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Abstract: Non-point source fugitive dust produced during municipal road construction is one of
the main ambient air pollutants gravely threatening the life and health of construction workers and
residents around construction areas. In this study, a gas-solid two-phase flow model is used to
simulate the diffusion behavior of non-point source dust with different enclosure heights under wind
loads. Moreover, the inhibitory effect of the enclosure on the diffusion of non-point source dust from
construction to residential areas is analyzed. The results show that the physical blocking and reflux
effects of the enclosure can effectively restrain dust diffusion. When the enclosure height is 3–3.5 m,
the concentration of particulate matter in most sections of residential areas can be reduced to less
than 40 µg/m3. Moreover, when the wind speed is 1–5 m/s and the enclosure height is 2–3.5 m, the
diffusion height of non-point source dust particles above the enclosure is concentrated in the range
1.5–2 m. This study provides a scientific basis for setting the heights of enclosures and atomization
sprinklers at construction sites. Further, effective measures are proposed to reduce the impact of
non-point source dust on the air environment of residential areas and health of residents.

Keywords: non-point source dust; diffusion behavior; gas-solid two-phase flow; enclosure heights;
air velocities

1. Introduction

Municipal road construction generates considerable non-point source dust (NPSD);
hence, it is categorized among the critical sources of fugitive dust in urban areas. This dust
source area is wide and produces considerable amounts of pollutants. Hence, it negatively
impacts the atmospheric environmental quality over a wide area and severely harms the
health of residents around the construction area [1–3]. The diffusion behavior of NPSD
is stochastic and complicated [4]. The study of its spatial diffusion characteristics and
corresponding prevention and control measures is significant for improving urban air
quality and protecting human health.

To effectively restrain the generation and diffusion of NPSD and minimize its impact
on the residents around construction areas, researchers have studied the diffusion behavior
of dust in terms of emission characteristics [5–8], chemical element characteristics [9,10],
health damage assessment [2,11,12] and dust control measures [13–15]. Fuchs [16] firstly
studied the dispersal behavior of dust systematically, and investigated the law of dust
particle diffusion and dissipation, with the assumption that the dust in the air consists of
aerosols. Li et al. [17] proposed a regional dust dynamics model that constructed surface
dust sources and analyzed dust concentrations based on high-resolution remote sensing
signals, and their results showed that urban construction activities are a critical factor in
urban dust pollution. Ketchman [18] proposed an evaluation model for the life cycle of dust
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emissions and analyzed the results of particulate matter (PM) emissions in the excavation
stage at a construction site, which verified that the main and secondary producers of dust
are road transport and excavation activities, respectively. In addition to analyzing the
emission concentration of dust, researchers have studied the contribution rate of dust
particles with various sizes to atmospheric pollution at the microscale level. Nagendra
et al. [19] studied the metal particle types and mass concentrations of PM in air, specifically
PM10 and PM2.5, at different seasons, and demonstrated that the mass concentrations of
PM10 and PM2.5 in winter were higher than those in summer. In addition, they found
that the coarse particles in dust mainly emanate from soil, whereas fine particles mainly
originate from the exhaust emissions of transport vehicles. Rai [20] measured the physical
and chemical characteristics of atmospheric PM in Kanpur and revealed that the main dust
sources include roads, vehicle emissions, and construction activities. Azarmi [21,22] used
a differential mobility spectrometer, particle spectrometer, scanning electron microscope,
and other devices to detect and analyze particles within a certain size range in construction
sites and study the physical and chemical characteristics of these particles. Faber [23] used
a variety of aerosol and trace gas analysis instruments to study the physical and chemical
characteristics of particles emitted by earthworks and road engineering. The study revealed
that construction activities dominated by earthwork were the main factors causing PM10
emissions in cities, and increasing soil moisture could effectively reduce dust emissions.

