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Axial velocity deficit is a source of instability in vortices that may otherwise be stable. Temporal 
large-eddy simulation is performed to study the response of vortices with axial velocity deficits to 
random and controlled disturbances at high Reynolds numbers. The 4 vortex [Batchelor, J. Fluid 
Mech. 20, 321 (1964)] is used as a model of such vortices. When the vortex is linearly unstable, the 
disturbances grow and result in the appearance of large-scale helical sheets of vorticity. Later, these 
large-scale helical structures break up into small-scale filaments. Associated with the formation of 
the large-scale structures is a redistribution of both angular and axial momentum between the core 
and the surroundings. The redistribution weakens the axial velocity deficit in the core while 
strengthens the rigid-body-like rotation of the core. The emerging mean velocity profiles drive the 
vortex core to a stable configuration. The vortex eventually returns to a laminar state, with an 
insignificant decay in the tangential velocity, but with a much weakened axial velocity deficit. A 
direct numerical simulation obtained at a lower Reynolds number confirms the above 
conclusions. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

Wakes shed by lifting bodies roll up and form strong 
streamwise vortices. The trailing vortices shed by a large 

aircraft pose a serious threat to a following smaller aircraft. 
Such powerful vortices are also shed from a submarine dur- 
ing a rapid maneuver, and they tend to persist in the far 
wake. The turbulence in the wake shed by the lifting body 
gets engulfed into the vortex core during its formation. The 
decay of these fluctuating quantities, as well as the possibil- 
ity of generating new large-scale structures, depend on the 
stability characteristics of the resulting mean flow field. 

Rayleigh’ developed a formal theory for the stability of 
swirling flows. His work was on the effects of axisymmetric 
disturbances on revolving fluids. Rayleigh’s circulation cri- 
terion states that a necessary and sufficient condition for the 
stability of swirling flow fields to axisymmetric disturbances 
is that the square of the circulation does not decrease any- 
where in the flow field. The Lamb-Oseen vortex is an ex- 
ample of a stable vortex. An example of a centrifugally un- 
stable vortex is the Taylor vortex. Both of these vortices are 
exact solutions to the unsteady incompressible Navier- 
Stokes equations (see Panton” for details). Using large-eddy 
simulation (LES), Sreedhar and Ragab” have studied the ef- 
fect of random disturbances on the stability of these vortices. 
They found that the disturbances superimposed on the Taylor 
vortex were amplified and the vortex went through a transi- 
tion process, which resulted in the decay of the mean flow. 
On the other hand, the disturbances superimposed on the 
Lamb-Oseen vortex were damped, and the mean flow 
showed no decay. Their simulations were for vortices with 
no axial velocity. 

A destabilizing mechanism of vortices with monotoni- 
cally increasing circulation is a jet-like or wake-like axial 
velocity deficit. Batchelor and Gill4 derived a necessary con- 

dition for the instability of nonswirling axisymmetric shear 
tlows. They found that a top hat or a fully developed jet 
satisfies that necessary condition. Therefore, the presence of 
a sufficiently strong axial velocity deficit may render a swirl- 
ing flow unstable, even if the circulation is monotonically 
increasing with the radius. Uberoi et al.’ and Narain and 
Uberoi6 showed that a difference in axial velocity between 
the core and the surroundings destabilizes swirling flows that 
are otherwise stable. This destabilizing role of the axial ve- 
locity field in trailing vortices has been experimentally ob- 
served by Singh and Uberoi.7 

