζ


 ,

(3.55)

where

T =




sξ sη sζ

tξ tη tζ

uξ uη uζ


 (3.56)

and the computational and parametrical spaces C and P are 3–dimensional, i.e.
ξ = (ξ, η, ζ) and s = (s, t, u) and the algebraic mapping s : C → P is defined
as:

s = sE1
(ξ)(1 − t)(1 − u) + sE2

(ξ)t(1 − u) + sE3
(ξ)(1 − t)u+ sE4

(ξ)tu,

t = tE5
(η)(1 − s)(1 − u) + tE6

(η)s(1 − u) + tE7
(η)(1 − s)u+ tE8

(η)su, (3.57)

u = sE9
(ζ)(1 − s)(1 − t) + sE10(ζ)s(1 − t) + sE11(ζ)(1 − s)t+ sE12(ζ)st,

with E1 - E12 the edges of the block. According to this bilinear transformation
the new coordinates of the interior nodes of the 6 faces are computed and used
as a boundary conditions. The edges are computed via a linear interpolation,
thus closing the system of equations. As in 2–dimensional case a Picard iteration
together with the Gauss–Seidel method are used for solving the resulting Poisson
equation system.

3.7 Multigrid techniques for thermal fluid–structure
interaction

Coupled fluid solid problems usually require a high computational effort, espe-
cially in three–dimensional cases. As these are only considered in this work,
accelerating the calculations is an important aspect. In this thesis we use a
multigrid method for fluid computations on moving grids and the partition
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coupling procedure is executed only on the finest grid level. In the nonlinear
multigrid algorithm special care has to be taken to the consistent treatment of
the additional fluxes due to the grid movement. If this is done properly, the
method shows the typical behavior with acceleration factors increasing with the
grid size also known from uncoupled simulations. Yigit et al. [114] showed that
acceleration factors up to 12 for the finest grid could be achieved for a typical
fully coupled three–dimensional FSI simulation.

Recently different multigrid ideas for fluid–structure interaction were devel-
oped and studied. Zuijlen et al. [102] showed that coupling not only the structure
with the fine flow mesh, but also with the coarse flow mesh (often present due to
the multigrid scheme) leads to a significant efficiency improvement. As solving
numerically the flow equations typically takes much longer than the structural
mechanics equations and as multigrid is not standard in structure solvers, Zui-
jlen et al. [102] do not coarsen the structure or the interface. A similar strategy
is applied by Heck [36], who also studied different multigrid coupling strategies
but again with no coarsening of the structure mesh. On the other hand in
Sachs and Schäfer [82] the mathematical basis for applying a full approximation
scheme in the whole computational domain are presented. They state that in
their future work this procedure will be implemented and studied in the ITFSI
scheme.

3.8 Parallelization of the thermal fluid–structure
interaction

In most engineering applications with thermal fluid structure interaction, the
computational fluid dynamics part is much more time and resource intensive.
Consider, for instance, an elastic beam in a turbulent channel flow. Only a
few beam finite elements can be enough for properly resolving the mechanical
behaviour of the structure. On the other hand, depending on the chosen nu-
merical model, the Reynold’s number, etc, millions of control volumes can be
needed by the fluid solver. That is the reason why in this work only the fluid
code FASTEST is used in its parallel version. The structure mechanics solver,
on the other hand, is working on only one processor. Special attention to the
coupling is then needed.

The program FASTEST is a parallel block structured code. As discussed
in the previous chapter, three global synchronization points are used: at the
beginning of the computation, after every SIMPLE iteration and at the end of
the program execution. In the case of a (thermal) fluid–structure interaction
two more global data exchange procedures should be applied before and after
the coupling between the two codes.

Consider the coupling procedure ITFSI2 (Figure 3.2). After calculating the
thermal fluxes and the wall forces, the information should be transferred via
an interpolation to FEAP. Two different procedures, responsible for managing
this task, are implemented in this work. In the first case (1 to 1) one processor
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collect the whole interface information and send it via MpCCI to the other
code (see Figure 3.8(a)). The biggest advantage of this approach is its easy
implementation. The other technique (n to 1) uses the parallel features of
the black box coupling interface MpCCI which were implemented first in the
version 3.0.5. Every processor which works on a block laying on the fluid–
solid interface register itself in the global MPI world initialized by MpCCI (see
Figure 3.8(b)). The quasi–standard interface MpCCI is also responsible for
the synchronization between the different processors. In such a manner, less
communication is needed for the coupling between the two codes.

(a) 1 to 1 (b) n to 1

Figure 3.8: Parallelization strategies

Special attention should be also payed to the grid distortion procedure. The
“ghost cells” idea can be also used here, but the existing subroutines can not
be directly applied. The main difference is that, the finite–volume code needs
the values of the interface quantities in the control volumes’ centers. The grid
distortions, on the other hand, are presented with their nodal values. In this
work a parallel grid distortion concept is developed and implemented in the
fluid solver FASTEST.
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Chapter 4

Results and discussion

In this chapter we present results for the developed and implemented numerical
schemes for thermal fluid structure interaction. Several representative test cases,
among which an analytical test case, a benchmark test case, a test case with
reference solution and a test case with experimental results, are considered in
order to validate the methods, to prove their accuracy and to investigate their
numerical characteristics.

We first start with a validation and verification of the numerical scheme
for simulating thermal fluid–structure interaction in the case of laminar fluid
flow. The results from series of calculations with different RANS models are
then presented. In the next two sections the numerical characteristics of the
developed scheme are investigated and different implemented techniques for
accelerating the computations are proposed. At the end the effect of the moving
grids on a LES calculation is studied and the properties of a TFSI simulation
with a dynamic LES model for the fluid flow are discussed.

