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Abstract

Axisymmetric inertial waves of a viscous fluid that fill a perturbed rotating spherical container are numerically

simulated by finite elements. A laminar flow of an incompressible viscous fluid of Newtonian type is assumed

in the numerical simulations. A monolithic computational code is employed, which is based on stabilized finite

elements by means of a Streamline Upwind Petrov Galerkin (SUPG) and Pressure Stabilized Petrov Galerkin

(PSPG) composed scheme. The Reynolds number is fixed as 50 000, while the ranges of the Rossby and Ekman

numbers are 0.2 ≤ Ro ≤ 1 and 2 × 10−5
≤ Ek ≤ 10−4, respectively. Some flow visualizations are performed. The

pressure coefficient spectrum at the centre of the sphere is plotted as a function of the frequency ratio and some

resonant frequencies are identified. The position of these resonant frequencies are in good agreement with previous

experimental and analytical ones in the inviscid limit.
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1 Introduction

As it is known, in the absence of rotation (or buoyancy due to a stable density stratification or magnetohydrodynamic

effects), a fluid differs in an essential way from a solid in its inability to resist shearing stresses and, thereby, support

shear waves. Thus, when a fluid rotates relative to an inertial frame the constraints imposed on the fluid system

by the angular momentum conservation principle are such as to endowed the fluid with pseudo-elastic properties, the

so-called “elastoid-inertial waves” or, more briefly, “inertial waves”, e.g. see Hide11. These should not be confused with

the “inertial waves” in the oceanographic literature, where this term is often used to designate rotationally modified

internal gravity waves of frequencies slightly above or at the inertial frequency14.

Thus, inertial waves in a fluid denotes those oscillatory motions of a rotating fluid that owe their existence neither

to free surfaces nor to compressibility nor to any density stratification. It is a periodic disturbance fluid response

motion (or normal mode) to a perturbation in a rotating flow of an incompressible fluid that is rotating almost rigidly

in a container whenever the Coriolis forces are predominant. They are transverse waves (the perturbation velocity is

perpendicular to the propagation direction), circularity polarized and dispersive. This is the only possible type of wave

in an incompressible rotating fluid, e.g. see Shivamoggi18. In the laboratory experiments, a stationary observer sees

these inertial waves in as an inward-outward faster-slower vortex. Inertial waves are also relevant in the understanding
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of some wave phenomena in geophysics and planetary physics, e.g. recent identifications of inertial waves in the

earth fluid core from superconducting gravimetric data created new interest in this classical problem. There appears

growing recognition by the geophysical community that the inertial-wave observation may provide information about

the physical and dynamical properties of the Earth interior, e.g. see Zhang28.

The low-order modes with rather simple structure are more easily excited and may occur spontaneously even in

situations not designed for them, e.g. a space vehicle with a liquid-filled tank that it is spinned-stabilized. These

features are contradictory and can cause it to tumble out of control. For instance, the rotation of a top container

may be unstable when the nutation and the sloshing are nearly resonant, since the nutation acts as a forcing for the

sloshing which thus steadily excited20. If the container imparts some energy to the liquid, then reciprocally the liquid

must exert a torque on the container. A remedy might well to be ascertain what sort of tanks avoids sloshing, e.g. see

McIntyre-Tanner15.

In order for the inertial waves to be generated the disturbance frequency (or disturbance spin) ω must be less than

twice the stationary spin Ω, that is, ω < 2Ω. When this condition is met, the disturbing force is less than the restoring

one supplied by the Coriolis acceleration and, in absence of viscous damping, the fluid will continue to oscillate. But,

when ω > 2Ω the restoring force will not to be large enough to balance the disturbing one, and the rigid-body rotation

state is reached. As Henderson-Aldridge1 remark, a global inertial wave belongs to a set of distinct eigenmodes with

a discrete spectrum of eigenfrequencies, but not every shape of the cavity allows these in a fluid.

In the inviscid limit, the corresponding governing mathematical model is the Poincaré system, which has some

unusual mathematical properties. A distinctive difficulty of the Poincaré system is that its eigenvalue λm appears

both in the differential equation as at its boundary condition (e.g. see Appendix). Then, the mathematical problem is

improperly-posed in the Hadamard sense (e.g. see Stewartson-Rickard21) but, under the assumption that the solutions

are well-behaved, many properties can be found. Thus, the Poincaré equation can be elliptic when |λm| > 2 (so there

is not inertial waves), parabolic when |λm| = 2, and hyperbolic when |λm| < 2, see Fig. 1. In the elliptic case the flow

is continuous everywhere while only in the hyperbolic case there are inertial waves. In the last case, there exist real

characteristic conical surfaces (similar to the Mach cone in gas dynamics), with a frequency dependent slope, across

which the disturbances become discontinuous (e.g. the pressure becomes infinity) and dividing the flow into three

separate regions, the inside one resemble the elliptic case while the adjustment from the inside the cone to the outside

is made through thin viscous shear layers about the cone surface.

