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Coalescing drops spontaneously jump out of plane on a variety of biological
and synthetic superhydrophobic surfaces, with potential applications ranging from
self-cleaning materials to self-sustained condensers. To investigate the mechanism of
self-propelled jumping, we report three-dimensional phase-field simulations of two
identical spherical drops coalescing on a flat surface with a contact angle of 180◦.
The numerical simulations capture the spontaneous jumping process, which follows
the capillary–inertial scaling. The out-of-plane directionality is shown to result from
the counter-action of the substrate to the impingement of the liquid bridge between
the coalescing drops. A viscous cutoff to the capillary–inertial velocity scaling
is identified when the Ohnesorge number of the initial drops is around 0.1, but the
corresponding viscous cutoff radius is too small to be tested experimentally. Compared
to experiments on both superhydrophobic and Leidenfrost surfaces, our simulations
accurately predict the nearly constant jumping velocity of around 0.2 when scaled by
the capillary–inertial velocity. By comparing the simulated drop coalescence processes
with and without the substrate, we attribute this low non-dimensional velocity to the
substrate intercepting only a small fraction of the expanding liquid bridge.
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1. Introduction

When two drops coalesce on a superhydrophobic surface (figure 1), the merged
drop self-propels itself to jump perpendicular to the surface (Boreyko & Chen 2009).
The self-propelled jumping has been reported on a variety of natural water-repellent
surfaces, including those on springtails, lacewings and cicadas (Helbig et al. 2011;
Watson et al. 2011; Wisdom et al. 2013). For engineering applications, the jumping
motion has been applied to develop superhydrophobic surfaces that are anti-dew
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FIGURE 1. (Colour online) Schematic of the drop coalescence process on a non-wetting
substrate. Two adjacent drops with an initial radius r0 coalesce into a larger spherical
drop with an equilibrium radius of r = 21/3r0. The reduction in surface area releases
excess surface energy, powering the merged drop to jump away from the substrate. In
the coordinate system adopted here, the origin O is attached to the non-wetting surface,
the drop coalescence is along the x direction, and the mass-averaged jumping velocity (v̄j)
of the merged drop is along the z axis.

(Boreyko & Chen 2009; Enright et al. 2012; Feng et al. 2012; Rykaczewski et al.

2012b), anti-icing (Boreyko & Collier 2013; Zhang et al. 2013) or self-cleaning
(Wisdom et al. 2013), as well as heat transfer systems that enhance dropwise
condensation (Chen et al. 2007; Dietz et al. 2010; Cheng, Vandadi & Chen 2012;
He et al. 2012; Miljkovic et al. 2013) and promote thermal rectification (Boreyko,
Zhao & Chen 2011; Boreyko & Chen 2013). Despite considerable interest in the
jumping phenomenon, the mechanistic understanding is still very primitive, with
only capillary–inertial scaling laws (Kollera & Grigull 1969; Boreyko & Chen 2009).
Previous modelling efforts are mostly based on energetic arguments with no detailed
account of the flow physics, and an ad hoc form of viscous dissipation has often
been assumed for the energy balance (Wang, Yang & Zhao 2011; Liu et al. 2012;
Lv et al. 2013; Peng et al. 2013; Liu, Cheng & Quan 2014b).

The limitations of the capillary–inertial scaling laws can be understood by
examining the energetic point of view. When two identical drops of radius r0 coalesce
into a larger one (figure 1), the equilibrium radius is r = 21/3r0 for the merged drop
with a mass of m = (8/3)ρLπr3

0, where ρL is the density of the liquid. The overall
surface area is reduced upon coalescence, leading to the release of an amount of
surface energy of 1Es = 4σπr2

0(2 − 22/3), where σ is the surface tension of the
air–liquid interface. The presence of the substrate breaks the symmetry of energy
release and the merged drop eventually jumps up. The symmetric coalescence of two
identical drops leads to a vertical jumping velocity (v̄j), which is expected to follow
the capillary–inertial scaling,

v̄j ∼ uci =
√

σ

ρLr0
, (1.1)

where uci is the capillary–inertial velocity. In fact, if all the released surface energy
were converted to kinetic energy, the merged drop could achieve a jumping velocity
of

√
21Es/m = 1.11uci. It is interesting to note that the energetic argument recovers

the wave velocity for capillary disturbances emanating from the point of coalescence.
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The r
−1/2
0 scaling in (1.1) has indeed been confirmed by the experiments with

coalescing drops of water condensate on textured superhydrophobic surfaces (Boreyko
& Chen 2009). However, two puzzles remain to be solved. (i) The jumping velocity
of the merged drop is significantly smaller than the capillary–inertial velocity, with
v̄j ≈ 0.2uci. In terms of the energy conversion efficiency, the kinetic energy associated
with the jumping motion is less than 4 % of the total released surface energy
((1/2)mv̄j .4 % 1Es). (ii) On textured superhydrophobic surfaces, the capillary–inertial
scaling is no longer observed when the drop radius is below a threshold of around
30 µm. This threshold is well above the viscous length scale of 10 nm based on
Oh ∼ 1, where the Ohnesorge number Oh denotes the relative importance of viscous
versus capillary–inertial effects,

Oh = µL√
ρLσ r0

, (1.2)

where µL is the liquid viscosity. These remaining puzzles on the jumping velocity
and cutoff radius are of practical significance, for example, in designing vapour
chambers with orientation-independent jumping condensate (Boreyko & Chen 2013)
and superhydrophobic condensers with effective condensate removal (Miljkovic &
Wang 2013). The recent study by Nam, Kim & Shin (2013) has simulated the
interfacial flow associated with the jumping process, but has not addressed these
puzzles on the capillary–inertial scaling.

We will investigate the remaining puzzles in this paper by numerical simulations.
For simplicity, we simulate two adjacent water drops, surrounded by air, coalescing
on a flat substrate with a contact angle of 180◦. Theoretically, this idealized
superhydrophobic surface helps to eliminate the singularity with moving contact lines
(Huh & Scriven 1971; Benilov & Vynnycky 2013). In practice, near-180◦ contact
angles are observed not only with water drops on superhydrophobic surfaces but also
with mercury drops on flat surfaces, both leading to self-propelled jumping (Kollera
& Grigull 1969; Boreyko & Chen 2009). The perfectly non-wetting case can also be
approximated by Leidenfrost surfaces, on which liquid drops float on a vapour layer
when the solid surfaces are heated well above the boiling point (Leidenfrost 1756;
Quéré 2013); for details see our companion paper (Liu et al. 2014a).

The jumping motion is a consequence of the non-wetting substrate interfering
with the oscillation of the coalesced drop. In this sense, our work is related to prior
work on drop coalescence, both unconfined in the air and bounded by the substrate.
The merging process in figure 2 resembles that of the ‘regime I’ coalescence upon
drop collision at low Weber numbers in Qian & Law (1997); see also a review
by Orme (1997). Neglecting the early-stage bridging process (Eggers, Lister &
Stone 1999; Thoroddsen, Takehara & Etoh 2005; Paulsen, Burton & Nagel 2011;
Sprittles & Shikhmurzaev 2012), the initial condition in figure 2 can be viewed as
a large-amplitude two-lobed perturbation to the merged drop at spherical equilibrium.
As such, our work is also related to the nonlinear oscillation of a single drop; see
e.g. Trinh & Wang (1982) and Basaran (1992).