4.1 Validation and verification of the laminar
thermal fluid–structure interaction

For the validation and verification of the simulation scheme, when the fluid
flow is laminar, two test cases are used. Figure 4.1 shows the geometry and
the non–Cartesian numerical O–grid for a simple test case with a 1D analytical
solution (TC1). The computational domain consists of two cubes. The left one
is occupied by fluid and the other one is a solid block. The material properties
for both, fluid and solid, are shown in Table 4.1. The temperature is prescribed
at the left (Tf = 300 K) and at the right Ts ends of the domain. For Ts two
different values are used, i.e. 310 K and 3000 K in order to investigate the
influence of the thermal gradient. All other walls are treated as adiabatic walls.
A no–slip boundary condition is used on every wall of the fluid domain. In the
solid part of the domain all walls are fixed (no deformation allowed). As the

51
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fluid is not in motion the analytical solution in the case Ts = 310 is given by

Tfluid = 98.68x+ 300, (4.1)

Tsolid = 1.32x+ 309, 736, (4.2)

where Tfluid and Tsolid describe the temperature in the fluid and in the solid
domains, respectivelly and x is the lateral direction. When Ts = 3000 the
analytical solution for the temperature is

Tfluid = 26644.7
x

m
+ 300, (4.3)

Tsolid = 355.3
x

m
+ 2928, 94. (4.4)

Fluid

100 mm

Solid

T
 =

 T
_
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Figure 4.1: Geometry and numerical for TC1

The second test case TC2 (Figure 4.2) is a two–dimensional benchmark test
case with finite deformation (see Schäfer and Turek [87]). An elastic beam,
attached to a fixed cylinder is placed in a channel with laminar inflow with:

υin = 35.693υ̌in(0.41 −
y

m
)
y

m
, (4.5)

where y is the lateral direction and υ̌in is set so, that the Reynolds number is
Re = 100. The front cylinder has a fixed temperature of 1000 K, thus acting as
a thermal source. The inflow temperature of the fluid is set to Tin = 300 K.
The material properties are chosen (see Table 4.1) that large deformations of the
structure are possible. At the right end of the channel a zero gradient outflow
boundary condition is applied. For all solid walls no–slip boundary conditions
are used. The time step is set to 0.002 s. For the force–displacement coupling
underrelaxation is employed with αFSI = 0.1.

Let us first consider the two coupling schemes ITFSI1 and ITFSI2. Both
are used for the calculation of the two laminar test cases. For TC1 where no
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Figure 4.2: Geometry of TC2

deformations are taking place, the two schemes are in fact identical. For TC2
this is not the case. Every ITFSI1 force–displacement coupling iteration needs
2–3 outer thermal iterations. By ITFSI2 these thermal iterations are “hidden”
behind the greater number of FSI iterations. In such a manner the ITFSI2 is
much more effective. On the other hand no stability problems are observed using
the second scheme. The values for the critical underrelaxation parameters are
the same, even when the material parameters are temperature dependent. The
results from the both schemes are also identical for every time step. Such the
additional work of ITFSI1 can be considered as a not needed luxury. In author’s
experience simulations of a turbulent TFSI using different RANS or LES models
does not effect this observation. From now on only the second scheme will be
used and all presented results are due to computations with ITFSI2.

In Table 4.2 the maximum difference between simulation and analytical re-
sults for the temperature on the coupling wall (Ecoupling) and the tempera-
ture over the whole domain (Eglobal) for TC1 are shown for Ts = 310 K and
Ts = 3000 K. Two different grid types – a Cartesian grid with 4096 control vol-
umes (17 nodes in every spatial direction) and a non–Cartesian grid (O–grid)
with similar number of control volumes (3584) are used for the fluid domain.
Both, the Dirichlet–Neumann and the Neumann–Dirichlet methods for the ther-
mal coupling are applied. The structure is discretized with 100 serendipity finite
elements. In all cases 10−6 is used as a convergence criterion for both the ther-
mal coupling and the CFD simulation. The results from the simulation are in
a perfect agreement with the analytical solution. The maximal absolute error
is in the field of 10−5. For Ts = 3000 K the error is one order larger than for
Ts = 310 K. Negligible difference in the accuracy of the two different Schwarz
methods is observed.

In TC1 the mechanical FSI is very limited, as only very small deformations
can take place. The second test case TC2, on the other hand, displays significant
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Table 4.1: Material properties for TC1 and TC2

TC1 TC2

Property Solid Fluid Solid Fluid

E [Pa] 2.1e11 1.4e11

ν 0.3 0.4
α [K−1] 1.0e−5 1.5e−4 1.5e−5 1.5e−4

κ [W/(m ·K)] 45.0 2.5e−2 0.2 0.6e−2

c [J/(kg ·K)] 450.0 1003 1700.0 4187
ρ [g/m3] 7800 1.225 1 1

µ [kg/(m · s)] 1 1.8e−5 0.5 1

Table 4.2: Error of the simulation for different grids and boundary conditions
for TC1

Dirichlet–Neumann Neumann–Dirichlet

Ts Grid Ecoupling Eglobal Ecoupling Eglobal

310 Cartesian 0.000036 0.000039 0.000038 0.000038
310 non–Cartesian 0.000053 0.000061 0.000047 0.000052
3000 Cartesian 0.00070 0.00073 0.00065 0.00069
3000 non–Cartesian 0.00091 0.00091 0.00089 0.00093
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Figure 4.3: Grid configuration for TC2. Every 4th grid line is shown

Figure 4.4: Temperature distribution (in [K]) in the middle of the geometry for
TC2

displacements. The fluid problem is computed with the finite–volume solver
FASTEST employing a second order Taylor–based interpolation (see Lehnhäuser
and Schäfer [49]). Second order serendipity finite elements are used for the
solid domain. The calculation is performed on 4 successively refined grids with
approximately 12 500, 50 000, 200 000 and 800 000 control volumes, respectively.
The finest grid is shown in Figure 4.3. The temperature distribution in a slice
in the center of the geometry is shown in Figure 4.4. The reference results are
taken from a simulation without any temperature (see Hron and Turek [39]),
thus no quantitative comparison with the results from a full TFSI is possible.
However, qualitatively we have a very good agreement. In both of the cases the
structure oscillates periodically. The absolute velocity profile at periods π

2
, 3π

2

and 2π are plotted in Figure 4.5, Figure 4.6 and Figure 4.7. The difference

Figure 4.5: Absolute velocity (in [m/s]) at π
2

time period

of the frequency from reference and simulation results is less than 0.1%. The
values for the drag and lift have the same courses over the time. Results for the
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Figure 4.6: Absolute velocity (in [m/s]) at 3π
2

time period

Figure 4.7: Absolute velocity (in [m/s]) at 2π time period

oscillation of the reference point A (see Figure 4.2), as well as the drag and the
lift are shown in Figure 4.8. For the thermal coupling again the two variants of
the Schwarz domain decomposition method are used and also here no significant
difference in the results is observed.