To reduce the impact of NPSD on the surrounding environment effectively, many
scholars have investigated the factors influencing dust diffusion behavior and proposed
various dust suppression measures. Chalvatzaki [24] used the ISC3 model and emission
factors to study the effects of different factors on the quantity and distribution of PM
emissions from municipal solid waste dumps. Wind speed, wind direction, and pile
height were found to affect the generation and diffusion of PM10, and the concentration of
PM10 downwind increased with the wind speed and pile height. Mueller [25] studied the
dust diffusion behavior of open-air coal, soil, and aggregate piles and observed that the
turbulent airflow on the surface of the piles was the mainspring for generation and diffusion
of dust under low wind speed conditions, while the loose surface of piled materials, local
high temperature of the pile, and obstacles that could cause eddy currents were principal
triggers for increased dust concentration. In conclusion, the diffusion behavior of dust
involves many factors, including wind speed, dust source state, and air humidity. Based
on the characteristics of related factors, strengthening or covering the soil surface [26,27],
improving soil humidity [23,28], setting up dustproof nets [29,30] and using new solidifying
materials [31] are the methods mainly adopted to constrain dust generation and diffusion.

The PM in urban dust has a complex composition, wide size range, and various
sources; its generation and diffusion laws are related to several factors. The dust source
area of NPSD is also wide, and its diffusion, concentration and speed are closely related to
the environment. Consequently, its diffusion behavior is difficult to study through field
experiments. With improvements in computer performance and numerical simulation
methods, an increasing number of researchers have used numerical simulation technology
to study the diffusion behavior of fugitive dust [8,32–35]. Zhao [36] proposed a multi-layer
coupling model system to simulate the impact of construction dust emissions on air quality
for a period of four months in Beijing. Jeong [37] built a virtual wind tunnel model based
on FLUENT to analyze the computational fluid dynamics (CFD) of a construction site and
studied the dust concentration at the site and the dust prevention efficiency of a commercial
windproof net. Hilton [38] proposed a CFD-DEM (discrete element method) coupling
model in which DEM was used to simulate the motion of large particles, while CFD was
applied to simulate dust and airflow, and the generation and movement of dust in the
system were consequently obtained. Wang [39] established the k-ε-θ mathematical model
based on the characteristics of gas-solid two-phase flow, and the influence of ventilation pa-
rameters on airflow and dust diffusion was simulated using FLUENT in a fully mechanized
mining face. Compared with physical experiments, numerical simulation can eliminate the
test limitations due to the environment, equipment, and materials. Moreover, a complex
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test environment can be quickly and accurately constructed, and real and effective test
results can be obtained. For the simulation of dust diffusion, the gas-solid two-phase flow
model [40,41] considers airflow as a continuous phase, and dust particles are regarded as a
discrete phase. Compared with the Gaussian diffusion model [6,42], the foregoing model
can simulate the physical diffusion state of dust particles more accurately.

In summary, municipal road construction has the characteristics of wide exposed
areas of soil, large amounts of construction waste, and active transportation operations.
Non-point source fugitive dust is easily produced in the process of construction and is
seriously harmful to the environment and human health. Therefore, the study of the
prevention and control measures of dust diffusion based on its characteristics is urgently
required. It is possible to reduce the impact of dust generated in the engineering area
on residential areas by setting up fences in the engineering area. However, there are still
relatively few studies on the dust suppression efficiency of different enclosure heights.
In consequence, in this paper, a numerical model based on the gas-solid two-phase flow
model is established using the FLUENT software. The diffusion process of NPSD in the
construction area under different enclosure heights and airflow velocities is investigated by
numerical simulation experiments. Further, the influence of dust on residential areas under
different conditions was analyzed to provide a scientific basis for the formulation and
implementation of NPSD suppression measures. The remainder of this paper is organized
as follows. Section 2 elaborates on the fundamental theory of the gas-solid two-phase flow
model. Section 3 introduces the relevant parameters of the numerical model developed
in this study. Section 4 presents the analysis of the numerical results. The diffusion
behavior of NPSD is systematically examined considering different enclosure heights, and
corresponding prevention and control measures are formulated.