In the presence of a substrate, the drop coalescence process is significantly modified
by the impermeable wall as well as the adhesion between the sessile drops and the
substrate, if any. On a hydrophilic surface, the merged drop spreads without any
jumping motion (Andrieu et al. 2002; Ristenpart et al. 2006; Kapur & Gaskell 2007;
Hernández-Sánchez et al. 2012; Lee et al. 2012). In contrast, on a superhydrophobic
surface, a liquid bridge between the coalescing drops forms above the substrate
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(a) (b) (c) (d) (e)

FIGURE 2. (Colour online) The mechanism of jumping can be schematically understood
from the coalescence process in the air, without any substrate. (a) Two initially distinct
drops of identical size are adjacent to each other. (b) Upon initiation of coalescence, a
liquid bridge is formed to merge the two separate drops into one. (c,d) The merged drop
undergoes many cycles of capillary–inertial oscillations between oblate and prolate shapes.
(e) The merged drop eventually relaxes to a spherical one due to viscous dissipation.
The dashed line indicates the position of an imaginary substrate. Had an impermeable
substrate been present at the dashed line as in figure 1, the top-down symmetry of the
oscillations would be broken and the merged drop would be forced to move upwards. Note
that the actual drop shape is more complex than a spheroid, so oblate and prolate loosely
refer to cases with the major axis parallel and perpendicular to the imaginary substrate,
respectively.

and the expanding bridge impinges upon it at a later time; upon impingement, the
merged drop is forced by the non-wetting substrate first to deform laterally and then
to recoil perpendicularly to jump out of plane (Boreyko & Chen 2009, 2010). In
fact, on any hydrophobic surface with a contact angle greater than 90◦, the liquid
bridge initiates at a position above the substrate. However, prior studies of drop
coalescence on (super)hydrophobic surfaces typically use drop sizes comparable to or
larger than the capillary length (Menchaca-Rocha et al. 2001; Nilsson & Rothstein
2011; Mertaniemi et al. 2012), and self-propelled jumping has not been observed
because of gravitational effects.

In this paper, we will first present a physical model for the self-propelled jumping
with phase-field numerical solutions. The numerical results will be compared with
experimental data on both superhydrophobic surfaces (Boreyko & Chen 2009) and
Leidenfrost surfaces as reported in our companion paper (Liu et al. 2014a). The
physical insights from the numerical simulations will then be used to resolve the
aforementioned puzzles.

2. Numerical model

We first develop a numerical model of the coalescence-induced jumping process.
The physical assumptions and numerical implementations of the model are discussed.

2.1. Physical model

As sketched in figure 1, our physical model consists of two static drops coalescing
on a perfectly flat substrate with a contact angle of 180◦. Gravity is neglected since
the radii of the jumping drops of interest here are much smaller than the capillary
length. Within this framework, the jumping motion is a consequence of the interaction
between the oscillation of the merged drop and the non-wetting substrate (figure 2).

To understand the jumping mechanism, it is helpful first to review drop coalescence
in the air, schematically shown in figure 2. Without any interaction with the substrate,
two initially distinct drops will merge by the formation of a liquid bridge. Following
the expansion of the liquid bridge, the merged drop will oscillate between oblate



Simulations of self-propelled jumping drops 43

and prolate shapes, eventually relaxing by viscous action to a larger spherical drop.
In the absence of the substrate, top-down symmetry is preserved throughout the
oscillation process. Note that part of the oscillating drop crosses the imaginary
substrate represented by a dashed line, which must be the case because the radius of
the merged drop is larger than that of the initial drops. When a non-wetting substrate
is present, the impermeable wall will force the fraction of the mass that would have
crossed the dashed line to move upwards, leading to the jumping motion.

The substrate is necessary to break the symmetry in the oscillation of the merged
drop. However, the symmetry breaking itself is insufficient to produce jumping.
For instance, the merged drop will spread on a hydrophilic substrate instead of
jumping away. For jumping to take place, the adhesion between the merged drop
and the substrate should be sufficiently small. Since jumping motion has mainly been
reported on surfaces with a contact angle close to 180◦, we make the simplifying
assumption that the substrate is smooth with a contact angle of exactly 180◦. Such
an assumption not only removes the singularities at the moving contact line, but
also eliminates the complexity associated with the surface roughness often used to
generate superhydrophobicity (Quéré 2005).

Given the importance of the oscillatory motion of the merged drop (figure 2), it
is instructive to review the classical results of the small-amplitude oscillation of a
viscous liquid drop in a quiescent medium (Rayleigh 1879; Reid 1960; Chandrasekhar
1961). For an inviscid drop with an equilibrium radius of r = 21/3r0, the fundamental
frequency for a harmonic oscillation in the form of the second-degree Legendre
polynomial is given by

f = 1

2π

√

8σ

ρLr3
= 1

πτci

, (2.1)

where τci is the capillary–inertial time defined as

τci =

√

ρLr3
0

σ
. (2.2)

This Rayleigh frequency corresponds to a period of T = πτci. In the presence of a
small viscosity, the oscillation frequency is essentially unchanged and the oscillation
is viscously damped with a time constant for exponential decay of

τvL
= r2

5νL

= 0.317
τci

Oh
, (2.3)

where νL =µL/ρL is the kinematic viscosity. Note that the Ohnesorge number is based
on the initial radius with Oh=µL/

√
ρLσ r0. For a highly viscous drop with Oh>0.860,

corresponding to 2πfr2/νL = 3.69, the damped oscillation ceases and the perturbed
drop assumes an aperiodic (over-damped) decay towards the equilibrium shape.

2.2. Numerical methods

Building upon our earlier work (Yue, Zhou & Feng 2006a; Yue et al. 2006b; Zhou
et al. 2010), we have implemented a three-dimensional (3D) numerical simulation
using the phase-field method to capture the evolution of air–liquid interfaces with
rapidly changing topology. In the simulation, a phase-field variable φ is introduced to
describe the thin but diffuse interface between the two components. Across the diffuse
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σ µL µG µL/µG ρL ρG0 ρL/ρG0 ρG ρL/ρG

(mN m−1) (mPa s) (mPa s) (kg m−3) (kg m−3) (kg m−3)

20 ◦C 72.7 1.071 0.0182 58.8 998 (1.190) (839) 19.96 50
100 ◦C 58.9 0.282 0.0219 12.9 958 (0.934) (1026) 19.16 50

TABLE 1. The fluid properties assume literature values at either 20 ◦C or 100 ◦C, except
for the air density. Owing to limited capability in resolving large density ratios, an artificial
air density (ρG) is adopted instead of the physical air density (ρG0, parenthesized values in
the table), so as to maintain a numerically meaningful density ratio of ρL/ρG = 50. Unless
otherwise noted, the 100 ◦C case is assumed.

interface, φ changes continuously from +1 for the bulk liquid to −1 for the bulk air.
The interfacial flow is governed by the Navier–Stokes equations and the Cahn–Hilliard
equation (Yue et al. 2004)