Although the general implicit forms of solutions for the Poincaré equation either in modified oblate spheroidal

coordinates or in cylindrical coordinates (in which some roots of the associated Legendre function are involved in

the summation of polynomials) have been available for a long time (e.g. Greenspan6 review analytical expressions of

eigenfrequencies and eigenmodes), separable solutions are restricted to geometries with axial symmetry, as cylinders

(with or without an inner one) and axial spheroids (of which only the subclass of toroidal modes survives in a spherical

shell), e.g. see Zhang28. Nevertheless, analytical methods are only adequate in the inviscid limit for few simple cases,

and, consequently, recourse must be had to numerical methods for most general cases.

On the other hand, there are many precedents of computational models for inertial waves in several flow cases.

Thus, Tan24 et al. performs a time-dependent integral equation based in a linearized fluid flow formulation. Heuser10

et al. performs a time-marching finite difference solution of the linearized axisymmetric flow equations on a right

circular cylinder. Amberg-Ungarish2 develop a finite difference solution for the spin-up from rest of a separating fluid-

particle mixture in a cylindrical container, filled with a stationary mixture of initially uniform particle volume fraction,

which is instantaneously set into rapid rotation. Moreover, there are also numerical models on the basis of variational

principles. Thus, Aldridge1 applied a classical Ritz method, whereas McIntyre-Tanner15 and Henderson-Aldridge9

used a finite-element method. In the last case, a variational principle for the inviscid limit (the Poincaré equation) is

proposed, where the low-order frequencies are obtained as the roots of a secular equation.
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Nevertheless, the Henderson-Aldridge9 finite-element is specialized to inertial waves in the inviscid limit. Thus, the

main aim of this work is to apply a more general finite element scheme for modelling inertial waves in the viscous case.

In this work, numerical simulations are performed for the lowest inertial modes with axisymmetric symmetry that can

be excited in a viscous fluid that fills a sphere when is rotating around its vertical axis with a prescribed unsteady

spin speed. It is assumed a laminar regime with an incompressible fluid of Newtonian type. An identification of the

low-order pressure resonances and flow visualization of the related flow patterns are also included. As validation of

the present numerical simulations, they are compared with the corresponding ones to the inviscid limit and Aldridge-

Toomre1 experiments.

2 Physical formulation

2.1 The spin-up flow problem

In the spin-up flow problem, an impulsive change on the spin rate of the container leads boundary-layer induced

accelerations and a pumping of the interior fluid is developed until a new dynamic equilibrium state is attained. For

instance, Greenspan-Howard7 and Veijst8, give a careful analysis of the flow arising in closed rotating containers when

the spin Ω is instantaneously increased with a small amount ∆Ω > 0. As a reaction to the increased spin Ω + ∆Ω,

Ekman layers develop at the container walls in which the flow is directed outwards along it (the Ekman suction flow).

This outflow near the wall is compensated by a weak radial flow toward to the interior domain (outside the Ekman

layers). This circulation in the meridional planes driven by the Ekman layers brings interior fluid from larger radii

to smaller radii and provides the spin-up mechanism: in order to conserve its angular momentum, the fluid in a ring

of decreasing radius acquires larger azimuth velocity. For instance, in Fig. 2 we have sketched a low order mode

with axisymmetric symmetry that it can be excited in a rotating liquid sphere by a nonstationary spin, where (i) an

inwardly moving spin-up front that separates the inner core I, with the old spin Ω and the partly spun-up region

III, with the new value Ω + ∆Ω; (ii) a quasi-steady very thin Ekman boundary layer near the walls, region II, that

continuously extract fluid from region I and feed it into the spun-up region III. The nonstationary process is effectively

completed when all fluid in region I has been flushed into region III.

2.2 Axisymmetric inertial oscillations of a rotating liquid sphere

The Aldridge-Toomre1 work demonstrated the existence of axisymmetric spherical inertial waves. It is a detailed

investigation based on experiments with a rigid fluid-filled spherical container whose spin about the vertical axis was

forcibly varied in a smooth sinusoidal way about a non-null value, see Fig. 3. Their objectives were to excite, measure

and compare with the theory in the inviscid limit, some of the inertial eigen modes within a low viscosity liquid,

through the mild pumping of the thin viscous boundary layer near the sphere wall, where the energy input to the fluid

system being represented by the term ν∇(u × ζ), where ν is the kinematic viscosity of the fluid.

A polished transparent sphere of internal radius R = 10 cm, completely filled with water was fastened to a shaft

that was in turn supported vertically by bearings mounted on a turntable. By means of a crank and torsion-bar

dispositive the shaft and sphere together could be made to reciprocate relative to the turntable with an arbitrary

half-amplitude ε (an expansion parameter) and a disturbance frequency ω. The turntable itself was driven coaxially

with the shaft at a steady rate Ω, thereby imparting to the sphere the nonstationary spin Ω̃(t) = Ω + εω cos(ωt),

where ε was fixed, so imposed changes in the ratio ω/Ω were made by altering the turntable speed in a continuous

variable transmission.