2. Basic Theory of Gas-Solid Two-Phase Flow Model
2.1. Fundamental Equation

Gas-solid two-phase flow must conform to objective reality and the law of mechanical
movement, so the gas-solid two-phase flow motion in this study must also obey the law of
conservation of mass and momentum.

According to the law of conservation of mass, the mass change rate of continuous
fluid in a fixed fluid region should be equal to the net flux of fluid on the surface of the
region. As a result, the continuity equation can be obtained as Equation (1):

∂ρ

∂t
+∇ · ρu = 0 (1)

where ρ is the density of the fluid (kg·m−3); and u is the velocity field of the fluid.
The municipal road construction site is an open space, and the density of air does not

significantly change when it flows through a foundation pit or an enclosure; thus, the air
around the site can be regarded as an incompressible fluid. Therefore, Equation (1) can be
expressed as Equation (2):

∇ · u = 0 (2)

According to the law of conservation of momentum, the momentum change rate of a
continuous fluid in a fixed fluid region should be equal to the sum of the mass force and
the surface force in the region. In consequence, the momentum conservation equation is
derived as Equation (3):

ρ
∂ui
∂t

+∇ · (ρuiu) = −
∂p
∂xi

+
∂τii
∂xi

+
∂τij

∂xj
+

∂τik
∂xk

+ ρ fi (3)
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where p is the average pressure of the fluid element (N·m−2); τij is the stress in the j
direction exerted on a plane perpendicular to the i axis; ui, uj and uk are the velocity
components of the fluid in directions i, j and k, respectively (m·s−1); xi, xj and xk are
coordinates in directions i, j and k, respectively (m); and fi is the body force per unit mass
acting on the fluid element in direction i.

The stress component τij can be calculated by Equation (4):

τij =

[
µ

(
∂ui
∂xj

+
∂uj

∂xi

)]
− 2

3
µ

∂uk
∂xk

δij (4)

where µ is the hydrodynamic viscosity of the fluid (N·s·m−2); and δij is Kronecker delta.

2.2. Turbulence Model

Airflow in nature is basically turbulent [43], and a two-equation model is frequently
adopted in engineering simulations, with typical examples such as k-ε and k-ω models [44].
In this study, the standard k-ε model is used to establish the equations of turbulent kinetic
energy k and the energy dissipation rate ε as Equations (5)–(9):

∂ρk
∂t

+ ρ∇ · uk = ∇
[(

µ +
µt

σε

)
∇k
]
+ Gk + Gb − ρε−Ym, (5)

∂ρε

∂t
+ ρ∇ · uε = ∇

[(
µ +

µt

σε

)
∇ε

]
+

ε

k
C1ε(Gk + C3εGb)− ρC2ε

ε2

k
, (6)

Gk = µtui,j
(
uj,i + ui,j

)
, (7)

Gb = βgi
µt

Prt

∂T
∂xi

, (8)

Ym = 2ρε
k
a2 , (9)

where Gk and Gb are the generation terms of turbulent kinetic energy k caused by the mean
velocity gradient and buoyancy, respectively; β is the coefficient of thermal expansion
of fluid (K−1); gi is the component of gravitational acceleration in direction i (m·s−2); µt
is the turbulent viscosity coefficient (kg·m−1·s−1); Prt is the number of Prandtl; T is the
temperature (K); Ym is the generation term of turbulent diffusion fluctuation of compressible
fluid; a is the coefficient of fluid thermal conductivity (m2·s−1); and C1ε, C2ε and C3ε are
empirical coefficients.

