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ABSTRACT

This article investigates the flow and mass transportation characteristics in the peristaltic motion configured by a heated curved channel. The
coupling between momentum and energy equation is achieved using the Boussinesq approximation. The equations describing the flow and
heat/mass transfer are developed using curvilinear coordinates. A reduction of these equations is made based on the lubrication approxi-
mation. The reduced linear ordinary differential equations are integrated numerically using an implicit finite difference scheme. The effects
of thermal and concentration Grashof numbers, Hartmann number, Brinkmann number, and curvature parameter on longitudinal velocity,
pressure rise, temperature, and mass concentration are analyzed in detail. It is found that the temperature field is enhanced with an increase
in the thermal Grashof number and Hartmann number, while the mass concentration decreases with an increase in the thermal Grashof
number and Hartmann number. The flow patterns in the channel illustrating the effects of Grashof numbers, Brinkmann number, and Hart-
mann number are also displayed. It is observed that flowmovements become intense for greater values of Brinkman number, thermal Grashof
number, and Hartmann number.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0010964., s

I. INTRODUCTION

The flow problems related to the mixed convection flows
encountered valuable applications in engineering and industrial
areas. Themixed convection is associated with the collective features
of forced convection and natural convection in the heat transporta-
tion process. The most glowing demonstration of this mixed con-
vection is the movement of the temperature stratified mass of water
and air prospective of Earth, which are comprehensively investi-
gated in the geophysics. In many engineering devices, the role of the
mixed convection cannot be denied at themicro-scale level. The heat
transfer process in human brain, liver, and skeletal muscle contrac-
tion includes the application of this interesting phenomenon. The
important phenomena of mixed convection are extensively studied

in the context of the boundary layer and peristaltic flows. We shall
first present a brief review of the recent literature on mixed convec-
tive boundary layer flows and then turn back to important recent
literature on mixed convective peristaltic flows. Ramachandran
et al.1 utilized the influence of mixed convection features in the stag-
nation point study of the moving heated surface for which the wall
temperature and the surface heat flux were assumed to be of a vari-
able nature. Chamkha et al.2 studied the effects of mixed convection
on unsteady flow over a stretching surface. Lok et al.3 analyzed two-
dimensional steady flow of micropolar fluid in the presence of mixed
convection features configured by a vertical surface. The proposed
flow model is based on the consideration of the stagnation point
and uniform shear flow that are taken parallel to the stretched sur-
face. The investigation that deals with the slip flow of viscous fluid
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also featuring mixed convection consequences was reported by
Rohni et al.4 Lok et al.5 worked on the non-orthogonal stagna-
tion point mixed convective flow of micropolar liquid confined by
a vertical geometry. Prasad et al.6 investigated mixed convective
flow of fluid with variable properties over a non-linear stretching
surface. The utilization of slip characteristics in convective flow
induced due to the heated flat surface was worked out by Bhat-
tacharyya et al.7 The mixed convection prospective of the nanoma-
terial through a porous space has been pointed out by Rana et al.8

Rosali et al.9 also pointed out the importance of mixed convec-
tion due to the porous cone with the utilization of convective wall
constants. Vajravelu et al.10 presented a comprehensive study on
mixed convection with heat and mass transfer of Ostwald-de Waele
fluid over a vertical stretching sheet. Some dual solutions based on
a numerical algorithm regarding a mixed convection flow prob-
lem have been successfully targeted by Ishak et al.11 Abbas et al.12

examined the mixed convective stagnation-point flow of a Maxwell
fluid toward a vertical stretching surface. Jamaludin et al.13 exam-
ined a three-dimensional mixed convection stagnation-point flow
over a permeable vertical surface. The thermally saturated andmixed
convective flow of viscous fluid with the interesting features of
viscous dissipation and Joule heating through a porous stretched
surface was numerically investigated by Chen.14 Turkyilmazoglu15

studied mixed convective heat transfer over a permeable stretch-
ing surface analytically with magnetohydrodynamic effects. Aydin
and Kaya16 examined mixed convective viscous flow over a verti-
cal flat plate. The mixed convection features regarding the inves-
tigation of stagnation point flow encountered by a lubricated sur-
face was numerically explored by Mahmood et al.17 Bhatti et al.18

examined the mixed convection aspects in blood flow of nanopar-
ticles containing gyrotactic microorganisms through tapered arter-
ies. Zhang et al.19 investigated mixed convection flow of nanofluid
with gyrotactic microorganisms encountered by rotating circular
plates.

