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A numerical analysis based on detached eddy simulations is conducted to investigate vortex instabilities in the wake

of a pre-swirl pumpjet propulsor. Three models are established to separate the roles that the rotor, stator, and duct

play in the vortex structure of the pumpjet propulsor. In this paper, only the vortex structure of the rotor is considered.

The results show that the vortex system of the rotor is mainly composed of the tip vortices, a hub vortex, the trailing

tip vortices, and the trailing root vortices. The trailing tip vortices are generated by the premature shedding of the tip

vortices in the rotor model compared with a normal single propeller. The existence of trailing root vortices increases

the stability of the hub vortex. Furthermore, a unique multi-inductance instability mode of the tip vortex, called the

“overlap–forward” phenomenon, is found for low values of the advance coefficient J. It is found that the instability of

the tip vortex depends not only on the spiral-to-spiral distance but also on the highest-efficiency point of the propeller.

The instability inception point of the tip vortex moves farther downstream with increasing J, whereas when J is greater

than the highest-efficiency point of the propeller, the stable length of the tip vortices drops sharply. The energy transfer

process from blade harmonics to shaft harmonics of the tip vortices depends on J and is related to the spatial evolution

of the tip vortices.

I. INTRODUCTION

In recent years, more and more attention has been paid

to research on propeller wake flow. Understanding the wake

flow and wake instability mechanisms associated with marine

propellers is important for naval engineering applications ow-

ing to their direct relationship with propulsion, vibration, and

noise performance of these propellers.?

There have been many studies of propeller wake dy-

namics, both theoretical and experimental. In terms of the-

oretical research, Joukowsky? was the first to propose

a vortex model for a two-bladed propeller. Since then,

much theoretical work has been done on wake instability

mechanisms.? ? ? ? ? ? ? ? ? ? ? ? As summarized by Kumar and

Mahesh,? the vortex system of a typical N-bladed rotor is

composed of N helical tip vortices, one hub vortex, and N
trailing edge vortices. The trailing edge vortices, shedding

from the trailing edge of each blade, connect the tip vortex

and hub vortex.

There have also been a number of important experimental

studies of propeller wake dynamics. Felli and co-workers have

done a lot of work in this area. They conducted hydrodynamic

experiments on an INSEAN (Italian National Ship Model

Basin) E779A model propeller in the Italian Navy Cavitation

Tunnel. The flow in the wake of the E779A was measured by

both particle image velocimetry (PIV)? and laser Doppler ve-

locimetry (LDV).? In addition, they performed visualizations

a)Author to whom correspondence should be addressed: huangqiao-

gao@nwpu.edu.cn.

of wake vortex structures using high-speed cameras.? They

also carried out some water tunnel experiments on other pro-

pellers, such as the seven-bladed E1619 model? and a four-

bladed ducted propeller? using LDV and PIV. The propeller

wake dynamics were investigated in all of these experiments.

Recent improvements in computer performance have al-

lowed detailed numerical simulations of wake vortices of ma-

rine propellers. Computational fluid dynamics (CFD) model

is a good candidate to capture information in the flow field,?

and are increasingly being used to study the wake dynam-

ics of marine propellers. Large eddy simulation (LES) has

been applied to simulation of propeller vortex dynamics. Ku-

mar and Mahesh? performed wall-resolved LES for a five-

bladed marine propeller (DTMB 4381). Posa et al.? carried

out wall-resolved LES simulations using wall-adapting local

eddy viscosity (WALE) subgrid model of a seven-bladed no-

tional propeller (INSEAN E1658). The main structures of tip

vortices and hub vortices were revealed with high precision.

Of course, LES is expensive in terms of computing resources,

owing to the relatively large total number of grids (840 million

nodes) required. The calculations are also time-consuming.

Consequently, detached eddy simulation (DES) is now be-

ing adopted as a feasible approach for studying wake dynam-

ics, with the flow near walls being calculated by Reynolds-

averaged Navier–Stokes (RANS) turbulence modeling. Mus-

cari et al.? compared RANS and DES for the simulation of

the wake flow of the E779A propeller. Furthermore, DES was

used by Di Mascio et al.? to study the wake dynamics of the

E779A propeller operating in drift. In addition, Hu et al.?

studied the vortex–rudder interactions behind the E779A pro-

peller using both DES and LES. It was shown that the DES ap-
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proach has the ability to track the onset of vortex instabilities

and its results are in excellent agreement with experimental

observations.

In addition to single propellers, research on wake dynam-

ics has also been extended to new types of propellers, such

as ducted propellers. Felli et al.? carried out an experiment

with a ducted propeller in a cavitation tunnel, in which they

investigated the impingement of the swirling jet generated by

the propeller against a wall. The jet–wall interaction was ex-

amined in detail using PIV and a high-speed camera. Gong et
al.? compared wake vortex evolution for a ducted and a non-

ducted propeller using DES. Compared with non-ducted pro-

pellers, the duct was found to have a significant effect on the

morphology of the propeller wake vortices.

In this paper, the principal object of study is the pumpjet

propulsor (PJP). This is a new type of underwater propulsor

that is coming into widespread use for underwater vehicles

owing to its excellent hydrodynamic and noise performance.?

Although a considerable amount of experimental research has

been done on the hydrodynamic performance of PJPs? ? ? and

by CFD,? ? ? ? ? there have been relatively few studies of the

wake dynamics of PJPs. Specifically, Li et al.? compared dif-

ferent hybrid RANS/LES approaches to the simulation of the

wake flow of a pre-swirl PJP. They discussed the effect of the

duct on tip vortices, but did not consider the effect of pre-swirl

stators or the mechanisms of instability associated with PJPs

in any great depth. Qin et al.? applied DES to a post-swirl

PJP and compared the vortex structures resulting from a nor-

mal PJP and from a PJP with a sawtooth duct. In discussing

their results, they focused mainly on the effect of the sawtooth

structure on the wake vortices from the PJP.

Up to now, most research on the wake dynamics of marine

propellers has focused on single propellers and ducted pro-

pellers, and less attention has been paid to the study of PJPs.

In fact, the vortex instability mechanism associated with PJPs

has yet to be described in the literature.

In the work described in the present paper, a numerical

study is carried out to investigate the vortex instabilities in

the wake of a pre-swirl pumpjet propulsor. Three models (the

rotor, the rotor–duct, and the PJP model) are established to

separate the roles played by the rotor, the stator, and the duct

in the vortex evolution of a PJP. In this paper, only the vortex

structure of a single rotor is considered, with a discussion of

the rotor–duct model and the PJP model being left to Part 2.

The remainder of the paper is organized as follows. In

Sec. II, the numerical methodology is presented. In Sec. III,

the numerical set-up is described, and the simulation re-

sults are validated by comparison with the experimental data.

The results are presented and discussed Sec. IV from three

main aspects: the open water coefficient and unsteady blade

excitation force (Sec. IV A), vortex structure and evolution

(Sec. IV B), and vortex dynamics (Sec. IV B). Finally, the con-

clusions are presented in Sec V.

II. NUMERICAL METHODOLOGY

The governing equations are the Reynolds-averaged

Navier–Stokes (RANS) equations, which are written as fol-

lows:

∂ui

∂xi
= 0, (1)

∂ (ρui)

∂ t
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where ρ is the fluid density, xi and x j (i, j = 1,2,3) are the

Cartesian coordinate components, ui and u j are the compo-

nents of the absolute velocity in the inertial system, p is the

pressure, t is the time, ρu′iu
′
j are the Reynolds stresses, S j is a

generalized source term, µ is the dynamic viscosity.

