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ABSTRACT

Radiation pressure on dust grains may be an important mechanism in driving winds in a

wide variety of astrophysical systems. However, the efficiency of the coupling between the

radiation field and the dusty gas is poorly understood in environments characterized by high

optical depths like those in ultraluminous infrared galaxies (ULIRGs) and massive dense star

clusters. We present a series of idealized numerical experiments, performed with the radiation-

hydrodynamic code ORION, in which we study the dynamics of such winds and quantify their

properties. We find that, after wind acceleration begins, radiation Rayleigh–Taylor instability

forces the gas into a configuration that reduces the rate of momentum transfer from the radiation

field to the gas by a factor of ∼10–100 compared to an estimate based on the optical depth at

the base of the atmosphere; instead, the rate of momentum transfer from a driving radiation

field of luminosity L to the gas is roughly L/c multiplied by one plus half the optical depth

evaluated using the photospheric temperature, which is far smaller than the optical depth

one would obtain using the interior temperature. When we apply our results to conditions

appropriate to ULIRGs and star clusters, we find that the asymptotic wind momentum flux

from such objects should not significantly exceed that carried by the direct radiation field, L/c.

This result constrains the expected mass-loss rates from systems that exceed the Eddington

limit to be of the order of the so-called ‘single-scattering’ limit, and not significantly higher.

We present an approximate fitting formula for the rate of momentum transfer from radiation

to dusty gas through which it passes, which is suitable for implementation in sub-grid models

of galaxy formation. Finally, we provide a first map of the column density distribution of gas

in a radiatively driven wind as a function of velocity, and velocity dispersion.

Key words: hydrodynamics – instabilities – ISM: jets and outflows – radiative transfer –

galaxies: ISM – galaxies: star clusters.

1 IN T RO D U C T I O N

Dusty winds are ubiquitous in astrophysics: they are driven on

scales ranging from single stars (e.g. Habing 1996) to star clusters

(e.g. Lopez et al. 2011) to entire galaxies (e.g. Veilleux, Cecil &

Bland-Hawthorn 2005). The driving mechanisms of these winds

are diverse and in some cases uncertain, but one possible mecha-

nism for many of them is the force exerted by radiation interact-

ing with dusty matter. Photons moving through dusty gas can be

scattered or absorbed by dust grains, transferring some of their mo-

mentum. The grains, in turn, transfer this momentum to the gas

either through hydrodynamic drag or via magnetic fields, possibly

giving rise to a wind. Radiation pressure on dust has been suggested

as an important feedback mechanism in regulating star formation

on the scales of galaxies (Scoville 2003; Thompson, Quataert &

⋆ E-mail: krumholz@ucolick.org (MRK); thompson@astronomy.ohio-

state.edu (TAT)

Murray 2005; Andrews & Thompson 2011) and individual mas-

sive stars clusters (O’dell, York & Henize 1967; Scoville et al.

2001; Krumholz & Matzner 2009; Fall, Krumholz & Matzner 2010;

Krumholz & Dekel 2010; Murray, Quataert & Thompson 2010),

for driving dusty fountain flows in normal spirals (Chiao & Wick-

ramasinghe 1972; Elmegreen 1983; Ferrara 1993) and for driv-

ing galaxy-wide superwinds (Murray, Quataert & Thompson 2005;

Murray, Ménard & Thompson 2011; Hopkins, Quataert & Murray

2012).

However, assessing these claims has been difficult due to limited

understanding of the radiation–matter interaction that drives the

flow. For optically thin flows the problem is relatively simple, since

the state of the radiation field is decoupled from the gas. For optically

thick media, however, the problem is significantly more difficult,

because the gas is capable of reshaping the radiation field. This can

lead to a number of complex phenomena, such as photon bubbles

(Blaes & Socrates 2003) and radiation Rayleigh–Taylor instability

(RRTI; Krumholz et al. 2009; Jacquet & Krumholz 2011; Jiang,

Davis & Stone 2013). The existence of these behaviours makes it
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2330 M. R. Krumholz and T. A. Thompson

non-trivial to calculate from first principles whether an object with

a given set of properties can produce a radiatively driven dusty wind

at all, and, if it does, what properties that wind is likely to possess.

This problem has thus far prevented definitive identification of the

driving mechanisms for winds observed in a variety of systems (e.g.

Faucher-Giguère & Quataert 2012; Newman et al. 2012).

In Krumholz & Thompson (2012, hereafter Paper I), we ad-

dressed the first part of this problem: under what circumstances

do we expect an object to launch a radiatively driven dusty wind?

We developed an idealized model system that allowed us to extract

the important dimensionless numbers governing wind launching,

and we then conducted numerical experiments with the radiation-

hydrodynamics code ORION to explore the non-linear behaviour of

the system. The major results of Paper I are that the behaviour of

gravitationally confined, dusty columns of matter subjected to ra-

diative fluxes are governed primarily by two characteristic values:

the dust optical depth and the Eddington ratio, both computed us-

ing the opacities that apply at the surface (i.e. the photosphere) of

the dusty gas. For high optical depths and surface Eddington ratios

close to but below unity, which may describe many galaxies and star

clusters, we showed that radiation passing through the gas drives

statistically steady turbulence with average Eddington ratio of unity,

but not a wind.

This result, however, does not answer the question of what hap-

pens if a wind is launched – either because the surface Eddington

ratio exceeds unity, or because some other mechanism is able to

eject matter, by itself or in conjunction with radiation forces. This

question is the main focus of our paper. We seek to determine at

what rate the matter in a radiatively driven wind is able to extract

momentum from the radiation field, and how this depends on prop-

erties such as the strength of the radiative driving and the optical

depth of the matter. In addition to illuminating the physics of the

winds, we also derive a rough fitting formula that can be used in

numerical simulations that do not include radiation hydrodynamics,

and instead treat radiative driving using sub-grid semi-analytic mod-

els (e.g. Oppenheimer & Davé 2006; Hopkins, Quataert & Murray

2011). Jiang et al. (2013) performed preliminary work on this prob-

lem in the context of winds where the dominant opacity source is

Thompson scattering from free electrons, and concluded that RRTI

would limit the wind mass and momentum flux. We seek to inves-

tigate whether the same is true for dusty winds, and to extend their

results by drawing quantitative rather than qualitative conclusions

about how the wind momentum depends on the properties of the

system.

The remainder of this paper is as follows. In Section 2, we briefly

review the basic equations and model system developed in Paper

I, and consider how to extend them to the case of a dusty wind. In

Section 3, we describe our numerical simulations, and in Section 4

we analyse the results they produce. In Section 5, we discuss the

implications of our results and provide some caveats, and Section 6

summarizes our conclusions.

2 MODEL SYSTEM

2.1 Governing equations and model system

As in Paper I, we treat a section of a galactic disc or a young star

cluster as an idealized model system consisting of a slab of gas with

total surface density � filling the domain z > 0. A vertical radiation

flux F = F0ẑ enters the domain of interest at z = 0, and there are no

radiation sources at z > 0 other than the thermal emission of the gas.

The slab of material is confined by a constant vertical gravitational

force per unit mass −gẑ; we neglect the self-gravity of the gas.

Since we are interested in cases where the gas layer is opti-

cally thick, we describe this system using the two-temperature flux-

limited diffusion (2TFLD) approximation, in which we assume that

the radiation spectrum is locally a Planck function at every point,

but we do not require that the temperature Tr describing this Planck

function be identical to the gas temperature Tg. We discuss the limi-

tations of the 2TFLD method in Section 5.6. In this approximation,

interaction of radiation and matter is governed by the Planck and

Rosseland mean opacities κP and κR.

The equations governing this system are (Krumholz et al. 2007)

∂

∂t
ρ = −∇ · (ρv) (1)

∂

∂t
(ρv) = −∇ · (ρvv) − ∇P − λ∇E − ρgẑ (2)

∂

∂t
(ρe) = −∇ · [(ρe + P )v] − κPρ(4πB − cE)

+ λ

(

2
κP

κR

− 1

)

v · ∇E −
3 − R2

2
κPρ

v2

c
E

− ρgvz (3)

∂

∂t
E = ∇ ·

(

cλ

κRρ
∇E

)

+ κPρ(4πB − cE)

− λ

(

2
κP

κR

− 1

)

v · ∇E

+
3 − R2

2
κPρ

v2

c
E − ∇ ·

(

3 − R2

2
vE

)

, (4)

where v is the gas velocity, P = ρkBTg/μmH is the gas pressure,

μ is the mean molecular weight in hydrogen masses, e = P/[(γ −

1)ρ] + v2/2 is the gas specific energy, μ is the mean mass per

gas particle in units of the hydrogen mass mH, γ is the gas ratio

of specific heats, B = caT 4
g /4π is the frequency-integrated Planck

function, E = aT 4
r is the radiation energy density, F is the radiation

flux, λ is the flux limiter and R2 is the Eddington factor. In the

2TFLD approximation, adopting the flux-limiter of Levermore &

Pomraning (1981) and Levermore (1984), the radiation quantities

are related by

F = −
cλ

κRρ
∇E (5)

λ =
1

R

(

coth R −
1

R

)

(6)

R =
|∇E|

κRρE
(7)

R2 = λ + λ2R. (8)

In this work, we adopt opacities

(κR, κP) = (10−3/2, 10−1)

(

Tg

10 K

)2

cm2 g−1, (9)

an approximation to the behaviour of dust opacity at temperatures

below ∼150 K (Semenov et al. 2003). For simplicity, as in Paper I,
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we continue to use this power-law approximation even at higher

temperatures, and note that this will generally lead us to overesti-

mate the opacity and thus the strength of matter–radiation coupling.