The flow induced due to sinusoidally deformed vessel walls is
commonly known as peristaltic flow. Peristaltic flows are caused by
rythmic contractions and relaxations of smooth muscles of the ves-
sel. Peristalsis is a major mechanism found in the human body for
physiological fluid transport. Examples of physiological fluids trans-
ported by peristaltic activity are spermatic fluid, chyme, blood, and
urine.Modernmachines which operate on the principle of peristalsis
are roller and finger pumps, diabetic pumps, pharmacological deliv-
ery systems, heart-lung machine, etc. Eldabe et al.20 involved tem-
perature dependent viscosity consequences of the peristaltic move-
ment of viscoelastic fluid. The mixed convection characteristics in
the peristaltic motion of viscous fluid confined by an asymmetric
channel have been observed by Srinivas et al.21 Another useful the-
oretical contribution performed by Srinivas and Muthuraj22 con-
cerned with peristaltic flow in an asymmetric channel under the
additional influence of a chemical reaction and porous space. The
mixed convection aspects in peristaltic flow controlled by slip con-
straints is reported by Noreen et al.23 Shehzad et al.24 highlighted
the thermophoretic aspects in the peristaltic pattern of nanoparti-
cles with mixed convection feature. The peristaltic flow procedure
in the inclined channel filled by the nanoparticles with the impact
of wall slip has been surveyed by Abbasi et al.25 Tanveer et al.26

discussed shear-thinning and shear-thickening effects in mixed con-
vective peristaltic flow of Sisko fluid. The peristaltic motion for the

convective flow of magnetized Carreau fluid assumed in a curved
channel was scrutinized by Hayat et al.27 In another attempt,
Hayat et al.28 introduced variable properties for the peristaltic
flow phenomenon with the external features of a magnetic field.
The heat transfer characteristics in peristaltic flow of viscous
fluid in the presence of Hall current features was investigated by
Bhatti et al.29 Other investigations on this topic may be found
in Refs. 30–34.

The existing literature surveyed by the author deals with non-
isothermal peristaltic flows of different non-Newtonian fluids in
the planar channel, axisymmetric tube, curved channel, or a rect-
angular duct. However, less attention is given to the simultane-
ous effects of heat and mass transfer in peristaltic flow through
the curved geometry. The purpose of the present research is to
investigate the peristaltic flow with heat and mass transfer in a
curved channel through the use of different non-Newtonian fluid
models. Motivated by this fact, the research carried out in this
thesis provides the improvement of existing mathematical models
of the peristaltic transport of Newtonian and generalized Newto-
nian fluids, interpretation of the fundamental equations, and exam-
ination of different key factors on flow and heat/mass transfer
features.

From the literature cited above, it has been visualized that the
mixed convective peristaltic flow through a curved channel is stud-
ied but less attention is paid to mixed convective heat and mass
transfer in hydromagnetic peristaltic flow through a curved chan-
nel with the Joule heating effect. Therefore, the prime objective of
this study is to investigate the effects of Grashof number, Hartmann
number, Brinkmann number, and dimensionless radius of curvature
on flow, heat, and mass transfer characteristics. It is remarked that
no such investigation in flow through the curved channel has been
presented in the literature and, subsequently, this investigation aims
to fill this gap. The current investigation deals with peristaltic pump-
ing that encountered interesting medical instrument applications
like blood pump and heart lung devices. Some more fundamental
applications associated with the current work involve the transport
of urine from kidney to bladder via the ureter, ovum movement
associated with the fallopian tube, food swallowing in the esophagus,
circulation of blood in blood vessels, etc.

To this end, the governing equations for velocity, tempera-
ture, and mass concentration are modeled. The modeled system is
solved numerically with the help of the finite difference scheme. The
fluid velocity, temperature, and concentration fields are analyzed for
several values of involved parameters.

II. FLOW MODEL

In order to develop the governing equations for peristaltic flow
problem, we assume a curved channel having width 2w coiled circu-
larly, which have center O and radius R0, as illustrated in Fig. 1. It
is assumed that the curved channel is filled with homogeneous fluid
for which flow is incompressible. The flow has been induced due to
the sinusoidal deformation of the walls of the channel. The magnetic
field is imposed in the radial direction. Let c and a represent, respec-
tively, the waves propagating and amplitude in channel boundaries.
The upper wall of the channel is driven at a constant temperature T0,
while the lower surface of the channel is confined to temperature T1.
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FIG. 1. Geometry of the problem.

The whole flow system is modeled in a curvilinear coordinate sys-
tem (R, χ, Z), where R is suggested in the radial direction, χ has been
assumed in the direction of fluid flow, while Z is taken perpendicular
to the plane confined by R and χ.