∇ · v = 0, (2.4)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇P + µ∇2
v + G∇φ, (2.5)

∂φ

∂t
+ v · ∇φ = γ∇2G, (2.6)

where v is the velocity vector, t is the time, P is the pressure, γ is the mobility
parameter and G is the Cahn–Hilliard chemical potential (Cahn & Hilliard 1958) given
by

G = λ
[

−∇2φ + (φ2 − 1)φ

ǫ2

]

. (2.7)

In the chemical potential, ǫ is the capillary width characterizing the thickness of the
interface, and λ is the interfacial energy density related to the interfacial tension σ by

σ = 2
√

2

3

λ

ǫ
. (2.8)

Note that the fluid properties in the diffuse interface are averaged according to the
local phase-field parameter, e.g. ρ = (1/2)(1 + φ)ρL + (1/2)(1 − φ)ρG, where ρL and
ρG are, respectively, the density of the bulk liquid and gas, and µ = (1/2)(1 + φ)µL +
(1/2)(1 − φ)µG, where µL and µG are, respectively, the viscosity of the bulk liquid
and gas.

All physical quantities are non-dimensionalized by the initial drop radius (r0),
the liquid density (ρL) and the surface tension (σ ), leading to three dimensionless
parameters, the Ohnesorge number (µL/

√
ρLσ r0), the density ratio (ρL/ρG) and the

viscosity ratio (µL/µG). The dimensionless variables are represented with an asterisk,
e.g. v

∗ = v/uci and t∗ = t/τci. The physical properties for water and air are assumed
to be the literature values at either 20 ◦C or 100 ◦C (table 1), in an effort to simulate
fluid properties during superhydrophobic condensation or Leidenfrost experiments.
The only exception is the numerical air density, which assumes a value much higher
than the physical density such that ρL/ρG = 50; see discussions below about the
numerical convergence with respect to ρL/ρG. Unless otherwise noted, the properties
at 100 ◦C are adopted.
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We have simulated the coalescence of two identical, initially static drops on a flat
surface with a contact angle of 180◦ (figure 1). The two drops are initially situated to
be tangential to each other and tangential to the supporting surface. Thus, the diffuse
interfaces of the two drops initially overlap, and this may have precipitated the onset
of coalescence (Yue et al. 2006a). The computational domain is a rectangular box
with a dimensionless volume of 6 × 6 × 5, and the xy plane is reduced to 3 × 3 by
symmetry. A no-slip boundary condition is imposed at the bottom wall, while stress-
free conditions are set on all other walls except for the two walls of symmetry. The
mobility parameter is set as γ ∗ = 10−5, a suitable value for a capillary width of ǫ∗ =
0.05 (Ghigliotti, Zhou & Feng 2013). The governing equations are solved by a finite-
element code, AMPHI, which uses adaptive meshing to resolve the interfacial region.
The mesh size at the interface is set as h∗

i = 0.05, and those in the bulk water and air
are, respectively, 0.28 and 0.97. A non-dimensional time step of δt∗ = 10−3 ensures
adequate temporal resolution.

Numerical convergence is mainly tested on the maximum velocity of the merged
drop. For the symmetric coalescence of two identical drops, we define the instantaneous
velocity of the merged drop (v̄) by mass-averaging the z component velocity over the
entire drop,

v̄ =

∫

Ω

1
2(1 + φ)ρLvz dΩ

∫

Ω

1
2(1 + φ)ρL dΩ

, (2.9)

where Ω represents the entire computational domain, and z is the vertical direction
perpendicular to the substrate. Below we shall refer to v̄ as simply the drop velocity.
The maximum value (v̄m) is then extracted from the evolution of the drop velocity,
v̄(t).

Two limitations of our numerical methods deserve discussion. (i) Our phase-field
model cannot accurately handle density ratios much above ρL/ρG = 100. However,
we have confirmed that the air density no longer matters to the results for a density
ratio above 50, the default value in our simulations. For example, with ǫ∗ = 0.05
and Oh = 0.003 75 (corresponding to r0 = 100 µm for water drops at 100 ◦C),
ρL/ρG = 10, 30, 50, 100 yield v̄∗

m = 0.2478, 0.2624, 0.2691, 0.2695. The monotonic
convergence is consistent with the diminishing dynamic role of the surrounding
air with decreasing density. (ii) As with any diffuse-interface simulation, we must
use an interfacial thickness that is small enough so that the sharp interface limit
is achieved (Zhou et al. 2010). By shrinking the interfacial thickness and the grid
size at the interface simultaneously, we have confirmed reasonable convergence
to this limit for ǫ∗ = 0.05. For example, with ρL/ρG = 50 and Oh = 0.003 75,
ǫ∗ = h∗

i = 0.1, 0.075, 0.05 yield v̄∗
m = 0.2878, 0.2616, 0.2691. Based on these results

and other tests at Oh = 0.0375, 0.375 (corresponding to r0 = 1 µm, 10 nm), the
numerical error for the maximum velocity is estimated to be within 10 %.

3. Numerical results

Using the 3D numerical model, we analyse the jumping process from different
perspectives and investigate the capillary–inertial velocity scaling including the viscous
cutoff.
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FIGURE 3. (Colour online) The 3D coalescence process of two static drops with Oh =
0.003 75, µL/µG = 12.9 and ρL/ρG = 50. (a) Side xz view for coalescence-induced jumping
on a flat substrate with a contact angle of 180◦, with the substrate represented by the solid
line. (b) Side xz view (or top xy view) of the corresponding coalescence process in the
air, where the centre of mass is relocated to the centre of the computational domain. The
dashed line is a visual guide for an imaginary substrate in the side view. Throughout the
paper, the drop shapes resulting from coalescence on the substrate are shaded mid-grey
(green online), and those in the air are dark grey (blue online). See also supplementary
movies 1 and 2 available at http://dx.doi.org/10.1017/jfm.2014.320.

3.1. Capillary–inertial jumping process

In figure 3(a), the coalescence-induced jumping process is simulated with Oh =
0.003 75, µL/µG = 12.9 and ρL/ρG = 50. These governing parameters correspond
to material properties at 100 ◦C and an initial radius of r0 = 100 µm. Note again
that the numerical density ratio is smaller than the actual value of 1026 (table 1),
but the difference is inconsequential based on the convergence test with respect to
ρL/ρG. With such a low Ohnesorge number, the capillary–inertial process dominates
and viscosity only plays a secondary role. At t∗ = 0, the coalescence is initiated by
the overlapping of diffuse interfaces. A liquid bridge forms upon coalescence and
the expanding bridge reaches the substrate around 0.88, at which point the merged
drop starts to experience an upward net movement. The substrate counteracts the
impingement of the liquid bridge, forcing a portion of the downward-moving mass
towards the sides, leading to a maximum deformation in the x direction at 1.14.
The upward force from the substrate peaks at 1.88, beyond which the apparent
contact area between the merged drop and the substrate gradually reduces towards
zero at 2.58, the point of departure. The launched drop continues to oscillate while
maintaining the upward motion.