The resonant inertial oscillations of the fluid in the sphere were made visible by introducing dye and suspended

aluminum flakes. The experimental amplitude pressure measurements refer to the disturbance pressure differences
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between the tip of a non-rotating hollow tube immersed along the axis to the sphere center and the free surface of

the fluid at a 1.2 cm diameter hole drilled into its north pole. Only axisymmetric inertial oscillations which involve

no motions across the equatorial plane are excited. The Ekman number is written as Ek = ν/(ωR2), where ν is the

kinematic viscosity of the fluid, and the Rossby number is written as Ro = ω/Ω (omitting the expansion parameter

ε), e.g. see Table 1.

As it is known in the theory of rotating fluids, all the directs effects of a slight kinematic viscosity ν on, at least,

the low-order modes are confined to thin unsteady boundary layers so, when the fluid motion deep in the interior is

one of the excited modes, the mean rate of energy dissipation is related to the free decay rate of a particular mode.

On the other hand, the average energy rate transmitted to the fluid from its container by viscous surface stresses

combined with unsteady motion is related both the free decay rate of a particular mode and the balance between the

mean energy input and dissipation. In the numerical simulations a warning issue is related to the limit ν → 0 since

all resonances become arbitrarily narrow, so there is a great complexity of the fluid response. The response spectrum

consists of the pressure coefficient Cp measured between the pole and the center of the sphere for various frequency

ratios Ω/ω whilst the container oscillated steadily with a half-amplitude ε = 80, where the turntable speed Ω and not

the oscillation rate ω that is altered from one measurement to the next. The maximum pressure difference amplitudes

|∆p|, between the pole and the sphere center z = 0 and between the pole and the point z = R/2 on the axis, are

reported in terms of the dimensionless pressure coefficient Cp = |∆p|/(ρεω2R2).

Several distinct resonances were detected via pressure measurements made along the axis for various discrete ratios

ω/Ω, of the spin excitation ω to the mean spin Ω. For the three most pronounced of these modes, the observed ratios

ω/Ω were found to agree with the theory. These experiments and further works on spherical shells had emphasized

some ill-posed problems in the theory of partial differential equations. As it is known in the theory of rotating

flows, the inertial eigen-frequencies are found solving a hyperbolic differential equation with real characteristic under

Dirichlet-Neumann boundary conditions (the Poincaré equation in the inviscid case).

3 Mathematical formulation

The Navier-Stokes equations for the motion of a viscous and incompressible fluid enclosed in a domain V and boundary

S, see Fig. 4, can be written as

∇ · u = 0 ; (1)

ρ (∂tu + u · ∇u) = ∇ · σ + f ; (2)

in V × [0, T ]. The position vector x = (x, y, z) is related to an Eulerian reference system, t is the time variable,

V is the flow region, [0, T ] is some time interval, f is the volumetric source term while u = (ux, uy, uz) and ρ are

the velocity and density of the fluid, respectively. For a fluid with dynamic viscosity µ, the stress tensor σ can be

decomposed into the isotropic and deviatoric parts, i.e. σ = −pI +T , where p is the pressure, I is the identity matrix

and T = 2µD(u), where

D(u) =
1

2

[
∇u + (∇u)T

]
. (3)

Both the Dirichlet and Neumann boundary conditions are taken into account

u = g on Sg;

n · σ = h on Sh;
(4)

where Sg and Sh are complementary subsets of the boundary S. The initial condition is a specified divergence-free

velocity field u(x,0) = u0 on the domain V .
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4 Stabilized finite elements by a SUPG-PSPG alternative

The numerical simulations are performed by a stabilized finite element scheme for the unsteady Navier-Stokes Eqs. 1-2,

where at each node and at every time step the moment and continuity equations are solved for the three components

of velocity and pressure. For simplicity, equal order spatial discretization for pressure and velocity is highly attractive

(i.e. linear tetrahedral elements), but it is well known that this kind of basis functions need to be stabilized to achieve

stable solutions. The source of these instabilities is mainly the high Reynolds number that describes an advection

dominated flow and the incompressibility constraint. The combined Streamline Upwind Petrov Galerkin (SUPG)12,3

and Pressure Stabilizing Petrov Galerkin (PSPG) 25,26 scheme is employed for stabilization of the advection and

incompressibility terms. Advection at high Reynolds numbers is stabilized with the SUPG operator, while the PSPG

one stabilizes the incompressibility condition, which is responsible of the checkerboard pressure modes.

4.1 The SUPG-PSPG formulation

The incompressible Navier-Stokes equations present two important difficulties for the solution with finite elements.