The shape of both walls is described mathematically as

H1(χ, t) ≙ w + a sin((2π
λ∗
)(χ − ct)), Upper wall, (1)

H2(χ, t) ≙ −w − a sin((2π
λ∗
)(χ − ct)), Lower wall, (2)

where λ∗ is the wavelength and t is the time. We use the following
associated equations to model the current flow problem:

∇ ⋅U ≙ 0, (3)

ρ
dU

dt
≙ ∇ ⋅ τ−ρg⃗β(T − T0) − ρg⃗β(C − C0) + J × B, (4)

ρcp
dT

dt
≙ k∇

2
T + μΦ +

σB0
2R̃2

(R + R̃)2U2
, (5)

dC

dt
≙ D∇

2
C +

DKT

Tm
∇

2
T. (6)

Some physical variables in above equations τ, U, T, cp, μ, k, σΦ, and
ρ indicate the Cauchy stress tensor, velocity, temperature, specific
heat constant, viscosity, thermal conductivity, dissipation function,
Stefan–Boltzman constant, and fluid density, respectively.

The radial magnetic field B is given by

B ≙ ( B∗R̃

R + R̃
)eR, (7)

where B∗ is the characteristic magnetic induction in the limit R̃→∞
and eR is the unit vector in the radial direction. It is pointed out here
that the magnetic field given by Eq. (7) is solenoidal and satisfies
Maxwell’s equations.

Using Eq. (7), the term J × B in Eq. (4) is given by

J × B ≙ −
⎛⎝σB

∗2U2R̃
2

(R + R̃)2
⎞⎠eX , (8)

where eX denotes the azimuthal direction unit vector.
Assuming U = [U1(χ, R, t), U2(χ, R, t), 0], and T = T(χ, R, t),

Eqs. (3)–(6) yield

R̃(∂U2

∂χ
) + ∂

∂R
{(R + R̃)U1} ≙ 0, (9)

∂U1

∂t
+U1

∂U1

∂R
+

RU2

R + R̃

∂U1

∂χ
−

U2
2

R + R̃

≙ −
1

ρ

∂P

∂R
+ υ

⎡⎢⎢⎢⎢⎣
1

R + R̃

∂

∂R
{(R + R̃)∂U1

∂R
} + ( R̃

R + R̃
)2 ∂2U1

∂χ2

−
U1(R + R̃)2 −

2R̃

(R + R̃)2
∂U2

∂χ

⎤⎥⎥⎥⎥⎦, (10)

∂U2

∂t
+U1

∂U2

∂R
+

R̃U2

R + R̃

∂U2

∂χ
+
U2U1

R + R̃

≙ −
R̃

ρ(R + R̃) ∂P∂χ + ν
⎡⎢⎢⎢⎣

1(R + R̃) ∂

∂R
{(R + R̃)∂U2

∂R
}

+( R̃

R + R̃
)2 ∂2U2

∂χ2
−

U2(R + R̃)2 +
2R̃

(R + R̃)2
∂U1

∂χ

⎤⎥⎥⎥⎥⎦
− ρg⃗β(T − T0) − ρg⃗β(C − C0) − σB∗2R̃2U2(R + R̃)2 , (11)

ρcp[∂T
∂t

+ U1
∂T

∂R
+

R̃U2

R + R̃

∂T

∂χ
]

≙ k
⎛⎝ 1(R + R̃) ∂

∂R
{(R + R̃)∂T

∂R
} + ( R̃

R + R̃
)2 ∂2T

∂χ2
⎞⎠ + μ[2(∂U1

∂R
)2

+( R̃

R + R̃

∂U1

∂χ
−

U2

R + R̃
)(∂U2

∂R
+

R̃

R + R̃

∂U1

∂χ
−

U2

R + R̃
)

+
∂U2

∂R
(∂U2

∂R
+

R̃

R + R̃

∂U1

∂χ
−

U2

R + R̃
)

+2( R̃

R + R̃

∂U2

∂χ
+

U1

R + R̃
)] + σB∗

2
R̃2

(R + R̃)2U2
2
, (12)

[ ∂
∂t

+ U1
∂

∂R
+

R̃U2

R + R̃

∂

∂X
]C

≙ D
⎛⎝ ∂

2

∂R2
+

R̃

R + R̃

∂

∂R
+ ( R̃

R + R̃
)2 ∂

2

∂X2

⎞⎠C
+
DKT

Tm

⎛⎝∂
2T

∂R2
+

R̃

R + R̃

∂T

∂R
+ ( R̃

R + R̃
)2 ∂2T

∂X2

⎞⎠. (13)