In addition to the side (xz) view in figure 3(a), the capillary–inertial jumping process
is also illustrated by the end (yz) view in figure 4(a) and top (xy) view in figure 4(b).
Note the 3D nature of the oscillation process. For instance, the total mass is conserved

http://dx.doi.org/10.1017/jfm.2014.320
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(b)

FIGURE 4. (Colour online) The jumping process in figure 3(a) viewed from other
perspectives: (a) end yz view; (b) top xy view. The substrate visible from the end view
is represented by a solid line. See also supplementary movies 3 and 4.

with a smaller footprint in one view compensated by a larger footprint from another
perspective (figures 3a versus 4a).

3.1.1. Pseudo-equilibrium configuration

The top view with the substrate (figure 4b) is very similar to the drop coalescence
case without the substrate (figure 3b). Note that the in-the-air case in figure 3(b) is
symmetric so the top xy view is identical to the side xz view. In both figures 3(b)
and 4(b), the merged drop is most rounded at approximately t∗ = 1.70, 3.34 and 5.02,
and most elongated at approximately t∗ = 2.36, 4.22 and 6.04. The similarity indicates
that the presence of the substrate only marginally alters the drop coalescence process
viewed in the xy plane, despite significant alterations in the xz plane. In both figures
3(b) and 4(b), the top view of the jumping process is roughly periodic with a period
close to π, which, according to (2.1), is the period for the harmonic oscillation of an
unbounded spherical drop of the same volume as the merged drop.

The similarity in top view between the on-the-substrate (figure 3b) and in-the-air
(figure 4b) cases is shown more quantitatively in figure 5. With a coordinate system
attached to the centre of the merged mass while preserving the axial directions defined
in figure 1, three quantities are extracted as the axial lengths of the merged drop: the
width and height of the liquid bridge (wy and wz), and the length of the merged drop
(wx). Note that wx is not necessarily the maximum extension of the merged drop in the
x direction. For the drop coalescence in the air (figure 5b), wx eventually assumes the
same value as wy (which equals wz by symmetry) when the oscillation is dissipated
by viscosity and the merged drop reaches a spherical shape at equilibrium with w∗

x =
w∗

y = w∗
z = 2r∗ ≈ 2.52. We shall use pseudo-equilibrium to identify the shapes with

w∗
x = w∗

y but not yet at the final equilibrium. Similar observations can be made for
drop coalescence on the substrate (figure 5a) with the coordinate system attached to
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FIGURE 5. (Colour online) Evolution of the axial lengths of the merged drop, where the
coordinate system is attached to the centre of mass: (a) on the substrate, corresponding
to figures 3(a) and 4; and (b) in the air, corresponding to figure 3(b). Compared to the
axisymmetric case in panel (b) with w∗

y = w∗
z , the presence of the substrate in panel (a)

breaks the symmetry and also alters the x axial length (w∗
x). The shape oscillation of

the merged drop is approximately periodic, with a period around π. The point of equal
axial lengths in the top xy view (w∗

x = w∗
y) is used to identify the pseudo-equilibrium

configuration.

the merged drop. The substrate breaks the symmetry so w∗
y is no longer identical to w∗

z .
However, the xy view on the substrate strongly resembles that in the air judging from
both the qualitative shapes (figures 3b and 4b) and the quantitative measurements of
the axial lengths (figure 5a,b). This resemblance justifies our extension of the pseudo-
equilibrium criterion (w∗

x = w∗
y) from the in-the-air case to the on-the-substrate case.

Examples of pseudo-equilibrium shapes for the on-the-substrate case can be found in
figures 3(a) and 4 at t∗ =1.70, 3.34 and 5.02, when the axial lengths along the moving
x and y axes are equal according to figure 5(a).

As shown below by the energetics of the jumping process, the as-defined
pseudo-equilibrium configurations approximately coincide with the local minima
of the overall surface energy. The equilibrium counterpart is a spherical shape with
a global minimum in surface energy. Since the condition of equal axial lengths
(w∗

x = w∗
y) is much easier to identify numerically, we will adhere to this definition

to find the pseudo-equilibrium configuration, which will prove useful below for
extracting a meaningful jumping velocity.

3.1.2. Kinematics of jumping

To further illustrate the jumping process shown in figure 3(a), we plot the temporal
evolution of the drop velocity defined in (2.9) in figure 6. Based on these figures,
the jumping process upon coalescence can be roughly divided into four stages:
(I) expansion of the liquid bridge between the coalescing drops, till approximately
t∗ = 0.88; (II) acceleration of the merged drop on the substrate, eventually reaching
a maximum velocity at 2.36; (III) detachment of the merged drop from the substrate,
till a complete departure at 2.58; and (IV) deceleration of the departed drop in air,
where the oscillating drop relaxes towards the ultimate equilibrium shape of a sphere.
Note that the slightly downward drop velocity prior to t∗ = 0.88 is an artifact resulting
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FIGURE 6. (Colour online) Evolution of the instantaneous drop velocity during the
jumping process of figure 3(a). The v̄∗(t∗) curve can be divided into four regimes: I,
expansion of the liquid bridge in the air; II, acceleration of the merged drop on the
substrate; III, departure of the merged drop from the substrate; and IV, deceleration of
the departed drop in the air.

from the initial φ field, which is not at equilibrium with the solid substrate (Yue,
Zhou & Feng 2007). Figure 6 can be used to calculate the counter-force from the
substrate as d(mv̄)/dt. For example, the maximum vertical force of approximately
πσ r0 is reached at t = 1.88τci.

The velocity field for the jumping process leading to drop detachment from the
substrate is shown in figure 7. When the drops coalesce at stage I, the liquid mass
is driven by capillary pressure towards the centre, leading to the expansion of the
liquid bridge connecting the two initial drops. Note that the liquid bridge expands
at approximately the capillary–inertial velocity (e.g. at t∗ = 0.66) until it touches the
substrate at 0.88. At stage II when the merged drop interacts with the substrate, a
portion of the downward-moving liquid mass is forced to first move transversely.
The x direction deformation reaches a maximum at 1.14, beyond which the oblate
deformation retracts towards the pseudo-equilibrium configuration (around 1.70 in
figure 3). The retracting mass is now forced to move upwards by the impermeable
substrate. In this sense, the substrate enabled by capillarity effectively turns the
initially downward-moving liquid mass to move upwards. At the beginning of
stage III, the mass-averaged drop velocity reaches a maximum at 2.36, at which
point the corresponding coalescence without the substrate would have reached the
maximum extension in the prolate configuration (figure 3b). Beyond this point, the
drop velocity actually decreases till the merged drop departs the substrate at 2.58.
The decrease in drop velocity results from the low pressure underneath the drop as it
is pulled away from the substrate. At stage IV, the departed drop experiences more
deceleration as the cusp near the point of departure evolves towards a shape with
lower curvature. After the pseudo-equilibrium point at t∗ = 3.34 (figure 4b), the slight
deceleration is mainly due to the drag by the external air.