Batchelor’ derived an asymptotic solution for trailing 
vortices in the far wake of a lifting surface. The 4 vortex9 is 
a simplified version of the Batchelor vortex. Most of the 
investigative works on the stability of vortices in the past 
two decades used the 4 vortex as a model. The circulation 
profile of the 4 vortex is identical to the Lamb-Oseen vor- 
tex, which is centrifugally stable. But the vortex possesses an 
axial velocity profile, which makes the vortex vulnerable to 
shear flow instabilities. The q vortex is characterized by a 
swirl parameter q, which is proportional to the ratio of the 
magnitude of the maximum swirl velocity to that of the 
maximum axial velocity deficit or excess. Lessen et aL9 and 
Lessen and Paillet” presented inviscid and viscous calcula- 
tions of the stability characteristics for a q vortex. They 
found that increasing the swirl parameter 4 above 1.5 stabi- 
lized all the modes, regardless of their orientations. Duck and 
Foster” found a continuous spectrum of unstable modes for 
the 9 vortex subjected to inviscid disturbances. The spectrum 
contained an infinite number of higher modes for each com- 
bination of the axial wave number, azimuthal wave number, 
and the swirl parameter q. This multiplicity of modes is a 
very interesting feature of the 4 vortex, which makes the 
problem very unique. Khorrami” used Chebyshev spectral 
collocation technique to obtain highly accurate linear stabil- 
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ity results for a 4 vortex, including viscous effects. He 
showed that the higher inviscid modes persist for much 
lower Reynolds numbers. He also discovered two unstable 
viscous modes. The growth rates of these modes were found 
to increase with Reynolds number initially and then de- 
crease. These viscous modes were found to be less dangerous 
than the inviscid modes, since their growth rates are an order 
of magnitude less than the inviscid modes. Duck and 
Khorramir3 extended Khorrami’s work, focusing on the vis- 
cous modes. Using a spectral collocation and matrix eigen- 
value method, Mayer and PowellI mapped the entire un- 
stable region in the swirl-/axial-wave number space for 
various azimuthal wave numbers. Other than these numerical 
computations, the q vortex has attracted many investigators, 
including Stewartson15 and Leibovitch and Stewartson,r” 
who used asymptotic methods to study the stability charac- 
teristics, 

From the above review, we see that the linear stability 
characteristics of the q vortex as a model of aircraft trailing 
vortices are well documented. However, very little is known 
about the relevance of such instability waves to the produc- 
tion of turbulence in vortices or the fate of these waves in the 
nonlinear range. The turbulent structure of the vortex is de- 
cided by the relative strength of the swirl component to the 
axial velocity deficit. If the axial velocity deficit is suffi- 
ciently strong, new largeacale structures may develop, as a 
result of the instability of such a vortex. The large-scale 
structures extract energy from the mean flow, and the vortex 
may undergo a transition period, resulting in a turbulent flow 
field. An interesting situation results if the axial velocity 
deficit is weakened by that energy transfer. The combination 
of a weaker axial velocity deficit and a swirling flow may 
become linearly stable, and the production of new large-scale 
structures ceases. As a result of this, there is no mechanism 
to feed energy into the turbulence, which will eventually lead 
the mean flow to relaminarize. 

Objective: The main objectives of this work can be sum- 
marized as follows. 

To study the response of vortices with axial velocity 
deficits to controlled and random initial disturbances using 
LES. 

To identify the large-scale structures that are formed due 
to nonlinear interaction of unstable modes and their effect on 
the structure of the vortex. 

II. EQUATIONS AND METHOD OF SOLUTION 

The premise of LES is that only small scales, which tend 
to be isotropic and hence more universal in nature, need to 
be modeled. Furthermore, the small scales carry a small por- 
tion of the total turbulent energy, and thus one anticipates 
that the subgrid-scale (SGS) models are less complicated 
than the turbulence models required for the Reynolds- 
averaged equations. The majority of LES results obtained to 
date used an eddy-viscosity model. The eddy-viscosity coef- 
ficient is usually determined from the Smagorinsky model.17 
Another eddy-viscosity SGS model gaining popularity is the 
dynamic model devised by German0 et al” In this model, 
the Smagorinsky constant is computed dynamically as the 

calculation progresses rather than input a priori. This results 
in a turbulence model coefficient that can vary temporally 
and spatially, depending on the flow field. 