We pause here to note that a few subtle physical assumptions

built into the above equations. First, we have not distinguished be-

tween the temperatures of dust and gas, and thereby have implicitly

assumed that they are the same. Secondly, the opacity should de-

pend on the radiation spectrum and thus on the effective radiation

temperature; in writing down the opacity law, equation (9), in terms

of the gas temperature, we have implicitly assumed that the gas

temperature and the radiation temperature are also tightly coupled,

at least in the regime where the opacity is large enough to matter.

Thirdly, we have also assumed that dust and gas are dynamically

coupled. We show in Appendix A that these assumptions are well

justified in the regime we consider.

In Paper I, we show that these equations are fully characterized

by four non-dimensional parameters

fE,∗ =
κR,∗F0

gc
(10)

βs =
cs,∗

c
=

1

c

√

kB

μ

(

g

aκR,∗

fE,∗

)1/8

(11)

τ∗ = �κR,∗ (12)

k0 =
κP,∗

κR,∗

. (13)

Here κR,∗ = κR(ρ∗, T∗) and similarly for κP,∗, and the starred quan-

tities in turn are defined by

T∗ =

(

F0

ca

)1/4

ρ∗ =
�gμmH

kBT∗

. (14)

We may think of T∗ as the characteristic temperature at the photo-

sphere of the dusty gas, where the radiation escapes to infinity. The

natural units of velocity, length and time for the problem are

cs,∗ =

√

kBT∗

μmH

h∗ =
c2
s,∗

g
t∗ =

h∗

cs,∗

. (15)

In real astrophysical systems, βs is always very small for any non-

relativistic flow, and k0 is always of the order of unity and probably

varies little from one galaxy to another. Thus, in practice the quan-

tities fE, ∗ and τ ∗ determine the behaviour of the system.

2.2 Dimensionless numbers for winds

If gas has been launched into a wind, it has obviously overcome its

initial gravitational confinement. As discussed in the Introduction,

in Paper I we show that this occurs only for fE, ∗ > 1, i.e. only if the

Eddington ratio at the dust photosphere exceeds unity. In principle,

one wishes to determine the properties of winds launched at a range

of fE, ∗ > 1. However, we focus on the asymptotic limit fE, ∗ → ∞,

corresponding to a freely accelerating wind with negligible gravi-

tational confinement. Our reasons for doing so are threefold. First,

this reduces the parameter space we must explore. Secondly, it is

very likely that the case where there is no gravitational confinement

will produce the largest possible wind momentum flux, and so it

can serve as a useful upper limit. We will see below that even this

upper limit is quite restrictive on the possible momentum of the

wind. Thirdly, in the case of radiating optically thick discs (e.g.

starburst galaxy disc or the discs around quasars), fE, ∗ rises with

height above the disc, so winds at large distances will have larger

fE, ∗ values (Zhang & Thompson 2012).

For fE, ∗ → ∞, or equivalently g → 0, the quantities ρ∗, h∗ and t∗
cease to be well defined. It is therefore helpful to define alternative

natural units in the freely accelerating wind case. The sound speed

cs,∗ remains the natural unit of velocity, and to define a unit of time

it is helpful to ask how long it would take the momentum carried by

the direct radiation field to accelerate matter from rest to this speed.

The momentum flux per unit mass of the injected radiation field is

frad,dir =
F0

�c
, (16)

and so we define the acceleration time as

ta =
cs,∗

frad,dir

=
τ∗cs,∗

κR,∗F0/c
=

τ∗

fE,∗

t∗. (17)

If radiative trapping is significant, we expect the matter to increase

its velocity by cs, ∗ in a time significantly shorter than ta. Finally,

we can define characteristic length and density scales from the

combination of ta and cs,∗. These are

ha = cs,∗ta =
τ∗

fE,∗

h∗ ρa =
�

ha

=
fE,∗

τ∗

ρ∗. (18)

We report all results in this paper in units of ρa, ha and ta.

3 N U M E R I C A L S I M U L AT I O N S

We solve equations (1)–(4) with g = 0 using the radiation-

hydrodynamics code ORION. Our simulations are two dimensional,

and take place in the (x, z) plane; a flux F of radiation is injected

at the bottom of the computational box, z = 0. The boundary con-

ditions are periodic in the x direction, impermeable at the lower z

boundary and open at the upper z boundary. More details on the

boundary conditions are given in Paper I. All other parameters of

the simulations are also the same as in Paper I, except that we set

the external gravitational field g = 0, so that fE, ∗ → ∞.

To study the behaviour of winds in the limit fE, ∗ → ∞ as a func-

tion of τ ∗, we run four simulations, which we denote T3, T10LR,

T10HR and T30; the first of these have τ ∗ = 3, the second two have

τ ∗ = 10, and the third has τ ∗ = 30. The two τ ∗ = 10 runs are iden-

tical except in their resolutions and the sizes of the computational

domains. We perform both runs as a check on the resolution de-

pendence of our results. We summarize the physical and numerical

parameters of the simulations in Tables 1 and 2.

In Paper I, we show that initially laminar, gravitationally confined

gas slabs subjected to radiation fluxes such that fE, ∗ is above a

certain critical value, but less than unity, will develop radiation-

driven turbulence. This occurs in a time �100t∗. (Note that values

of t∗ for our runs are given in Table 1, and are the same for every run;

100t∗ ≈ 100 kyr.) Since this is short compared to most astrophysical

time-scales of relevance, it is reasonable to assume that gas being

launched in a wind will be in a fully turbulent state. We therefore

Table 1. Simulation physical parameters.

Name τ ∗ � t∗ ta ha/10−2 ρa/10−16

(g cm−2) (kyr) (kyr) (pc) (g cm−3)

T3 3 1.4 1.1 6.9 0.38 1.2

T10 10 4.6 1.1 23 1.3 1.2

T30 30 14 1.1 69 3.8 1.2

Notes. T10 describes both runs T10LR and T10HR, which have

identical physical parameters but different resolutions and box size.

All models have T∗ = 82 K, cs,∗ = 0.54 km s−1.
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Table 2. Simulation numerical parameters.

Name IC Nx × Nz Lx × Lz 
x trun

T3 T3F0.5 1024 × 16 384 85.3 × 1365 0.083 28.0

T10LR T10F0.5 512 × 32 768 25.6 × 407 0.05 21.9

T10HR T10F0.5 1024 × 16 384 25.6 × 407 0.025 10.6

T30 – 1024 × 16 384 27.3 × 437 0.027 3.6

Notes. The initial condition (IC) column gives the name of the corre-

sponding run in Paper I used to produce the initial condition. Nx × Nz is

the size of the computational domain in cells, Lx × Lz is the size of the

computational domain, 
x is the size of a computational cell and trun is

the duration for which we run the simulation. All quantities are given in

units of ha and ta. Note that all models were run during the phase where

gravity was turned on with 
x/h∗ = 0.5. Finally, for a description of the

initial conditions for run T30, see the Appendix.

do not start our simulations with laminar gas layers. Instead, we use

as initial conditions the end states of the simulations from Paper I,

as summarized in Table 2. We modify these conditions only in that

we place the gas in a computational box that is larger in the vertical

direction, in order to accommodate vertical expansion of the gas

layer once it is no longer gravitationally confined. We initialize

computational cells that are outside the computational domain of

the simulations of Paper I by giving them densities equal to the

background density and temperature from Paper I, 10−10ρ∗ and T∗,

respectively. In run T10LR, we also down-sample the resolution by

a factor of 2. The exception to the above statements is run T30,

for which we do not have a corresponding run from Paper I. We

describe how we generate its initial conditions in the Appendix.

As the simulations proceed, when necessary we shift all veloc-

ities in the computational domain by a constant offset in order

to bring the centre of mass velocity of the gas back to zero. Our

method is simple: we have added an option to the ORION code that,

upon restart from a checkpoint, calculates the centre of mass veloc-

ity of the computational domain in the z direction, then subtracts

the corresponding velocity from all computational cells, altering

the momenta and total energies appropriately. The calculation then

restarts from the modified data. We apply this option whenever a

visual inspection of the data indicates that the bulk of the mass is

well away from the bottom boundary of the computational domain.

This enables us to continue the simulations longer without the gas

reaching the top of the computational box. We shift the velocities

in this manner only when the vast majority of the gas is well away

from the bottom of the computational box, so that there are no sig-

nificant artificial forces exerted by the bottom of the computational

box. In the analysis below, we remove these offsets and present the

results as if the entire simulation had simply taken place in a larger

box. In principle, we could shift the positions as well, but this is

less convenient computationally, since it would require translating

values from one cell to another, and filling in values of density,

momentum and energy in the new cells added to the computational

domain by any shifts.

4 R ESU LTS

4.1 Qualitative behaviour

Figs 1–8 shows a series of snapshots of the simulation density fields.