The boundary conditions associated with Eqs. (9)–(13) are

U2 ≙ 0, U1 ≙
∂H1

∂t
, T ≙ T0, C = C0, at R = H1(χ, t), (14)

U2 ≙ 0, U1 ≙
∂H2

∂t
, T ≙ T1, C = C1, at R ≙ H2(χ, t). (15)
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The following transformations are used to convert the problem
from the fixed frame (R, χ) to the new wave frame(r, x):

x ≙ χ − ct, r ≙ R, p ≙ P, u1 ≙ U1, u2 ≙ U2 − c, T ≙ T. (16)

Substituting the above quantities, we obtained the following set
of flow equations in the wave frame:

∂

∂r
{(r + R̃)u1} + R̃

∂u2

∂x
≙ 0, (17)

− c
∂u1

∂x
+ u1

∂u1

∂r
+
R̃(u2 + c)
r + R̃

∂u1

∂x
−
(u2 + c)2
r + R̃

≙ −
1

ρ

∂P

∂r
+ υ[ 1

r + R̃

∂

∂r
{(r + R̃)∂u1

∂r
}

+( R̃

r + R̃
)2 ∂2u1

∂x2
−

u1(r + R̃)2 −
2R̃

(r + R̃)2
∂u2

∂x

⎤⎥⎥⎥⎥⎦, (18)

− c
∂u2

∂x
+ u1

∂u2

∂r
+
R̃(u2 + c)
r + R̃

∂u2

∂x
−
(u2 + c)u1

r + R̃

≙ −
R̃

ρ(r + R̃) ∂P∂x + ν
⎡⎢⎢⎢⎣

1(r + R̃) ∂

∂r
{(r + R̃)∂u2

∂r
}

+( R̃

r + R̃
)2 ∂2u2

∂x2
−

u2(r + R̃)2 +
2R̃

(r + R̃)2
∂u1

∂x

⎤⎥⎥⎥⎥⎦
− ρg⃗β(T − T0) − ρg⃗β(C − C0) − σB∗2R̃2(u2 + c)

(r + R̃)2 , (19)

ρcp[−c∂T
∂x

+ u1
∂T

∂r
+
R̃(u2 + c)
r + R̃

∂T

∂x
]

≙ k
⎛⎝ 1(r + R̃) ∂

∂r
{(r + R̃)∂T

∂r
} + ( R̃

r + R̃
)2 ∂2T

∂x2
⎞⎠ + μ[2(∂u1∂r

)2

+( R̃

r + R̃

∂u1

∂x
−
(u2 + c)
r + R̃

)(∂u2
∂r

+
R̃

r + R̃

∂u1

∂x
−
(u2 + c)
r + R̃

)
+
∂u2

∂r
(∂u2
∂r

+
R̃

r + R̃

∂u1

∂x
−
(u2 + c)
r + R̃

)
+2( R̃

r + R̃

∂u2

∂x
+

u1

r + R̃
)] + σB∗

2
R̃2

(r + R̃)2 (u2 + c)2, (20)

Re[δ∂ϕ
∂x

+ u1
∂ϕ

∂η
+
δk(u2 + 1)
η + k

∂ϕ

∂x
]

≙

1

Sc

⎛⎝∂
2ϕ

∂η2
+

1

η + k

∂ϕ

∂η
+ δ

2( k

η + k
)2 ∂2ϕ

∂x2
⎞⎠

+ Sr
⎛⎝∂

2ϕ

∂η2
+

1

η + k

∂ϕ

∂η
+ δ

2( k

η + k
)2 ∂2ϕ

∂x2
⎞⎠. (21)

The following dimensionless variables are defined to render the
above equations in the normalized form:

x̄ ≙
2π

λ∗
x, η ≙

r

a1
, ū1 ≙

u1

c1
, ū2 ≙

u2

c1
, p̄ ≙

2πa1
2

λ∗μc
p, δ ≙

2πa1

λ∗
, Re ≙

ρca1

μ
, Ha ≙ a1B

∗

√
σ

μ
,

γ ≙
R̃

a1
, θ ≙

T − T1

T0 − T1
, ϕ ≙

C − C1

C0 − C1
, Br ≙

μc2

k(T0 − T1) , GrC ≙ a2ρg⃗β(C − C0)
μc

, GrT ≙
a3g⃗β(T0 − T1)

ν2
.

(22)

In above equations, Re, δ, γ, and K∗ represent the Reynolds num-
ber, the wave number, and the dimensionless radius of curvature,
respectively.