The Navier-Stokes equations are Favre filtered. Let an 
overtilde denote a Favre-filtered quantity and an overbar de- 
note the space filtering operation. Following Erlebacher 
et al.,19 we introduce the Favre-filtered field, 

(1) 

and decompose the total flow field into a resolvable field f 
and a subgrid-scale field f ‘, 

f=j+f’. (2) 

Filtering the mass and momentum equations, we obtain 

(3) 

d$ii a 
at-f ~ (PIZi”j+PGij+Rij-;iji)=0, 

J 

where 

Rij=p(~--‘6i”j) (5) 

is the subgrid-stress tensor and ;;ii is the viscous stress tensor. 
The filtered pressure is given by 

p= fiRf, 03 

where f is the resolvable temperature field and R is the gas 
constant. 

Filtering the total energy equation, we obtain 

a($+k) a -- 

at 
+ dx r(pE+p)uj+Kj+Qj-Ui7ji+qj]=O, 

where 

I 

(7) 

~=it+$iiui, 

Qj=CpP(TZj-f’i;iij), 

k=$(Riij, 

and 

(8) 

(9) 

(10) 

Kj= ~~(~j-UiUiUj). (11) 

The Smagorinsky17 formula is used to model the subgrid 
stress tensor. The model constants are computed using the 
dynamic procedure of German0 et al.” For a complete dis- 
cussion on the model including derivation and implementa- 
tion, see Sreedhar2’ and Sreedhar and Ragab.3 

The numerical scheme used for LES in this investigation 
is a modified MacCormack scheme developed by Gottlieb 
and Turkel.21 This scheme is fourth order in space for the 
convective terms and second order for the diffusion terms 
and time. More details of the method can be found in Gott- 
lieb and Turkel”’ and Ragab et al.“” Implementation of this 
scheme for vortex simulations and code validation using lin- 
ear stability results are given in Sreedhat?’ and Sreedhar and 
Ragab? Direct numerical simulation presented here is ob- 
tained, using a combination of spectral (in the streamwise 
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FIG. 1. Mean velocity profiles for the q vortex. The tangential velocity is 
plotted for two different values of q. 

direction) and sixth-order compact finite-difference scheme= 
in the two transverse directions. The time integration is by a 
low-storage third-order Runge-Kutta scheme. 

III. RESULTS AND DISCUSSION 

Temporal simulation is performed, so that adequate grid 
resolution can be obtained. The simulations are for a low 
subsonic Mach number of 0.2 based on the free-stream val- 
ues, which should bring the calculations very near the in- 
compressible limit. 

A. Initial conditions and computational domain 

The tangential velocity of the 4 vortex is given by 

(12) 

and the axial component of the velocity is given by 

u,= 1 -e-F2. 03) 

As seen from the above equations, the q vortex has a tan- 
gential velocity profile identical to the Lamb-Oseen vortex, 
which is stable to axisymmetric inviscid disturbances. The 
axial velocity profile has a deficit of unity that renders the q 
vortex susceptible to linear disturbances, depending on the 
value of q. The tangential and axial velocity profiles for the 
q vortex are shown in Fig. 1. The stability characteristics of 
the q vortex are unaffected by the addition or subtraction of 
a constant U, to the axial velocity profile or by the inversion 
of the wake-like profile to a jet-like profile. 

The reference length 4 is related to the initial core ra- 
dius rc by t&,=0.892r,. The reference velocity V, is the 
initial axial velocity deficit. The Reynolds number based on 
reference parameters is 50 000. 

A total of N,=49 points is used in the streamwise di- 
rection, while NJ, = NZ = 97 points are used in the cross-plane 
(Y-Z). The grid is stretched in the cross-plane so that the 
vortex core is described with 21 grid points in the diameter. 
Periodic boundary conditions are imposed in the streamwise 
direction (X) and symmetry boundary conditions are applied 
in the other two directions (Y-Z) in the cross-plane {see 

Periodic. 
Boundary 

Z II 1 Z 1 Z Periodic 

- - - - - - Boundary 

Symmetry Boundary 

Symmetry Boundary 

2 

t 
Y 

0 Symmetry 
Boundary 

Symmetry Boundary 

Symmetry 
Boundary 

FIG. 2. Computatiorial domain and boundary conditions. The vortex core is 
exaggerated relative to the outer boundary. 