50 F. Liu, G. Ghigliotti, J. J. Feng and C.-H. Chen

(a) (b)

(c) (d)

(e) ( f )

FIGURE 7. (Colour online) Instantaneous velocity fields on the symmetry plane (y = 0)
for the jumping process in figure 3(a). The unit vector on the top right of each plot
indicates the capillary–inertial velocity (uci). (a,b) Expansion in the air: (a) at t∗ = 0.66,
the boundary of the expanding bridge has a non-dimensional velocity close to unity;
(b) at 0.88, the liquid bridge hits the substrate. (c,d) Acceleration on the substrate: (c) at
t∗ = 1.14, the maximal deformation in terms of extension in the x direction is reached;
(d) at 1.88, the vertical force on the merged drop is maximum. (e,f ) Departure from the
substrate: from (e) t∗ = 2.36 to (f ) 2.58, the top portion of the merged drop retracts from
the maximum deformation while the bottom portion lifts away from the substrate.

3.1.3. Energetics of jumping

Since the kinetic energy for the self-propelled jumping is converted from the
surface energy released upon coalescence, additional insights can be gained by
directly tracking the energy conversion process. In figure 8, the surface and kinetic
energies of the merged drop are calculated by integration over the entire computational
domain,

Es =
∫

Ω

[

1

2
λ|∇φ|2 + λ

4ǫ2
(φ2 − 1)2

]

dΩ, (3.1)

Ek =
∫

Ω

1 + φ

4
ρL v · v dΩ. (3.2)
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FIGURE 8. (Colour online) Surface and kinetic energy (Es and Ek) of the merged drop
during the jumping process of figure 3(a). The energies are non-dimensionalized by σ r2

0.
(a) The combination of surface and kinetic energy decays over time because of viscous
dissipation. The damped oscillation of energy has an approximate period of π/2. (b) The
kinetic energy of the merged drop can be decomposed into translational and oscillatory
components, Ek = Ek,tr + Ek,os. The oscillatory component does not contribute to any net
motion and will be dissipated eventually.

Akin to the König theorem for the kinetic energy of many bodies, the kinetic energy
of an isolated drop can be further decomposed by noting that

∫

Ω
v · v dΩ =

∫

Ω
v̄ ·

v̄ dΩ +
∫

Ω
v̂ · v̂ dΩ , where v̄ is the average velocity of the drop and v̂ = v − v̄ is the

velocity with respect to the centre of mass. Given the mass-averaged drop velocity in
(2.9), the translational kinetic energy for symmetric coalescence reduces to

Ek,tr =
∫

Ω

1 + φ

4
ρLv̄

2 dΩ. (3.3)

In the absence of any rotational motion, the rest of the kinetic energy is attributed
to the oscillatory motion, Ek,os = Ek − Ek,tr. As far as the self-propelled jumping is
concerned, the translational kinetic energy associated with v̄ is the only useful part,
which arises from the substrate breaking the top-down symmetry of the coalescence-
induced motion. For drop coalescence in the air, the ensuing motion is completely
oscillatory.

Prior to coalescence, the overall surface energy (Es) has an initial value of
8πσ r2

0 = 25.1σ r2
0. After coalescence, the surface energy should eventually reduce

to a lower value of 4πσ22/3r2
0 = 19.9σ r2

0 after many cycles of oscillations. As the
merged drop asymptotes towards the equilibrium shape, the period of oscillation
for the merged drop is expected to approach π in accordance with (2.1). Indeed,
the surface energy in figure 8(a) exhibits damped oscillation at a period close to
π/2. The local surface energy minima in figure 8 approximately coincide with the
pseudo-equilibrium configurations in figure 5, where the merged drop is most rounded.

The combination of surface and kinetic energy (Es + Ek) reduces over time because
of viscous dissipation, mainly in the liquid phase (figure 8a). The dissipation is
stronger during the initial merging process when compared to the oscillation process
after the departure. The stronger viscous dissipation prior to departure is due to
the highly localized velocity gradients resulting from the drop coalescence and its
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interaction with the substrate (figure 7). After departure, the milder energy dissipation
is due to viscous damping of the oscillation over the entire drop, with a viscous
decay time eventually approaching τvL

/2 according to (2.3). Aside from the viscous
dissipation, the overall surface energy exchanges with the total kinetic energy during
the capillary–inertial oscillation, evident by their antiphase variations over time. Since
the translational kinetic energy (Ek,tr) is only a small fraction of the total kinetic
energy and is more or less constant after departure (figure 8b), the energy exchange
is mostly between the surface energy and the oscillatory kinetic energy (Ek,os). The
oscillatory component of the kinetic energy is mainly dissipated by the internal liquid
viscosity, while the translational component is mainly dissipated by the external air
viscosity.

3.2. Scaling of jumping velocities

Next, we numerically assess the effects of viscosity by varying the Ohnesorge number
defined in (1.2) and test the capillary–inertial scaling in (1.1) for the jumping velocity.
As justified below, the jumping velocity (v̄∗

j ) is extracted from the computed v̄∗(t∗)
curve at the first pseudo-equilibrium configuration after the drop departure.

3.2.1. Viscous effects

As the Ohnesorge number increases towards unity, viscous effects will eventually
dominate over the evolution from the two-lobed initial condition towards the spherical
shape at the eventual equilibrium. In figure 9(a) with Oh = 0.375, which corresponds
to an initial radius of r0 = 10 nm at 100 ◦C, the viscous effects slow down the
dynamics and suppress the self-propelled jumping. The viscosity-dominated process
in figure 9(a) is in sharp contrast to the inertia-dominated one in figure 3(a) with
a much smaller Oh = 0.003 75. Most notably, the sluggishly evolving liquid bridge
no longer impinges upon the substrate, and the merged drop gradually approaches
spherical equilibrium without jumping away from the substrate. The viscous slowdown
is consistent with (2.3): at Oh = 0.375, the viscous decay time constant (τvL

) is
approximately equal to the time scale (τci) governing the capillary–inertial jumping
process. The strong viscous damping is also evident from the corresponding case of
drop coalescence in the air (figure 9b), where the merged drop stays nearly spherical
beyond t∗ = 4.18, a point of pseudo-equilibrium.

The effects of viscosity are further illustrated by the evolution of the instantaneous
drop velocity, which strongly depends on the Ohnesorge number (figure 10). The
Ohnesorge number is varied from Oh = 0.001 19 to 0.685 with other parameters
fixed at µL/µG = 12.9 and ρL/ρG = 50, corresponding to a variation of the initial
drop radius from r0 = 1 mm to 3 nm at 100 ◦C. With Oh . 0.01 (r0 & 10 µm), the
v̄∗(t∗) curves in figure 10(a) are qualitatively very similar. Each curve can be divided
into the four regimes illustrated in figure 6: expansion in the air, acceleration on the
substrate, deceleration on and departure from the substrate, and deceleration in the air.
With 0.01 . Oh . 0.3 (10 µm & r0 & 10 nm), the deceleration rates during stages III
and IV increase with increasing Ohnesorge number (i.e. increasing viscous effects at
decreasing radius), and the curves gradually take on a different character (figure 10b).
With Oh & 0.3 (r0 . 10 nm), the merged drop no longer jumps away from the
substrate and the released surface energy is completely dissipated by viscosity over a
short time.