The improved delayed detached eddy simulation (IDDES)

model? is used in this paper to capture the structure of the vor-

tices generated by the propeller. The IDDES model is based

on a modification of the sink term in the k equation of the

shear stress transport (SST) model:
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µT
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)
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]
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ω
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FIDDES =
lRANS

lIDDES
, (5)

where the parameter that defines this RANS model is the tur-

bulence length scale lRANS =
√

k/(β ∗ω). The complete for-

mulation is relatively complex, and more details can be found

in Ref. ? .

III. NUMERICAL SETUP

A. Geometry

This paper considers a pre-swirl pumpjet propulsor for a

large underwater robot whose design velocity is 20 knots. A

1:20 scale model is used for numerical work (as shown in

Fig. 1(a)), which is the same as the water tunnel test model

(see Fig. 1(b)). The coordinate system for the PJP is estab-

lished as shown in Fig. 1(a). The coordinate origin is located

in the geometric center of the rotor. The Z-axis coincides with

the rotation axis, and the positive direction is the same as the
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FIG. 1. The pre-swirl pumpjet propulsor (a) the numerical model; (b) the experimental model; (c) Side view of PJP; (d) Front view of the rotor;

(e) Front view of the stator.

FIG. 2. The three models: (a) rotor only (R model); (b) rotor–duct (R-D model); (c) PJP model. The rotor blades are shown in red and the

stator blades in blue.

TABLE I. The geometric parameter of the duct.

Dimensionless quantity of the duct section (the coordinate origin of propeller is at z/Dr = 0.64)

z/Dr 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.07

yinner/Dr 0.6387 0.5868 0.5583 0.5359 0.5182 0.5077 0.5060 0.5060 -0.4987 0.4762 0.4443

youter/Dr 0.6387 0.6590 0.6559 0.6444 0.6306 0.6151 0.5978 0.5759 0.5486 0.5166 0.4443

TABLE II. The geometric parameter of the rotor and stator blades.

Parameter Diameter
Blade number Pitch ratio Maximum thickness ratio Chord length ratio

Rake Skew Airfoil
n P0.7/Dr t0.7/Dr C0.7/Dr

Rotor 0.1664 6 4.3500 0.0218 0.3700 0 0 NACA16

Stator 0.1930 8 0.8700 0.0168 0.2133 0 0 NACA66

incoming flow direction. The X-axis is vertically upward di-

rection. Finally, the Y-axis is determined by the right-hand

rule. As shown in Fig. 1(c), for this pre-swirl pumpjet propul-

sor, the stator (see Fig. 1(e)) is located upstream of the rotor

(see Fig. 1(d)), which can pre-whirl the inlet flow.

This PJP consists of six rotor blades (Nr = 6), eight stator

blades (Ns = 8) ,and a duct. The mean diameter of the rotor

blades is Dr = 0.1664 m, the maximum diameter of the duct

is Dd = 0.2200 m, the length of the duct is Ld = 0.1762 m,

and the gap between the tips of the rotor blades and the duct is

1 mm. Table I and Table II give the geometrical details of the

pumpjet propulsor. In Table I, the yinner and youter represent the

y coordinates of the inner and outer surface of the duct section

(x=0), respectively. One thing should be mentioned here is

that the installation position of the duct can be determined

by the coordinate origin (the coordinate origin of propeller

is located at z/Dr = 0.64). Some main parameters of the rotor

and stator blades are given in Table II. Among them, the pitch

ratio, the maximum thickness ratio, and the chord length ratio

use the corresponding value at r = 0.7R (R is the maximum

radius of blade).

To analyze the influence of the stator and the duct on the

evolution of the wake vortices of the rotor, three models are

established: the R model [Fig. 2(a)], which has only a rotor

and can be considered as a normal single propeller, the R-D

model [Fig. 2(b)], which is composed of a rotor and a duct and
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is similar to a ducted propeller, and the PJP model [Fig. 2(c)].

To validate the CFD simulation results, a hydrodynamic ex-

periment on this PJP model was carried out in the Water Tun-

nel of the Science and Technology on Water Jet Propulsion

Laboratory, Marine Design and Research Institute of China

(see Fig. 1(b)). The details of this experiment and the exper-

imental data can be found in Ref. ? . The water tunnel has a

speed range of 0–15 m/s, and the test conditions for this PJP

were values of the advance coefficient J in the range 0.2–1.2,

with a fixed rotational speed of 1200 rev/min.

B. Computational domains and meshes

Here, only the flow of the R model is considered, with a

discussion of the rotor–duct model and the PJP model be-

ing left to Part 2. Hence, only the computational domain of

the R mdoel is shown here (see Fig. 3 (a)). The computa-

tional domain is a cylinder of diameter 10Dd and length 20Dd .

The whole computational domain is divided into three subdo-

mains: the rotor domain, the near-field domain, and the far-

field domain. The size of the near-field domain is a cylinder

of diameter 1.5D and length 5D which is chosen according

to the results of previous research.? The subdomains are con-

nected by interfaces through which flow simulation data are

exchanged.

Structured grid of the R model is generated, and the de-

tails are shown in Fig. 3. Figure 3 (b) gives the meshes in

the middle section (y–z plane) for the R model. The mesh in

the wake of the propeller is refined to enhance the capture of

wake vortices. More details of the mesh can be seen in Fig. 3

(c), where outer O-block grids are generated around the rotor

blades and stator blades to enhance the capture of the bound-

ary layer flow.

To validate the CFD simulation results (compared with the

hydrodynamic experiment data of the PJP model), the grid of

the PJP model is generated (see Figure 4). The topological

structures of the R model and the PJP model are basically the

same. Figure 4(b) shows the duct surface mesh. The mesh of

slices of the rotor domain and the stator domain are shown in

Figs. 4(c) and 4(d), respectively. For both grids, the mean y+

value of the propeller surfaces is about 5 and the growth rate

is 1.05 (the selection of y+ has been considered in a previous

paper? ).

In the simulation, the rotational speed of the ro-

tor is fixed as 1200 rev/min, and the inlet velocity

ranges from 0.67m/s–3.99m/s (with J ranges from 0.2–1.2).

Here, the Reynolds number of PJP is defined as Re =
[

ρC1.0R

√

(πnDr)
2 +V 2

∞

]

/µ , where C1.0R is the chord length

of the rotor blade at 1.0R and n is the rotational speed (r/s).

and µ is the fluid dynamic viscosity. The Re of the PJP has a

maximum value with about 8.5×105.

Table III lists the grid information. The mesh number of the

rotor domain for the R model is 4.26× 106 and those of the

near-field and far-field domains are 4.44×106 and 0.65×106,

respectively, giving a total mesh number of 9.35× 106. The

total mesh number is 12.53×106 for the PJP model.

TABLE III. Grid information for models.

Mesh
Total number (×106)

Rotor Stator Near-field Far-field Total

domain domain domain domain

R 4.26 — 4.44 0.65 9.35

PJP 4.32 4.29 3.20 0.72 12.53

TABLE IV. Nondimensional physical quantities.