Fig. 2). The application of symmetry boundary conditions in 
the cross-plane has been shown to be adequate for vortex 
simulations by Sreedhar” and Sreedhar and Ragab,3 pro- 
vided the initial mean tangential velocity is small in the far 
field. 

The computational domain extends from -304 to 
+30&, in each direction of the cross- (Y -2) plane, which is 
sufficient for the initial mean tangential velocity to decay by 
an order of magnitude compared to the core velocity. More- 
over, the induced velocity by the nearest image vortices in 
the region of observed turbulent activity is less than 0.3% of 
the maximum tangential velocity. The length of the compu- 
tational domain in the streamwise direction (x) is 2da, 
where a is the streamwise wave number at maximum ampli- 
fication of the lowest helical mode of linear stability. Linear 
stability analysis also shows that higher-order unstable 
modes exist at higher azimuthal mode numbers, but with 
lesser axial wavelengths. Therefore, the chosen computa- 
tional domain is large enough for these unstable higher-order 
modes to grow and interact with each other. 

Two cases are studied. 
Case A: The purpose of this run is to study the effect of 
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FIG. 3. Azimuthal vorticity contours in a meridional [X-Y) plane for the q vortex. The mean flow is pertrubed with the (1,l) mode. (a) Time= 8, w,,=O.15, 
and w,,=-1.05. (b) Time=28, co,, 20.34, and o&=-1.86. (c) Time=48, omax =0.85, and oti=-1.31. (d) Time=138, q,,,=O.ll, and o&=-0.83. 

controlled disturbances on the development of large-scale 
structures and the subsequent fate of the vortex. The value of 
q is taken to be unity. At this level of 4, the vortex is un- 
stable to linear disturbances. An unstable linear stability 
wave, the helical (1,lj mode and its complex conjugate, is 
superposed on the mean flow. This mode corresponds to 
a=0.7 and azimuthal wave number m = 1. The maximum 
amplitude of the radial disturbance velocity is taken to be 
two percent of the mean axial velocity deficit. 

In this case, the mean pressure is obtained by integrating 
the radial momentum equation, 

ap PG 

Z= r ’ 

Case B: The purpose of this run is to determine the re- 
sponse of a linearly stable 4 vortex to strong initial distur- 
bances. In this case, the value of 4 is 2. At this level of 4 the 
vortex is stable to linear disturbances. Therefore, strong ran- 
dom disturbances are used to initialize the flow. The RMS 
value of the disturbance is taken to be ten percent of the 
mean axial velocity deficit. At this amplitude the distur- 

bances are well above the linear range. The initial pressure 
field for case B is obtained by solving the equation 

vzp+ f2, 05) 
I 1 

where ui denotes the total velocity field and V2 is the Laplac- 
ian operator. 

B. Large-scale structures 

Contours of azimuthal and streamwise vorticity are used 
to describe the evolution of large-scale structures. Negative 
values of vorticity are shown by solid lines and positive val- 
ues by dashed lines. 

Shown in Figs. 3(a)-3(d) are the azimuthal vorticity 
contours in a meridional plane (X-Y) at different times. 
Initially, the contours are straight lines, except near the cen- 
ter of the core, as shown in Fig. 3(a), which shows the con- 
tours at T= 8. Only negative vorticity is visible at this time. 
The high values of negative vorticity is due to the strong 
wake-like mean axial flow. This well-organized core distorts 
and branches out in the form of helical vortex sheets. These 
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FIG. 4. Streamwise vorticity contours in a cross- (Y-Z) plane for the q 
vortex. The mean flow is perturbed with the (1,l) mode. (a) Time=8, 
w-=2.19, and w,,,!, =O.OO. (b) Time=48, w,,=3.93, and w,,=-0.93. 
kj Tirne=l52, q,,,=2.67, and ~,,,~,=-0.03. 