First, the character of these equations become highly advective dominant when the Reynolds number increases. In

addition, the incompressibility condition represents not an evolution equation but a constraint on the equations. This

has the drawback that only some combinations of interpolation spaces for velocity and pressure can be used with the

Galerkin formulation, namely those that satisfy the so-called Ladyzhenskaya-Brezzi-Babuska condition. The advection

and the incompressibility equations are stabilized with the SUPG and PSPG stabilization terms, respectively. In this

way, it is possible to use stable equal order interpolations. To enforce the satisfaction of the discrete continuity equation

an extra stabilization term is added, called LSIC (for Least Square Incompressibility Constraint). The flow domain

Ω is partitioned in E finite elements Ωe, with e = 1, 2, . . . , E, while the interpolation spaces and weighting functions

are defined as:

Sh
u

=
{

uh | uh ∈ Hh
d and uh = gh on Γg

}

Sh
p = Vh

p =
{

qh | qh ∈ Hh
1 with

∫

Ω
qhdΩ = 0 and qh

∣
∣
Γh

= 0
}

Vh
u

=
{

wh | wh ∈ Hh
d and wh =  on Γg

}

(5)

with Hh
d =

(
Hh

1

)d
, where d is the number of space dimensions and the Sobolev space

Hh
1 =

{
φh such that φh ∈ C0(Ω) and φh|Ωe ∈ L1

}
; (6)

for all Ωe ∈ E , where L1 is the set of polynomials of first order while E is the set of elements. The combined SUPG12,3

and PSPG25,26,27 formulation for Eqs. (1-2) can be written as: find uh ∈ Sh
u

and ph ∈ Sh
p such that:

∫

Ω

wh · ρ
(

∂tu
h + uh · ∇uh

)

dΩ +

∫

Ω

D(wh) : σhdΩ +

+
E∑

e=1

∫

Ωe

δ
h ·

[

ρ
(
∂tu

h + uh · ∇uh
)
−∇ ·σh

]

︸ ︷︷ ︸

(SUPG)

dΩ +

+
E∑

e=1

∫

Ωe

ǫh ·
[

ρ(∂tu
h + uh · ∇uh) −∇ ·σh

]

︸ ︷︷ ︸

(PSPG)

dΩ +

+
E∑

e=1

∫

Ωe

νLSIC∇ · wh∇ρ · uhdΩ +

∫

Ω

qh∇ · uhdΩ = 0 ;

(7)
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for all wh ∈ Vh
u

and qh ∈ Vh
p . In Eq. (7) three additional stabilization terms are added to the standard Galerkin

formulation: the parameter δ
h

corresponds to the SUPG stabilization, the ǫh parameter corresponds to the PSPG

one, and finally the νLSIC parameter to enforce the incompressibility contraint. The first two terms are defined over

different functional spaces and they can be written as δ
h

= τSUPG (uh · ∇)wh and ǫh = τPSPG ρ−1∇qh, where

τSUPG =
he

2||uh|| z(Reuh) ;

τPSPG =
h∗

e

2||U || z(Re∗U) ;

νLSIC =
h∗

e

2
||uh|| z(Reuh) ;

(8)

while Reuh and Re∗U are the Reynolds number based on the element velocity uh and a global characteristic velocity

U , respectively, that is,

Reuh =
||uh|| he

2ν
and Re∗U =

||U || h∗

e

2ν
. (9)

The element size he is computed as

he = 2

[
ne∑

a=1

|s · ∇wa|
]
−1

; (10)

where wa is the function associated to node a, ne is the number of nodes connected to the element and s is the

streamline oriented unit vector, while the element size h∗

e is defined as the diameter of the sphere with the same

element volume. Finally, the function z(Re) in Eqs. (8) is defined as

z(Re) =







Re/3 0 ≤ Re < 3 ;

1 3 ≤ Re .
(11)

4.2 Spatial discretization

Spatial discretization leads to the following equation system (e.g. see26,25)

(M + Mδ)a + N(v) + Nδ(v) + (K + Kδ)v − (G − Gδ)p = F + Fδ ; (12)

GT v + Mǫa + Nǫ(v) + Kǫv + Gǫp = E + Eǫ ; (13)

where

v = Array
{

uh
}

; (14)

a = v̇ ; (15)

p = Array
{

ph
}

; (16)

are the nodal vectors of velocities, accelerations and pressures, respectively. The mass matrices are obtained from the

time-dependent terms and are given by

M =

∫

V

whρwhdV ; (17)

Mδ =

∫

V

δ
h
ρwhdV ; (18)

Mǫ =

∫

V

ǫhρwhdV ; (19)
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while the stiffness ones are obtained from the viscous terms and are given by

K =

∫

V

µ

2
[∇wh + ∇(wh)T ] : [∇wh + ∇(wh)T ] dV ; (20)

Kδ = −
∫

V

δ
h · ∇ · [2µD(wh)] dV ; (21)