4.2 Validation and verification of the turbulent
thermal fluid–structure interaction

Verifying and validating the numerical procedure for turbulent thermal fluid–
structure interaction is an important and complex task. In this work we investi-
gate two different test configurations, for which reference results exist. The first
one (TC3) is a rotational symmetric test case, composed of two opposed nozzles
and a flat horizontal plate (see Figure 4.9). The second one (TC4) represents
a simplified combustion chamber (see Figure 4.10). Here only the Neumann-
Dirichlet alternating domain decomposition method is applied. The reason for
that is the much better convergence of the flow solver in this case (discussion
of this phenomena can be found in the next section). In author’s experience,
also for the turbulent flows, the two different methods produce identical final
results, but the Dirichlet–Neumann approach need much more computational
time.

We start with a comparison between numerical and experimental results for
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Figure 4.8: Displacement course of the reference point A, drag and lift for TC2

TC3. The investigated generic system consists of two opposed, vertical nozzles
impinging onto a flat, horizontal copper plate. In the literature the heat transfer
characteristics under single or multiple impinging turbulent jet flows are inves-
tigated numerically and experimentally by different authors during the last 30
years, without taking into account the effects of the fluid–structure interaction.
Polat and Douglas [73] studied the numerical simulation of turbulent flow field
of impinging jets over a surface. Nitin et al. [63] use a numerical simulation
to predict flow and thermal fields and calculate the surface heat–transfer coef-
ficient for a single hot air jet impinging on a cookie–like product. The results
from the numerical predictions are compared with experimental measurements.
Craft et al. [16] applied different turbulence models to the numerical prediction
of the turbulent impinging jets discharged from a circular pipe and discussed
the characteristics of the numerical approaches.

For the numerical simulation of TC3 exactly the same geometry which was
used in the experiment from Brübach et al. [11] is employed (see Figure 4.9). A
horizontal copper plate is heated from below by a non–reacting, turbulent air jet
(Re = 5000, based on the bulk velocity and the jet’s diameter). To achieve well
defined boundary conditions the plate is cooled by a turbulent cold jet from
above. All outer walls of the domain are treated with outflow zero gradient
boundary condition. The fluid is air and its material properties, as well as those
for the copper plate, are shown in Table 4.3.
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10.5 mm

52.5 mm

315mm
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Figure 4.9: Geometry configuration for TC3

The radial and the axial length of the computational domain for the fluid
are set to 301.5 mm and 130.25 mm, respectively. These dimensions are chosen
in order to minimize the effects of the applied zero–gradient outflow boundary
condition. This is important for the convergence of the calculation. As inlet
boundary conditions a flow with 7.19 m/s axial velocity and 294 K temperature
for the upper nozzle and a flow with 26.1 m/s axial velocity and 640 K temper-
ature for the lower nozzle is used. The convergence criterion for the FSI and for
the thermal coupling are set to 10−4 and 10−5, respectively (see Eq. 3.4).

The fluid domain is discretized by 572 544 control volumes. As a low
Reynolds k – ε model is applied, an important characteristic is the normalized
(dimensionless) distance to the nearest wall y+ which should be in the interval
[0.1; 0.5] for the control volumes next to the solid walls (see [84]). Due to this
restriction, the grid is refined near the solid walls, as shown in Figure 4.11. The
structure is discretized with 12 000 linear solid hexahedrons.

The convergence of the whole coupling process is mostly dependent on the
convergence of the flow solver. Strong underrelaxation especially for the tur-
bulent kinetic energy k and for the dissipation ε (0.01 and 0.05 respectively)
is employed. For reaching the convergence criterion of 10−4 for the velocity–
pressure coupling around 10000 iterations are needed for the first 2 outer TFSI
iteration. This number reduces dramatically for the remaining 5 TFSI itera-
tions. Because of the characteristics of the chosen material, the deformations
of the plate are extremely small (≈ 10−2 mm) and they have no effect on the
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Figure 4.10: Geometrical setup for TC4

Table 4.3: Material properties used for TC3 and TC4.

TC3 TC4

Property Solid Fluid Solid Fluid

E [Pa] 1.2e11 2.1e11

ν 0.34 0.3
α [K−1] 1.7e−6 1.5e−4 1.1e−5 1.5e−4

κ [W/(m ·K)] 401.0 2.5e−2 45 2.5e−2

c [J/(kg ·K)] 385.0 1003 450 1003
ρ [J/(kg ·K)] 8960 1.225 7800 1.225
µ [kg/(m · s)] 1 1.806e−5 1 1.806e−5

convergence of the numerical procedure and on the heat transfer in the whole
system. The temperature distribution in a 2D slice in the middle of the geome-
try can be seen in Figure 4.12. The results for the fluid field for the velocity in
tangential direction (υ3), the pressure (p), the turbulent kinetic energy (k) and
the dissipation (ε) are plotted in Figure 4.13.

The comparison of the simulation results with the experimental data starts
with the temperature on the surface of the copper plate which can be seen in
Figure 4.14. Due to the high heat conduction of the copper, the radial surface
temperature profile is quite homogeneous. Except for one point the values from
the numerical procedure are close to the experimental data and are always in
the range of the shot–to–shot standard deviation. As expected, the temperature
profile is absolutely symmetric in the simulation and almost symmetric in the
experiment. The temperature maximum is located in the center of the plate, as
the simulation tends to overpredict it, a phenomenon which we will clear later
in this chapter.

Figure 4.15 compares the gas temperature in the middle of the geometry (ra-
dial position r = 0). The qualitative courses are similar. Near to the boundary
layer the values from the simulation are slightly displaced from the experimen-
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Figure 4.11: Discretization of the fluid domain.

tal data, probably due to the not exact positioning of the measurement devices
(the difference is 0.1 mm). Near to the stagnation point one can observe that
the numerically predicted temperature is higher than the measured one. This
was observed also by the surface temperature comparison. In the authors expe-
rience the quality of the heat–transfer prediction in this region becomes worse
as the Reynolds number increases. As reported in Craft et al. [16] the most
probable reason for this is the overprediction of turbulent kinetic energy in the
stagnation region, when eddy–viscosity models are applied. Both experiments
and large eddy simulations (LES), show negative production of turbulent kinetic
energy in the problematic zone. Such a phenomenon cannot be predicted by an
eddy–viscosity model which always produces a positive production of turbulent
kinetic energy. Craft et al. [16] proved that second–moment closure improved
the results to some extent, depending on the model sophistication, primarily of
the pressure strain term.