In view of dimensionless parameters defined in Eq. (22), we
further suggest the following stream functions:

u1 ≙ δ
γ

η + γ

∂ψ

∂x
, u2 ≙ −

∂ψ

∂η
. (23)

Equation (17) is identically satisfied and Eqs. (18)–(21) after
employing long wavelength and low Reynolds approximations
contract to

∂p

∂η
≙ 0, (24)

−
∂p

∂x
−
1

γ
( ∂

∂η
{(η + γ)∂2ψ

∂η2
} + 1

η + γ
(1 − ∂ψ

∂η
))

+
GrTθ(η + γ)

Re γ
+
GrCϕ(η + γ)

Re γ
−
γHa2

η + γ
(1 − ∂ψ

∂η
) ≙ 0, (25)

∂
2θ

∂η2
+

1(η + γ) ∂θ∂η + Br(− 1

η + γ
(1 − ∂ψ

∂η
) − ∂

2ψ

∂η2
)2

+
BrHa2γ2(η + γ)2 (1 − ∂ψ

∂η
)2 ≙ 0, (26)

1

Sc
(∂2ϕ

∂η2
+

1(k + η) ∂ϕ∂η) + Sr(∂2θ

∂η2
+

1(k + η) ∂θ∂η) ≙ 0. (27)
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After eliminating the pressure from Eqs. (24) and (25), we
obtained the following associated differential equation:

∂

∂η
[1
γ
( ∂

∂η
{(η + γ)∂2ψ

∂η2
} + 1

η + γ
(1 − ∂ψ

∂η
)) − GrTθ(η + γ)

Re γ

+
ϕGrC(η + k)

k
+
γHa2

η + γ
(1 − ∂ψ

∂η
)]. (28)

Similarly, the constituted boundary conditions for the formu-
lated flow problem are

ψ ≙ −
q

2
,
∂ψ

∂η
≙ 1, θ ≙ 0, ϕ ≙ 0, at η ≙ h1 ≙ 1 + λ sin x, (29)

ψ ≙
q

2
,
∂ψ

∂η
≙ 1, θ ≙ 1, ϕ ≙ 1, at η ≙ h2 ≙ −1 − λ sin x, (30)

where λ = a/w symbolized the amplitude ratio. Now, we aim to
simulate the solution of Eqs. (26)–(28) with the help of boundary
assumptions (29) and (30). Now, we make relations for the pressure
rise per wavelength (Δp), the coefficient of heat transfer zi(i = 1, 2),
and Sherwood number Shi(i = 1, 2) at upper and lower surfaces as
follows:

Δp ≙

2π

∫
0

dp

dx
dx, (31)

z ≙
∂hi

∂x

∂θ

∂η
∣
η=hi

, i ≙ 1, 2. (32)

Sh ≙
∂hi

∂x

∂ϕ

∂η
∣
η=hi

, i ≙ 1, 2. (33)

III. FINITE DIFFERENCE SCHEME

Although Eqs. (26)–(28) are linear ordinary differential equa-
tions, their closed form solutions are difficult to obtain. Therefore,
these transmuted equations are numerically treated by following the
numerical procedure. For this, we employ the implicit finite dif-
ference technique to obtain numerical results. In this technique,
the original flow equations are transmuted into a linear one at the
(m + 1)th iterative step.We employ the following iterative procedure
to start the numerical computations:

∂
4ψ(m+1)

∂η4
+

2∂3ψ(m+1)

(η + γ)∂η3 − { 1(η + γ)2 +
γ2Ha2(η + γ)2 }∂

2ψ(m+1)

∂η2

+{− 1(η + γ)3 +
γ2Ha2(η + γ)3 }∂ψ

(m+1)

∂η

−
GrTθ

Re(η + γ) + GrCϕ

Re(η + γ) − 1(η + γ)3 − γ2Ha2(η + γ)3 ≙ 0, (34)

∂
2θ(m+1)

∂η2
+

1

γ + η

∂θ(m+1)

∂η
≙ −Br(− 1

γ + η
(1 − ∂ψ(m)

∂η
) − ∂

2ψ(m)

∂η2
)2

−
BrHa2γ2(γ + η)2 (1 − ∂ψ(m)

∂η
)2, (35)

∂
2ϕ(m+1)

∂η2
+

1

η + k

∂ϕ(m+1)

∂η
≙ −SrSc(∂2θ(m)

∂η2
+

1(k + η) ∂θ
(m)

∂η
),
(36)

ψ
m+1
≙ −

q

2
,
∂ψm+1

∂η
≙ 1, θ

(m+1)
≙ 0, ϕ

(m+1)
≙ 0, at η ≙ h1, (37)

ψ
(m+1)

≙

q

2
,
∂ψ(m+1)

∂η
≙ 1, θ

(m+1)
≙ 1, ϕ

(m+1)
≙ 1, at η ≙ h2, (38)

where the index (m) shows the iterative step.
In the next step, we insert the finite difference approximations

of ψ(m+1), θ(m+1), ϕ(m+1), and their derivatives into Eqs. (34)–(36).
In this way, we get a system of linear algebraic equations at each
iterative step. These algebraic equations are solved at each cross

section to get the numerical results of ψ(m+1), θ(m+1), and ϕ(m+1).