branches flaring out of the vortex core can be seen on the 
azimuthal vorticity contours at T = 28, shown in Fig. 3(b). 
Later, these sheets, due to self-induction, break up into heli- 
cal filaments that reside in the otherwise irrotational flow 
surrounding the core. This breakup of the vortex sheets is 
evident in Fig. 3(c), which shows the azimuthal vorticity 
contours at T= 48. Regions of positive azimuthal vorticity 
are also seen embedded in the flow field surrounding the 
core. The presence of positive and negative vorticity regions 
embedded within each other is an indication of the genera- 
tion of small-scale motions. These structures, which origi- 
nated just outside the core, persist for a relatively long period 
of time, but eventually decay and the vortex returns to a 
laminar state. The azimuthal vorticity contours at T = 13 8, as 
shown in Fig. 3(d), confirm this conclusion, since no small- 
scale motion is visible at this time. As will be shown later, 
this apparent return of the vortex to a laminar configuration 
is due to the cessation of the production of new large-scale 
structures due to the weakening of the instability mechanism, 
and to the dissipative nature of the vortex core that quenches 
the existing turbulence. 

Streamwise vorticity contours in the cross-plane (Y-Z) 
shown in Figs. 4(a)-4(c), also reveal a similar trend. At 
T= 8, the vortex core shows no sign of small-scale motions, 
as is evident in Fig. 4(a). Since the mean vorticity is positive 
and the disturbances have not yet grown to any significant 
level, only positive vorticity (dashed lines) can be seen at 
this time. At T= 48, we see a marked change in the contour 
pattern given in Fig, 4(b). Also seen in Fig. 4(b) are solid- 
line contours, indicating the presence of negative streamwise 
vorticity. As observed earlier from the sequence of azimuthal 
contours in the meridional plane (X- Y), these new struc- 
tures that are formed at this instant in time disappear as the 
simulation progresses in time. The contours at T= 152, 
shown in Fig. 4(c), are similar to the ones at T= 8 shown in 
Fig. 4(a). 

For case B, where high-amplitude random disturbances 
are used to perturb a linearly stable 9 vortex, the structures 
are not well organized and they disappear very quickly. 
Therefore, they are not presented here. 

A study of the evolution of large-scale structures in a 4 

FIG. 5. Evolution of turbulent kinetic energy for the q vortex for different 
initial conditions. 
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vortex reveals the following behavior. The instability mecha- 
nism due to the strong axial velocity deficit results in the 
production of large structures in the form of helical sheets of 
vorticity. Later, these structures break up into concentrated 
helical filaments around the core. As will be shown later, the 
interaction of these large-scale structures has a profound re- 
distribution effect on the mean axial and tangential veloci- 
ties, which tends to weaken the instability mechanism. The 
weakening of the instability mechanism adversely affects the 
production process of new large-scale structures. Meanwhile, 
the small-scale motions are subjected to the stabilizing 
mechanism of the strong rigid-body-like flow field. Thus, the 
combined effect of a weakening instability mechanism and 
the stabilizing feature of the swirling flow field drives the 
vortex to a laminar configuration. The weakening of the in- 
stability mechanism will be revisited in Sec. III D, where the 
evolution of mean velocity is described. The relaminarizing 
tendency of the care of a trailing vortex has been observed 
experimentally by Bandhyopathay d aLz4 They state that 
“At quasi-periodic intervals, the core receives a patch of 
turbulent fluid from the fully turbulent outer annulus where it 
is subsequently relaminarized by the centrifugal motion.” 
The laminar nature of the vortex core in the wake of a rect- 
angular wing has also been observed in the experiments of 
Devenport et uZ.~ 

C. Turbulent kinetic energy 

The growth and decay of the turbulent kinetic energy is 
studied in this section. 

At any point in time, the Cartesian velocity components 
are first resolved into polar components at the Cartesian 
computational grid points. Then these components are aver- 
aged in the axial direction. Second, the three components are 
interpolated into a polar grid and averaged in the 0 direction. 
This procedure provides mean velocity profiles that are func- 
tions of r only. Note that no time averaging is performed, 
and as a result the mean profiles thus defined change in time. 

0.06 ,c,,,,,,,,,,m 
j / 

FIG. 6. Radial distribution of turbulent kinetic energy for the q vortex at 
different times. The mean flow is perturbed with the i&l) mode. 