For incompressible fluids, Equations (5) and (6) can be simplified to obtain
Equations (10) and (11):

ρ∇ · uk = ∇
[(

µ +
µt

σε

)
∇k
]
+ Gk − ρε (10)

ρ∇ · uε = ∇
[(

µ +
µt

σε

)
∇ε

]
+

ε

k
C1εGk − ρC2ε

ε2

k
(11)

2.3. Particle Balance Equation

The diffusion of particles in open space is a kind of gas-solid two-phase flow. As the
standard k-ε model can only calculate the flow field in space, another model is needed
to capture the particle diffusion. Moreover, because of the small volume fraction of the
particle phase considered in this study, the discrete phase model of FLUENT is required to
obtain accurate particle motion results. This model is appropriate under the condition that
the volume fraction of the particle phase is less than 10%, and the mass load of the particles
must exceed 10%, which agrees well with the numerical model formulated in this study.
Therefore, the particle trajectory of the discrete phase can be solved by integrating the
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differential equation of particle force into the Laplace coordinate system. The equilibrium
equation for the particle force can be expressed as Equations (12)–(14):

mp
dup

dt
= fd + fg (12)

fd =
1
8

πd2ρ f Cd

∣∣∣u f − up

∣∣∣(u f − up

)
(13)

fg =
1
6

πd3ρpg (14)

where mp is the mass of particles (kg); up is the velocity of particles (m·s−1); f d is the
resistance of particles; f g is the gravity of particles; ρf is the density of fluid (kg·m−3); ρp

is the density of particles (kg·m−3); uf is the velocity of fluid (m·s−1); up is the velocity of
particles (m·s−1); Cd is the drag coefficient; and g is the acceleration of gravity (m·s−2).

The resistance coefficient of particulate matter Cd can be calculated from Equation (15):

Cd =

{
24
Re

(
1 + 0.15Re0.687

)
Re ≤ 1000

0.43 Re > 1000
(15)

The Reynolds number Re can be calculated by Equation (16):

Re =
ρ f d
∣∣∣u f − up

∣∣∣
µ

(16)

3. Numerical Setup
3.1. Model Sizes

Since a municipal road construction site is an open flow field, the higher the tem-
poral resolution and the smaller the spatial resolution of the numerical model, the more
accurate the reflection of the actual state of the flow field. However, a wider range of
computing domains leads to a dramatic increase in the number of elements and the time
cost of numerical calculations. To achieve a balance between computing efficiency and
numerical accuracy, this study simplifies the numerical model and ignores the influence of
surrounding buildings on the flow field. The flow field calculation region model is built
using the SolidWorks three-dimensional modeling software, and its numerical calculation
length and cross-section size are 60 m and 5 m× 12 m, respectively. The enclosure is located
at the junction of the construction and residential areas and 20 m from the air inlet. The
enclosure height h is set to 0, 2, 2.5, 3 and 3.5 m. The particles are generated over the entire
range of the ground area of the construction site and spread to the residential area under
airflow action. The numerical model of NPSD is shown in Figure 1a. A structured meshing
scheme with hexahedral elements is adopted in this model, and the mesh is refined at the
enclosure. The meshing scheme on the model is illustrated in Figure 1b.
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Figure 1. Numerical model of NPSD. (a) Numerical simulation model of diffusion behavior of NPSD. 
(b) Meshing effect on the numerical model. 
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one of the influencing factors. 
(2) The right exit is set as the pressure outlet because the velocity distribution at the 

exit boundary is difficult to quantify and the outlet velocity is also not relevant for this 
work. 

(3) Considering that the particles are generated on the bottom of the left side of the 
enclosure, this wall is set as the particle entrance. The release of particles is in the form of 
surface jet, and the particle types are defined as inert; the surface jet source governs the 
mass flow rate. The particulate parameters are set according to the relevant references [45] 
and are listed in Table 1. 

(4) The enclosure and other walls are set as non-slip walls. Their boundary conditions 
are shown in Figure 1a. 

Table 1. Parameter setting of PM. 

No. Condition Parameter 
1 Release position of PM PM inlet 
2 Minimum particle size 1.81 × 10−7 m 
3 Average particle size 3.52 × 10−5 m 
4 Maximum particle size 2.72 × 10−4 m 
5 Mass flow rate 1.0 × 10−6 kg/s 
6 Initial particle concentration 0 kg/m3 

Figure 1. Numerical model of NPSD. (a) Numerical simulation model of diffusion behavior of NPSD.
(b) Meshing effect on the numerical model.