Figure 4.16 compares the fluid temperature along the radial position r = 15
mm. Away from the stagnation region the results from the simulation are in a
very good agreement with the experimental data.
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Figure 4.12: Temperature distribution (in [K]) in a center slice of the geometry

For the second test case TC4 a reference calculation with FASTEST with 2
flow regions exists where the deformations are not handled (explanation of the
method can be found in Teschauer [99]). As the deformations which occur during
the computation with the fully coupled scheme, are infinitesimal small and can
be neglected, a comparison between the two calculations can be made. The
geometry of the test configuration represents a simplified combustion chamber
and is shown in Figure 4.10. The wall of the channel is 5mm thick steel. The
fluid is set to be air. The material properties for both, fluid and solid, are
shown in Table 4.3. Hot air with temperature 1000 K streams from the left with
4.9m/s. The Reynolds number in this case is Re = 10 000. The temperature
at the outside wall is set to 450 K. For the discretization of the fluid domain
around 400 000 control volumes are used. The used turbulence model is the
high-Reynolds k–ε RANS model. The solid wall is discretized with 4080 brick
finite elements.

In Figure 4.17 the temperature distribution in a slice in the middle of the
geometry is shown, as well as a plot of the temperature over the selected line A.
As expected, by comparison with the reference solution no difference is observed.
This, of course, is due to the fact that the material of the wall is so chosen, that
no deformation appears. In author experience, even small deformation can have
a great effect on the fluid flow, thus making the comparison meaningless.
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(a) Z velocity [m/s]

(b) Pressure [Pa]

(c) Turbulent kinetic energy [J/kg]

(d) Dissipation [W/kg]

Figure 4.13: Results for TC3
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Figure 4.14: Comparison of the surface temperature. The error bars represent
the shot-to-shot standard deviation for the experiment

4.3 Numerical properties of the coupling scheme

In this chapter we discuss the numerical properties of the coupling scheme.
We first present results for the accuracy of the method and prove that it is
second order accurate. Then the convergence characteristics of the algorithm
are investigated and different possibilities for accelerating the calculation process
are discussed.

In order to show that the results of the numerical simulation have 2nd order
of accuracy we use TC2, as the calculation is performed on 4 successively refined
grids with approximately 12 500, 50 000, 200 000 and 800 000 control volumes,
respectively. Using a Richardson extrapolation (see Schäfer (2006) [84]) for
the two finest grids, a grid independent solution for the Nusselt number at
the reference point A (see Figure 4.2) is found. By comparison with the grid
independent solution, the relative solution error on all grids can be determined.
In Figure 4.18 the relative error is plotted versus the grid spacing. The second
order accuracy of the coupled method can be observed.

The investigation of the convergence properties of the scheme we start with
the test cases TC1, TC3 and TC4, where the deformations of the structure
are indivisible small and the convergence of the algorithm depends only on the
alternating Schwarz decomposition method for the thermal coupling. Here again
the Dirichlet–Neumann Schwarz coupling procedure is used. Table 4.4 shows
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Figure 4.15: Comparison of the temperature at a radial position r = 0 mm.

the residuals of the thermal coupling
∥∥Tm−1 − Tm

∥∥
∞
/ ‖Tm‖

∞
for TC1 and

TC3. TC1 is presented with four different grid configurations of the fluid mesh
– Cartesian with 4096 CVs (fine1), Cartesian with 512 CVs (coarse1), non–
Cartesian with 3586 CVs (fine2) and non–Cartesian with 512 CVs (coarse1). In
all cases the boundary temperature for the solid is Ts = 310 K. A fine and a
coarse grid with approximately 400 000 and 50 000 control volumes, respectively,
are used for the simplified combustion chamber TC4. It can be seen that the
rate of convergence is independent of the grid size and type, as also proved
by Yang [110]. The number of outer TFSI iterations for reaching a defined
convergence limit ǫTEMP stays almost constant for all investigated cases.

In Table 4.5 the values of the TFSI residual for TC1 with Ts = 310 K and
Ts = 3000 K and TC3 with Tinfl = 640 K and Tinfl = 860 K are shown. It
can be seen that the convergence rate of the scheme does not depends on the
thermal gradient and it stays constant for all investigated cases. The only thing
which influenced the number of TFSI iterations, needed for reaching a prescribed
convergence criterion is the initial guess of the interface temperature. For TC1
with Ts = 310 K, for example, the initial value is closer to the solution than for
the case where Ts = 3000 K and the difference can be seen in the residual of
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Figure 4.16: Comparison of the temperature at a radial position r = 15 mm.

the first TFSI iteration.

In the second case TC2, where the structural deformations are playing a
crucial role, the convergence of the coupling algorithm depends on both ther-
mal and force–displacement coupling. In problems with large deformations, as
here, normally much more iterations are needed by the mechanical coupling.
For every time step around 300 TFSI outer iterations are needed for fulfilling
the convergence criterion ǫFSI = 10−4 and for the thermal coupling only 6 it-
erations are needed. Thus the computations are strongly dominated by the
force–displacement coupling algorithm. A deeper investigation of its conver-
gence characteristics can be found in Heck (2008) [36].

For all of the considered problems most of the computation time is spent by
the flow solver in particular when the flow is turbulent. In Table 4.6 we present
results for the number of CFD iterations for every TFSI iteration for the test
cases TC1 and TC3 in the case of Dirichlet–Neumann method for the thermal
coupling. The results for the dual Neumann–Dirichlet method are shown in
Table 4.7. In the second case a flux boundary conditions is used on the fluid–
solid interface in the flow solver. As can be seen in this case much more SIMPLE
iterations are needed to achieve convergence. The needed computation time is
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(a) Temperature distribution (in [K]) in a slice in the middle of
the channel

(b) Temperature distribution (in [K]) over the line A

Figure 4.17: Results for TC4

up to 4 times more than when the Dirichlet–Neumann approach is used. On
the other hand, the same number of outer coupling iterations is needed by both
of the methods. These observations show that the Neumann–Dirichlet coupling
is, in fact, in no practical use.

With every new step less iterations are needed by the CFD solver. Much
more iterations are needed when the grid is non–Cartesian.

4.4 Accelerating the computation

An important characteristic of a numerical scheme is its efficiency. Common
problem for all (T)FSI applications is the great amount of computational time
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Slope 2

Figure 4.18: Convergence of the Nusselt numbers for successively refined grids

needed. In the first part of this chapter we already showed the advantages of
ITFSI2 in comparison to ITFSI1 in this aspect. Here we will present and discuss
several other techniques which were implemented and studied in this work.