The total turbulent kinetic energy is obtained by integrat- 
ing over the Y-Z plane the quantity 

where ( * * * ), indicates averaging in the axial direction. Here, 

u’=U-(U), 

where (12) is the mean velocity. Similar expressions are used 
for u’ and w’. 

Recall that in case A the initial perturbations consist of a 
linear stability wave while in case B high-amplitude random 
perturbations are used. In case A, the turbulent kinetic energy 
grows rapidly in the initial stages, as shown in Fig. 5. This 
strong growth in the early stages is primarily due to the am- 
plification of the linear stability wave seeded in the initial 
conditions. As expected, the initial growth rate of energy 
agrees well with the linear stability theory. Once this wave is 
sufficiently amplified, it starts to interact nonlinearly with 
itself and with the mean flow resulting in the amplification of 
high-order modes. Later, the kinetic energy saturates and a 
period of very slow decay is observed. The saturation of the 
energy is found to occur between times T= SO and T = 80. 
The distribution of turbulent kinetic energy E on the Y axis 
at different times is shown in Fig. 6. The kinetic energy 
distribution at T=S7 shows very high values in the regions 
in and around the core. Later, as the core relaminarizes, the 
kinetic energy drops to its initial levels. Note that the kinetic 
energy levels at T= 8 and T= 182 are comparable. 

Also shown in the Fig. 5 is the evolution of total turbu- 
lent kinetic energy for case B. In this case, the total turbulent 
kinetic energy initially decreases. This is due to the reorga- 
nization of the high-amplitude nonphysical initial conditions. 
Later, due to the growth of local instabilities the kinetic en- 
ergy increases. This growth is attributed to the presence of 
local instabilities presumably of the centrifugal type. The 
nature of these local instabilities needs further investigation. 
But, before long, the kinetic energy saturates and it starts to 

: 1 ; 
B & 
5 0.010 ___._...., i / .._......_. ;...n i.../.\ j.17 1 y I. 
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FIG. 7. Radial distribution of turbulent kinetic energy for the q vortex at 
different times. The flow is perturbed with high-amplitude random distur- 
bances. 
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FIG. 8. Evolution of modal kinetic energy for the (1,l) mode and the (2,Z) 
mode for the q vortex for case A, where the initial perturbation consists of 
the (1,l) mode. The curve predicted by the linear stability is also marked. 

decay. The decay rate is more rapid in case B than in case A. 
This proves that the presence of local instabilities is not 
enough to sustain the production of large-scale motions. 

The radial distribution of the kinetic energy at different 
times for case B is shown in Fig. 7. Note that the kinetic 
energy growth is the strongest outside the core. Also, the 
maximum level of kinetic energy in case B is much lower 
than that in case A, because of the stronger swirling velocity 
field present in case B. At higher swirl velocities, the axial 
velocity deficit could not produce large-scale structures, and 
the subsequent generation of small-scale motions is sup- 
pressed. 

The growth of some of the helical modes are shown in 
Fig. 8 for case A. The modal energies of the (1,l) mode and 
the (2,2) mode, which corresponds to cu=O.7, m= 1 and 
a= 1.4, nz =2, respectively, are shown. The (1,l) mode that 
is initially seeded starts at a higher-energy level and grows 
according to the linear stability predictions in the early 
stages. The (52) mode also shows strong growth, and at one 
instant is more energetic than the (1,l) mode. This growth of 
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FIG. 9. Evolution of modal kinetic energy for the il,l) mode and the (22) 
mode for the q vortex for case B, where the initial perturbation consists of 
high-amplitude random disturbances. 
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FIG. 10. Decay of the mean axial velocity profile for the q vortex for case 
A, where the initial perturbation consists of the (1,l) mode. 

the (2,2) mode is attributed to nonlinear interactions, because 
this mode was not initially seeded. Later, these two modes 
show a saturation trend followed by a slow decay. The same 
two modes for case B, which was perturbed by random dis- 
turbances, are shown in Fig. 9. Both of these modes show an 
initial decay followed by periods of amplification, saturation, 
and decay. The levels of energy in these modes are much less 
than that in the corresponding modes for case A shown in 
Fig. 8. Other higher modes also displayed a similar trend. 