As the plots show, the initial state that results from the RRTI (Jacquet

& Krumholz 2011) acting on a gas confined by gravity, consists of

a relatively horizontal, turbulent layer. In the absence of gravita-

tional confinement, the radiation force rapidly drives the gas into a

Figure 1. Density distribution as a function of time in run T3. Snapshots

are shown at intervals of 5ta, starting from t = 0, as indicated at the top of

each panel. White bars indicate a region around the vertical centre of mass;

we show a zoom-in of this region in Fig. 5. Note that the vertical extent

shown does not necessarily match the size of the computational box given in

Table 2, because we have compensated for the effects of our periodic shifts

the centre of mass velocity of the entire computational domain in some runs

– see Section 3 for details.

 at T
h
e A

u
stralian

 N
atio

n
al U

n
iv

ersity
 o

n
 M

arch
 2

4
, 2

0
1
6

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/
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Figure 2. Same as Fig. 1, but for run T10LR. The zoomed-in region is

shown in Fig. 6.

predominantly vertical, filamentary structure. In between the fila-

ments of dense gas there are low-density channels. As the material

is accelerated upward by the radiation field, the gas becomes more

elongated and spread over a progressively larger vertical extent. We

are eventually forced to halt our simulations primarily because the

vertical extent of the gas becomes comparable to the vertical size

of our computational domain.

Figure 3. Same as Fig. 1, but for run T10HR. The zoomed-in region is

shown in Fig. 7.

Fig. 9 shows an example of the distribution of density, tempera-

ture, velocity and radiation flux in one of the runs once the channel

structure has developed. The channels are characterized by several

features. First, within them the gas is travelling at extremely large

velocities relative the dense gas in the filaments. At the snapshot

shown, the velocity difference approaches many tens of cs,∗. As a

result of this velocity difference, the edges of the channels appear to
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Figure 4. Same as Fig. 1, but for run T30. The zoomed-in region is shown

in Fig. 8. Note that the first panel is not in fact empty – the gas at time 0 is

simply compressed into an extremely thin layer whose width, on the scale

plotted, is less than a single pixel.

be scalloped by Kelvin–Helmholtz instabilities. Secondly, because

of their lower optical depths, the channels carry the great major-

ity of the radiative flux. The flux within the channels approaches

10F0, while inside the filaments the flux is ≪F0. Thus, the matter

effectively collimates the radiation field, inducing a strong anticor-

Figure 5. Same as Fig. 1, but the panels show a zoom-in on a small region

around the vertical centre of mass. The zoomed region is indicated by the

white bars in Fig. 1.

relation between density and radiative flux. This anticorrelation is

the main signature of the RRTI.

4.2 Radiative trapping

The development of vertical filamentary structure and the resulting

collimation of the radiation field has profound effects on its ability to

trap the radiation field and extract momentum from it. To quantify

the rate at which the gas takes up momentum from the radiation

field, it is helpful to examine the z component of the momentum

equation including radiation and gravitational forces; this is

d

dt
(ρvz) = −∇ · (ρvvz) −

dP

dz
+ κRρ

Fz

c
− ρg, (19)

where Fz is the z-component of the radiation flux and the use of

κR in the equation implicitly equates the flux-mean and Rosseland-

mean opacities, as is appropriate in the optically thick regime. In the

flux-limited diffusion approximation this equation is equivalent to

equation (2), as shown by Krumholz et al. (2007), but the analysis

is more transparent when the equation is written in the form above.

If we integrate this equation over the entire computational domain,

and ignore the small terms that arise from forces and fluxes across

the top and bottom boundaries of the computational domain, the

first two terms on the right-hand side vanish and we are left with

d

dt
〈ρvz〉 =

〈

κRρ
Fz

c

〉

− 〈ρ〉g, (20)

where for any quantity q we defined the volume average by

〈q〉 =
1

LxLz

∫ Lx/2

−Lx/2

∫ Lz

0

q dz dx. (21)

Dividing both sides by 〈ρ〉 and noting that the mass in the compu-

tational domain is very close to constant (since we are careful to

ensure there is no significant mass-loss from the top of the compu-

tational box) gives

dvz

dt
=

1

c

〈κRρFz〉

〈ρ〉
− g, (22)
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Figure 6. Same as Fig. 5, but for run T10LR.

where vz = 〈ρvz〉/〈ρ〉 is the mass-weighted mean z velocity of the

gas. We use the first term on the right-hand side to define the mean

radiation force per unit mass,

frad =
1

c

〈κRρFz〉

〈ρ〉
. (23)

Equivalently, we may think of this term as describing the mass-

weighted mean radiation force. Based on our observation that den-

sity and flux are strongly anticorrelated, we expect that to be much

less than the volume-weighted mean radiation force 〈κRF0〉/c would

be. The second term on the right-hand side is simply the gravita-

tional force per unit mass.

At this point, it is useful to rewrite the equation by multiplying

through by a factor of ta/cs,∗ to non-dimensionalize. Doing so gives

ta

cs,∗

dvz

dt
=

frad

frad,dir

−
τ∗

fE,∗

. (24)

Following Krumholz & Matzner (2009) and Paper I, we define the

trapping factor by

1 + ftrap =
frad

frad,dir

. (25)

Physically, the trapping factor is simply the factor by which the

radiation force is amplified by trapping of the radiation field by the

gas. The quantity 1 + ftrap is equivalent to the amplification factor

τ IR defined by Thompson et al. (2005), although we refer to it as

ftrap here because, as we will see, its relationship to optical depth is

not trivial. Using equation (24) to rewrite the equation above, we

obtain

ftrap =
ta

cs,∗

dvz

dt
+

τ∗

fE,∗

− 1. (26)

The quantity on the right-hand side is directly measurable from our

simulations (and fE, ∗ = ∞ in the absence of gravity, so the term

τ ∗/fE, ∗ = 0), so our simulations provide us with a direct measure-

ment of ftrap as a function of time. However, we must make one

important modification to equation (26), which comes from a limi-

tation of our numerical method. Because we are using flux-limited

diffusion, we do not properly capture the interaction of the gas with

the direct, beamed radiation field produced by stars. Instead, we are

treating the radiation field only after this first absorption. Since the

final −1 represents the contribution from this direct radiation field,

we do not subtract it off when computing ftrap from the simulations.

This is likely conservative, since our method does capture some of

the effects of the first absorption, in which case the results we obtain

should be upper limits on ftrap. However, we cannot completely rule

out the possibility that inclusion of the direct radiation force would

somehow change the structure of the gas and indirectly increase the

trapping of the reradiated field.

Fig. 10 shows the gas mean velocity and trapping factor as a

function of time in each of our simulations. For constant ftrap, the

gas velocity should increase linearly with time. Instead, we see

that the velocity increase is steep at first and then becomes much

shallower, and this is reflected in the plots of ftrap, which are large

at first and then decline over a few ta. The initially high values

are easy to understand given our starting conditions. When the

gas is confined by gravity and there is no wind, both the time-

averaged value of vz and its rate of change must be zero. Consulting

equation (26), this requires that ftrap = τ ∗/fE, ∗, again omitting the −1

because our simulation does not properly model the direct radiation

force. The initial value of ftrap we measure is indeed close to this,

though the match is not exact because dvz/dt is not precisely zero

at all times in the gravity-confined state; instead, it oscillates about

zero.

Once the gravitational confinement is removed, however, the

gas morphology changes from predominantly horizontal to pre-

dominantly vertical, and ftrap drops. At late times ftrap oscillates

up and down about a value well below the initial one. Upward

and downward oscillations of ftrap correspond to variations in the

gas morphology. At times, for example at times t/ta = 5 and 10

in run T10HR (see Fig. 7), the filaments formed by the radiation
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2336 M. R. Krumholz and T. A. Thompson

Figure 7. Same as Fig. 5, but for run T10HR.

Figure 8. Same as Fig. 5, but for run T30. As with Fig. 4, note that the

first panel is not empty, but it appears so because the gas at time 0 is simply

compressed into an extremely thin layer whose width, on the scale plotted,

is less than a single pixel.

are fairly coherent leave fairly large vertical channels unobstructed,

and at these times ftrap is low. At other times, such as t/ta = 7.5

in run T10HR, the filaments are more fragmented and cover

more or the domain horizontally, giving rise to larger values of

ftrap.

Finally, comparing runs T10LR and T10HR suggests that are

results are relatively well-converged. Since the gas is turbulent for

RRTI in its fully developed state, the flow is chaotic and we do not

expect either morphologies or exact values of ftrap as a function of

time to be resolution-independent. However, examining the results

in Fig. 10, we see that values of ftrap versus time produced in the two

runs are qualitatively similar, and that quantitatively their means are

well within the level of variance in ftrap we measure in each run as

the flow varies chaotically. This suggests that our values of ftrap are

converged.

We summarize our results for ftrap in Table 3, where we report

the minimum, mean and maximum values of ftrap we measure in

each of our simulations once the initial transient phase ends. For

comparison, we also report τ ∗/fE, ∗ ≈ ftrap, grav, the mean value of

ftrap in the initial, turbulent, gravity-confined state and κ(Tmp)� ≈

τ IR, the optical depth computed by multiplying the column density

by the opacity evaluated using the mid-plane temperature Tmp. The

latter has been used as an approximate value for ftrap by a number of

authors, as we discuss in more detail below. Clearly none of these

values are equal; instead ftrap ≪ ftrap, grav ≪ τ IR.

Figure 9. A section from run T10LR at t = 12.4ta showing the density and

velocity distribution (colours and vectors in the left-hand panel), and the

gas temperature and radiative flux distribution (colours and vectors in the

right-hand panel). The region shown is centred in the vertical centre of mass

of the gas at this time, zcm = 298ha, and the velocities shown are relative to

the vertical centre of mass velocity of the section shown, vz,cm = 77.0cs,∗.