The Ohnesorge number defined by (1.2) is appropriate to quantify the relative
importance of viscosity to determine if the merged drop will jump away from the
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FIGURE 9. (Colour online) Side xz view of the coalescence process under conditions
identical to those of figure 3 except for a larger Oh = 0.375: (a) on the substrate; and
(b) in the air. The self-propelled jumping from the substrate is prohibited by strong viscous
effects. Aided by the top xy view of the coalescence on the substrate (not shown), which
is almost indistinguishable from the in-the-air case shown in panel (b), the time stamps are
chosen to mirror those in figure 3 as much as possible while accounting for the viscous
slowdown. See also supplementary movies 5 and 6.
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FIGURE 10. (Colour online) The evolution of the drop velocity as a function of Ohnesorge
number with µL/µG = 12.9 and ρL/ρG = 50. (a) With Oh . 0.01, the v̄∗(t∗) curves
are qualitatively similar. From top to bottom, the curves correspond respectively to r0 =
10 µm, 30 µm, 0.1 mm, 0.3 mm and 1 mm at 100 ◦C. (b) With Oh & 0.01, the v̄∗(t∗)
curves assume a different character with stronger viscous effects at increasing Ohnesorge
numbers. From top to bottom, the curves correspond respectively to r0 = 3 µm, 1 µm,
0.3 µm, 0.1 µm, 30 nm, 10 nm and 3 nm at 100 ◦C. The crosses indicate the first
pseudo-equilibrium configuration (with equal axial lengths in the xy view) after the merged
drop has departed the surface. At Oh=0.217, this position is at t∗ =5.64 with v̄∗ =0.0149;
at Oh = 0.375 and 0.685, the merged drop no longer jumps away.
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surface. Prior to jumping, the viscous effects are mainly due to the liquid viscosity,
which is much higher than the air viscosity. In the case when the merged drop
departs the surface, the external air viscosity becomes important in dissipating the
translational jumping motion. This distinction is particularly relevant beyond the first
pseudo-equilibrium configuration after the departure, the position indicated by the
crosses in figure 10.

3.2.2. Extraction of jumping velocities

For the capillary–inertial regime in figure 10(a), although the maximum velocity
(v̄∗

m) is mathematically well defined, the merged drop has not yet left the surface
(t∗ = 2.36 in figure 3a). At the point of departure when the bottom of the merged
drop leaves the substrate, the drop has a cusp-like shape near the bottom and the
internal viscous dissipation is still strong (t∗ = 2.58). The strong deceleration of
the merged drop gradually transits to a much milder deceleration, and the point of
transition approximately coincides with the first pseudo-equilibrium configuration after
the departure (t∗ = 3.34). This pseudo-equilibrium configuration is the most sensible
choice for extracting the jumping velocity, since the strong deformation resulting
from the interaction with the substrate has largely relaxed by then. Consistent with
this justification, the pseudo-equilibrium configuration roughly marks the beginning of
the nearly constant deceleration in the air (figure 10a), making the velocity extracted
at this position most meaningful for determining the travel distance of the launched
drop against air friction.

The situation is more complex for the more viscous drops in figure 10(b),
particularly for the cases with 0.1 . Oh . 0.3 where the merged drop eventually
jumps away, but stays attached to the substrate long after it has reached the maximum
velocity. In these cases, the merged drop is strongly decelerated by the surrounding
air from the point of departure to the first pseudo-equilibrium configuration after
the departure. Despite this caveat, the jumping velocity is still extracted at this
pseudo-equilibrium configuration for consistency. We shall note that the exact jumping
velocity at such high Ohnesorge numbers is of little practical interest since the strong
air friction quickly brings the departed drop to rest, severely limiting the launching
distance.

3.2.3. Capillary–inertial velocity scaling and viscous cutoff

As a function of the Ohnesorge number, the maximum velocity (v̄∗
m) of the merged

drop prior to jumping is plotted in figure 11(a), and the jumping velocity (v̄∗
j )

according to the aforementioned definition is shown in figure 11(b). To facilitate
comparisons with the experiments below, we have used two sets of properties in
table 1 corresponding to experiments at 100 ◦C and 20 ◦C, respectively. This property
variation also offers an opportunity to vary the viscosity ratio (µL/µG) in addition
to the Ohnesorge number (Oh), while the remaining governing parameter of density
ratio (ρL/ρG) is kept constant. The maximum velocity is not a strong function of
the external air viscosity, so v̄∗

m mainly varies with the Ohnesorge number, which
is defined using the liquid viscosity (µL). On the other hand, the jumping velocity
is extracted when the merged drop has already jumped into the air, so v̄∗

j can
additionally depend on the air viscosity (µG) and therefore the viscosity ratio.

The jumping velocity is expected to follow the capillary–inertial scaling (1.1) with
v̄j ∼

√
σ/(ρLr0). Indeed, in the capillary–inertial regime (Oh . 0.1), the jumping

velocity is approximately constant with v̄∗
j ≈ 0.2 (figure 11b). In the viscous regime

dominated by the liquid viscosity (Oh& 0.1), a viscous cutoff to the capillary–inertial
scaling is observed in figure 11(b) with rapidly decreasing v̄∗

j at increasing Oh.
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FIGURE 11. (Colour online) The velocity of the merged drop as a function of the
Ohnesorge number. The viscosity ratios (µL/µG) are 12.9 and 58.8, corresponding to
properties at 100 ◦C and 20 ◦C, respectively. (a) The maximum drop velocity (v̄∗

m) prior
to jumping; (b) the jumping velocity (v̄∗

j ) extracted at the first pseudo-equilibrium
configuration after the drop departure.

4. Comparison with experiments

In this section, we first summarize the assumptions in our simulations and compare
the numerical results with available experimental evidence, and then discuss the
remaining puzzles outlined in the introduction.

4.1. Numerical assumptions and experimental strategies

The following assumptions have been adopted in the numerical model, roughly in
order of decreasing importance. (i) The substrate has a contact angle of 180◦. The
drops are initially contacting the substrate but without any adhesion. (ii) The onset
of coalescence is instantaneous upon contact between the diffuse interfaces. (iii) The
liquid and air have constant properties, and the air density in the numerical code
is set to an artificially high value owing to limitations of the phase-field code.
(iv) Gravitational effects are neglected for drop radii well below the capillary length.
Except for the first assumption on the boundary condition of the non-wetting surface,
all other assumptions can be justified on theoretical grounds and/or with carefully
designed experiments. A rigorous experimental test should also consider implied
assumptions such as equal initial drop radii and negligible approaching velocity, as
well as the slight ambiguity in extracting the jumping velocity; see more discussions
in our companion paper (Liu et al. 2014a).