4.4.1 T(FSI) predictor

As conclusions from our convergence study in the previous section we can state,
that in case of finite deformations a great number of TFSI outer iterations are
needed for reaching the convergence criterion. To reduce this number we use
a FSI predictor which tries to predict the structural deformations before every
time step (information can be found in Piperno [67]). Förster et al. [29] claimed

Table 4.4: Residual of the thermal coupling
∥∥Tm−1 − Tm

∥∥
∞
/ ‖Tm‖

∞
for dif-

ferent grids for TC1, TC3 and TC4 for every TFSI iteration it

TC1 TC3 TC4

it fine1 coarse1 fine2 coarse2 fine coarse

1 4.9 4.9 4.9 3 2 3 3

2 6.10−2 6.10−2 6.10−2 6.10−2 2.10−2 5.10−2 5.10−2

3 8.10−4 8.10−4 7.10−4 7.10−4 1.10−4 1.10−4 2.10−4

4 3.10−5 3.10−5 3.10−5 3.10−5 2.10−6 3.10−5 3.10−5

5 5.10−6 4.10−6 5.10−6 5.10−6 9.10−8 6.10−6 6.10−6
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Table 4.5: Residual of the thermal coupling
∥∥Tm−1 − Tm

∥∥
∞
/ ‖Tm‖

∞
for TC1

and TC3 for every TFSI iteration it

TC1 TC3

it Ts = 310 Ts = 3000 Tinfl = 640 Tinfl = 860

1 4.9 1483 3 1

2 6.10−2 18 5.10−2 2.10−2

3 8.10−4 2.10−1 1.10−4 1.10−4

4 3.10−5 3.10−3 3.10−5 7.10−6

5 5.10−6 1.10−5 6.10−6 1.10−5

Table 4.6: Number of CFD iterations for different grids for TC1 and TC3 for
every TFSI iteration it. Dirichlet–Neumann thermal coupling applied.

TC1 TC3

it fine1 coarse1 fine2 coarse2

1 2071 594 9950 2495 13435

2 2069 591 9939 2492 13428

3 1305 373 6174 1547 12761

4 534 153 2351 588 1593

5 30 11 66 21 340

that different predictors can lower the stability limit of the coupling scheme,
i.e. the algorithm becomes more unstable and stronger underrelaxation for the
force–displacement coupling is needed. However Yigit [113] showed that the
acceleration due to a second order predictor can be up to 8 times in comparison
to a calculation where no predictor is applied.

In this work three predictor techniques with different orders were imple-
mented not only for the force–displacement coupling, but also for the thermal
coupling:

dk+1 = dk 0th order,
dk+1 = dk + (dk − dk−1) 1th order,
dk+1 = dk + (3

2
(dk − dk−1) − 1

2
(dk−1 − dk−2)) 2nd order,

(4.6)

where k+1 is the number of the next TFSI outer iteration and d the deviance of
the current calculated values of interest (interface distortion, boundary temper-
ature or boundary thermal flux) and their initial values. The number of TFSI
iterations for TC2 and TC4 when different preconditioners are applied is shown
in Table 4.8. The convergence criteria for both thermal and force–deformation
coupling (see Eq. 3.4) are set to 10−6. In all cases the underrelaxation param-
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Table 4.7: Number of CFD iterations for different grids for TC1 and TC3 for
every TFSI iteration it. Neumann–Dirichlet thermal coupling applied.

TC1 TC3

it fine1 coarse1 fine2 coarse2

1 4121 936 18341 3987 19211

2 3978 920 17534 3389 19101

3 1901 531 10100 1932 17671

4 864 349 3989 876 3004

5 43 19 110 33 426

eter for the mechanical coupling αFSI is set to 0.3. In case of the 1st order
predictor the scheme suffers from instabilities and stronger underrelaxation is
needed. That is why the number of needed TFSI iterations is almost the same
as in the case of 0th order prediction. Such problems are not observed by ap-
plying the second order prediction technique. The acceleration achieved in this
case is around 6 times. The acceleration factor due to predictor for the thermal
coupling depends on the character of the problem. In cases where the tempera-
ture is strongly time dependent the computation time is reduced up to 5 times,
as instead of 6–10 TFSI outer iterations only 2–3 are needed.

Table 4.8: Number of TFSI iterations by different preconditioners for TC2 and
TC4

Test case 0th order 1st order 2nd order

TC2 298 290 48

TC4 7 6 3

4.4.2 Uneven time coupling with estimation of the distor-
tions

The thermal fluid–structure interaction is a typical multi–field problem. Every
physical field (fluid or solid) is characterized by different temporal and spatial
scales. By the chosen numerical partition approach both computational domains
are handled separately. As it have been already discussed a block structured
finite–volume mesh is needed by the FASTEST solver and an unstructured
finite–element grid is used by FEAP. The two different spatial discretizations
can be independently chosen so that they perfectly fit to the underlying numer-
ical methods and the problem of interest. For example, several million control
volumes can be needed for a LES calculation of a fluid flow in a channel but only
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10 beam finite elements can be enough for a proper simulation of the dynamics
of a solid beam in this channel.
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Figure 4.19: Flow chart of the coupling procedure ITFSI3

Similar problems exist also for the temporal discretization. Normally a very
small time step is needed for properly resolving the flow motion scales, while for
such a time period almost nothing happens to the structure. This observation
can be used for optimizing the TFSI calculation. The main idea is to have two
different time steps: ∆tf for FASTEST and ∆ts for FEAP, as ∆ts = kt∆tf .
The coupling then is realized every kt time steps. For the time steps where no
interface transfer is performed, an estimation of the structural distortions and
the temperature is applied. In fact here we can use the already discussed TFSI
predictors’ techniques. The schematic view of this modified procedure (ITFSI3)
is shown in Figure 4.19.
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Table 4.9: Material properties used for TC5.

Property Solid Fluid

E [Pa] 1.2e11

ν 0.34
ρ [J/(kg ·K)] 8960 1.225
µ [kg/(m · s)] 1 1.e−9

In order to show the advantages of the scheme ITFSI3 the test geometry
TC5 is used (see Figure 4.20). The test case is a three dimensional channel with
a deformable obstacle inside it. We concentrate ourselves only on the structural
deformation and no temperature is taken into account. The material properties
are shown in Table 4.9.