Physical quantity Definition

Advance coefficient J =
V

nDr

Thrust coefficient of rotor KTr =
Tr

ρn2D4
r

Torque coefficient of rotor KQr =
Qr

ρn2D5
r

Torque coefficient of stator KQs =
Qs

ρn2D5
r

Thrust coefficient of duct KT d =
Td

ρn2D4
r

Total thrust coefficient KT = KTr +KT d

Total torque coefficient KQ = KQr

Open water efficiency η =
J

2π

KT

KQ

C. Validation

Table IV lists the definitions of the nondimensional physi-

cal quantities used in the present study. In the table, ρ is the

fluid density, n is the rotational speed of rotor, Dr is the di-

ameter of the rotor blades, V is the far-field incoming flow

velocity, Tr and Td are the thrusts generated by the rotor and

stator-duct, respectively (Td = 0 for the R model), and Qr is

the torque of the rotor.

The numerical simulation results for the PJP model for val-

ues of J in the range 0.2-1.2 are compared with the experimen-

tal results in Fig. 5. For each value of J, 45 rotation cycles are

calculated, and the average value of the last 30 cycles is taken

as the final hydrodynamic performance prediction. As can be

seen from Fig. 5, the results are in good agreement with the

experimental values. The maximum relative errors ∆KT and

∆KQ are only 4.48% and 1.80%, respectively for J = 0.2. Con-

sidering the machining error of the actual experimental model,

these numerical errors are acceptable. In a word, the hydrody-

namic performance coefficient predicted by the IDDES simu-

lation is accurate compared with the experiment data.

D. Grid and time-step independence tests

To carry out the grid independence test, three different grids

are generated: a coarse grid, a medium grid, and a fine grid.
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FIG. 3. Computational domains and grids of the R model.

FIG. 4. Grid details for the PJP model: (a) blade surface mesh; (b) duct surface mesh; (c) slice of stator domain; (d) slice of rotor domain.

FIG. 5. Hydrodynamic coefficients of the PJP compared with exper-

imental data.

Figure 6 compares the meshes in the y–z plane of these three

grids. For these three grids, the height of the first boundary

layer mesh is kept unchanged to ensure that the y+ value near

wall unchanged. However, the nodes in the axial, tangential

and radial directions are encrypted. As can be seen, the grids

inside the duct and in the wake region of the PJP model are

gradually refined. The number of nodes distributed around

the airfoil of the rotor for the coarse grid is 81, and those of

the medium and fine grids are 121 and 181, respectively. The

maximum length of cells is defined as ∆max =max(∆x,∆y,∆z),
where ∆x,∆y,∆z is the length of cells in the x, y and z direc-

tion, respectively. Considering the wake of PJP, we use the

grid size at 1Dr downstream of the duct as the judgment basis.

For the coarse grid, the maximum size of cells at 1Dr down-

TABLE V. Grid independence verification for the PJP model with the

IDDES simulation.

J φ Coarse Medium Fine e32
a GCI32

medium

0.4
KTr 0.6146 0.6124 0.6122 0.0003 0.03%

KQr 0.1020 0.1013 0.1016 0.0036 0.37%

1.0
KTr 0.4948 0.4903 0.4880 0.0048 0.49%

KQr 0.0852 0.0847 0.0839 0.0094 0.96%

stream of the duct is ∆max = 2%Dr, while 1.5%Dr and 1%Dr
for the medium and fine grid. Similar discussions of the mesh

refinement can be found in Ref. ? . The total number of cells

for the coarse grid is 8.38×106, and those of the medium and

fine grids are 12.53×106 and 24.59×106, respectively.

IDDES simulations of the three grids are carried out for

J = 0.4 and 1.0. Based on the theory of Celik et al.,? the grid

convergence index (GCI) of the hydrodynamic coefficients for

the PJP model is calculated, as shown in Table V. The nu-

merical uncertainties in the medium-grid solution (GCI32
medium)

for KTr and KQr have maximum values of about 0.96% for

J = 1.0. Hence the hydrodynamic performance exhibits good

convergence as the grid is refined. In general, the grid inde-

pendence is satisfactorily verified. Considering the computa-

tional time consumption, the medium grid is selected in the

following simulations.

For time-step independence verification, three different

time steps, ∆t = 2t, t, and 0.5t are chosen (where t is the time

taken for the rotor blades to rotate 1◦). An IDDES simulation

of the PJP model is performed for the case J = 1.0. The results

for the hydrodynamic coefficient of the PJP model at the dif-

ferent different time steps are compared in Table VI. As can

be seen, both KTr and KQr increase gradually and approach
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FIG. 6. Mesh details in the y–z plane for (a) the coarse grid, (b) the medium grid, and (c) the fine grid.

TABLE VI. Time-step independence verification for the PJP model.

Hydrodynamic 2t t 0.5t EXP

coefficients

KTr 0.4886 0.4903 0.4904 0.4973

KT s −0.0646 −0.0658 −0.0660 —

KQr 0.0843 0.0846 0.0848 0.0866

FIG. 7. Hydrodynamic performance of propellers: (a) open water co-

efficient; (b) KT and 10KQ; (c) KTr and 10KT d .

the experimental values as the time step decreases. Hence,

the predicted hydrodynamic performance shows good conver-

gence with changes in time step. Considering the rapid in-

crease in calculational costs brought about by the use of very

small time steps, we adopt ∆t = t in the following study.

Thus, both grid and time-step independence are satisfacto-

rily verified.

IV. FLOW RESULTS AND DISCUSSION

A. Open water coefficient

Figure 7 shows the hydrodynamic coefficients of the R

model. The R model, which is equivalent to an ordinary sin-

gle propeller, reaches its maximum point about 60.24% for

J = 0.8. In addition, for the R model, both the thrust coeffi-

cient KTr and the torque coefficient KQr decrease linearly with

increasing J , whereas for the PJP model (see Fig. 5), it de-

creases with an increasing slope. It maybe caused by the pres-

ence of a stator. In addition, the KTr of the PJP has a signifi-

cant increase at calculated cases of J than the R model, which

shows that the presence of a stator improves the working con-

dition of the rotor very well. More details will be discussed in

next part.

One thing should be mentioned here is that after exceeding

the optimal efficiency point (J=0.8), the open water efficiency

of the R model decreases sharply. This is a very important

phenomenon because it will directly affect the instability of

vortices of propeller. The relationship between vortices insta-

bility and J will be discussed in detail below.

B. Vortex structure and evolution of the R model

Figure 8 shows the instantaneous Q surfaces of the R model

for the case J = 0.8. According to the experiment of Felli et
al.,? the wake vortex of an E779a propeller is mainly com-

posed of a tip vortex and a hub vortex. Similar tip and hub

vortices can be clearly observed in Fig. 8.

First, let us examine the tip vortex. For the R model,

tip vortices are shed from the tip of each rotor blade and

present themselves as a series of spiral filaments. As shown

in Fig. 9(a), for J = 0.8, these filaments maintain their spiral

shape for a long distance downstream of the propeller until

they gradually break down and disappear in the far field.

Second, from Fig. 8(b), we can see that the hub vortex

falls off from the tail of the hub and then retains a straight-

line shape until the far field. Figure 9(b) shows the three-

dimensional structure of the hub vortex. As can be seen, the

hub vortex is not completely stable, but undergoes spiral pre-

cession, which is similar to the picture captured by Felli et
al.? in their experiment. The rotational frequency of the hub

vortex will be discussed in the later dynamic analysis.