To test the key assumption on the non-wetting boundary condition, the numerical
results are compared to complementary experimental data on both Leidenfrost and
textured superhydrophobic surfaces. For experiments on heated Leidenfrost surfaces,
water drops are floating on a vapour layer so the contact angle can be assumed to
be 180◦ (Quéré 2013). However, the Leidenfrost drops are not directly contacting
the substrate, and the thickness of the vapour layer may vary depending on the
dynamic interaction between the drops and the heated substrate (Celestini, Frisch
& Pomeau 2012; Liu et al. 2014a). For experiments on textured superhydrophobic
surfaces, water drops are formed by cooling the surfaces below the dew point of
the ambient air (Boreyko & Chen 2009; Miljkovic et al. 2013). The dew drops
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FIGURE 12. (Colour online) Comparison of numerical simulations at 20 ◦C with
superhydrophobic jumping experiments. The experimental data are taken from Boreyko &
Chen (2009), excluding asymmetric coalescence cases with larger than 33 % disparity in
the radii of coalescing drops. (a) The v̄j ∼ r

−1/2
0 power law is parallel to the diagonal line

of the logarithmic graph. The viscous cutoff radius is numerically predicted to be around
0.3 µm. (b) The same data are replotted on a linear graph emphasizing the region around
30 µm, the experimentally identified cutoff radius on textured superhydrophobic surfaces.

exhibit a large apparent contact angle, but the contact angle is smaller than 180◦,
indicating a non-zero drop–surface adhesion. An additional complication arises from
the roughness of a superhydrophobic substrate, which among other things gives rise
to the complex interaction between the dynamic liquid drops and the air cavities
within the roughened surface (Reyssat et al. 2010).

4.2. Numerical results versus experimental data

Compared to the experimental data on both Leidenfrost and superhydrophobic surfaces,
our numerical model has faithfully captured the self-propelled jumping processes and
confirmed the capillary–inertial scaling. The comparisons below are largely based
on two sets of data. In figure 12, the experimental data are taken from Boreyko &
Chen (2009), and the numerical simulations assume the fluid properties to be at 20 ◦C
because the superhydrophobic water drops are condensed from the ambient air. In
figure 13, the experimental data are taken from Liu et al. (2014a), and the numerical
simulations assume the fluid properties to be at 100 ◦C because the Leidenfrost water
drops are experiencing film boiling at atmospheric pressure.

4.2.1. Jumping process

The simulations capture the capillary–inertial process leading to the self-propelled
motion, including the expanding bridge between the two coalescing drops, the
impingement upon the substrate by the merged drop, and its eventual departure
from the substrate. For experimental data that resemble the simulated process in
figure 3(a), see for example the Leidenfrost jumping process in figure 4 of Liu et al.

(2014a) and the superhydrophobic counterpart in figure 2 of Wisdom et al. (2013). In
addition to the favourable comparison to the Leidenfrost experiments detailed in our
companion paper (Liu et al. 2014a), we note that the numerically captured departure
process between t∗ = 2.36 and 2.58 in figure 3(a) is experimentally observed on
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FIGURE 13. (Colour online) Comparison of numerical simulations at 100 ◦C with the
Leidenfrost jumping experiments in Liu et al. (2014a). (a) The v̄j ∼ r

−1/2
0 power law

is parallel to the diagonal line of the logarithmic graph. The viscous cutoff radius is
numerically predicted to be around 0.1 µm. (b) The same data are replotted on a linear
graph emphasizing the region around 20 µm, the lower bound of experimentally accessible
radii because of spontaneous fluctuations of the vapour layer thickness. The reduction in
the jumping velocity for the data points represented by open symbols is a result of the
vapour layer fluctuation, not an indication of a cutoff radius.

superhydrophobic surfaces by Wisdom et al. (2013) between 200 and 240 µs in their
figure 2.

The simulations predict the duration from initial coalescence to the jumping
departure (Tj) to be close to 2.5τci based on figures 3(a) and 10(a). For Leidenfrost
surfaces, the agreement is apparent by comparing the experiments and simulations
with the same time stamps (figures 4 and 6 in Liu et al. (2014a)). For superhydrophobic
surfaces, the agreement is also good: for an average drop radius of r̄0 = 235 µm (τci =
0.42 ms), the measured duration is Tj = 1.0 ± 0.2 ms from figure 4 and the associated
video in Boreyko & Chen (2009); the empirical formula from our numerical results
yields Tj ≈ 2.5τci = 1.1 ms.

4.2.2. Capillary–inertial scaling

Before comparing the numerical and experimental data regarding the scaling of
jumping velocities, we shall note that the power law of v̄j ∼ r

−1/2
0 in (1.1) is best

tested in a log–log plot. For example, an order-of-magnitude mismatch in the cutoff
radius apparent in the logarithmic plot (figure 12a) can be obscured by the linear plot
(figure 12b). Indeed, ad hoc forms of viscous dissipation can lead to a seemingly
reasonable fit to experimental data in a linear plot; see for example Wang et al.

(2011). To avoid this pitfall, we plot the data in both logarithmic and linear scales in
figures 12 and 13.

In figures 12(a) and 13(a), the v̄j ∼ r
−1/2
0 scaling trend is shown by the numerical

jumping velocities based on figure 11(b). As long as the drop radius is above the
viscous cutoff, the simulations yield a nearly constant non-dimensional jumping
velocity (v̄∗

j ) of around 0.2 (figures 12b and 13b). Experimentally, the v̄j ∼ r
−1/2
0

power law is confirmed by measurements on both superhydrophobic and Leidenfrost
surfaces, and an approximately constant velocity of v̄∗

j ≈ 0.2 is indeed observed on
both surfaces.
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On superhydrophobic surfaces, the measured jumping velocities are somewhat lower
than numerical predictions (figure 12b), which is expected because of the non-zero
adhesion between the coalescing drops and the substrates. On Leidenfrost surfaces,
the measured values nearly match the numerical predictions within experimental
uncertainty (figure 13b). The measured jumping velocities are slightly but consistently
higher, which can perhaps be explained by the enhanced vaporization of the merged
drop as the heated substrate reacts to its impingement.

4.2.3. Cutoff radius

The simulations predict a viscous cutoff radius around 0.3 µm at 20 ◦C (figure 12a)
and around 0.1 µm at 100 ◦C (figure 13a), below which the capillary–inertial scaling
no longer holds. The viscous cutoff radius is two orders of magnitude lower than
the experimentally identified cutoff of 30 µm on textured superhydrophobic surfaces
(Boreyko & Chen 2009). To investigate this discrepancy, we have studied the self-
propelled jumping on Leidenfrost surfaces, which offer a better approximation to our
simplified boundary condition (Liu et al. 2014a).

The Leidenfrost data indicate no obvious cutoff in the accessible range of radii as
detailed in Liu et al. (2014a). For Leidenfrost experiments, the lower limit of the
initial drop radii is approximately 20 µm, around which the vapour layer thickness
starts to fluctuate spontaneously (Celestini et al. 2012; Liu et al. 2014a). The
spontaneous fluctuation stems from the small radius and thus the tiny drop weight,
which will be overwhelmed by the evaporative vapour flow until the liquid drop is
much farther away from the heated surface (Celestini et al. 2012). As long as the
vapour layer thickness is not affected by this spontaneous fluctuation, the measured
jumping velocity closely follows the numerical prediction with the initial radius down
to 20 µm (figure 13). Although the viscous cutoff radius cannot be experimentally
probed on Leidenfrost surfaces, the available experimental facts are entirely consistent
with the numerical results. This agreement supports the adequacy of our numerical
model, particularly the simplified boundary condition of a flat non-wetting surface, as
a first approximation to the self-propelled jumping.