100 mm

10 mm

40 mm

40 mm

700 mm

Figure 4.20: Geometry of the test configuration TC5

First the properties of the method are studied for a laminar flow (Re =
100). 4212 CVs are used for the spatial discretization of the fluid domain. The
structure is discretized by 800 linear solid hexahedron finite elements. In order
to avoid the locking effect enhanced strain formulation is employed. The time
step size in the fluid code is fixed to 0.001 s. Three simulations with three
different values for kt are performed: kt = 3, kt = 4 and kt = 5, i.e. the time
step in FEAP is set to ∆ts = 0.003 s., ∆ts = 0.004 s. or ∆ts = 0.005 s. For
every estimation’s scheme we define Ex as the maximal difference in percent
between the structural distortions calculated with the ITFSI2 and ITFSI3:

Ex = ‖(uITFSI3 − uITFSI2)uITFSI2/100‖
∞
, (4.7)

where x is the order of the scheme, i.e. x = 0, 1, 2.
The CPU times, as well as the maximal deviation Ex for 100 time steps

simulations with different estimation of distortions schemes and coupling periods
(kt) are shown in Table 4.10. Employing a higher order prediction for the
distortions leads, as expected, to better results, i.e. E2 < E1 < E0. The
computational time on the other hand stays almost constant. Higher order
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Table 4.10: CPU time (in seconds) and Ex for 100 time steps with ITFSI2 and
ITFSI3 with different estimation of distortion for TC5

ITFSI3 ITFSI2

kt 0th order E0 1st order E1 2nd order E2

3 3864 0.05 3856 0.012 3861 0.0017 4680

4 3556 0.07 3554 0.027 3558 0.0021 4680

5 3581 0.15 3585 0.047 3584 0.0033 4680

schemes can be also easily implemented but as in FASTEST the highest realized
time scheme is of second order no greater improvement will be achieved.

The more often the exchanging procedure is applied the less is the average
difference to the reference results calculated with ITFSI2. The computational
time is however not always less. As can be seen from Table 4.10 the case kt = 5
needs more CPU time than kt = 4. This is due to the fact that the convergence
of the SIMPLE method is worse and also more outer iterations are needed by
every coupling time step.

Similar results are obtained when the flow is in the turbulent regime. The
simulations are done for Re = 120 000 and the standard k–ε model is employed.
The fluid domain is discretized with 9 792 control volumes, thus the y+ stays
in the interval (30, 300). The same number of finite elements as in the laminar
case is used. Only second order scheme for the estimation of the distortions is
applied. The time step for the fluid solver is set to ∆tf = 0.0005s. On the initial
geometry a standard fluid simulation (without FSI coupling) is first performed
and its results are used as an initial solution for the coupled calculation. The
CPU times and E2 for 100 time steps are shown in Table 4.11.

Table 4.11: CPU time (in seconds) and E2 for 100 time steps with ITFSI2 and
ITFSI3 and turbulent flow

ITFSI3 ITFSI2

kt CPU time E2

3 7036 0.0018 8510

4 6458 0.0048 8510

5 6686 0.0074 8510

Finding the best time step sizes for both computational domains is problem
dependent and is a question of experience. Employing the ITFSI3 scheme allows
the user to choose different values, considering the specific of the two domains.
In such a manner for different problems a great acceleration can be achieved.
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4.4.3 Multigrid technique

As we have already commented, most computational time is needed by the
pressure–velocity coupling procedure in the flow solver FASTEST. Common
practice for reducing this time is parallelizing the code (the approach will be
discussed in the next section), or using a multigrid method. Two calculations,
with and without multigrid for TC4 are taken into account. In the first case a
single grid with 400 000 control volumes is used and in the second a multigrid
method with 3 grids with 400 000, 50 000 and 6 250 control volumes respectively
is applied. In Figure 4.21 the number of fine grid iterations for one time step
which contains 6 TFSI iterations is shown. The convergence criterion in both
cases is set to 10−5. Around 2300 fine grid iterations are needed in the single–
grid calculation. For the multigrid case this number is significantly reduced to
only 800 which is a factor of almost 3.

Figure 4.21: Acceleration due to multigrid calculation in the flow solver for TC4

Comparing the real computational times of the whole coupled simulation
with and without multigrid technique the difference is not so great. A certain
computational effort is needed for the coarser grid levels. Also no acceleration
for the structural solver is employed. However, approximately 2 times less CPU
time is needed by a multigrid computation.

As a conclusion we can state that the presented results show a great speedup
of the calculation, nevertheless that the multigrid method is used only from
the fluid code. It looks that a very promising approach should be a multigrid
technique for the whole coupling simulation.
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4.4.4 Parallelization

As discussed in the previous chapters, for the parallelization of the thermal fluid
structure interaction we choose to perform a multiprocessor calculation only for
the flow solver. The finite–element code FEAP is working sequentially and for
the coupling two different techniques are implemented. The first we call “1 to 1”
as here only one processor gathers the needed coupling information and takes
part in the data exchange via MpCCI. With the further development of the
MpCCI another option becomes also possible. First in MpCCI 2.0 Professional
a new alternative communication scheme based on coupling servers was intro-
duced. Instead of having all codes in one big MPI world, in the new approach
each code uses its own MPI (MPICH or the native MPI of the platform where it
is running) and is started independently of the other codes. In such a manner,
it is possible for all processors on the coupling interface to communicate directly
via MpCCI with the one processor FEAP job (”n to 1” approach).

The simulations are carried out at the Hessian High Performance Computer
(HHLR). The super computer has 15 shared memory multi–processor nodes
(SMP), each with 32 Power6-CPUs and 128 GB memory. The benchmark test
case TC2 is used again in order to investigate the efficiency of the both parallel
schemes. The fluid domain is discretized with a fine grid with almost 1 000 000
control volumes. Calculations with 1, 2, 4, 8, and 16 processors are performed.
A special block splitting is used in order to assure 100% load balancing, as well
as the same number of fluid–structure interface control volumes for every CPU.
This means, that every processor should take the same part in the communica-
tion procedure. The results for the speed–up and for the parallel efficiency of
both schemes are shown in Table 4.12.