Figure 10 shows the complex vortex system of the R model,

with the vortices indicated by red and black circles. As well as

the hub and tip vortices, three series of small vortices called

the trailing tip vortex, trailing root vortex 1 and trailing root

vortex 2, are generated. In fact, the trailing tip vortex and trail-

ing root vortices 1 and 2 originate from the trailing edge vortex

sheet of the rotor blade. According to the work by Okulov and

Sørensen,? the trailing edge vortex is a helical vortex sheet

that is shed from the trailing edge of the rotor blade as a result

of the nonconstant circulation of the rotor. These trailing edge



7

FIG. 8. Instantaneous Q surfaces of the R model for the case J = 0.8, colored by the velocity magnitude scaled by U : (top) Q = 1000 s−2;

(bottom) Q = 3000 s−2. (a) Overall view. (b) View of the half-model.

FIG. 9. Three-dimensional views of the vortex structure of the R model for J = 0.8: (a) instantaneous Q surface (Q = 3000 s−2); (b) instanta-

neous Q surface (Q = 100000 s−2).

FIG. 10. Vortex system of the R model shown as instantaneous Q surfaces (Q = 1000 s−2).

vortices and strong tip vortices form a screw surface behind

the rotor.

Figure 11 shows a three-dimensional view of the structure

of the trailing edge vortex sheet of the rotor. As can be seen

from Fig.11(a), a layer of the vortex sheet falls off from the

edge of the rotor, and then gradually collapses along with the

strong tip vortices. At the tip and root of the trailing edge, two

groups of strong vortices [see Fig. 11(b)] are formed, which

are called trailing tip and trailing root vortices, respectively.

With the development of trailing tip vortices downstream,

a group of spiral filaments are formed on the inner side of

the rotor tip vortices (see Fig. 10). The spiral direction of the

trailing tip vortex filaments is the same as that of the rotor tip

vortices.

The trailing root vortices are shed from the root of the rotor

blade trailing edge and consist of small vortices [as shown in
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FIG. 11. Views of the trailing edge vortex sheet: (a) instantaneous surfaces of vorticity magnitude; (b) instantaneous Q surface (Q = 5000 s−2).

FIG. 12. Views of tip vortices: (a) contours of the pressure coefficient Cp on the suction side of the rotor; (b) contours of Cp on the pressure

side of the rotor; (c) streamlines at the tip of the rotor blade.

Fig. 11(b)]. With the development of the trailing root vortices

downstream, two groups of spiral filaments are formed around

the hub vortex, which are called the trailing root vortex 1 and

trailing root vortex 2, respectively. They rotate in the same

direction as the rotor tip vortex.

Similar trailing root vortex structures have been found in

other studies.? ? As shown in Fig. 10, the diameter of the root

vortex gradually increases with its downstream development.

In the far-field region, the diameter is about 0.5Dr. In addition,

the trailing root vortex survives for a greater distance from the

rotor than the trailing tip vortex, which was also found by Posa

et al.?

For the R model studied here, we speculate that the forma-

tion of the trailing tip vortex is due to the unique blade with

a broad tip designed for duct propellers and PJPs. The E779a

propeller studied in the experiments by Felli et al.? and Posa

et al.? is a typical single propeller with sharp-tipped blades.

Therefore, the trailing tip vortices of E779a merge with the

rotor tip vortices, resulting in the disappearance of the trailing

tip vortices. Figure 12 confirms this conjecture. Figures 12(a)

and 12(b) show contours of the pressure coefficient of a ro-

tor blade, and it can be seen that there are two obvious low-

pressure areas on the suction side of the blade, while the pres-

sure in most areas on the pressure side is higher, resulting in

fluid being sucked from the pressure side to the suction side,

which eventually leads to the formation of a rotor tip vortex.

We can see that a tip vortex forms from about z/D = 0

(about the middle of the rotor) and then gradually sheds from

the tip of the rotor. Therefore, the tip vortex is not shed from

the trailing edge of the rotor blade, as in the case of an or-

dinary single propeller, but rather falls off in advance at the

tip before the trailing edge. Hence, the trailing tip vortex is

formed owing to premature shedding of tip vortices by the R

model compared with a normal single propeller.

Figure 13 shows the instantaneous flow field in the y–z
plane of the R model for J = 0.8. From the contours of the

pressure coefficient in the y–z plane in Fig. 13(a), the positions

of the tip vortices can be clearly observed as low-pressure

zones marked by red circles. As can be seen, after shedding

from the rotor blade (r = 0.5Dr), the tip vortices gradually

shrink inward in the radial direction until z/D = 1.5, after

which they remain nearly unchanged at about r = 0.4Dr and

z/D = 1.5–3. After z/D = 3, the low-pressure region of the

tip vortex gradually merges with the low-pressure wake be-

hind the propeller and finally dissipates in the far field. The

hub vortex appears as a straight low-pressure area after shed-

ding from the tail of the hub from z/D = 0.5 to the far field.

The axial velocity in the y–z plane is visualized in

Fig. 13(b), and the periodic fluid acceleration caused by the

rotor blade rotation can be observed. Figure 13(c) shows the

vorticity magnitude in the y–z plane, and, in addition to con-

spicuous areas of tip and hub vortices, there is an obvious

wake caused by the trailing edge vortex and persisting for

a long distance (from z/D = 0 to 2.5). Hence, the near field

downstream of the propeller is dominated by coherent tip vor-

tices, a concentrated hub vortex, and the blade trailing edge
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FIG. 13. Instantaneous flow field in the y–z plane of the R model for J = 0.8: (a) pressure coefficient; (b) axial velocity; (c) vorticity magnitude.

The axial velocity is scaled by U , and the vorticity magnitude is normalized with U/D.

wake.

According to Okulov and Sørensen,? a complicated roll-up

process occurs owing to the mutual interaction between the

trailing edge vortices and the tip vortices. More importantly,

the roll-up process will have a significant effect on the stability

of the tip vortices.

Instantaneous surfaces of the vorticity magnitude are shown

in Fig. 14(a), while Fig. 14(b) shows the contours of the x
component of vorticity in the y–z plane. The axial evolution of

the blade trailing vortex sheet can be clearly observed. Based

on these two figures, we show in Fig. 14(c) a schematic repre-

sentation of the roll-up process of the rotor blade trailing edge

vortex sheet in the y–z plane. In this illustration, different col-

ored ovals represent vortex centers with different directions of

rotation (ωx). Blue means that the x component of vorticity

is negative, while red means that it is positive, and the cor-

responding rotation direction is indicated with an arrow. As

previously discussed, owing to the premature shedding of tip

vortices, the trailing tip vortices will separate from those tip

vortices after falling off the tip of the blade, as shown by the

rotor tip vortices and trailing tip vortices in Fig. 14(c) (marked

with blue ovals).

The spatial evolution of the roll-up of the rotor blade trail-

ing edge vortex is reflected not only in the axial direction

(Fig. 14), but also in the radial direction (Fig. 15). The con-

tours of the vorticity magnitude at different z positions are

shown in Fig. 15.

After shedding from the trailing edge of the rotor, the vor-

tex has the same shape as the trailing edge. Then, as it de-

velops downstream (from z/D = 0.1), the upper part of the

trailing vortex gradually bends. For greater clarity, we give

a schematic representation of the roll-up process in Fig. 16.