Kǫ = −
∫

V

ǫh · ∇ · [2µD(wh)] dV . (22)

The G matrices are obtained from the pressure terms and are given by

G =

∫

V

qh∇ · whdV ; (23)

Gδ =

∫

V

δ
h · ∇qhdV ; (24)

Gǫ =

∫

V

ǫh · ∇qhdV ; (25)

and, finally, the N matrices are obtained from the advective terms and are given by

N =

∫

V

wh · ρuh · ∇uhdV ; (26)

Nδ =

∫

V

δ
h · ρuh · ∇uhdV ; (27)

Nǫ =

∫

V

ǫh · ρuh · ∇uhdV . (28)

The vector F arises from the imposition of both Dirichlet and Neumann boundary conditions while the vector E arises

only from the Dirichlet ones.

4.3 SUPG-PSPG finite element solver

The SUPG-PSPG finite element alternative is implemented by the PETSc-FEM19 code, which is a parallel multi-

physics finite element library based on the Message Passing Interface (MPI, http://www.mpi-forum.org) and the

Portable Extensible Toolkit for Scientific Computations (PETSc, http://www-fp.mcs.anl.gov/petsc). Among CFD

applications of this flow-solver include, for instance, hydrology16, free surface flows5,4 and added mass computations23.

5 Numerical experiments

5.1 Geometrical, fluid and flow parameters

The flow properties and kinematic data used in the present numerical experiments are chosen taking into account,

on one hand, that each test-run is computed with a time marching procedure, which is an high CPU-time consuming

task and, on the other hand, previous experimental or semi-analytical related works in the inviscid limit (ν → 0) as

those performed by Kudlick,13 Greenspan6 and Aldridge-Toomre1.

In the numerical simulations, a sphere of radius R = 1 [m] is considered, see Fig. 4. The sphere is filled with an

incompressible and viscous fluid of Newtonian type, unitary fluid density ρ = 1 [kg/m3] and kinematic viscosity ν

(later defined). The sphere performs an unsteady spin motion around its vertical axis given by

Ω̂ (t;ω) = Ω + εω cos(ωt) ; (29)
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with the steady spin Ω = 1 [rad/s], the expansion parameter ε = 8o, while t is the time (independent variable) and

ω is the disturbance spin as a free parameter. As the steady spin Ω is fixed, the disturbance frequency interval is

0.2 ≤ ω ≤ 1. The expression given by Eq. 29 and remaining values are taken following the Aldridge-Toomre1 work.

A laminar regime with a Reynolds number Re = 50 000 is chosen. Then, the kinematic viscosity is computed as

ν = ΩR2/Re. Then, the corresponding Rossby and Ekman number intervals are obtained by means of definitions

given in Table 1 and resulting values are shown in Table 2.

5.2 Finite element mesh

An axisymmetric finite element mesh is employed which has 4.3 K-hexaedra and 8.9 K-nodes. This is a two-dimensional

(2D) mesh for a radial-vertical r−z plane (or meridional plane) with one element row in the circumferential direction.

Fig. 5 shows a vertical view of the obtained grid, where mesh refinement is performed near the sphere walls since the

physics phenomena is mostly governed by the boundary layer formed by the wall movement and the inertial fluid, that

is, the mild pumping action of the unsteady (and very thin) Ekman boundary layer.

5.3 Boundary conditions and time step

The tests are performed on an inertial system of reference, i.e. where the observer is at rest. Therefore, the boundary

conditions are those of the rigid-body rotation, with nonstationary speed on the sphere walls. In order to avoid the

rigid pressure modes, a reference pressure value is imposed on an arbitrary node, for instance, on the sphere center.

In order to perform a plot of the pressure coefficient as a function of the frequency ratio Ω/ω, a number of NT = 28

test-runs are performed in the frequency-ratio interval 1 ≤ Ω/ω ≤ 5. The time step ∆t is selected in such way that

there are n = 32 points per perturbation period in each run. They are variable according to the perturbation spin ω

and given by ∆t = (2π/(nω), with a total of about NT = 5 periods, approximately.

5.4 Semi-analytical solution in the inviscid limit

In the inviscid limit a semi-analytical solution can be performed. In this case, the theory of Stewartson-Roberts22

is applicable for spheroidal containers, where separable solutions are possible in oblate spheroidal coordinates chosen

to transform the Poincaré equation from the (x,y,z) coordinates to (x,y,iz/λ) ones, where i =
√
−1. The cylindrical

(s,φ,z) coordinates are written into the oblate spheroidal (η, µ, φ) ones as

{

s = (4α2 − η2)1/2(1 − µ2)1/2 ;

z = (β2 − 1)1/2ηµ ;
(30)

where |µ| ≤ 1 and

α2 =
1

4 − λ2
; β2 =

4

λ2
; (31)

The unit sphere equation in these coordinates is transformed with

s2 + z2 − 1 = (α2λ2 − η2)(1 − β2µ2) = 0 ; (32)

which is reduced to

η = αλ =
λ√

4 − λ2
; (33)

and the modal pressure, solution of Eq. 48, can be separated as

Pk,m(η, µ, φ) = Lk,m(γη) Lk,m(µ) eimφ ; (34)
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where k = 1, 2, ... and m = 1, 2, .., k, with γ = 1/(2α) while Lk,m is the m-associated Legendre polynomial of k-order.