Figure 10. Mean gas velocity versus time (top row) and trapping factor

versus time (bottom row) for runs T3 (first column), T10 (second column)

and T30 (third column). In all panels, solid lines show the results of the

simulations; for T10, blue shows T10LR and green T10HR. In the upper

panels, black dashed lines show the change in velocity versus time that

would be expected for trapping factors ftrap = 1, 10, 100 and 1000, from

shallowest line to steepest. In the bottom panel, dashed black lines show

ftrap = 1 and ftrap = τ ∗/fE, ∗, with the value of fE, ∗ computed before gravity

is turned off – i.e. the value of fE, ∗ that was used in the simulation from

Paper I from which we take our initial conditions. In the absence of gravity,

as is the case for the simulations shown here, fE, ∗ = ∞.
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Table 3. Simulation results.

Name tmin Min(ftrap) 〈ftrap〉 Max(ftrap) τ ∗/fE, ∗ κ(Tmp)� 〈τ 〉

≈ftrap, grav ≈τ IR

T3 5 1.0 1.6 ± 0.4 2.5 6 15 6.2 ± 0.6

T10LR 3 2.6 6.0 ± 1.3 9.9 20 120 32 ± 3

T10HR 3 2.2 4.9 ± 2.4 8.9 20 120 30 ± 5

T30 1 5.3 12.3 ± 5.7 23.3 600 2000 132 ± 11

Notes. For each run, min (ftrap), 〈ftrap〉 and max (ftrap) give the minimum, time-averaged and max-

imum values of ftrap that occur in the simulation after time tmin. The error bars given on 〈ftrap〉

represent the 1σ range measured from the simulations at times >tmin. For comparison, τ ∗/fE, ∗ ≈

ftrap, grav gives the time-averaged value of ftrap in the steady-state gravitationally confined config-

uration from which we start, while κ(Tmp)� ≈ τ IR is the average optical depth at the start of the

calculation, computed using the mass-weighted mean mid-plane temperature as in Paper I. The

quantity 〈τ 〉 is the mass-weighted mean optical depth of the computational domain computed using

the temperatures from the simulations; see equation (37). As with 〈ftrap〉, the value shown is the

time average at times >tmin, and the error bars give the 1σ range over this time.

4.3 Wind velocity distribution

Fig. 10 and Table 3 describe the mean velocity and mass-averaged

momentum transfer from radiation to gas. However, it is also in-

teresting to look at the distribution of matter velocities. In Fig. 11,

we show mass-weighted velocity probability distribution functions

(PDFs) for each of our runs at several times. In the initial con-

Figure 11. Velocity distribution functions for each of our simulations at

times t/ta = 0, 10 and 28 (for runs T3, T10LR and T10HR) and t/ta = 0

and 3 (for run T30), as indicated in the legend. In each panel, the histogram

shows the fraction of the mass in the simulation that falls into a given

bin of z velocity at the indicated time. Vertical dashed lines indicate the

mass-weighted mean velocity vz at that time.

dition, the distribution of z velocities is, as one might expect for

a roughly hydrostatic atmosphere, symmetric about vz = 0. The

width is fairly small, reflecting the relatively low Mach num-

bers we obtained for turbulent atmospheres in Paper I. At times

≫ ta, not only is the mean velocity vz larger, the spread of ve-

locities is larger as well. At late times the PDF for all the runs is

slightly asymmetric, with the majority of the mass residing at ve-

locities slightly below the mean, and a tail extending well above the

mean.

The division between high- and low-velocity material corre-

sponds to the division between material in the opaque filaments

and material in or at the edges of the radiation-dominated channels,

as illustrated in Fig. 12. To construct this figure, along every vertical

line of sight we measure the column density

�(x) =

∫ Lz

0

ρ(x, z) dz. (27)

We then assign every cell a column density �(x) corresponding to

the value at its x position, and construct the two-dimensional PDF

of �(x) and vz. From the 2D PDF, we see the same asymmetry as

in Fig. 11, where the velocity distribution extends further from the

mean in the positive direction than the negative direction. In the

2D PDF, it is clear that the high-velocity material consists prefer-

entially of gas with low �(x). The correlation is relatively weak,

and the overall range in �(x) is relatively small, because the fil-

aments are not perfectly vertical. Thus, most of the time a given

vertical line of sight will intersect both dense filaments and low-

density channels, rather than looking straight down the barrel of a

channel. Nonetheless, this column density–velocity anticorrelation

represents a possible observable signature of radiation pressure-

driven dusty winds.

The overall width of the velocity distribution, including both low-

and high-speed components, is of the order of ∼20cs,∗ in all the

runs; the dispersion of horizontal velocities is substantially smaller.

The dispersion does not appear to increase substantially over the

time interval shown, and thus ∼20cs,∗ is likely the steady-state

value, at least over the range of τ ∗ values that we have explored.

This corresponds to a one-dimensional Mach number in the ver-

tical direction of the order of 20 – not exactly 20, since much of

the gas is somewhat warmer than T∗ and thus has a sound speed

greater than cs,∗. For our fiducial choice of dimensional scaling

(cs,∗ = 0.54 km s−1), this give a physical velocity dispersion of

roughly 10 km s−1 in the wind, compared to bulk velocities
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2338 M. R. Krumholz and T. A. Thompson

Figure 12. Two-dimensional velocity-column density distributions in the

simulations at the latest time slices shown in Fig. 11 (t/ta = 28 for runs T3

and T10LR, t/ta = 10 for run T10HR and t/ta = 3 for run T30). Each pixel

shows the logarithm of the fraction of the simulation mass in the indicated

bin of vz and �(x), normalized so that the most massive bin has a value

of unity. Note that both the x and y axes are offset such that material at

the mass-weighted mean column density and velocity would appear at the

position (0, 0).

of ∼100 km s−1 at the same time. While this Mach number and

velocity dispersion are larger than we found in Paper I for radiation

Rayleigh–Taylor (RRT)-unstable atmospheres that do not drive a

wind, they are still close to an order of magnitude smaller than

the values observed in the most vigorously star-forming ultralumi-

nous infrared galaxies (ULIRGs) (e.g. Downes & Solomon 1998).

Finally, we note that the results for runs T10LR and T10HR are

qualitatively similar at equal times, suggesting at least rough con-

vergence.

5 D I SCUSSI ON

5.1 Fitting formulae for radiation trapping

By combining the results of this paper with those of Paper I, we are

now in a position to provide a fitting formula for the value of ftrap

in optically thick radiation pressure-driven atmospheres and winds.

Such a formula is useful in simulations or analytic calculations that

seek to include radiation pressure effects, but that do not properly

capture the radiation-hydrodynamic behaviour associated with the

RRTI. Examples include one-dimensional models (e.g. Krumholz

& Matzner 2009; Murray et al. 2010), models that include radiation

pressure only via a subgrid prescription rather than by solving the

equation of radiative transfer (e.g. Hopkins et al. 2011; Agertz

et al. 2012), models that solve the transfer equation only for the

direct and not the dust-reprocessed radiation field (and therefore

implicitly set ftrap = 0; e.g. Peters et al. 2010; Wise et al. 2012;

Kim et al. 2013a,b) and models that solve the transfer equation

in one dimension under an assumption of spherical symmetry and

therefore miss RRT effects (e.g. Novak, Ostriker & Ciotti 2012).

The value of ftrap for a radiation pressure-dominated wind or

atmosphere is a function of the two main dimensionless parame-

ters for the problem, fE, ∗ and τ ∗. We have sampled this parameter

space quite coarsely, but we can nonetheless provide a rough fit that

captures the results of our simulations, and which is an improve-

ment over simple prescriptions. In Paper I, we explored the regime

fE, ∗ < 1, and found that for a given τ ∗ there exists a critical fE, ∗

above which instability sets in. At values of fE, ∗ below this value the

atmosphere is supported predominantly by gas pressure over most

of its height, and radiation pressure is dynamically unimportant.

Above the critical fE, ∗ values, we found that RRTI causes the value

of ftrap to self-adjust so that the radiation force exactly balances

gravity without producing a wind. This is ftrap ≈ τ ∗/fE, ∗ − 1. To

extend this to lower τ ∗ than we have sampled, we simply impose the

requirement that ftrap cannot be less than 0. Thus, our approximation

for fE, ∗ < 1 is

ftrap,lo ≈ max

(

τ∗

fE,∗

− 1, 0

)

. (28)

In the regime fE, ∗ → ∞ that we explore in this paper there

is a wind, but the rate at which it takes up momentum from the

radiation field is limited. Fig. 13 shows our estimated values of ftrap

as a function of τ ∗, together with a crude linear fit that is consistent

with the simulations:

ftrap,hi ≈ 0.5τ∗. (29)

This is only a ‘by-eye’ fit, but it describes the data very well, and

given the small number of simulations and the error bars on each

one, a more sophisticated fitting procedure does not seem justified.

To combine the two cases fE, ∗ < 1 and fE, ∗ → ∞, we hypothesize

that ftrap will obey equation (28) up to the point where fE, ∗ = 1. At

this point, we will have ftrap ≈ τ ∗ − 1 for τ ∗ ≫ 1. Beyond this

point, as fE, ∗ increases ftrap will smoothly decrease on to the fit

given by equation (29) in the limit fE, ∗ → ∞. Since we have not

mapped out the intermediate fE, ∗ regime, obviously the functional

form of this decrease is not well-constrained, and we cannot rule out

the possibility that ftrap behaves non-monotonically over this range,

for example developing a peak at a special value of fE, ∗. However,

there is no good reason to believe that such a phenomenon should

occur, and in its absence the functional form we adopt to interpolate

between the behaviour at fE, ∗ < 1 and fE, ∗ → ∞ matters little, since
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Figure 13. Values of ftrap as a function of τ ∗ measured in the simulations

presented in this paper. The points represent the time-averaged value, thick

error bars show the standard deviation, and thin error bars show the range

from minimum to maximum; all values are as given in Table 3. For runs

T10LR and T10HR, the points are offset slightly from τ ∗ = 10 for clarity.