Table 4.12: Speed–up and parallel efficiency for the two parallelization strategies

SP EP

number of processors 1 to 1 n to 1 1 to 1 n to 1

2 1.86 1.87 93% 93.5%

4 3.34 3.38 83.6% 84.5%

8 6.06 6.15 75.7% 76.8%

16 9.96 10.15 62.2% 63.4%

The efficiency of the “n to 1” scheme is with 1%-2% better than that of the “1
to 1” approach, as for more processor jobs the difference grows. This is due to the
fact that the greater the number of CPUs is, the more internal communication
for collecting the whole interface information is needed. Something more, the
test configuration is so constructed, that it is “the worse case” for the “1 to 1’
method. In the practice it is almost not possible to have all processors on the
coupling interface. In such cases the advantages of the “n to 1” scheme will be
relatively small. If however, the structural mechanics solver works also parallel
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this approach will be without any competition. The fact that FEAP works on
only 1 processor is the reason, why for jobs with more processors the parallel
efficiency of the simulation drops significantly.

4.5 LES on moving grids

In most of the engineering fluid–structure interaction applications the flow of
interest is in the turbulent regime. We have already shown results for the
validation and the verification of the coupling procedure with different RANS
methods. We also discussed some of the problems by using these methods for
thermal simulations. Yigit [113] showed that employing a RANS approach for
FSI simulations with great structure deformations produces results which are
not in agreement with the experimental data. A standard way to overcome
these problematic issues is to use a Large–Eddy Simulation (LES) or hybrid
LES/RANS models. For a detailed discussion on these approaches see Kadavelil
et al. [43].

In this section we present results for applying the dynamic Smagorinsky
model in the context of moving grids. No temperature is taken into account.
A fully coupled FSI simulation is also not in the scope of this thesis. Our
interest here is concentrated on performing a one way explicit FSI coupling for
a case with finite deformations. This means that prescribed deformations are
interpolated on the fluid grid once at every time step and then a standard LES
simulation is performed. For the determination of the Smagorinsky constant CS

the dynamic Germano procedure is applied after every change of the geometry.
No back coupling (i.e. interface force calculation and exchange) is employed.
The aim of this study is to show that the implemented TFSI parallel concept can
be used with LES calculations on a super computer, without any restrictions.

4.5.1 Test configuration

The test configuration used in the experimental study of Gomes and Lien-
hart [33] is employed also in this work and is denoted here as TC6. The structure
consists of a 0.04 mm thick stainless steel membrane attached to a aluminum
cylindrical front body. At the trailing edge of the flexible sheet a rectangular
stainless steel mass is located. Both the rear mass and the front body are consid-
ered rigid. The structure is free to rotate around an axis, located in the center
point of the front cylinder. The structure is placed in the middle of a wind chan-
nel with length (x–direction) L = 750 mm, width (y–direction) W = 240 mm
and height (z–direction) H = 88 mm. The center of the cylindrical front body is
located 155 mm downstream ffrom the inflow boundary of the physical domain.
The detailed dimensions are represented in Figure 4.22.

The material properties of the chosen fluid are shown in Table 4.13.
As inflow boundary condition a block profile with a constant velocity ux =

0.68 m/s in the streamwise direction is used. The correspondent Reynolds
number, based on the diameter of the front cylinder, is about Re = 15 000. At



76 CHAPTER 4. RESULTS AND DISCUSSION

IN
F

L
O

W

10 mm

50 mm

4 mm

r = 11 mm

O
U

T
F

L
O

W

2
4

0
 m

m

750 mm

0.04 mm

Figure 4.22: Geometry setup for TC6

Table 4.13: Material properties used for TC6.

Property Value

ρ [J/(kg ·K)] 998
µ [kg/(m · s)] 9.7e−3

the right end of the geometry a zero–gradient boundary condition is applied. All
walls are treated as no–slip walls. In z–direction periodic boundary conditions
are employed. As in the experiment no deformations of the structure occur in
this direction.

Figure 4.23: Discretization grid for TC6

The fluid code is explicitly one way coupled (1 iteration per time step) with
the solid solver, in order to get a periodical movement of the structure. A
prescribed periodic displacement of the trailing edge of the structure is set as a
boundary condition in FEAP and no force coupling with FASTEST is employed.
Exactly as in the experiment, the structure oscillates with frequency 4.45 Hz.
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For the discretization of the fluid domain 1 069 056 CVs are used. The mesh
of the initial geometry is shown in Figure 4.23. The time step is set to 2e − 4,
thus CFL ≈ 1. No underrelaxation for the structural distortions is applied, as
for the chosen time step size the method shows to be stable. CDS is chosen for
the interpolation of the convective and the diffusive fluxes.

4.5.2 Grid distortions

Figure 4.24: Block structure and grid distortion concept

In the case of moving boundaries and LES calculation special attention has to
be paid on preserving the grid quality. As large three dimensional deformations
occur this task is not trivial. The remeshing techniques, implemented in this
work which were discussed in 3.6 are employed here. The block structure for
the discretized fluid domain, as well as the concept for the grid distortions is
shown in Figure 4.24.

For the blocks adjacent to the structure the elliptic method is employed for
the faces and for the whole blocks. The walls which lay opposite to the coupling
boundary are moved parallel and orthogonal to the interface. As those are used
as boundary conditions for the following 3D elliptic grid generation the quality
of the final grid (angles and distances between the nodes) is preserved on a
certain appropriate level.
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Figure 4.25: Overview of the distorted mesh

Figure 4.26: Distorted grid around the rotating cylinder

The discretization mesh for a chosen time step is shown in Figure 4.25. A
detailed view of the grid around the front body cylinder and the stainless steel
mass, attached at the trailing edge of the elastic structure is represented in
Figure 4.26 and Figure 4.27. It can be seen that the mesh remains orthogonal
in the near wall regions, nevertheless that no extra boundary conditions for the
elliptic grid generation are employed as in the work of Yigit [113].

4.5.3 Results and discussion

Before starting the explicit one way coupling simulation an LES calculation with
the default geometry is performed in order to get a fully developed turbulent
initial flow field. The time series for the velocity in the streamwise direction in
3 different points in the fluid domain are shown in Figure 4.28

56 200 time steps were performed, thus 50 periods were simulated After
which the calculation was manually canceled. In Figure 4.29 the velocity field
in 3 different time–phase angles which is normed by the bulk velocity υbulk is
shown. The pressure field for the same periods (π

2
, 3π

2
and 2π) is represented.
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Figure 4.27: Distorted grid around the steel mass

No quantitative comparison with the experimental data is possible, as the pre-
scribed fluctuations do not coincide with the real structure movement. This is
due to the fact that only the trailing edge coordinates as well as the rotation
angle of the front body cylinder were measured. Thus, without having a full
coupled simulation the structure deformation is far away from the reality.