3.2. Boundary Conditions

The boundary conditions of the numerical model in this study are set as follows.
(1) The left air inlet is set as the velocity inlet since the wind speed is considered as

one of the influencing factors.
(2) The right exit is set as the pressure outlet because the velocity distribution at the exit

boundary is difficult to quantify and the outlet velocity is also not relevant for this work.
(3) Considering that the particles are generated on the bottom of the left side of the

enclosure, this wall is set as the particle entrance. The release of particles is in the form of
surface jet, and the particle types are defined as inert; the surface jet source governs the
mass flow rate. The particulate parameters are set according to the relevant references [45]
and are listed in Table 1.

(4) The enclosure and other walls are set as non-slip walls. Their boundary conditions
are shown in Figure 1a.

Table 1. Parameter setting of PM.

No. Condition Parameter

1 Release position of PM PM inlet
2 Minimum particle size 1.81 × 10−7 m
3 Average particle size 3.52 × 10−5 m
4 Maximum particle size 2.72 × 10−4 m
5 Mass flow rate 1.0 × 10−6 kg/s
6 Initial particle concentration 0 kg/m3
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3.3. Working Condition Settings

According to the meteorological data, it is determined that the annual average wind
speed in Zhengzhou is 2.86–3.38 m/s [46]. In order to investigate the diffusion law of NPSD
particles under different enclosure heights, the initial horizontal wind speed of the model in
this study is set to 3 m/s. Based on field surveys of several construction areas in Zhengzhou,
the observed enclosure height of construction sites is from 2 to 3.2 m. Accordingly, four
enclosure heights are selected for the study: 2, 2.5, 3, and 3.5 m. Non-enclosed sites are set
as the control group.

4. Analysis of Simulation Results of Spatial Diffusion Behavior of Non-Point Source
Fugitive Dust
4.1. State of Airflow Considering Different Enclosure Heights

The condition of airflow is an important factor affecting the release, diffusion, and
settlement of dust particles. The relationship between enclosure height and PM distribution
in residential areas can be analyzed by studying the influence of enclosures on airflow. In
this study, a symmetric cross-section S (Figure 2) is selected as the monitoring surface of
the model airflow field, and the velocity distribution on this airflow field under different
enclosure heights is analyzed.
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Figure 2. Monitoring cross-section (S) of NPSD diffusion model.

The distribution of airflow velocity in construction and residential areas with different
enclosure heights is shown in Figure 3 with the initial horizontal wind speed of 3 m/s.
This figure indicates that no significant changes in wind direction and speed are observed
in the global scope of the model with the absence of an enclosure. When an enclosure
is introduced, the characteristics of airflow field in the construction and residential areas
change in three local areas. At area 1© in front of the enclosure, the direction of airflow
in the lower space changes to upward due to the presence of obstacles, and an area of
updraft is formed. The NPSD particles are affected by the airflow in this area. A portion of
the particles accumulate in quiet local wind areas, and the others spread to the residential
area with updraft. In area 2© above the enclosure, the lower airflow converges with the
upper airflow, forming an airflow confluence area. In this area, a significant deflecting flow
occurs, and the flow velocity increases due to the reduction in the flow section. In addition,
the velocity of air in a small area in front of area 2© also increases due to the influence of
the confluence flow, and with the increase in the enclosure height, the range of this area
also increases. After the air passes through the confluence area, the airflow area increases,
and a large vortex area is formed at area 3© on the leeward side of the enclosure. The
range of the vortex zone also increases with the enclosure height. When the height of the
enclosure increases to 3.5 m, the horizontal length of the vortex zone is approximately 40 m.
This large-scale refluxing has a distinct negative effect on particle diffusion, reducing the
concentration of dust diffusing from non-point sources to residential areas consequently.
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Figure 3. Distribution of airflow field velocity on construction and residential areas considering
monitoring section S with five enclosure heights when initial horizontal wind speed is 3 m/s. 1© is
the updraft area; 2© is the confluence area; 3© is the vortex area.