The dashed black line is ftrap = 0.5τ ∗.

ftrap only changes by a factor of 2 between those cases. We therefore

adopt a very simple interpolation between the two cases,

ftrap ≈ ftrap,hi +
ftrap,lo − ftrap,hi

max(fE,∗, 1)
(30)

in the regime where RRTI occurs. This fitting formula has the correct

asymptotic behaviour in the limits τ ∗ → 0, fE, ∗ < 1 and fE, ∗ →

∞, and is consistent with the simulations over the range of fE, ∗ and

τ ∗ we have explored. We can also use this formula to determine

the ratio of mass-averaged radiation force to gravitational force. In

Paper I, we showed that this is

〈fE〉 = (1 + ftrap)
fE,∗

τ∗

. (31)

If a wind is launched, from equation (24), we can see that the net rate

at which it gains momentum including both radiative acceleration

and gravitational deceleration is

dpwind

dt
=

(

1 + ftrap

)

(

〈fE〉 − 1

〈fE〉

)

L

c
. (32)

Fig. 14 shows the results of our fit for ftrap, 〈fE〉 and

(dpwind/dt)/(L/c) as a function of τ ∗ and fE, ∗. In the plot we can

see the three dominant regimes identified in our simulations. Be-

low the critical line there is no RRTI, and radiation is dynamically

subdominant. For fE, ∗ large enough to turn on RRTI but still below

about unity, 〈fE〉 is fixed to unity, and ftrap self-adjusts to compen-

sate, decreasing as fE, ∗ increases at fixed τ ∗. Finally, at fE, ∗ greater

than about unity, a wind appears. In this regime ftrap is a function

primarily of τ ∗, and is quite insensitive to fE, ∗. On the other hand

〈fE〉 increases with fE, ∗, indicating that gravity is becoming progres-

sively weaker relative to radiation. As a result, the wind strength is

monotonically increasing with fE, ∗, but only slowly, since gravity

is relatively unimportant once fE, ∗ is even a slightly above unity.

We stress that the exact location of the wind-launching line should

not be taken too seriously, particularly at τ ∗ < 1, given the sparsity

with which we have sampled the parameter space. Nonetheless, the

qualitative result that for τ ∗ > 1 a wind appears only for fE,∗ � 1

should be robust.

Figure 14. Values of log ftrap (top), log 〈fE〉 (middle) and (dpwind/dt)/(L/c)

(bottom) as a function of fE, ∗ and τ ∗, computed using the fitting formula

given by equation (30). In each panel, contours lines appear at values

of −2, −1, 0, 1 and 2. The thick black line in the top two panels shows

the critical curve below which RRTI shuts off (white region). The thick

black line in the bottom panel shows the critical value below which no wind

is launched.

Readers may note that, for τ ∗ ≪ 1, it is possible for there to be a

wind even when fE, ∗ < 1 and RRTI does not occur. Physically, this

corresponds to a medium that is optically thin to dust-reprocessed

radiation, but it still absorbs the direct radiation field. In this case,

the radiation is absorbed once, is re-emitted, and then immediately

escapes, so the RRTI that we see in our simulations does not occur.

However, if the direct radiation field carries enough momentum,

this single absorption may still be sufficient to overcome gravity

and launch a wind. Simulations by Kuiper et al. (2012) suggest that

RRTI does not occur in this case, which is not surprising, since

RRTI relies upon the ability of the gas to shape the radiation field.

That cannot happen if the radiation is only absorbed once.

5.2 Implications for star-forming systems

Given our results for ftrap and 〈fE〉, it is interesting to ask what our

models predict for star-forming systems, which have been posited to

be regulated by radiation pressure. We consider two types of objects:

proto-star clusters, which we approximate as spherical, and galactic

discs, which we approximate as planar. For a spherical object of total

(gas plus stellar) mass M, gas mass fraction fg, stellar mass fraction

f∗ = 1 − fg, and radius R, within which the stars have a light-to-

mass ratio �, we have a central luminosity L = �f∗M, gas surface
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density � = (1 − f∗)M/4πR2, surface gravitational acceleration

g = GM/R2, surface flux F = L/4πR2 and surface temperature

T∗ = (L/4πR2σ )1/4. Thus, for the rough fit to the Semenov et al.

(2003) opacity model given by equation (9), our estimates of the

key dimensionless parameters near the surface become

τ∗ = 2.6fg,0.5f
1/2

∗,0.5�
1/2
3 �

3/2
1 , (33)

fE,∗ = 0.079f
3/2

∗,0.5�
3/2
3 �

1/2
1 , (34)

where f∗, 0.5 = f∗/0.5, fg,0.5 = (1 − f∗)/0.5, �1 = �/10 g cm−2

and �3 = �/103 L⊙/M⊙; for a zero-age stellar population,

� = 1140L⊙/M⊙ (Fall et al. 2010), so our normalization should be

appropriate for a young cluster. In computing τ ∗, we have assumed

that the gas is arranged in a thin shell (as it must be if it is to be

ejected), so τ∗ = κ∗M/4πR2 = κ∗�/4, with the factor of 4 arising

from the difference between the surface density � as measured by

an external observer (which is what appears in the above equations)

and the surface density as seen by radiation escaping from the cen-

tre of the star cluster; if we instead adopt a uniform density sphere

geometry, τ ∗ will be larger by a factor of 3. Similarly, variations in

the dust opacity per unit gas mass could plausibly increase τ ∗ and

fE, ∗ by as much as a factor of a few, and downward by much larger

factors in low-metallicity systems. Note that, as pointed out by Fall

et al. (2010), M and R enter only through the combination �. The

value to which we have normalized �, 10 g cm−2, is roughly the

maximum observed value for stellar systems anywhere in the Uni-

verse (Hopkins et al. 2010), and thus the values of τ ∗ and fE, ∗ above

should be regarded as upper limits. Note further that, even though

fE, ∗ < 1 in equation (34), this does not imply that radiation is unim-

portant to the dynamics of the dusty gas. Indeed, radiation pressure

should drive strong turbulence as in our simulations presented in

Paper I.

We can perform a similar calculation for a galactic disc with

total surface density � and gas mass fraction fg. Such as disc

has a surface gravitational force g = 2πG�. For a stellar popula-

tion older than ∼4 Myr, the light to star formation rate ratio ap-

proaches a roughly constant value  = 6.1 × 1017erg g−1 s−1 =

1.0 × 1010 L⊙/(M⊙ yr−1) (calculated using starburst99 – Lei-

therer et al. 1999; Krumholz & Tan 2007; Krumholz & Dekel

2010). It is therefore convenient to write the radiative flux as

F = �̇∗, where �̇∗ is the star formation rate per unit area. Plug-

ging this flux into our scalings for the dimensionless parameters

gives

τ∗ = 0.67fg,0.5
1/2
10 �̇

1/2
∗,3 �0, (35)

fE,∗ = 0.43
3/2
10 �̇

3/2
∗,3 �−1

0 , (36)

where �0 = �/1 g cm−2, �̇∗,3 = �̇∗/103 M⊙ pc−2 Myr−1 and

10 = /1010 L⊙/M⊙. The normalizations of � and �̇∗ here

have been chosen to match those of the most vigorously star-forming

galaxies observed. Indeed, none of the galaxies in the large sam-

ple compiled by Krumholz, Dekel & McKee (2012) exceed this

star formation rate. Since observations indicate that �̇∗ ∝ �p with

p ≈ 1−1.5, using a normalization for galaxies of lower star forma-

tion rates and surface densities would lead to lower values of τ ∗ and

fE, ∗. Thus, the values above are, as in the case of single clusters,

upper limits for star-forming systems. However, we note that quasar

discs on ∼1–50 pc scales can and do exceed these limits (Sirko &

Goodman 2003; Thompson et al. 2005).

Given these numbers for star clusters and galactic discs, we can

draw a few conclusions. The first, already suggested in Paper I,

is that, in the absence of additional forces, the dust-reprocessed

radiation field cannot launch winds or eject mass from the great

majority of star clusters and galaxies. This is because we find that

winds are only launched when fE, ∗ > 1. For star clusters even our

upper limit is well below this value, and for galaxies only the most

extreme systems approach it, while galactic winds are inferred to be

ubiquitous (e.g. Veilleux et al. 2005). This is not to say that radiation

pressure is not important. As discussed above, if the radiation force

is sufficiently strong and τ ∗ < 1, it may be possible for the direct

radiation field to eject matter, particularly in systems where gravity

is already partially offset by magnetic fields, turbulent motions or

some other force (e.g. Murray et al. 2005; Krumholz & Matzner

2009; Fall et al. 2010; Murray et al. 2010; Hopkins et al. 2011).

Indeed, Krumholz & Matzner (2009) compile a sample of super-

star clusters, and show that for some of them the direct radiation

force, combined with the momentum of line-driven winds, is likely

to be able to eject matter even without significant radiative trapping.

Even in somewhat lower luminosity systems where it cannot eject

the bulk of the gas, radiation pressure may still be able to drive small

amounts of mass to speeds above the escape speed and eject it, as

happens for example with massive stars. Nonetheless, our results

show that ejecting mass from star-forming systems via radiation

pressure is significantly more difficult than many models assume.