This progressive bending of the trailing edge vortex is called

roll-up. More specifically, the trailing edge vortex gradually

becomes distorted, with progressively increasing angular dis-

placements and a radial rise of its upper part. As a result, the

distance between the trailing edge vortex and the next tip vor-

tex gradually decreases, which means that the mutual inter-

action between the trailing edge vortex and the tip vortex be-

comes stronger and stronger with downstream development.

This process is similar to the phenomenon described by Ku-

mar and Mahesh.?

We can see that with increasing z/D, the trailing wake grad-

ually diverges from the shape of the trailing edge (z/D = 0.1–

0.2) and divides into several separate wakes (z/D = 0.3–1).

At z/D = 0.4 [see Fig. 15(f)], the wake of the former trail-

ing vortex is in contact with the next tip vortex. After that, the

interaction between the tip vortex and the corresponding trail-

ing vortex becomes weaker and weaker. At z/D = 1, the two

vortices are almost completely separated. Therefore, the roll-

up process can be divided into the following three processes:

(1) the top of the trailing edge vortex bends (z/D = 0.1–0.3);

(2) the upper part of the trailing edge vortex approaches and

comes into contact with the next tip vortex (z/D = 0.4–0.6);

(3) there is complete separation of the trailing edge vortex

from the previous tip vortex (z/D = 0.6–1.0). If we adopt po-
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FIG. 14. Axial evolution of the blade trailing edge vortex sheet of the R model for J = 0.8: (a) instantaneous surfaces of vorticity magnitude

scaled by U/D; (b) The x component of vorticity in the y–z plane normalized with U/D; (c) schematic representation of rotor blade trailing

edge vortex sheet roll-up in the y–z plane.

lar coordinates in the x–y plane (radius r and angle ϕ), then the

phase difference between the tip vortex and the corresponding

trailing vortex is small at at z/D = 0.1 but becomes larger and

larger with increasing z. At z/D = 1, the trailing vortex has a

phase lag of about 60◦ compared with the corresponding tip

vortex.

This roll-up process takes place in three dimensions, and its

axial evolution is shown in Fig. 14(c). From z/D = 0.1 to 0.6,

corresponding to the roll-up of the trailing vortex, the pitch of

the trailing tip vortex increases gradually (note the closeness

of the third trailing tip vortex to the fourth tip vortex.).

According to Okulov’s conjecture,? the complete develop-

ment of the roll-up process triggers instability of the tip vor-

tices. However, according to the present results, for the R

model, the behavior is entirely different. After the complete

development of the roll-up process (at nearly z/D = 0.6), the

tip vortex always remains stable, with a fixed radius and the

same spiral-to-spiral distance. The conclusion that complete

development of the roll-up process triggers instability of the

tip vortices does not seem to apply to this model.

We suspect that, as discussed before, for the present R

model, the separation of the tip vortex and the trailing tip vor-

tex caused by the wide tip blade is the reason. It should be

mentioned that the directions of rotation of the tip vortices

and the trailing tip vortices are the same [with the same vor-

ticity x components shown as blue ovals in Fig. 14(c)]. There-

fore, it seems that there is a repulsive force between the tip

vortex and trailing tip vortex, which causes a significant de-

crease in the radius of the trailing tip vortex, while the tip vor-

tex radius remains nearly unchanged. The trailing tip vortex

takes the place of the tip vortex. After the full development of

the roll-up process (from z/D = 0.6), the tip vortex and the

trailing vortex are completely separated, as a consequence of

which the interaction between the trailing root vortex and the

tip vortex is replaced by that between the trailing root vortex

and the trailing tip vortex. Figures 14(b) and 14(c) support

this conclusion. The directions of rotation of the trailing root

vortex and the trailing tip vortex are opposite, and so there is
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FIG. 15. Contours of the vorticity magnitude in the x–y plane as the flow develops downstream (increasing z/D) for J = 0.8, normalized with

U/D.

FIG. 16. Schematic diagram showing rotor blade trailing edge vortex

sheet roll-up in the y–z plane, J = 0.8.

mutual attraction between these two vortices, resulting in an

increase in the radius of the trailing root vortex (which is the

same conclusion as that drawn by Kumar and Mahesh? ). At

z/D = 1.5, the trailing tip vortex splits into two parts owing to

the attraction by the trailing root vortex. After that, the main

part is attracted to the trailing root vortex and finally fused

with it, while the remaining small part gradually dissipates

[see Fig. 14(a)].

In conclusion, for the R model, for J = 0.8, the premature

shedding of tip vortices leads to the appearance of a trailing

tip vortex. This trailing tip vortex takes over the role of the tip

vortices, which leads to the disappear of the mutual interaction

of two adjacent tip vortices (i.e., without the occurrence of

the mutual-inductance instability mode? ), as a consequence

of which the tip vortices are stable for the R model.

The hub vortex of the R model is different from that of the

E779a propeller. In the experiment by Felli et al.,? the hub

vortex remained stable and started to oscillate, following a

spiral shape from the transition point until double-helix break-

down occurred in the far field. For the R model, the hub vortex

takes the form of twisted vortices until it fades out into a large

vortex in the far field (see Fig. 10). It should be noted that the

region in which the hub vortex maintains its twist is basically

the same as the region in which trailing root vortices exist (see

Fig. 10). When the trailing root vortices gradually dissipate,

the distortion of the hub vortex gradually disappears. There-

fore, we can reasonably speculate that the existence of trailing

root vortices is the reason why the hub vortex can continue to

twist without the occurrence of instability.

The mechanism by which instability of the tip and hub vor-

tices is triggered will be discussed below.

Figure 17 shows the instantaneous Q surface of the R model

for different values of J. As classified by Widnall? and Felli

et al.,? there are three main instability modes of a tip vor-

tex: short-wave instability, long-wave instability, and mutual-

inductance instability.

Here, the evolution of the tip vortices of the R model ex-
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hibits different instability modes for different values of J. As

defined by Widnall,? the mutual-inductance instability mode

occurs when adjacent helical tip filaments begin to interact

strongly. At low J (J = 0.2, 0.4, and 0.6), twisting of tip vor-

tices and contact between adjacent vortices can be clearly ob-

served. According to Felli et al.,? the instability inception

point of tip vortices is defined as the first position at which the

gradient of the tip vortex envelope equals 50% of the max-

imum slope. Here, it is hard to adopt their definition, since

the maximum slope of the tip vortex envelope can be zero

in some cases, such as J = 0.8. Hence, we give a relatively

vague definition of the instability inception point of tip vor-

tices as the first position at which the tip vortex is becoming

destabilized. More specifically, the filament of the tip vortex

begins to twist and the shape of the filament is no longer a

standard spiral. According to the instability inception point,

the wake of the R model can be divided into two parts: a sta-

ble region and an unstable region. The instability inception

points of tip vortices for different values of J are shown by the

dashed lines in Fig. 17(a). For J = 0.8, there is an instability

inception point at which short-wave instability is observed.

According to Saffman,? the short-wave instability shows as

a smooth-sinuous-wave-type mode, with small sinusoidal dis-

placements of one filament (see Fig. 19). For J = 1.0, an insta-

bility inception point appears at which the tip vortices break

down.