4.2. Diffusion Process of NPSD Particles with Enclosure

The aforementioned analysis indicates that the airflow field inside the model forms
three characteristic regions (rising, confluence, and vortex areas) when the enclosure is set
between the construction and residential areas. The particle mass concentration distribu-
tions of the NPSD at different diffusion stages are examined in this section to determine
the influence of these variables on particle diffusion behavior. The mass concentration
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distributions of dust particles at different diffusion stages are presented in Figure 4 with an
initial horizontal wind speed and enclosure height of 3 m/s and 3.5 m, respectively.
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As shown in Figure 4, the particle diffusion process can be divided into five stages,
as follows.

Stage A represents the initial diffusion of particles. At this stage, the particles of NPSD
are driven by airflow spread from the air inlet to the residential area. When the particles
spread to the ascending airflow section under the combined action of the updraft and
enclosure, some of the particles are deposited in the local calm area on the windward
side of the enclosure, whereas other particles spread upward. The mass concentration
and diffusion height of PM are high and low near and away from the construction area
enclosure, respectively; moreover, no particles are detected in the residential area. In stage
B, the concentration of particles on the windward side of the enclosure increases. A portion
of the particles spread upward with the updraft and then spread to the airflow confluence
area above the enclosure. The diffusion height increases owing to the influence of deflecting
airflow. In stage C, the particles that accumulate on the windward side of the enclosure
increase continuously. Concurrently, the particles across the enclosure through the airflow
convergence area increase and continue to spread to residential areas. At this moment,
some of the particles spread to region 4©, which leads to particle reflux under the action of
the swirling airflow in the large-area vortex region. In stage D, the NPSD particles in region
4© gradually move to the leeward side of the enclosure and accumulate under the drive
of the vortex. Concurrently, the PM concentration gradually increases in the residential
areas. In stage E, numerous particles accumulate on the windward and leeward sides of
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the enclosure. At the same time, particles are detected over a wide part of the residential
areas, and the particle concentration decreases with the increase in diffusion distance.

The foregoing analysis demonstrates that the enclosure has a satisfactory inhibitory
effect on the diffusion of dust particles from non-point sources. The main reasons are
as follows: (1) The physical blocking effect of the enclosure can intercept the majority of
the particles in the construction area, thus reducing the mass diffusion of particles from
the construction area to the residential area. (2) Some of the particles that spread over
the enclosure to the residential area produce reflux under the influence of eddy currents,
reducing the diffusion range of particles in the residential area to a certain extent. (3) Most
of the particles accumulate near the windward and leeward sides of the enclosure, hence
allowing more convenient follow-up dust removal.

4.3. Effect of Different Enclosure Heights on Concentration Distribution of Dust Particles

To study the inhibitory effect of different enclosure heights on the diffusion behavior
of NPSD particles, the diffusion behavior of these particles is discussed considering five
enclosure heights when the initial horizontal wind speed is 3 m/s. As illustrated in Figure 2,
the particle concentration distribution on monitoring cross-section S is observed and
analyzed. The particle concentration distribution on cross-section S at different enclosure
heights is plotted in Figure 5.
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As shown in Figure 5, when no enclosure is set, the diffusion of the particles is uniform
and smooth because the air is not distinctly disturbed in the flow process. Moreover,
numerous particles migrate from the construction area to the residential area. After setting
the enclosure, the concentration of particles on the windward side increases, indicating
the accumulation of particles in this area. With an increase in the enclosure height, the
accumulation of particles in this area gradually increases, which confirms that the number
of particles blocked in the construction area also increases with the enclosure height. On
the other side of the enclosure in the residential area, some of the NPSD particles reflux
and accumulate on the leeward side of the enclosure under the action of eddy airflow in
the vortex area. In contrast to the windward side, the concentration range of the particles
in the vortex area has a negative relationship with the enclosure height. In detail, after
setting the enclosure, the diffusion range of NPSD particles in the residential area increases;
however, their overall concentration is lower than that without the enclosure. Moreover,
with increasing enclosure height, the PM concentration gradually decreases. Specifically,
when the enclosure height is 3 m, the PM only concentrate near the enclosure in the
residential area; when the enclosure height is 3.5 m, the PM concentration over a wide
section of the residential area is less than 40 µg/m3.