For this purpose, appropriate initial guesses are required for ψ(m),

θ(m), and ϕ(m) at each cross section to start the iterative procedure.
For present computation, linear initial guesses (only satisfying the
Dirichlet boundary conditions) are used. The iterative procedure
at each cross section is carried out until a convergent solution is
reached. The convergent solution is obtained rapidly by the method

of successive under-relaxation. In this method, the values of ψ̃(m+1),

θ̃(m+1), and ϕ̃(m+1) at the (m + 1)th iterative step are used to define

convergent values ψ(m+1), θ(m+1), and ϕ(m+1) at the same step as
follows:

ψ
(m+1)

≙ ψ
(m)

+ τ(ψ̃(m+1)
− ψ

(m)),
θ
(m+1)

≙ θ
(m)

+ τ(θ̃(m+1)
− θ
(m)),

ϕ
(m+1)

≙ ϕ
(m)

+ τ(ϕ̃(m+1)
− ϕ
(m)),

(39)

where τ is the under relaxation parameter usually assumed small.
Finally, in this way, the values of ψ, θ, and ϕ are achieved.

IV. COMPUTATIONAL RESULTS
AND INTERPRETATION

The computations carried out using the aforementioned
method are displayed in terms of velocity profiles, pressure rise
per wavelength profiles, temperature and concentration profiles,
and streamline contours. The truncation in the coefficient of heat
transfer at the upper wall is also preceded.

The axial velocity profiles for some specific values of thermal
Grashof number (GrT), concentration Grashof number (GrC), Hart-
mann number (Ha), and curvature parameter (γ), are shown in
Figs. 2–5, respectively. Figure 2 shows an increase in the ampli-
tude of the axial velocity with an increase in the thermal Grashof
number. Thermal Grashof number is a parameter based on rela-
tive magnitudes of buoyancy and viscous forces. Larger values of
Grashof number correspond to the situation in which buoyancy
effects are dominant over the viscous effects. Now, due to the cur-
vature in the channel, it is naturally anticipated that the flow velocity
will be asymmetric for smaller values of thermal Grashof number,
i.e., for weaker buoyancy effects. Figure 2 confirms the anticipated
asymmetric profile for thermal Grashof number GrT = 0 with the
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FIG. 2. u2(η) for various values of GrT with γ = 2, Ha = 0.5, λ = 0.4, GrC = 2, and
Θ = 1.5.

maximum lying below η = 0. For increasing values of GrT , the buoy-
ancy effects dominate the viscous effects and shift the maxima in
axial velocity profiles above η = 0. Therefore, it is concluded that
GrT plays a valuable role in counteracting the influence of the cur-
vature and facilitates the axial velocity to regain symmetry. This
observation is quite interesting and it may find application in sce-
narios where it is desired to minimize the effects of the curvature
without changing the geometry of the channel. This observation
also highlights the role of the thermal field in tuning the transport
process without altering the geometrical and rheological parame-
ters of the model. The role of the rheological features of the fluid
in tuning the transport in a curved channel is already highlighted
by Bhatti et al.29 Figure 3 presents the profiles of the axial veloc-
ity for several values of the concentration Grashof number GrC. The
concentrationGrashof number is a parameter based on relativemag-
nitudes of the buoyancy force due to concentration gradients and
the viscous force. Larger values of GrC correspond to the situation
in which the buoyancy force due to concentration gradients is large.

FIG. 3. u2(η) for various values of GrC with γ = 2, Ha = 0.5, λ = 0.4, GrT = 0.2,
and Θ = 1.5.

FIG. 4. u2(η) for various values of Ha with γ = 2, GrT = 0.2, λ = 0.4, GrC = 2, and
Θ = 1.5.