In the Aldridge-Toomre1 laboratory experiment, only axisymmetric inertial oscillations which involve no motions

across the equatorial plane are excited. Nevertheless, the number of inviscid inertial modes is denumerable infinite

and its resonant non-dimensional eigenfrequencies are predicted to be

Ω

ωn,m
=

1

2xn,m
; (35)

where xn,m is the mth of the n zeros of the first associated Legendre polynomial L2n+2,1 of 2n + 2 order, in the

interval 0 < x < 1. In Table 3 some of the non-dimensional eigenfrequencies Ω/ωn,m of the axisymmetric inertial

(n, m) cell-modes predicted by Eq. 35 are listed according to this inviscid theory.

5.5 Detected pressure resonances and flow patterns

Returning to the viscous case, the numerical simulations allow to detect pressure resonances and to plot the related

flow patterns. For the pressure increments, the maximum pressure difference amplitude |∆p| (between the upper

pole and the sphere center) is found for each test-run, and then is expressed in terms of the dimensionless pressure

coefficient Cp = |∆p|/γ, where γ = (ρεω2R2). Thus, the response spectrum consists of the pressure coefficient Cp

plotted as a function of the frequency ratio Ω/ω, and it is shown in Fig. 6. From this figure, it is found that Np = 4

resonance peaks are clearly identified. The corresponding flow-patterns at each pressure-peak are shown in Figs. 7-10.

The discrete frequency ratios ωk/Ω of the four pressure peaks identified in Fig. 6 are found to agree with the

theoretical ones in the inviscid limit ν → 0 that were obtained in Sec. 5.4 and summarized in Table 3. They are also

to agree with the ones obtained by Greenspan6 (Table 2.1 and Fig. 2.8, pp. 66-67) and shown in Table 4, as well the

experimental ones reported by Aldridge-Toomre1.

The numerical simulated flow-patterns at each pressure-peak for the viscous case are compared with the analytic

ones in the inviscid limit ν → 0 that are sketched in Fig. 11 (taken from Fig. 2.7, p. 65, Greenspan6). It can be

observed that:

• Pressure-peak 1 (Ω/ω ≈ 0.7640): there is a dominant cell that corresponds, in the inviscid limit ν → 0, to

the (1, 1) cell-mode or fundamental one. See numerical simulation in Fig. 7 and analytical sketch in Fig. 11

(top-left);

• Pressure-peak 2 (Ω/ω ≈ 1.0660): there are two dominant cells that correspond, in the inviscid limit ν → 0, to

the (2, 1) cell-mode. See numerical simulation in Fig. 8 and analytical sketch in Fig. 11 (top-right);

• Pressure-peak 3 (Ω/ω ≈ 1.3770): there are three dominant cells that correspond, in the inviscid limit ν → 0, to

the (3, 1) cell-mode. See numerical simulation in Fig. 9 and analytical sketch in Fig. 11 (bottom-left);

• Pressure-peak 4 (Ω/ω ≈ 1.6910): there are four dominant cells that correspond, in the inviscid limit ν → 0, to

the (4, 1) cell-mode. See numerical simulation in Fig. 10 and analytical sketch in Fig. 11 (bottom-right).

There are some other small cells that appears due to velocity inversion but these soon dissipate and they do not

appear in these figures.

6 Discussion and conclusions

The theoretical eigenmodes in the inviscid limit ν → 0 sketched in Fig. 11 (taken from Fig. 2.7, p. 65, Greenspan6)

are equatorially-symmetric placed. They are identified with integers (n, m), where n is the number of modes in a

family and m is the number of cells along the vertical z-axis. These indicate how is the order of complexity in the

9
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structure of an eigenmode. The eigenmodes by nature are distinctively organized into various eigencells. For all the

cases considered, the eigencells are axisymmetric. Although the numerical simulations were made assuming a laminar

flow with a Reynolds number of 50 000, the positions of the first four resonant frequencies with axisymmetric symmetry

are close enough to the corresponding ones of the inviscid limit ν → 0, as well as the flow patterns show one cell for

the first resonant frequency, two cells for the second one and so until the fourth one in consonance with the analytical

inviscid inertial modes that were taken into in account in Sec. 5.5.

The four resonant frequencies distinctly revealed in the present numerical simulations are well compared with

the experiment data of Aldridge-Toomre1. The coincidence between laboratory and numerical experiments in that

bandwidth shows they are compatible since both have a low-order bias, that is, whether a study is experimental

or numerical, the eigenmodes with the simplest structure are the easiest to excite or recover. On the other hand,

perhaps it is more convenient to locate the related eigenmodes with a coarser mesh and then track them through some

refinements and thus a better resolution of the eigencells can be obtained.