D. Mean velocity and comparisons with experiments 

From the previous two sections we have seen that the 
growth and decay of the turbulent kinetic energy is associ- 
ated with the growth and decay of vertical structures. The 
influence of these events on the mean velocity profiles is 
discussed in this section. Figures 10 and 11 show the devel- 
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FIG. 11. Evolution of the mean tangential velocity profile for the q vortex 
for case A, where the initial perturbation consists of the (1,l) mode. 
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FIG. 12 Decay of the mean axial velocity profile for the q vortex for case 
B, where the initial perturbation consists of high-amplitude random distur- 
bances. 

opments of the axial and tangential velocities for case A. In 
the core, the mean axial velocity deficit is weakened, while 
the mean tangential velocity is strengthened. This pushes the 
vortex toward a stable configuration, and shows the relative 
insignificant impact of an unstable stability wave on the tan- 
gential velocity field of the vortex. The velocity profiles for 
case B are shown in Figs. 12 and 13. While there is a reduc- 
tion in the axial velocity deficit, there is no significant 
change in the tangential profile. In order to ascertain that it is 
indeed the growth of the disturbance and its interaction with 
the mean flow that caused the decay of axial velocity deficit, 
we simulated an unstable q vortex (q= 1) with no initial 
perturbations. The evolution of the mean axial centerline ve- 

locity is shown in Fig. 14 for cases A and B, along with the 
case with no initial perturbations. It is evident that while 
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FIG. 13. Evolution of the mean tangential velocity profile for the q vortex 
for case B, where the initial perturbation consists of high-amplitude random 
disturbances. 
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FIG. 14. Evolution of the mean centerline axial velocity for different initial 
conditions. 

cases A and B developed a strong increase of the axial ve- 
locity at the center, the vortex with no initial disturbances 
showed a negligible change. It should be noted here that an 
increase in the axial velocity at the center amounts to a cor- 
responding decrease in the axial velocity deficit. Therefore, 
the growth of the large-scale structures causes the redistribu- 
tion of both the angular and axial momentum between the 
core and surroundings. The redistribution results in a more 
stable vortex than the initial mean flow. 

In Fig. 15, the normalized circulation profile for case A 
at T=75 is compared with the “universal inner region” de- 
scribed by Hoffman and JouberLZ6 The power region and the 
logarithmic region are both visible. To better see the loga- 
rithmic region, the parameter C=(J?/r, - l)/ln(r/~~) is 
plotted as function of r/r1 in Fig. 16. Here r1 and y1 are the 
circulation and radius at the location of maximum tangential 
velocity. This parameter should be exactly one in the loga- 

7.80 

0.00 
0.01 

r/r, 

FIG. 15. Comparison of normalized mean circulation profile with the ex- 
perimental profile of Hoffman and Joubert for the q vortex. The inner power 
region and the logarithmic region are visible. The circles denote the present 
numerical simulation. Time=75. The mean flow is perturbed with the (1,l) 
mode. 
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FIG. 16. Comparison of C in the empirical formula of Hoffman and Joubert 
for the q vortex. Here C=(I’/I’, - l)/ln(r/rI) should be exactly one in the 
logarithmic region. Note that the initial profile has no logarithmic region. 
The mean flow is perturbed with the (1,l) mode. 

rithmic region. At T= 0, there is no logarithmic region. Later 
in time, when the turbulent kinetic energy is a maximum, a 
logarithmic region is seen extending from r/y1 = 0.8 to 
i-/r1 = 1.4. Saffman,a7 in his theoretical analysis, places the 
logarithmic region between 0.8 and 1.2. As the turbulent ki- 
netic energy decays, the logarithmic region disappears, indi- 
cating relaminarization of the vortex. For case B, since the 
vortex did not generate any significant turbulence levels, the 
formation of a logarithmic region was not evident. 