Contrary to Figs. 2 and 3 shows that an increase in the concentration
Grashof number shifts the maxima in the velocity profile toward the
lower wall of the channel. In this way, an increase in the concen-
tration Grashof number intensifies the effect of the curvature. The
effects of the Hartmann number on the axial velocity are displayed
in Fig. 4. The Hartmann number is a parameter number based on
relative magnitudes of magnetic force and viscous force. Larger val-
ues of the Hartmann number correspond to the situation in which
the magnetic force dominates the viscous force. It is observed that
an increase in the Hartmann number suppresses the velocity in the
upper part of the channel. The suppression is due to the fact that
the Lorentz force due to the magnetic field acts as a resistance to the
flow due to peristalsis. However, suppression in the axial velocity
amplitude is not observed over the entire cross section. In fact, the
velocity in the lower part of the channel increases with an increase in
the Hartmann number in order to maintain the prescribed flow rate
boundary condition. Figure 5 displays the effect of the dimensionless
radius of the curvature parameter γ on the axial velocity. This figure

FIG. 5. u2(η) for various values of γ with GrT = 0.2, Ha = 0.5, λ = 0.4, GrC = 2,
and Θ = 1.5.
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clearly demonstrates asymmetry in the axial velocity for decreasing
values of γ.

Figures 6–9 demonstrate the effect of different parameters on
the pressure rise per wavelength. Figure 6 depicts the effect of
the thermal Grashof number GrT on Δp. It is noticed that the
pressure rise per wavelength increases with an increase in GrT in
all three regions, namely, peristaltic pumping region, free pump-
ing region and co-pumping region. Figure 7 shows the effect of
the concentration Grashof number GrC on Δp. A reverse trend is
noted here, i.e., the pressure rise per wavelength decreases with an
increase in GrC in all three regions. The profiles of the pressure
rise per wavelength for different values of Ha (Hartmann number)
are shown in Fig. 8. In the pumping region (Θ > 0, Δp > 0), the
pressure rise per wavelength increases with an increase in Ha. The
situation is different in free pumping (Δp = 0) and co-pumping
regions (Θ > 0, Δp < 0). Here, Δp decreases with an increase in Ha.

FIG. 6. Δp for various values of GrT with γ = 2, Ha = 0.5, λ = 0.4, GrC = 2, and
Θ = 1.5.

FIG. 7. Δp for various values of GrC with γ = 2, Ha = 0.5, λ = 0.4, GrT = 0.2, and
Θ = 1.5.

FIG. 8. Δp for various values of Ha with γ = 2, GrT = 0.2, λ = 0.4, GrC = 2, and
Θ = 1.5.

FIG. 9. Δp for various values of γ with GrT = 0.2, Ha = 0.5, λ = 0.4, GrC = 2, and
Θ = 1.5.

Figure 9 depicts the effect of the non-dimensional radius of the
curvature on Δp. It is observed that Δp increases with an increase
in γ in all three regions. Both figures clearly highlight the signif-
icant effects of the buoyancy force, magnetic force, and curvature
on Δp. In fact, the resistance offered by the pressure gradient to
peristaltic flow can be minimized by suitable choice of the involved
parameters.

The profiles of the temperature field for different values of the
thermal Grashof number (GrT), Brinkman number (Br), and Hart-
mann number (Ha) are shown through Figs. 10–12. It is noted that
θ(η) increases over the entire cross section with an increase in each
of GrT , Br, andHa. The increase in θ(η) with an increase in GrT and
Ha is due to the retarding effect of these parameters on the veloc-
ity u(η). The Brinkmann number is a parameter that is the ratio of
viscous heat to the heat transported by conduction. Larger values
of the Brinkmann number correspond to the scenario when heat
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FIG. 10. θ(η) for various values of GrT with γ = 2, Ha = 0.5, λ = 0.4, Br = 2, and
Θ = 1.5.

FIG. 11. θ(η) for various values of Br with γ = 2, Ha = 0.5, λ = 0.4, GrT = 0.2, and
Θ = 1.5.

FIG. 12. θ(η) for various values of Ha with γ = 2, GrT = 0.2, λ = 0.4, Br = 2, and
Θ = 1.5.

generated due to viscous dissipation is dominant. In such a situa-
tion, the enhanced temperature distribution in the curved channel is
apparently justified.

Figures 13–15 report changes in the heat transfer coefficient (z)
at both walls of the channel with the variation of GrT , Br, and Ha.
A periodic oscillation in the distribution of z has been noticed due
to the fact that the walls of the channel are assumed to be oscilla-
tory. Maximum values of these parameters enhance the amplitude
of oscillations effectively.

The effect of GrT (thermal Grashof number), Br (Brinkman
number),Ha (Hartmann number), and GrC (concentration Grashof
number) on the mass transfer is demonstrated through Figs. 16–19.
It is observed that ϕ(η) decreases with an increase inGrT , Br, andHa,
respectively. In contrast, the profile of ϕ(η) improves with leading
values of GrC.