The overall approach is only limited by the restrictions of the assumed flow model (an unsteady laminar regime in

a viscous and incompressible fluid of Newtonian type). The present numerical results support the conclusion that the

standard SUPG-PSPG finite element method performed very well in the simulation of unsteady axisymmetric inertial

waves of viscous fluids although the inviscid limit, the Poincaré equation, is improperly-posed in the Hadamard sense.

On the other hand, the present approach allows consider other container geometries whose analytical or semi-analytical

solutions cannot easily found. Future modeling efforts would be focused on a study of other items as truncation errors,

grid independence and iterative convergence.
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8 Appendix

In the following Sections 8.1 and 8.2, the inviscid inertial eigenmodes are considered, but they are only relevant as a

reference for validate the corresponding ones of the viscous case that are predicted in the numerical simulations, and

they are not taken into account in the numerical discretization by finite elements performed in Sec. 4.

8.1 Inertial eigenmodes for a rotating fluid

As it is known, the Coriolis and viscous forces play a dominant role in a fast rotating container filled with a viscous

fluid, and they can measured by the Rossby and Ekman numbers, Ro and Ek, respectively (e.g. see Table 1). When

the container moves at constant spin Ω around its vertical axis z, the non-dimensional differential equations on the

body axis can be written as (e.g. see Greenspan6)

∂tũ + Ro (ũ · ∇)ũ + 2ẑ × ũ + ∇p̃ = Ek ∇2ũ ; ∇ · ũ = 0 ; (36)

where ẑ is the vertical unit vector, p̃(r̃, t̃) is the nodimensional reduced pressure, × denotes vectorial product and

∇2 is the Laplacian. The boundary and initial conditions include the no-slip condition ũ =  at the solid walls S

and some initial velocity ũ(r̃, 0) = ũ0(r̃) which slightly differs from the rigid body rotation. Also the mass balance

and no-slip boundary condition must be verified by the initial velocity ũ0(r̃). Linearized equations for rotating flows

implie a null Rossby number (Ro = 0) and Eq. 36 reduces to

∂tũ + 2ẑ × ũ + ∇p̃ = Ek∇2ũ ; ∇ · ũ = 0 . (37)

Thus, linearized equations of motion for a rotating flow (when Ro = 0) either of a viscous fluid (Ek 6= 0) or an inviscid

one (Ek = 0) admit separable solutions, i.e. the velocity and the pressure can be represented as a superposition of the

inertial eigenmodes (e.g. see Greenspan6, Roberts-Soward17)

ũ =
∑

m

Umeiλm t̃;

p̃ =
∑

m

Pmeiλm t̃ ;
(38)

where (Um, Pm) is the m-inertial mode, velocity and pressure, respectively, λm is the m-eigenvalue and i =
√
−1 is

the imaginary unity. For the inviscid case the eigenvalue λm is real, while for the viscous one is complex. In the last

case, its imaginary part is a measure of the rate of the decay on the velocity due to viscous effects which are, in turn,

confined to a thin boundary layer at the container wall of thickness O(
√

Ek). On the other hand, until the diffusion

has had sufficient time to thicken this boundary layer, a boundary layer analysis is also possible.

8.2 The inviscid case. The Poincaré equation

When rotational inertia dominates over viscosity and nonlinearity, thereby damping and interaction between modes

are negligible, the spatial component of the inertial pressure modes Pm given in Eq. 38 are governed by the Poincaré
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equation. Introducing Eq. 38 and the boundary conditions into Eq. 37, results in the frequency domain (Kudlick13)






iλmUm + 2ẑ × Um + F m =  in V ;

∇ · Um = 0 in V ;

n · Um = 0 at S;

(39)

for each m-inviscid mode, where F m ≡ ∇Pm is the pressure gradient and n is the surface normal unit. These

equations represent the balance of momentum, fluid incompressibility and the slip boundary condition at the solid

surfaces, respectively. The Cartesian components of the first Eq. 39 are

iλmUm
x − 2Um

y = −Fm
x

iλmUm
y + 2Um

x = −Fm
y

iλmUm
z = −Fm

z







(40)

The system determinant of Eq. 40 is D = iλm(4− λ2
m), which is regular whenever |λm| 6= 2. Solving by determinants







Um
x = α

[
Fm

x − (2i/λm) Fm
y

]
;

Um
y = α

[
Fm

y + (2i/λm) Fm
x

]
;

Um
z = α

[
Fm

z − (4/λ2
m) Fm

z

]
;