To quantitatively study the relationship between spiral-to-

spiral distance and tip vortex instability, the helical pitch of tip

filaments, P, is defined as the axial distance between two adja-

cent helical filaments. The axial distance that a spiral filament

moves in one revolution is called the lead S. Thus, S = nP,

where n is the number of blades on the rotor (n = 6 here).

It should be noted that P changes as the tip vortices evolve,

especially in the case J = 0.2, for which violent interactions

between adjacent tip filaments occur. The instantaneous heli-

cal pitch ratio of tip filaments, P/D, for different values of J is

shown in Fig. 18. According to these results, the P/D between

tip filaments 1 and 2 increases monotonically with increasing

J. For J = 0.2, P/D is about 0.1, while it is about 0.15 for

J = 1.0.

To show the instability of the tip vortex more clearly, the in-

stantaneous three-dimensional trajectories of a single filament

for the R model at different values of J are shown in Fig. 19.

For 0.2< J < 0.8 (below the optimal operating point for the

R model), P/D of the first two tip filaments increases mono-

tonically with increasing J (see Fig. 18), and, similarly, the in-

stability inception point moves further upstream with increas-

ing J (see Fig. 19, where the instability inception point moves

from z/D = 0.4 to 1.7 as J increases from 0.2 to 0.8). There-

fore, it can be concluded that the instability of the tip vortex

depends on helical the pitch ratio of tip filaments, P/D. This

is consistent with the conclusions of Felli et al.? and Okulov?

that the transition to instability of the tip vortex shows a clear

dependence on the spiral-to-spiral distance. More specifically,

the larger the value of P/D, the weaker is the interaction be-

tween adjacent tip filaments, the less likely is the mutual-

inductance instability mode to occur, and the longer is the sta-

ble length of tip vortices.

In the case J = 1.0, as shown in Fig. 17, the tip vortex dis-

sipates rapidly after shedding from the tip, owing to the rotor

working in an unfavorable condition. It is therefore hard to de-

fine an instability inception point. Here, we take the instability

inception point as being the point at which the tip vortex be-

gins to break down. Compared with the case J = 0.8, the P/D
of the tip vortex for J = 1.0 increases slightly, while its stable

length drops sharply. This sharp decrease in the stable length

of the tip vortex is related to the decrease in its strength, rather

than to interaction between tip vortices. Support for this spec-

ulation comes from the fact that (see Fig. 17) for J = 0.8 and

1.0, there is no mutual-inductance instability, but breakdown

gradually occurs during transition of the tip vortex from the

stable to the unstable region.

For low J (in the range 0.2–0.6, especially J = 0.2), the

mutual-inductance instability mode clearly occurs. For the R

model, the mutual-inductance instability mode for tip vor-

tices is quite different from the classic “leapfrogging” phe-

nomenon. More information about the leapfrogging phe-

nomenon can be found in Ref. ? .

A detailed illustration of this unique instability mode for

the R model is presented in Fig. 20:

(i) During t0 to t0 +
1
8
T , filaments 1 and 2 begin with the

same spiral shape. During this period, the filaments

have just detached from the tip of the rotor, the space

between filaments is uniform, and there is as yet no mu-

tual interaction between them.

(ii) At t0 +
1
4
T , as a result of the mutual inductance be-

tween adjacent filaments, filament 2 is pulled closer

to filament 1. It should be mentioned that the radius

of filament 2 decreases as it moves [see Fig. 20(d)];

meanwhile, the radius of filament 1 (the front fila-

ment) expands slightly (similar to the leapfrogging phe-

nomenon).

(iii) During t0 +
3
8
T to t0 +

1
2
T , filament 2 comes into con-

tact with filament 1 (with the radius of filament 2 be-

ing smaller than that of filament 1). Filament 2 is then

pulled forward through filament 1 (the front filament),

resulting in overlapping of these filaments. This phe-

nomenon is slightly different from what Felli et al.? ob-

served in their experiment, where filament 2 kept mov-

ing downstream after it was pulled forward through fil-

ament 1. Here, after filament 2 is pulled before filament

1, it is pulled back to filament 3 again. Filament 2 is at-

tracted by filament 3, forming a new filament 2–3 over-

lap.

(iv) During t0+
5
8
T to t0+

7
8
T , the same process is repeated:

filament 4 moves close to filament 3, and these filaments

then come into contact and overlap. Finally, filament 5

merges with filament 6.

Processes (i)–(iv) represent the time evolution of the tip vortex

for the R model. This mutual inductance instability of the tip

vortex is called the “overlap–forward” phenomenon here.

Next, we consider the spatial evolution of the tip vortex.

Figure 21 shows the three-dimensional vortex structure at t =
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FIG. 17. Instantaneous Q surfaces of the R model for different values of J, colored by the velocity magnitude scaled by U : (a)Q = 1000 s−2;

(b) Q = 5000 s−2.

FIG. 18. Helical pitch ratio of tip filaments, P/D, for different values of J.

t0+
1
2
T for J = 0.2. As can be seen in Fig. 21(a), three large tip

vortices are formed, each of which is generated by the merger

of two adjacent tip filaments (of filaments 1and 2, of filaments

3 and 4, and of filaments 5 and 6, respectively). The specific

merger process can be seen in Fig. 20. The merger results in

a clear increase in the helical pitch ratio of tip filaments, P/D
(see J = 0.2 in Fig. 18). In addition, the next P/D becomes

zero owing to the merger. It should be mentioned here that the

number of filaments in Fig. 18 is different from that in Figs. 20

and 21.

Here, the merger of vortices is similar to the “multistep”

grouping mechanism observed in the experiment by Felli et
al.? The difference is that the merged vortex can only remain

stable for a very short distance, after which it splits into the
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FIG. 19. Three-dimensional trajectory of a single filament.

two original tip filaments again owing to the interaction be-

tween tip vortices. After the splitting of the three merged vor-

tices, a complex overlap interaction mode arises between the

six filaments, and finally all of them gradually break down.

For the six-bladed propeller in this study, there is no multi-

step grouping mechanism as captured by Felli et al.,? but a

“merger–splitting” process does occur. We speculate that the

reason for this is that the number of rotor blades (n = 6) is

greater than that (n = 2,3,or4) in the Felli et al. experiment,

leading to a much smaller spiral-to-spiral distance than in the

case of the E779a propeller. As shown in Fig. 18, P/D for

J = 0.2 is much smaller than in the other cases, which causes a

strong interaction between tip vortices. This merger–splitting

phenomenon occurs only for J = 0.2, not for J = 0.4 or 0.6,

which confirms that the mutual-inductance instability and its

underlying mechanism depend on the spiral-to-spiral distance,

i.e., the helical pitch ratio of tip filaments.

From the above discussion, it can be seen that the roll-up

process of the trailing edge vortex does not affect the stability

of the tip vortex for J = 0.8. Therefore, it might be asked what

role does the roll-up process play in the case J = 0.2?

The contours of the vorticity magnitude in different z slices

for J = 0.2 are shown in Fig. 22. Compared with the case J =
0.8, fully developed roll-up occurs more rapidly, and the trail-

ing edge is in contact with the next tip vortex at z/D = 0.15

(for J = 0.8, contact occurs at about z/D = 0.4). Therefore,

the smaller the value of J, the more rapid is the roll-up of the

trailing edge vortex. At z/D = 0.3, after the trailing edge vor-

tex has come into contact with the next tip vortex, the angular

displacement continues to increase, until the trailing edge vor-

tex has contacted the second tip vortex and mutual-inductance

instability of the tip vortices occurs. The six tip vortices are

no longer uniformly distributed, but move closer to each other

[Fig. 22(e)], merge with adjacent tip filaments [Fig. 22(f)], and

each splits again into two isolated tip vortices [Fig. 22(g)], as

discussed above.