FIG. 13. z for various values of GrT with γ = 2, Ha = 0.5,λ = 0.4, Br = 0.5, and
Θ = 1.5.

FIG. 14. z for various values of Br with γ = 2, Ha = 0.5, λ = 0.4, GrT = 0.2, and
Θ = 1.5.
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FIG. 15. z for various values of Ha with γ = 2, Br = 0.5, λ = 0.4, GrT = 0.2, and
Θ = 1.5.

FIG. 16. ϕ(η) for various values of GrT with γ = 2, Br = 0.5, λ = 0.4, Sr = 1.5,
Sc = 1.2, and Θ = 1.5.

FIG. 17. ϕ(η) for various values of Br with γ = 2, GrT = 0.2, λ = 0.4, Sr = 1.5,
Sc = 1.2, and Θ = 1.5.

FIG. 18. ϕ(η) for various values of Ha with γ = 2, GrT = 0.2, λ = 0.4, Sr = 1.5,
Sc = 1.2, and Θ = 1.5.

FIG. 19. ϕ(η) for various values of GrC with γ = 2, GrT = 0.2, λ = 0.4, Sr = 1.5,
Sc = 1.2, and Θ = 1.5.

The streamlines of flow inside the channel for different values
of Br (Brinkman number), GrT (Grashof number), and Ha (Hart-
mann number) are shown in Figs. 20–22. The objective is to inves-
tigate the trapping phenomenon. Figure 20 shows the effect of Br
on streamlines. For Br = 0.1, two circulating rolls exist in the chan-
nel. The lower roll increases in size, while the upper one reduces
with an increase in Br. The two circulating cells in the lower roll
also merge into a single cell with an increase in Br. Figure 21 facili-
tates to examine the consequences of GrT on streamlines. Figure 21
shows a complex streamlines pattern with multiple circulating cells
for GrT = 0.1. All these cells merge into a single circulating roll with
an increase in GrT . Figure 22 portrays the effects of the Hartmann
number on streamlines. For Ha = 0.6, two circulating rolls can be
identified in the flow field. The upper one in the vicinity of the upper
wall is smaller in size than the lower one. The inner most circulating
cells in the lower roll splits into circulating cells with an increase in
the Hartmann number.
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FIG. 20. Variation of Br for (a) 0.1, (b) 0.2, and (c) 0.3. The other parameters chosen are γ = 2, Ha = 0.5, λ = 0.4, GrT = 0.2, and Θ = 1.5.

FIG. 21. Variation of GrT for (a) 0.1, (b) 0.2, and (c) 0.3. The other parameters chosen are γ = 2, Ha = 0.5, λ = 0.4, Br = 2, and Θ = 1.5.

FIG. 22. Variation of Ha for (a) 0.6, (b) 1, and (c) 1.4. The other parameters chosen are γ = 2, GrT = 0.2, λ = 0.4, Br = 2, and Θ = 1.5.

V. CONCLUDING REMARKS

We have performed heat and mass transfer analysis in the
peristaltic transport of viscous fluid through a curved channel
with an additional impact of mixed convection. The flow model is

formulated under the assumptions of long wavelength. The numer-
ical solution is computed via the finite difference algorithm and a
detailed graphical analysis has been suggested with relevant physical
features. The observations from current attempts are summarized in
the following points:
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● The flow velocity and pressure increase with the lead-
ing variation of the thermal transfer Grashof constant.
However, the effectiveness of the Grashof number and Hart-
mann number on both profiles is quite the opposite.

● The temperature field is enhanced with an increase in the
thermal Grashof number and Hartmann number.

● The mass concentration decreases with an increase in the
thermal Grashof number and Hartmann number, while it
increases with an increase in the concentration Grashof
number.

● The circulations become intense for greater values of the
Brinkman number, thermal Grashof number, and Hart-
mann number.

● Thus, moremixing is realized inmixed convective peristaltic
flow than that in a purely peristaltic flow.

NOMENCLATURE

b amplitude of wave m
c wave speed m s−1

cp specific heat at constant pressure m2 s−2 K−1

C mass concentration kg
D coefficient of mass diffusivity m2 s−1

k thermal conductivity W m−1 K−1

KT thermal diffusivity m2 s−1

T temperature K
Tm mean fluid temperature K
u1, u2 velocity component m s−1

λ∗ wavelength m
μ viscosity kg m−1 s−1

ρ density kg m−3

Φ dissipation function kg m−1 s−3

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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