In summary, when no enclosure is set, numerous particles produced in the construc-
tion area smoothly spread to the residential area under the action of horizontal airflow,
gravely threatening the environmental quality and human health in the residential area.
The physical blocking effect of the enclosure and the influence of reflux airflow on the
residential area can block the majority of the particles in the construction area and on
both sides of the enclosure, effectively containing the diffusion of NPSD. With the increase
in enclosure height, the diffusion distance of PM is shortened, and the concentration of
PM in residential area also significantly decreases, although the diffusion height of PM
increases slightly. Therefore, it is necessary to set a reasonable enclosure height, as it can
reduce the accumulation of PM in residential areas. When the enclosure height is 3–3.5 m,
the concentration of dust particles in most parts of the residential area can be reduced to
40 µg/m3, thereby meeting the particulate emission standard [47].

4.4. Effects of Different Wind Speeds and Enclosure Heights on Diffusion Height of Dust Particles

By setting an enclosure, the diffusion of NPSD particles from the construction area to
the residential area can be effectively prevented. However, driven by airflow, a portion of
the particles escape over the enclosure toward the residential area. Therefore, atomization
nozzles can be installed above the enclosure to prevent further particle diffusion. Never-
theless, an atomizer with an exceedingly high spray height can result in waste of water
resources, whereas a comparatively low injection height can be less effective at preventing
particle diffusion. Therefore, it is of great economic and environmental advantage to inves-
tigate the diffusion height of NPSD particles over the enclosure and the optimal injection
height of atomization nozzles considering different enclosure heights and wind speeds.

In this study, to investigate the diffusion law of NPSD particles in the construction
area considering different wind speeds and enclosure heights, five initial horizontal wind
speeds (1, 2, 3, 4, and 5 m/s) are selected considering that outdoor engineering activities
are halted under strong winds and severe weather conditions. The calculation time of the
numerical simulation is set to 240 s, and particle monitoring zone L shown in Figure 6 is
selected. The diffusion height of NPSD particles in the monitoring zone under different
enclosure heights and wind speeds is calculated for 240 s. Figure 7 describes the diffusion
height distribution of NPSD particles above the enclosure under different enclosure heights
and wind speeds. According to Figure 7, it can be indicated that under various working
conditions, the diffusion height sample points of NPSD particles above the enclosure are
fundamentally concentrated in the diffusion range 1.5–2.0 m. When the enclosure height is
2 m and the wind speed is 4 m/s, the percentage of sample points in the 1.5–2.0 m range
reaches 90.42%, which is the highest proportion achieved. When the enclosure height is
3.5 m and wind speed is 1 m/s, the proportion of sample points in this range is relatively
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low. As shown in Figure 7a, when the initial horizontal wind speed is 1 m/s, the diffusion
height of the particles increases with the enclosure height. When the enclosure height is
3.5 m, the number of samples whose particle diffusion height range is more than 2.5 m
is 13, accounting for 8.75% of the samples. When the wind speed increases, the effect of
the enclosure height on the particle diffusion height gradually decreases. The foregoing
analysis indicates that when the wind speed is 1–5 m/s and the enclosure height is 2–3.5 m,
the diffusion height of NPSD particles above the enclosure is less than 2 m. Therefore, an
optimal injection height of the atomizing nozzle above the enclosure is 2 m.
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4.5. Comprehensive Control of NPSD

During municipal road construction, all types of construction activities may generate
and diffuse dust, which can jeopardize the environmental quality and residential health.
Therefore, it is necessary to investigate the diffusion behavior of NPSD in municipal
road construction and propose effective dust control measures. Based on the generation
conditions and the numerical output of the NPSD diffusion behavior in this study, the
source governance and suppression analysis of non-point dust and corresponding control
suggestions are presented in this section.