Figure 23 shows the instantaneous flow field in y–z plane of

the R model for J = 0.2. The low-pressure regions of the tip

vortex are marked with red circles in Fig. 23(a), and it can be

seen that the distance between adjacent low-pressure regions

is clearly smaller than in the case J = 0.8, which is consistent

with the trend of change of P/D. Furthermore, the distribu-

tion of low-pressure regions exhibits an obvious asymmetry,

which is caused by the merger and splitting of tip vortices.

The contours of axial velocity [Fig. 23(b)] and vorticity mag-

nitude [Fig. 23(c)] also exhibit the same asymmetry caused by

mutual-inductance instability of the tip vortices.

The wake of the trailing edge vortex can be seen clearly at

z/D = 0–0.5. However, with the development of flow down-

stream, the trailing edge vortex gradually twists at z/D = 0.5–

1.5 and breaks down rapidly in the range z/D > 1.5. The mu-

tual inductance between tip vortex and trailing edge vortex

further stimulates the instability of the tip vortex. Figure 24

shows the contours of axial velocity and vorticity magnitude

for J = 0.4 and 0.6. From a comparison of Fig. 23(c) with

Figs. 24(c) and 24(d), we can see that the trailing edge vortex

wake continues to gradually extend further downstream with

increasing J.

The contours of the vorticity magnitude in the slice z/D =
0.15 for different values of J are shown in Fig. 25. For J = 0.2,

the wake of the trailing edge vortex is almost completely in

contact with the next vortex. For J = 0.4 and 0.6, there is

strong bending of the tip of the trailing wake owing to at-

traction by the next tip vortex. However, the bending of the

trailing wake is clearly weaker for J = 0.8 and 1.0. Hence, the

smaller the value of J, the faster is the roll-up of the trailing

edge vortex.

As discussed above, the pitch ratio P/D increases gradu-

ally with increasing J. As a result, the multiple interactions

between tip vortices become weak, which delays the full de-

velopment of the roll-up process and finally reduces the like-

lihood of instability of the tip vortex.

As for the hub vortex, as shown in Fig. 23, for J = 0.2, it al-

ways remains unstable after shedding from the hub. It should

be noted that there is no trailing root vortex for J = 0.2. For J
in the range 0.4–1.0, the hub vortex undergoes the same form

of evolution, maintaining spiral twisted form in the near field

and then gradually becoming stable, as shown by its straight

line motion. This behavior is completely different from that of

the hub vortex of the E779A propeller.? As for the R model,

as discussed earlier, the spiral twisted form of the hub vortex

in the near-field region is caused by the presence of the trailing

root vortex. As shown in Fig. 17, the breakdown point of the

trailing root vortex moves further downstream with increasing

J. For J = 1.0, even though the tip vortex break down quickly,

the trailing root vortex survive for the longest distance com-

pared with the other cases. More importantly, the twist region

of the hub vortex maintains the same distance from the trail-

ing root vortex. For J = 0.6 and 0.8, breakdown of the trailing

root vortex also occurs almost simultaneously with the disap-

pearance of the twist in the hub vortex. Hence, the presence

of trailing root vortices is the reason why the hub vortex can

continue to twist without instability arising. The period of the

hub vortex oscillation will be discussed below.

C. Vortex dynamics

To study the dynamical behavior of the hub and tip vortices

for the R model, an analysis of the turbulence kinetic energy

(TKE) is carried out. Probes are located at different stream-
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FIG. 20. Time evolution of the tip vortex overlap–forward phenomenon for J = 0.2 (Q = 5000 s−2).

FIG. 21. Spatial evolution of the tip vortex overlap–forward phenomenon at t = t0 +
1
2 T for J = 0.2 (Q = 5000 s−2).

wise positions behind the tip of the rotor (probes P1, . . . , P8

at r/D = 0.45) and hub (probes P9, . . . , P16), as shown in

Fig. 26. The time histories acquired at these probes are shown

in Figs. 27 and 28.

The different unstable transition forms of the tip vortex for

different values of J can clearly be seen in Fig. 27. For J = 0.2,

the TKE values are chaotic at P1, . . . , P8, which indicates that

the tip vortex always remains unstable at z/D = 0.5. This is

consistent with the evolution of tip vortex discussed earlier

(see Fig. 17). For J = 0.6, the TKE clearly exhibits periodic

characteristic at P1. From about P3 (z/D = 1.5) onward, the

TKE signal begins to lose its purely periodic characteristic

and exhibits nonperiodicity and randomicity. This is consis-

tent with the location of the inception point of tip vortex in-

stability for J = 0.6 (at about z/D = 1.44). For J = 1.0, which

is similar to the case J = 0.8, the TKE signals at P1, . . . , P8

always exhibit periodicity in time.

For the region of the hub vortex, the time histories of TKE

at P9, . . . , P16 (behind the hub) are shown in Fig. 28. For J =
0.2, the TKE signals at P9, . . . , P16 are always chaotic. Hence,

the hub vortex for J = 0.2 always remains unstable. For J =
0.6, the TKE signals at P14, . . . , P16 remain nearly constant in

time, which corresponds to the stable region of the hub vortex

following the gradual disappearance of distortion after z/D >
3. For J = 1.0, the unstable region survives longer than for

J = 0.8. The hub vortex retains a double-helical progressive

motion until P16.

A comparison of TKE time histories for different values of

J at P1 and P9 is shown in Fig. 29. The variations for J = 0.6
and 1.0 have the same period, 1

6
T (where T is the rotation pe-

riod of the hub: 1
20

s = 0.05 s), whereas for J = 0.2, a distinct

period 1
3
T is observed. As discussed before, this is a conse-

quence of the merger of each pair of adjacent tip filaments.

Hence, the period of tip vortex shedding for the R model is

(1/n)T (where n is the number of rotor blades) in most cases

except in some cases of low J (J ≤ 0.2). At P9, the TKE value

for J = 0.2 is more like a random signal, whereas that for

J = 1.0 has an approximately straight line form, which is con-

sistent with the earlier discussion of hub vortex stability.

A frequency analysis of TKE for different values of J is

carried out, as shown in Figs. 30 and 32. The power spectral

density (PSD) of the TKE at probes P1, . . . , P16 is computed.

First, for the near field of the tip vortices (P1, . . . , P3), for all

three values of J, the PSD has obvious peaks at fBPF (the blade

passing frequency) and its harmonics. In addition, as can be

seen in Fig. 29, the TKE at P1 for J = 0.2 has a peak at 0.5 fBPF

and its harmonics ( fBPF and 1.5 fBPF), which corresponding to

the 1
3
T period resulting from the merger of tip vortices. In

the far-field region (P5, . . . , P7), the peaks at n fBPF gradually

disappear and are replaced with several peaks at fN , 2 fN , and

4 fN . Furthermore, at P7 and P8, the spectral lines show near-

broadband characteristics.
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FIG. 22. Contours of the vorticity magnitude for J = 0.2 in different z slices, normalized with U/D

This energy transfer process from blade harmonics to shaft

harmonics has been verified experimentally by Felli et al..?