A second implication of our work is that, if radiation pressure

does launch winds, and if it were the sole driving mechanism, those

winds are not likely to carry a momentum flux much larger than

a few times L/c. Equations (33) and (35) show that τ ∗ on galactic

scales never much exceeds unity, and that even for the densest

clusters it is <10; a more typical value for massive clusters would

give τ ∗ ∼ 1. Since we find that ftrap ≈ 0.5τ ∗, this means that we

cannot expect winds accelerated primarily by radiation to have ftrap

larger than ∼1. Thus, radiation pressure-driven winds from star-

forming systems should not carry a momentum flux that exceeds

L/c by more than a few tens of percent. The best-fitting values of

the momentum fluxes of the winds produced by giant star-forming

clumps at z ∼ 2 exceed this limit (Genzel et al. 2011; Newman

et al. 2012), which taken at face value would suggest that they

cannot be primarily radiation driven (consistent with Krumholz &

Dekel 2010). However, we caution that there are very significant

uncertainties on these measurements, and for most sources any

reasonable estimate of the error bars does not exclude a momentum

flux that is close to L/c. Moreover, since the winds we observe

now were launched some time ago, it is entirely possible that the

present-day luminosity we measure for these sources is smaller

than it was when the winds were launched. Given the observational

uncertainties, we cannot conclude that giant clump winds cannot

be radiatively driven, only that, if they are, either their momentum

fluxes must have been overestimated or their luminosities at the

point of wind launching underestimated.

It is interesting to ask how our conclusions compare with those

of prior authors, and why they differ. Most notably, our conclusion

that dust-reprocessed radiation is unlikely to be a significant factor

in launching winds or disrupting massive clusters is inconsistent

with those of a number of authors, including Murray et al. (2010),

Murray et al. (2011), Hopkins et al. (2011, 2012) and Genel et al.

(2012). We can understand the difference by examining how the

radiation force imparted to the matter is computed in these mod-

els versus in our simulations. Murray et al. (2010, 2011) treat the

matter as a one-dimensional thin shell, compute the resulting gas

temperature and thus the opacity, and compute the radiation force

by multiplying the flux by that opacity. Similarly, Hopkins et al.

(2011, 2012) adopt a uniform, high dust opacity (κ = 5 cm2 g−1)
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and compute the radiation force by multiplying that opacity by the

total radiation flux. Genel et al. (2012) use a subgrid model that

does not explicitly account for radiation forces or any other feed-

back effect, but manually injects winds at a strength that is tuned

to match the results of the Murray et al. and Hopkins et al. models.

Our numerical results show that these approaches can produce a

large overestimate of the radiation force and the trapping factor. In

light of this finding, it seems necessary to recompute the models of

Murray et al. (2010), Murray et al. (2011), Hopkins et al. (2011,

2012) and Genel et al. (2012) using the approximate fitting formula

for ftrap that we have derived.

5.3 Physical origins of weak trapping

Our simulations show that simple estimates of radiative trapping in

dusty gas, such as those adopted by many previous authors, tend to

produce values of the asymptotic momentum of the dusty gas that

are substantially too large. We can identify two significant effects

that contribute to this error. First, these models did not take into

account the anticorrelation between radiation flux and gas density

produced by RRTI, which causes the flux seen by the bulk of the

matter to be significantly smaller than the volume-averaged flux.

We illustrate this effect in Fig. 15, which shows the distribution of

density and flux in the simulation volume for a particular time in

run T10LR. From the figure, it is clear that dense matter generally

has a much lower radiation flux passing through it than more diffuse

matter. Secondly, they miss the effect that, because the flux is low

within the bulk of the matter, the gas and radiation temperatures

are also low. This reduces the opacity within the bulk of the matter,

further weakening the matter–radiation coupling.

It is interesting to investigate further the relative importance of

these two effects, particularly because this has implications for how

general our results should be. The flux-density anticorrelation would

seem likely to be quite independent of the particular opacity law, and

thus potentially important even in systems where the opacity has

Figure 15. Distribution of gas density and radiation flux throughout the

computational volume, for run T10LR at t = 12.4ta, the same run and

time shown in Fig. 9. The colour in each pixel of (ρ/ρa, F/F0) indicates

the fraction of the simulation volume has the indicated density and total

radiation flux. The colour scale is normalized so that the value in the most

populated bin is unity. White pixels correspond to values of density and flux

that are not populated.

Figure 16. Values of 〈τ 〉 as a function of t for all simulations (solid lines).

For comparison, we also show τ IR (dotted lines) and ftrap (dashed lines;

identical to the values shown in the lower panels of Fig. 10).

a different functional form (e.g. electron scattering opacity, which

is independent of temperature). The reduction in opacity due to a

reduction of the temperature in the bulk of the matter, on the other

hand, relies on the particular property that the opacity rises with

temperature in dusty gas, and it is unclear how this effect might

change for different opacity laws.

To address this question, we compute the quantity

〈τ 〉 ≡ 〈κRρ〉Lz, (37)

from our simulations. Physically, this is the optical depth computed

using the mass-weighted mean opacity. If the flux were uniform

(i.e. Fz = F0 everywhere), it is easy to show that we would have

ftrap = 〈τ 〉. Thus, the value of 〈τ 〉 provides some insight into the

relative importance of the non-uniformity of the flux. If the flux-

density anticorrelation is the dominant effect in reducing ftrap, since

〈τ 〉 excludes this effect we should find 〈τ 〉 ∼ τ IR, where τ IR is

the expected trapping factor for a laminar medium as estimated for

example from the models of Thompson et al. (2005), Murray et al.

(2010) and Murray et al. (2011). On the other hand, if ftrap is reduced

primarily due to the way RRTI reduces the temperature and thus the

opacity, then we would expect 〈τ 〉 ∼ ftrap instead.

We show 〈τ 〉 as a function of time in Fig. 16, where for compari-

son we also plot ftrap and τ IR. We also report the time-averaged value

of 〈τ 〉, computed in the same manner as for ftrap, in Table 3.1 We

find that 〈τ 〉 is, in a logarithmic sense, roughly half-way between

τ IR and the actual value of ftrap we measure in our simulations. This

indicates that the flux-density anticorrelation and the reduction in

opacity due to non-uniform temperatures are about equally impor-

tant in reducing the rate of momentum transfer from radiation to

gas in our dusty flows. That there is at least some reduction in the

momentum transfer to the gas even due to flux-density anticorrela-

tion even when the opacity is grey is qualitatively consistent with

the findings of Jiang et al. (2013), who find RRTI operating in a

medium with a grey opacity.

Based on this result, we tentatively predict that even for an opacity

that depends on a different positive power of the temperature, the

flux-density anticorrelation induced by RRTI should produce some

reduction in ftrap compared to what one would estimate using a model

in which the density and radiation flux are taken to be uniform.

However, if the opacity is grey this reduction should be smaller

1 Careful readers may notice that, for run T30, the plot of 〈τ 〉 does not extend

quite as far in time as the plot of ftrap, and in some places is more smoothly

interpolated in time; this is due to a coding error that caused some portion of

the output from this run to be lost, preventing us from performing the post

processing required to calculate 〈τ 〉 at the corresponding times. This issue

did not affect ftrap because the values required for it were calculated as the

simulation ran.
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than what we find here by roughly a factor of 2 in a logarithmic

sense. These issues are particularly important in the case of dust

opacities since it is only for T < 150 − 200 K that κR ∝ T2. At

higher temperatures, the dust opacity is approximately constant with

temperature (Semenov et al. 2003). Thus, in some regimes we would

expect the flux-density anticorrelation to dominate. Compared to our

κR ∝ T2 model, a dust opacity that flattened at high temperatures

would probably produce slightly lower ftrap (since the decrease in

opacity should at least marginally reduce the net radiation force)

but much lower τ IR (since the opacity at the mid-plane would be

greatly reduced), and thus less of a difference between τ IR and ftrap.

It is unclear what would happen in the case of an opacity that

falls with temperature, as is the case for a Kramers opacity law, but

it is conceivable that in this case ftrap might actually be closer to the

naive laminar estimate, since for such an opacity the temperature-

dependence induced by the non-uniform radiation field would tend

to increase rather than decrease the strength of matter–radiation

coupling. However, we emphasize that all of these conclusions are

tentative, since it is entirely possible that the non-linear development

of the RRTI, and thus the amount of flux-density anticorrelation it

produces, itself depends on the opacity law.

5.4 Relation to dusty star winds

Although our work is focused on the problem of star cluster and

galactic winds, the general problem of radiative driving of dusty

gas also arises in the context of winds from dusty late-type stars

(e.g. Goldreich & Scoville 1976; Habing 1996). Before proceeding,

it is important to point out a significant way in which this problem

differs from our work here and in Paper I. At the low temperatures

typical of interstellar gas even in intensely star-forming galaxies, the

opacity roughly κ ∝ T2 (e.g. Semenov et al. 2003), as we use in our

models. This means that the opacity general drops monotonically

with height in an atmosphere. In the case of dusty stellar winds, on

the other hand, where temperatures are near the grain sublimation

temperature, the opacity is much more complex and non-monotonic,

both due to grain formation, destruction and drift relative to the gas,

and because even for a constant grain population the opacity varies

are roughly T0 (i.e. constant) rather than T2 at temperatures close

to the grain sublimation temperature. As discussed in the previous

section, for such an opacity law we tentatively expect that there will

be some reduction in ftrap compared to the expected values for a

uniform medium, but that it will be weaker than what we find here.