(1) Source control of NPSD: At a construction site, filling and excavation, concrete
mixing, transportation and processing of building materials, and airflow on the surface of
exposed soil and construction waste dump, etc., can easily lead to the generation of NPSD
particles. In this regard, three strategies including construction of roads with a hard base,
sand stacking with cover, and bare land greening and covering can be adopted to reduce
the interaction between the free particles on the surface and airflow, thus reducing dust
production. The following specific measures can be implemented: (a) The ground at the
entrance and exit of the construction site is built with a hard base to reduce the amount of
loose soil and the production of dust particles during material transport. (b) Bulk materials,
such as sand and gravel mounds, are concentrated, classified, and covered or sprinkled to
prevent dust formation. (c) Temporary wastes, such as construction waste, must be cleared
and transported immediately. A temporary dump site can also be set up at the construction
site where dust control measures (such as water sprinkling and use of dustproof nets
as cover) must be implemented. (d) Exposed ground sites and mounds or slopes at the
construction site can be covered with dustproof nets.

(2) External interception of NPSD: The erection of construction site enclosures and
water sprinkling of these enclosures can intercept dust particles during diffusion, as shown
in Figure 8. It was observed in Section 4.3 that when the enclosure height is 3~3.5 m, the
dust concentration in most parts of the residential area can be reduced to 40 µg/m3. The
concentration of particulate matter meets the emission standard. Therefore, the enclosure
height of construction sites near main road sections and residential areas in the city must
exceed 3 m, while the enclosure height of construction sites on secondary areas can be ap-
propriately reduced. Moreover, an automatic atomization nozzle is set above the enclosure
with the injection height set above 2 m to intercept particles escaping from the construction.
Furthermore, an automatic information collection module can also be used to monitor the
wind speed and concentration of dust particles in the construction area and regulate the
operation of the atomization nozzle automatically. In addition, the area surrounding the
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construction enclosure must be regularly cleaned to prevent the accumulated particles on
both sides of the enclosure that could subsequently rise and spread.
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5. Conclusions

In this study, a NPSD diffusion model based on the gas-solid two-phase flow model is
established using the FLUENT software. The influence of different enclosure heights on the
dust diffusion law of non-point sources is numerically simulated. Based on the numerical
results, the following conclusions are drawn.

(1) The construction enclosure has a significant influence on the airflow in construction
and residential areas. When there is no enclosure, the airflow is continuous and uniform
in the global range of the model. Moreover, wind speed and direction do not change
significantly. With the enclosure, the construction and residential areas generate three types
of characteristic flow fields including rising, confluence, and vortex areas. Additionally,
the influence range of the eddy backflow region increases in these areas with the height of
the enclosure.

(2) The physical blocking effect of the construction enclosure leads to three charac-
teristic airflow areas, which have a significant impact on the diffusion behavior of dust
from non-point sources. When the enclosure is not erected, the diffusion of NPSD particles
has no distinct fluctuation, and numerous particles migrate from the construction area
to the residential area. After setting the enclosure, numerous particles accumulate on
both sides of the enclosure owing to its blocking and eddy effects. In addition, with an
increase in enclosure height, the diffusion range of dust particles in the residential area
increases, and the particle concentration decreases. When the enclosure height is 3 m, the
PM concentration in most of the residential area is reduced to 40 µg/m3.

(3) Based on the generators of NPSD particles and the numerical output of particle
diffusion behavior, this study proposes strategies for the prevention and control of NPSD
considering source control and external interception. The generation and diffusion of
NPSD particles can be suppressed from the source by constructing roads with a hard base,
covering the sand yard, and greening and covering exposed soil. Furthermore, construction
enclosures can be used to close the construction area, and atomization nozzles can be
installed above the enclosure to intercept the NPSD, thereby reducing the diffusion of dust
particles toward residential areas.
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