The most important conclusion from the performed simulation is that the
TFSI framework with the implemented grid distortion procedure is fully func-
tional and can be used without any restrictions with different turbulence models.
The biggest problem, however is the great computational time which is needed.
Around 2000 SIMPLE iterations are needed at every time step of the discussed
computation. For one time step in this case around 10 minutes computational
time on 14 processors is needed. However, one should keep in mind that this
is only an explicit one way coupling with no underrelaxation of the structural
distortions.

For a fully coupled simulation the number of outer iterations depends on the
chosen underrelaxation FSI parameter. In author’s experience using the Aitken
method leads to fast divergence of the whole computation and only a strong
constant underrelaxation (αFSI ≈ 0.005) can damp the effect of the artificial
added mass. Thus, around 2000 outer FSI iterations are needed in this case.
Additionally the number of SIMPLE iterations stays almost constant after every
FSI coupling iteration. In such a manner around 10 days are needed for one
time step which made such a simulation not possible.

Acceleration due to techniques, discussed in the previous section, can reduce
the needed computation time twice. However it is still not acceptable. Another
idea is to implement and investigate the characteristics of a different time dis-
cretization schemes. For example the Crank–Nicolson method, applied to this
case needs only 7 iterations per time step in the coupling procedure.
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Figure 4.28: Time series for υ for TC6
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Figure 4.29: Normed velocity profile for TC6
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Figure 4.30: Pressure for different time–phase angles for TC6



Chapter 5

Conclusion and Outlook

The aim of this thesis was to develop and then to implement a framework
for numerical simulation of fully coupled thermal fluid structure interaction,
a phenomenon which occurs in a large set of engineering problems. As for
such calculations normally a great amount of computational time is needed, an
important aspect of this work was the optimization of the numerical procedure.

For the mechanical fluid–structure interaction coupling an implicit parti-
tioned approach was chosen as it allows to use specifically designed and highly
optimized codes on different fields and offers significant benefits in terms of ef-
ficiency. Furthermore it can be easily applied to various FSI problems which
was the crucial aim of this thesis. For the flow field the in–house program
FASTEST [64] was used. The open–source finite–element solver FEAP [98]
was employed for the solid domain. The interpolation of the property values
between the both numerical grids was done by the quasi–standard coupling in-
terface MpCCI [83]. As a basis the work of Glück [32], Yigit [113] and Heck [36]
was used.

The partitioned approach was also chosen for the thermal coupling. The
Neumann–Dirichlet and Dirichlet–Neumann Schwarz domain decomposition meth-
ods were employed. For their realization a second–order differentiation tech-
nique, as well as variational consistent approach for the interpolation of the
thermal flux in FASTEST and FEAP, respectively, were implemented. Both
codes were extended with thermal flux coupling boundary conditions.

For the adaption of the CFD mesh to each current structural geometry, espe-
cially in the case of finite deformations, a new concept for the management of the
grid distortions was developed and implemented in the flow solver FASTEST.
Linear interpolation methods, trans–finite interpolation, as well as elliptic grid
generation in two and three dimensional space were employed. Special tech-
niques for handling the edge and face movement, like parallel forwarding of
displacements and orthogonal wall shifting were used in order to keep the mesh
quality which is an important factor by the numerical simulation of turbulent
flows. Several test cases proved the efficiency and the robustness of the scheme.

The coupling framework was verified and validated for a laminar flow by a

83
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simple test case with an analytical solution and by a benchmark test case. A
test configuration for which experimental data exists was used together with
different RANS models for validation of the scheme when the flow of interest is
the turbulent regime. In all cases the algorithm showed very good results.

The numerical properties of the method were studied by a variety of test
cases. We demonstrated that the Dirichlet–Neumann coupling which uses a dif-
ferencing technique for the interpolation of the thermal boundary flux, produces
the same results as the dual Neumann–Dirichlet method for all investigated
cases. We discussed the convergence rate of the coupling algorithm and proved
that it does not depend on the numerical grid and the boundary conditions. We
also explained the influence of the chosen coupling scheme on the convergence
of the finite–volume fluid solver and showed that the variationally consistent
Neumann–Dirichlet coupling approach needs much more computational time.

Several techniques for improving the convergence characteristics and for ac-
celerating the computational process with the scheme were implemented. The
fluid code was extended by structural and thermal predictors with different or-
ders. In the flow solver a multigrid method on moving grids was employed. Most
of the test cases were carried out at the Hessian High Performance Computer
(HHLR). For that reason the whole framework was parallelized. For different
test cases the parallel efficiency of the program package went up to 95% in the
case of a two processor calculation and up to 65% for a simulation with 16
processors.

The parallelization of the framework allowed employing a dynamic LES
model in the flow solver. A calculation with a benchmark test case showed
that such simulations could be very promising.

In summary, it can be noticed, that the FSI environment which was used in
the Chair of Numerical Methods in Mechanical Engineering was extended by a
thermal coupling procedure and the whole process was optimized. As a result
a powerful program package that can be used for a complex real engineering
problems was built.

However, we can not consider the work in this field as finished. A lot of other
important aspects concerning thermal–fluid structure interaction are worth to
be studied. At first place a dynamic model for the temperature calculation
by an LES simulations can be applied. Different turbulence models as hybrid
models or second closure RANS model can be implemented and investigated in
terms of TFSI.

From a practical point of view an important task is the use of the devel-
oped program package for a complete engineering simulation. Together with a
combustion model in the flow solver, the behavior of a jet engine combustion
chamber or turbine can be predicted. The framework can be also employed,
without any methodical changes also for problems in other fields, e.g. chemical
engineering, medical technology or biotechnology.

An extension of the code with respect to an acoustic thermal fluid–structure
interaction is also an interesting aspect for future work. In the Chair of Nu-
merical Methods in Mechanical Engineering a version of FASTEST with an
acoustic coupling is already developed and validated. Incorporating it in the
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TFSI framework should be a straightforward task.
Finally, the coupled software package can be employed for optimization prob-

lems. A highly efficient optimization procedure for TFSI which uses higher order
surfaces and the continuous sensitivity equation method seems to be a promising
approach.
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