With this caveat aside, we note that one-dimensional models

have been reasonably successful at reproducing many observations

of massive star winds (e.g. Ivezic & Elitzur 1995; Elitzur & Ivezić

2001; Ivezić & Elitzur 2010), implying that RRTI may not be criti-

cal for these stars. However, the observationally inferred momenta

of dusty star winds are usually below L/c (e.g. Groenewegen et al.

2009), and that even the highest inferred momenta are no more

than ∼10L/c (e.g. Elitzur & Ivezić 2001), which in turn suggests

that these stars are not in the regime where we require strong ampli-

fication of the force by radiative trapping that might be inhibited by

RRTI. On the other hand, one might legitimately worry that even the

more modest reduction in optical depth we expect for a grey opacity

might make it difficult to accelerate winds to 10L/c. We tentatively

conclude that there might be some tension between our numerical

results and the current generation of asymptotic giant branch wind

models, and potentially even some tension with the observations.

However, the problem clearly needs further investigation, since our

estimate of the factor by which RRTI should reduce ftrap for complex

opacity laws is highly uncertain.

5.5 Limitations due to geometric simplifications

of the simulations

Our simulations represent an idealized numerical experiment with a

simple geometry. It is therefore interesting to ask how a more realis-

tic setup would likely affect our results. One obvious simplification

in our simulations is that they are two rather than three dimensional.

The implications of this are discussed extensively in Paper I, and

we refer readers to the discussion there.

A second simplification is that we have assumed a planar ge-

ometry, whereas a real wind will generally approach a spherical

geometry, at least once it is far from its launch point. A small sec-

tion of a spherical shell of wind material may be treated as planar,

and so our planar results should continue apply locally. The main

difference between planar and spherical geometries, therefore, is

that in planar geometry τ ∗ and fE, ∗ are fixed, whereas for a spheri-

cal wind they will vary as the wind expands. This variation is caused

by two effects. First, as a spherical shell of constant mass expands

in radius R, its surface density drops as R−2, which reduces τ ∗.

Secondly, the gravitational force g and the flux F0 encountering a

spherical shell also both drop as R−2. This means that the ratio F0/g

remains constant; however, the drop in F0 reduces T∗ as R−1/2 and

thus κR,∗ as R−1, which affects both fE, ∗ and τ ∗. The net effect is

that, for a spherical shell of fixed mass and radius R, fE, ∗ ∝ R−1

and τ ∗ ∝ R−3, and thus an expanding spherical shell traces a line

of slope 3 in the (log fE, ∗, log τ ∗) plane depicted in Fig. 14. Sys-

tems start at the upper right of the plane, then move down and to

the left as they expand. Examining the figure, we see that such a

trajectory will result in a value of ftrap that decreases with time, and

that it approaches an asymptotically constant value of 〈fE〉. This

is not surprising; it is simply a statement that, as a shell expands,

its optical depth drops and thus the dust-reprocessed radiation field

becomes less and less important compared to the direct one, which

gives constant 〈fE〉.

A third simplification of our simulations is that we have assumed

a constant flux as would be produced in a galaxy with all the stars

at the mid-plane, or by a star cluster with all the stars concentrated

at the centre and the mass at fixed radius. In reality, the sources of

radiation are intermixed with the gas being launched in a wind. This

may well result in a significant reduction of the direct radiation force

due to geometric cancellations. However, it should not substantially

affect our results for ftrap, simply because an appreciable value of ftrap

requires that the radiation field be trapped and therefore isotropized,

forgetting its original direction. Thus, our results for ftrap should

be robust against a change from planar or point-like sources to

distributed sources.

5.6 Limitations of the flux-limited diffusion approximation

Our simulations make use of the 2TFLD approximation, which is

an approximate treatment of radiative transfer. The approximation

is highly accurate when the optical depth is very high, but at low

optical depth it loses information about the directionality of the

radiation field, leading to an inaccurate treatment of shadowing and

similar effects. It is therefore important to ask to what extent our

results might be affected by the limitations of our numerical method.

While a full answer to this question can only come from repetition

of the simulation with a more accurate radiation transport method,

we can make a few general observations here.

Fig. 17 shows the flux limiter λ in one of our calculations at

the same time as shown in Fig. 9. Values of λ close to 1/3 corre-

spond to locations where the optical depth is high, and the 2TFLD
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Figure 17. Values of the flux limiter λ at the same time and for the same run

as shown as in Fig. 9: t = 12.4ta in run T10LR. Values of λ = 1/3 indicate

optically thick regions, while values near 0 indicate optically thin ones. The

left-hand panel shows the entire computational domain, while the right-hand

panel shows the same zoomed-in region as in Fig. 9, which is centred on the

vertical centre of mass. Note that, in the left-hand panel, the x direction has

been stretched by a factor of 16 relative to the z direction in order to render

the image readable. In the left-hand panel, the white horizontal solid lines

indicate the upper and lower boundaries of the zoomed-in region on the

right. The two white horizontal dashed line indicates the values of z below

which 90 per cent and 99 per cent of the mass lie.

approximation should be very accurate, while values of λ close to

0 correspond to optically thin regions. The white horizontal dashed

lines indicate the values of z below which 90 per cent and 99 per cent

of the mass in the computational domain lie. From the figure, it is

clear that the great majority of the mass lies in a region where λ is

very close to 1/3. There are smaller values of λ within the channels

through which radiation is escaping, but even there λ only falls to

∼0.25−0.3 except in tiny volumes. It seems that the channels that

carry most of the flux are optically thin only in a relative sense, i.e.

they have much lower optical depth than most of the higher density

gas around them, but they still have optical depths ∼1, not ≪1. In

contrast, λ does approach 0, as expected, high above where most of

the matter is located.

Based on this figure, it seems likely that our treatment of radiation

transport is reasonably accurate for the great majority of the mass.

Where one might legitimately be concerned with the accuracy of the

2TFLD approximation is in the intermediate optical depth regime

that lies, roughly, in the range from z/ha ≈ 500 − 1000 in the plot.

However, as the dashed horizontal lines indicate, this regions con-

tains no more than a few per cent of the mass in the simulation

domain. In essence, we find that almost all the gas is in an optically

thick shell where λ ≈ 1/3 and the 2TFLD approximation should

be accurate, while a very small fraction is in a very extended at-

mosphere where its accuracy might be poor. However, since we are

primarily concerned with the momentum imparted to the bulk of the

mass, this extended atmosphere should have little effect on our main

result, which is that this momentum is quite limited. Nonetheless,

we caution that the precise details of the structure of the atmosphere,

or the interiors of the low optical depth channels further within the

shell, might be affected by the limitations of the 2TFLD method.

These should therefore be treated with some caution.

Finally, we note that Jiang et al. (2013) have investigated the

problem of RRTI in an optically thick medium for the case where

the opacity is dominated by electron scattering rather than dust ab-

sorption, and have done so using a variable Eddington tensor (VET)

method that should be more accurate than 2TFLD. They compare

their VET results to those obtained using Eddington approximation,

which is closely related to the diffusion approximation we use. The

results of their comparison are consistent with our conclusions in

this section. They find that the primary effect of going from the

Eddington approximation to VET is to suppress some of the small-

scale structure induced by RRTI, leading to larger scale filaments

and channels (their fig. 9). This also has the effect of delaying the

initial onset of instability some, because in the linear regime small

modes grow fastest, and suppression of such modes leads to some-

what slower growth at first. However, once larger wavelength modes

go non-linear, the difference in growth rates is small (their fig. 8).

Since the time spent during the linear phase of instability growth

for small modes is astrophysically negligible for the parameters de-

scribing real ULIRGs and massive star clusters (see the discussion

in Paper I), it seems unlikely that a more accurate radiation transport

method would change our results qualitatively.

6 SU M M A RY

In this paper, we analyse the properties of optically thick radiation

pressure-driven dusty winds. We consider the idealized problem of

a column of material through which a specified radiation flux is

passed. We first show that such a system is characterized by a single

dimensionless number, τ ∗, the optical depth of the matter computed

using the opacity at the dust photosphere, and that this parameter

will determine the rate at which the matter column absorbs momen-

tum from the radiation field. We then use radiation-hydrodynamic

simulations to measure this momentum transfer rate. We find that,

after one to a few dynamical times, RRTI drives the gas into a con-

figuration where most of the matter is in dense filaments aligned

along the direction of the radiation flux, while most of the radiation

flux passes through channels of reduced optical depth between the

filaments. This configuration minimizes matter–radiation interac-

tion, and thus limits the rate at which matter can take up momentum

from the radiation field.

We combine this result with the result from Paper I, where we con-

sidered irradiated columns of matter confined by gravity, to produce

a fitting formula for the behaviour of irradiated, gravity-confined

dusty gas layers. The behaviour of these structures is determined by

τ ∗ and by fE, ∗, the ratio of radiative and gravitational forces at the

dust photosphere. We identify three regimes of behaviour depending

on the values of these parameters. At a given τ ∗, there is a critical

value of fE, ∗ below which radiation is dynamically unimportant. For

values of fE, ∗ above the critical value but below unity, RRTI sets

in and makes the gas turbulent, but does not produce a wind. Only

for fE,∗ � 1 is there a wind, and even in the limit where gravity

provides negligible confinement of that wind, the wind momentum

flux is roughly 1 + 0.5τ ∗ times the radiation momentum flux.
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We then consider the implications of these results for star-forming

clusters and galaxies. For observed clusters and galaxies, our results

suggest that dust-reprocessed radiation is unlikely to be able to drive

winds and eject matter. The direct radiation field may still be able

to launch winds, but only in systems where its momentum alone is

sufficient to overcome gravity, without significant amplification by

radiative trapping.
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A P P E N D I X A : T E M P E R AT U R E A N D

DY NA MI CAL APPROX I MATI ONS

Here, we justify three physical approximations we have made in our

formulation of the governing equations: first, that the dust and gas

temperatures are tightly coupled; secondly, that, at least in regions

of high opacity, the dust and radiation temperatures are as well;

thirdly, that the dust and gas are dynamically coupled and can be

treated as a simple fluid.