To show the energy transfer process more clearly, the ampli-

tudes of the PSD at fN to 6 fN (= fBPF) are shown in Fig. 31.

As can be seen, the streamwise evolution of the PSD of the

TKE demonstrates a mechanism of energy relocation from

blade harmonics to shaft harmonics n fBPF. More specifically,

the amplitude of the PSD at the fundamental frequency fBPF

decreases gradually with increasing shaft frequency fN and

with increasing z/D. In addition, some differences are found.

For a four-bladed propeller, the energy transfer is divided into

two steps: (i) the first energy transfer from fBPF to 0.5 fBPF; (ii)

the second energy transfer from 0.5 fBPF to fN . Corresponding

to this two-step process is a group of multiple tip vortices, as

described by Felli et al..?

For the R model studied here, such a two-step energy trans-

fer process is not found. The PSD at fN to 5 fN exhibits a dif-

ferent trend of change with J. For all values of J, the contribu-

tion at the fundamental frequency fBPF gradually disappears.

The greater the value of J, the steeper is the slope of decrease

of PSD at fBPF.

For J = 0.6, at z/D = 1.0–2.5, all the contributions at fN
to 5 fN increase gradually. Then, at z/D = 2.5–4, the PSD at

fN continues to increase, while the components at 2 fN to 5 fN
decrease rapidly. However, for J = 1.0, the trend of energy

change is quite different. In the near-field region z/D = 0.5–

2, all the contributions at fN to 5 fN clearly decrease, which

is consistent with the rapid breakdown of the tip vortex ob-

served in Fig. 17. In the far-field region z/D = 2–4, only the

contribution at fN is increased. For J = 0.2, the PSD changes

chaotically. In the range z/D = 0.5–4, the PSD amplitude at

fN to 4 fN experiences periodic fluctuations. We speculate that

these may be caused by the merger and separation of tip vor-

tices. This also confirms the conclusion by Felli et al.? that

the energy transfer process is closely related to the tip vortex

evolution.

In general, an energy transfer of tip vortices from blade har-

monics to shaft harmonics is found. The specific mechanism

of this energy transfer depends on J and is related to tip vortex

evolution.

For the hub vortex, the PSD spectra at P9, . . . , P16 are

shown in Fig. 32. For J = 0.2, the PSD spectrum is basically

a broadband spectrum corresponding to instability of the hub

vortex. For J = 0.6 and 1.0, several peaks at fN to 4 fN can

be seen in Figs. 32(b) and 32(c). Therefore, the characteristic

frequency of evolution for the hub vortex should be fN and
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FIG. 23. Instantaneous flow field in the y–z plane of the R model for J = 0.2: (a) pressure coefficient; (b) axial velocity; (c) vorticity magnitude.

The axial velocity is scaled by U , and the vorticity magnitude is normalized with U/D.

FIG. 24. Instantaneous flow field in y–z plane of the R model for J = 0.4 (left) and J = 0.6 (right): (a) axial velocity; (b) vorticity magnitude.

The axial velocity is scaled by U , and the vorticity magnitude is normalized with U/D.

the period of double-helical motion of the hub vortex should

equal one propeller revolution T (the hub rotation period).

V. CONCLUSIONS

In this paper, DES studies of vortex instabilities in the wake

of a pre-swirl pumpjet propulsor (PJP) have been carried out.
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FIG. 25. Contours of vorticity magnitude in the x–y plane at z/D = 0.15, normalized using U/D.

FIG. 26. Probe locations for the dynamical analysis of the tip and

hub vortices for the R model.

To separate the roles played by the rotor, stator, and duct in

determining the vortex structure of a PJP, three models have

been established: the R model (rotor only), the R-D model (ro-

tor within a duct), and the PJP model (rotor and stator within

a duct). In this paper, only the three-dimensional vortex struc-

ture of a single rotor has been considered: the R-D and PJP

models will be discussed in detail in Part 2.

The instantaneous wake vortex structure, the evolution in

time and space of the tip and hub vortices, the transition from

stability to instability of tip and hub vortices, the instability

trigger mechanism, the unique roll-up process of the R model,

and the vortex dynamics have been analyzed systematically.

The numerical results reveal the following:

1. A unique trailing tip vortex is found in the wake of the

R model, together with the tip vortex and trailing root

vortex. This vortex, appearing as spiral filaments within

the tip filaments, is caused by premature shedding of tip

vortices in the R model compared with a normal single

propeller.

2. The roll-up process of the trailing edge vortex of the R

model with broad-tipped rotor blades is slightly differ-

ent from the process for a normal single propeller. There

is mutual attraction between the trailing root vortex and

the trailing tip vortex. The trailing tip vortex takes over

the role of the tip vortices, which eliminates the effects

of mutual interaction of two adjacent tip vortices and

eventually leads to stabilization of the tip vortices for

high values of J.

3. A unique multi-inductance instability mode of the tip

vortex for low J, called the overlap–forward phe-

nomenon, is proposed. This phenomenon is quite dif-

ferent from the normal leapfrogging phenomenon that

occurs with a single propeller.

4. It is found that the instability of the tip vortex depends

not only on the spiral-to-spiral distance but also on the

the highest-efficiency point of the propeller. Specifi-

cally, the spiral-to-spiral distance increases gradually

with increasing J. The instability inception point of the

tip vortex moves farther downstream with increasing J,

and, when J is greater than the highest-efficiency point

of the propeller (J > 0.8 here), the stable length of the

tip vortices drops sharply.

5. A quite different instability mode of the hub vortex is

found for the R model. Under most working conditions

(0.4 < J < 1.0), the hub vortex remains coherent for

the entire length of the simulation. In addition, the hub

vortex takes the helix twisted form at near field behind

the hub. After that, the twist disappears gradually and

the hub vortex keeps stable until breakdown in the far

field. The usual double-helix breakdown and instability

of the hub vortex do not occur. The existence of trail-

ing root vortices is the reason why the hub vortex can

maintain its twist without the occurrence of instability.

The region where the hub vortex maintains its twist is

basically the same as the region where trailing root vor-

tices exist. The twist region survives for a longer dis-

tance with increasing J.

6. The fundamental frequencies of TKE fluctuations in the

tip vortex region are the rotor blade passing frequency

and its harmonics, while the fundamental frequency of

the hub vortex is the shaft rotation frequency. The en-

ergy transfer process of tip vortices from blade harmon-

ics to shaft harmonics depends on J and is related to the

spatial evolution of the tip vortices.
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FIG. 27. Time histories of TKE at P1, . . . , P8 for the R model: (a) J = 0.2; (b) J = 0.6; (c) J = 1.0.

FIG. 28. Time histories of TKE at P9, . . . , P16 for the R model: (a) J = 0.2; (b) J = 0.6; (c) J = 1.0.
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FIG. 29. Comparisons of time histories for different values of J: (a) at P1; (b) at P9.
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FIG. 30. Power spectra of the turbulence kinetic energy for the R model at P1, . . . , P8: (a) J = 0.2; (b) J = 0.6; (c) J = 1.0.
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FIG. 31. Process of energy transfer at the tip vortices of the R model: (a) J = 0.2; (b) J = 0.6; (c) J = 1.0.
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FIG. 32. Power spectra of the turbulence kinetic energy for the R model at P9, . . . , P16: (a) J = 0.2; (b) J = 0.6; (c) J = 1.0.
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