(41)

where α = −iλm/(4 − λ2
m). As

−2

iλm
(z × F m) =

−2

iλm






Fm
y

−Fm
x

0




 ; (42)

then, Eq. 41 can be written in the vectorial form

Um =
−iλm

4 − λ2
m

[

∇Pm − 2

iλm
(ẑ ×∇Pm) − 4

λ2
m

(ẑ · ∇Pm) ẑ

]

. (43)

Introducing the Cartesian components given by Eq. 41 into the differential mass balance equation of an incompressible

fluid ∂xUx + ∂yUy + ∂zUz = 0, results

∂xUm
x =

−iλm

4 − λ2
m

(

∂xFm
x − 2

iλm
∂xFm

y

)

; (44)

∂yUm
y =

−iλm

4 − λ2
m

(

∂yFm
y +

2

iλm
∂yFm

x

)

; (45)

∂zU
m
z =

−iλm

4 − λ2
m

(

∂zF
m
z − 4

λ2
m

∂zF
m
z

)

; (46)

but (Fm
x , Fm

y , Fm
z ) = (Pm

,x , Pm
,y , Pm

,z ), replacing and adding gives

−iλm

4 − λ2
m

(

Pm
,xx + Pm

,yy + Pm
,zz −

4

λ2
m

Pm
,zz

)

= 0 ; (47)

Introducing Eq. 43 in the slip boundary condition n · U = 0, and from Eq. 47, resulting the Poincaré system

∇2Pm − 4

λ2
m

(ẑ · ∇)
2
Pm = 0 in V ;

n ·
[

∇Pm − 2

iλm
(ẑ ×∇Pm) − 4

λ2
m

(ẑ · ∇Pm) ẑ

]

= 0 at S.

(48)

On the other hand, from momentum conservation principles, it can be shown that the eigenvalues λm are reals and

that |λm| < 2 (e.g. see Kudlick13).
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Figure 1: Type change of the Poincaré equation for the inviscid case, as a function of the frequency ratio Ω/ω, where
Ω is the steady spin and ω is the disturbance one.
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and a partly spun-up region III at spin Ω + ∆Ω; a thin Ekman boundary layer near the walls (region II) that extract
fluid from region I and feed it into the spun-up region III.

16



Axisymmetric inertial waves in rotating fluids ... by D’Eĺıa et al.
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Figure 3: Axisymmetric inertial oscillations of a rotating liquid sphere (Aldridge-Toomre): Fluid container and pressure
probe. The container is made of two perspex hemisphere fitted together at the equator, rotated about its vertical spin
axis with the nostationary spin Ω̂(t) = Ω + εω cos(ωt).
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Figure 4: A viscous and incompressible fluid that fill a spherical container which it is rotating with unsteady spin Ω̂
around its vertical axis z. The closed domain flow is V , its surface boundary is S and n is the (exterior) unit normal.
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Figure 6: Pressure coefficient Cp at the center of the perturbed rotating unit sphere as a function of the frequency
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Figure 7: Streamlines in the meridional (vertical) xz upper plane for the perturbed rotating fluid sphere. Pressure-peak
1.
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Figure 8: Same as Fig. 7 for pressure-peak 2.
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Figure 9: Same as Fig. 7 for pressure-peak 3.
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Figure 10: Same as Fig. 7 for pressure-peak 4.
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Figure 11: Theoretical circulation patterns corresponding to the first four pressure-peaks predicted by the inviscid
theory (e.g. see Hide11, Greenspan6).
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similarity abbrev. force ratio expression
number
Rossby Ro inertia:Coriolis ω/Ω
Ekman Ek viscous:Coriolis ν/(ωR2)
Reynolds Re inertia:viscous ΩR2/ν

Table 1: Definition of the non-dimensional similarity numbers: Rossby, Ekman and Reynolds ones.
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Ω/ω Ro Ek ×10−5

1 1 2
5 0.2 10

Table 2: The Rossby and Ekman numbers corresponding to the frequency-ratio interval 1 ≤ Ω/ω ≤ 5 when Ω = 1
[rad/s].
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(n, m) cell-mode xnm Ω/ωn,m = 1/(2xnm)
(1,1) 0.6547 0.76371
(2,1) 0.4688 1.06655
(3,1) 0.3631 1.37703
(4,1) 0.2958 1.69033

Table 3: Adimensional eigenfrequencies Ω/ωn,m of the axisymmetric inertial waves in a perturbed rotating unit sphere,
where xn,m is the mth of the n zeros of the first associated Legendre polynomial L2n+2,1(x) of 2n + 2 order, in the
interval 0 < x < 1, predicted by the inviscid theory of Stewartson/Roberts22.
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sample ω Ω/ω (n, m) cell-mode
(inviscid case)

1 1.30890 0.7640 (1,1)
2 0.93810 1.0660 (2,1)
3 0.72622 1.3770 (3,1)
4 0.59137 1.6910 (4,1)

Table 4: Eigenfrequencies ratio and type of the cell-mode in the inviscid limit ν → 0 for the first Np = 4 peaks found
in the present numerical simulations.
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