E. Direct numerical simulation 

A direct numerical simulation was performed at a lower 
Reynolds number to substantiate the conclusions reached us- 
ing LES. The computational domain and the reference pa- 
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FIG. 17. Radial distribution of turbulent kinetic energy for the q vortex at 
different times. The flow is perturbed with the (1,l) mode, DNS. 
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FIG. 18. Decay of the mean axial velocity profile for the q vortex, where the 
initial perturbation consists of the (1,l) mode, DNS. 

rameters are the same as case A. However, the Reynolds 
number based on the core parameters is 4000. A grid of 
(73X129X129) is used. As mentioned earlier, spectral and 
sixth-order compact differencing are used in the periodic 
streamwise direction and the other two directions in the 
cross-plane, respectively. A third-order low-storage Runge- 
Kutta scheme is used for the time integration. The computed 
energy spectra and instantaneous velocity profiles show that 
the turbulence is well resolved by this grid. 

The evolution of the large-scale structures and the turbu- 
lent kinetic energy showed similar development as case A. 
Figure 17 shows the distribution of turbulent kinetic energy 
E at different times. It also shows the same trend as Fig. 6, 
which shows the evohrtion of the same quantity for case A. 
But the maximum kinetic energy attained at the center is 
lower than that of case A. This is expected because of the 

S a, 

4 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

0 1 2 3 4 5 6 

r 

FIG. 19. Evolution of the mean tangential velocity protile for the q vortex, 
where the initial perturbation consists of (1,l) mode, DNS. 
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lower Reynolds number used in the DNS. The mean flow 
profiles also show a similar trend. Figure 18 shows the de- 
crease in the axial velocity deficit with time, which is con- 
sistent with the LES results. The evolution of the mean tan- 
gential velocity profiles shown in Fig. 19 also confirms the 
LES results. The redistribution of the axial and the angular 
momentum between the core region and surrounding is evi- 
dent, and is consistent with the LES results. 

IV. CONCLUSIONS 

The q vortex is used as a model for a trailing vortex with 
an axial velocity deficit. The tangential velocity field of the 4 
vortex has a monotone radial variation of circulation, which 
makes the vortex centrifugally neutrally stable. The instabil- 
ity mechanism in this vortex is due to the presence of the 
axial velocity deficit. Results have been obtained for q= 1 
using temporal LES. It is found that a linearly unstable q 

vortex amplifies the perturbations, resulting in the formation 
of large-scale structures. These structures appear as helical 
sheets of vorticity sprouting out of the vortex core. Later, 
these structures break up into small-scale motions in the 
form of helical filaments. The small-scale motions are pre- 
dominant near the core radius. In the core, the axial velocity 
deficit is weakened and the swirling flow is strengthened due 
to the redistribution of axial and angular momentum between 
the core and the surroundings. Subsequently, the stabilizing 
motion of the core “wins” over the destabilizing effects of 
the axial velocity. The vortex returns eventually to a laminar 
state, but with a weakened axial-velocity deficit. 

The turbulent kinetic energy shows a strong growth dur- 
ing the initial stages, due to amplification of the instability 
waves, but later it saturates and a period of slow decay pre- 
vails. Initially only the instability wave that is seeded shows 
strong growth. But later, other waves start to appear due to 
nonlinear interactions. Subsequently, the modal kinetic ener- 
gies of all the modes saturate. A period of slow decay then 
prevails. 

During the period of amplification and decay of distur- 
bances, the mean tangential velocity profile shows no signifi- 
cant decay. However, the axial velocity profile shows a de- 
crease in the deficit, indicating the weakening of the 
instability mechanism. During the period of maximum turbu- 
lent kinetic energy, the normalized circulation profile shows 
the formation of a logarithmic region and compares well 
with the “universal inner region” of Hoffman and Joubert.% 

#en a linearly stable 4 vortex (q= 2) is perturbed with 
high-amplitude random disturbances, no significant struc- 
tures are generated. The mean tangential velocity profile 
shows no decay, while the mean axial velocity shows a de- 
crease in the velocity deficit. 

A temporal direct numerical simulation of an unstable 9 
vortex (q= 1) performed at a lower Reynolds number con- 
firms the trends observed in the LES results. 
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