A1 Thermal behaviour

To check the first two of these assumptions, we must compare the

rate of dust–gas energy exchange via collisions with other rates of

heating and cooling in the problem. Specifically, we must check that

(1) the rate of energy exchange between the dust and the radiation

field greatly exceeds the rate of collisional energy exchange between

the dust and gas, ensuring that the dust is always well coupled

the radiation field and (2) the rate of collisional energy exchange

between the dust and gas is much larger than any other rate of

heating or cooling for the gas alone, so that the gas is forced to

the dust temperature. In what follows, unless stated otherwise, the

rates of all heating and cooling processes follow the approximations

described in Krumholz (2013).

The rate of dust–gas energy exchange per unit volume is

�gd = αgd(ρ/μH)2T 1/2
g (Td − Tg) (A1)

= 5.8 × 10−16ρ2
−16T

1/2
g,2 (Td − Tg)2 erg cm−3 s−1, (A2)
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where αgd ≈ 3.2 × 10−34 erg cm3 K−3/2 is the dust–gas collisional

coupling coefficient, μH ≈ 2.3 × 10−24 g is the gas mass per

H nucleus, Tg is the gas temperature, Td is the dust temperature,

ρ−16 = ρ/10−16 g cm−3, Tg,2 = Tg/100 K and (Td − Tg)2 = (Td −

Tg)/100 K. The scalings we have chosen here for ρ and T are

intentionally close to ρa and T∗, so the numerical coefficients should

be roughly representative of the actual values in the simulation, at

least during the initial phases. The value to which we scale Td − Tg is

intended to be representative of what would be required to generate

a relative dust–gas temperature difference of order unity. The rate

of dust energy exchange with the radiation field per unit volume is

�dr = κPρ(4πB − cE) = κPρca(T 4
d − T 4

r ) (A3)

= 2.3 × 10−13ρ−16(Td − Tr)
4
2 erg cm−3 s−1, (A4)

where we have written E = aT 4
r for convenience.

For the gas, the competing heating processes are cosmic ray

heating and shock heating, while the competing cooling process is

molecular line emission. The cosmic ray heating rate is

ŴCR = ζqionρ/μH (A5)

= 1.0 × 10−17ζ−14ρ−16 erg cm−3 s−1, (A6)

where ζ is the primary ionization rate per H nucleus from cosmic

rays, ζ−14 = ζ/10−14 s−1, and qion ≈ 15 eV is the thermal energy

added per primary ionization. The cosmic ray ionization rate to

which we have scaled here is roughly 100 times a typical Milky

Way value (e.g. Indriolo & McCall 2012), consistent with the val-

ues predicted by Lacki, Thompson & Quataert (2010) for starburst

galaxies. There is also direct evidence for enhanced cosmic ray

fluxes in starburst galaxies from γ -ray emission (Abdo et al. 2010).

It is conceivable that the cosmic ray flux could be even higher than

this, which would have important implications of this for the ther-

modynamics of the gas in ULIRGs, see Narayanan et al. (2011,

2012). The shock heating rate of course varies with position and

time, but we can obtain a crude order of magnitude estimate by

positing that the full kinetic energy per unit volume of the gas is

dissipated into shocks each crossing time. This implies a heating

rate

Ŵshock ≈ ρσ 3/hg (A7)

= 3.2 × 10−17ρ−16σ
3
6 h−1

g,0 erg cm−3 s−1, (A8)

where σ is the gas velocity dispersion and hg is the characteristic

size of the region occupied by the gas and hg,0 = hg/1 pc. The

scaling here is again chosen to be close to the characteristic size

of the structures seen in our simulations, which is ∼10 − 100ha.

Finally, the rate of molecular line cooling is the most difficult to

estimate, since it depends on the complex physics of optically thick

line emission. We use the DESPOTIC package (Krumholz 2013) to

compute the cooling rate via CO emission for a cloud of volume

density 10−16 g cm−3, column density � = 5 g cm−2 and gas

temperature 100 K, with a CO abundance of 1 × 10−4 per H nucleus,

and obtain

�CO = 3.5 × 10−17 erg cm−3 s−1. (A9)

Based on these calculations, we see that, for material with den-

sity ∼ρa, temperature ∼T∗ and velocity dispersion ∼10 km s−1

(comparable to what we find in our simulations), we expect

|�dr| ≫ |�g| ≫ |ŴCR| + |Ŵshock| + |�CO|. The former inequal-

ity ensures that the dust and radiation field will be forced to the

same temperature, while the latter ensures that the dust and gas

will be forced to the same temperature. Our result is not surpris-

ing in light of earlier work. Goldsmith (2001) shows that dust and

gas as well coupled once the density exceeds ∼104 − 105 cm−3,

and Narayanan et al. (2011, 2012) conclude that strong dust–gas

coupling dominates the thermodynamics of gas in ULIRGs.

However, we do caution that the gap between the dust–gas energy

exchange rate and the dominant gas heating and cooling terms is

only a factor of ∼10. At late times in the simulations, the density

drops significantly as material spreads out, and once this happens

the gas and dust should thermally decouple. Since the gap between

the gas-dust energy exchange rate and the dust-radiation energy ex-

change rate is much larger, the dust would remain thermally coupled

to the radiation field, but the gas would not. In practice, this means

that the error in our assumption that the gas is at the same tempera-

ture as the dust manifests not as an error in the opacity (which would

still be determined by the coupled dust and radiation temperatures,

consistent with our assumptions), but instead as an error in the gas

thermal pressure. This is unlikely to affect the dynamics signifi-

cantly, because the gas velocities are generally highly supersonic,

and thus thermal pressure is weak compared to ram pressure.

A2 Dynamical behaviour

We now investigate the final assumption, which is that dust and gas

are dynamically well coupled, and do not drift significantly relative

to one another. If the only mechanism capable of exchanging mo-

mentum between gas and grains is collisions, then the characteristic

free-streaming length of a dust grain of mass mD with respect to the

gas is

λdg ≈
mD

μ

1

ngσ
, (A10)

where μ is the mean mass per gas particle, ng is the number density

of gas particles and σ is the cross-section for grain–gas collisions.

This equation holds as long as the grain is small compared to the

particle mean-free path, which will be the case for typical interstellar

grains. If we take the grain to be a sphere of radius a and density ρD,

and the cross-section σ = πa2, then we can rewrite this equation as

λdg ≈
4

3
a

ρD

ρ
(A11)

= 1.3 × 10−7a−1ρD,3ρ−16 pc, (A12)

where a−1 = a/0.1 µm, ρD,3 = ρD/3 g cm−3, and the values to

which we have scaled in the numerical evaluation are typical for

interstellar silicate grains.

In comparison, the characteristic length-scale for our problem

is ha ∼ 10−2 pc, and thus the characteristic grain streaming length

is a factor of ∼105 smaller. We can therefore safely ignore grain

streaming at the stages of our simulation where the structure is

developing. As with thermal coupling, at very late times once the

density drops by ∼5 orders of magnitude, grain streaming with re-

spect to the matter can become significant, and the approximations

we use may begin to break down. However, we note that equa-

tion (A11) represents a maximum possible grain streaming length,
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because it ignores magnetic coupling between grains and gas. If the

grains are charged, then magnetic forces will tie them to the gas

more strongly than hydrodynamic collisions and make free stream-

ing less important.

A P P E N D I X B : IN I T I A L C O N D I T I O N S

F O R RU N T 3 0

For run T30, we do not have initial conditions from Paper I because

we did not perform any runs with τ ∗ = 30. To generate such condi-

tions, we run a simulation with τ ∗ = 30 and fE, ∗ = 0.05 (i.e. with

gravity turned on) following the same procedure as for all other runs

described in Paper I. We refer to this run as T30F0.05. As in the

other runs from Paper I, we perform the simulation at a resolution


x = 0.5h∗, in a computational domain of 1024 × 16384 cells,

corresponding to a size of 512h∗ × 8192h∗. We run the simulation

for a time t = 75t∗, by which point a turbulent flow is fully devel-

oped. To produce initial conditions for run T30 in this paper, we

must rescale the results of run T30F0.05, because ha/h∗ = 600, so

that the resolution of run T30F0.05 is 
x = 8.3 × 10−4ha. This is

so high that it would be impossible to advance the run for a time

comparable to ta. We therefore downsample the output at the final

time in run T30F0.05 by a factor of 32, producing a resolution of


x = 0.027ha. We also replicate the density, velocity, gas temper-

ature and radiation energy density fields 32 times in the horizontal

direction; since run T30F0.05 has periodic boundary conditions,

this is fully self-consistent. The result is a cube of initial conditions

that is 1024 × 512 cells in size, at a resolution 
x = 0.027ha, cor-

responding to a physical size 27.3ha × 13.6ha. We use this state as

the initial condition for run T30, extending the computational do-

main in the vertical direction exactly as for the other runs described

in Section 3.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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