Considering the consistency between the Leidenfrost experiments and the numerical
simulations, the large cutoff radius measured on textured superhydrophobic surfaces
is most likely to be due to effects not captured by the simplified boundary condition.
For example, the contact angle between the drops and the textured surfaces is well
below 180◦, indicating finite adhesion (Mognetti, Kusumaatmaja & Yeomans 2010;
Reyssat et al. 2010) that has been ignored in the numerical model. The finite adhesion
is particularly relevant for the condensate drops used in figure 12 (Miljkovic, Enright
& Wang 2012; Rykaczewski et al. 2012a). The coalescing drops are also interacting
with surface cavities that give rise to the superhydrophobicity. Such an interaction can
be strongly dissipative (Gao & Feng 2009; Tsai et al. 2011), particularly as the drop
radius approaches the dimensions of the cavities, which are typically of micrometre
scale. In addition to the dependence on the Ohnesorge number, the cutoff radius is
likely to be dependent on multiple factors, including the Young’s contact angle and
the geometry of the micro- and/or nano-texture. We stress that the cutoff radius is not
necessarily dictated by the dimension of the micro-textures on the superhydrophobic
surfaces. In Boreyko & Chen (2009), which uses ‘structure Bmn’ in Chen et al. (2007),
the observed critical radius of around 30 µm is coincidentally close to the micropillar
separation of 16 µm. As shown in Chen et al. (2007), the critical radius will change
dramatically if the surface coating is altered or the nano-tier roughness is removed,
even though the micro-tier roughness remains the same.
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FIGURE 14. (Colour online) The symmetry-breaking action of the substrate can be
estimated by the drop coalescence cases in the air. (a) Coalescence of two static drops
of initial radius r0, each with a mass of m/2. (b) For the maximum capillary–inertial
deformation of the merged drop (t∗ = 2.36 in figure 3b), the dynamic crossing mass that
passes below the imaginary substrate is 1md = 9.4 % m. (c) For an equilibrium drop, the
static crossing mass is 1ms = 3.0 % m. Note that the unbalanced counter-mass associated
with the broken symmetry is also labelled.

4.3. Mechanism of low non-dimensional velocity

Equipped with the numerical simulations, which agree well with experiments, we are
now in a position to offer an explanation to the low non-dimensional jumping velocity.

4.3.1. Symmetry-breaking mass fraction

The self-propelled jumping results from the counter-action of the non-wetting
substrate to the oscillation of the merged drop, which breaks the symmetry of the
surface energy release (figure 2). This physical model is indeed supported by the
experimentally validated simulations. The role of the substrate in intercepting the
oscillating drop is evident by comparing the in-the-air coalescence in figure 3(b)
and the on-the-substrate case in figure 3(a). As further illustrated by the flow
fields in figure 7, the substrate essentially forces the downward-moving mass to
eventually move upwards. The direction change is facilitated by the capillarity
of the merged drop, first ‘absorbing’ the downward momentum through lateral
deformation (t∗ = 1.14), and then squeezing the fluid back (t∗ = 1.88) and finally
upwards (t∗ = 2.36). Another insight from figure 7 (t∗ = 0.66) is that the boundary
of the expanding liquid bridge moves at approximately the capillary–inertial velocity
(uci), which is true as long as the Ohnesorge number is much smaller than unity.

The non-dimensional jumping velocity of v̄∗
j ≈ 0.2 in the capillary–inertial regime

can be rationalized by the following heuristic argument (figure 14). Based on the
numerical solution of the control case without the substrate, a maximum of 9.4 % of
the total mass (m) crosses the imaginary substrate represented by the dashed line when
the merged drop extends to the maximum prolate configuration, i.e. 1md ≈ 10 % m

in figure 14(b). The presence of the substrate forces a lumped mass of 1md that
initially moves downwards at approximately uci to eventually ‘bounce’ upwards, in
a manner analogous to the elastic rebound of entire drops on superhydrophobic
surfaces (Richard & Quéré 2000). At the same time, the ‘unbalanced’ counter-mass
of 1md on top of the merged drop continues to move upwards at approximately
uci (from t∗ = 0.88 onwards in figure 7). As a result of the substrate breaking
the symmetry of the surface energy release, two chunks of liquid, each with a
mass of 1md (figure 14b), are forced by the substrate to move upwards at the
capillary–inertial velocity, while the rest of the drop still maintains the approximate
top-down symmetry (figure 7). Effectively, the non-wetting substrate provides a
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vertical impulse Jz ∼ 21mduci. When the vertical momentum is distributed over the
total drop mass, the mass-averaged jumping velocity can be approximated as

v̄j ∼
Jz

m
∼ 21md

m
uci. (4.1)

Accordingly, the non-dimensional velocity is approximated by the dynamic symmetry-
breaking mass fraction, v̄∗

j ∼ 21md/m ≈ 0.2.
Although the dynamic crossing mass of 1md ≈ 10 % m arises from numerical

simulations, we shall note that 1md is lower-bounded by a static crossing mass
(1ms) from a geometric consideration (figure 14c). For the merged drop at final
equilibrium, the static crossing mass is proportional to the volume of a spherical cap
with a radius of r = 21/3r0 and a height of hc = r − r0, and therefore

1ms

m
=

1
3πρLh2

c(3r − hc)
4
3πρLr3

= (21/3 − 1)2(24/3 + 1)

4
= 0.03. (4.2)

In fact, this (quasi-)static crossing mass should approximate very well the sluggish
movement at relatively large Ohnesorge number that is still below the critical
value noted at the end of § 2.1. Indeed, the static symmetry-breaking mass fraction
(21ms/m) explains the displacement leading to a maximum drop velocity (v̄∗

m) of
close to 0.06 for the viscously dominated drop (e.g. Oh = 0.685 in figure 10b), even
though it does not eventually jump up.

The above heuristic argument is far from rigorous, but it does offer some insights
into the self-propelled jumping mechanism. We stress that the small non-dimensional
jumping velocity is due to the mechanical role of the substrate in intercepting only
a small fraction of the oscillating drop (figure 14). This physical insight is further
supported by simulations with the substrate relocated below the coalescing drops
and intercepting an even smaller fraction of mass (figure 15 inset). With increasing
separation (h∗) between the substrate and the bottom of the coalescing drops, the
liquid bridge impingement is delayed and the jumping velocity is reduced, until
h∗ ≈ 0.6, beyond which the oscillating drop no longer makes contact with the
substrate. In figure 15, the jumping velocity (v̄∗

j ) with increasing separation closely
follows the dynamic symmetry-breaking mass fraction (21md/m) according to (4.1).
In a sense, our heuristic model has a predictive power given the computed shape
with maximum vertical deformation in the air.

4.3.2. Discussion

For the self-propelled jumping on non-wetting substrates, the energy conversion
efficiency is low when the useful translational kinetic energy (Ek,tr) is compared to
the released surface energy (1Es). The low efficiency is directly related to the small
non-dimensional jumping velocity, since Ek,tr/1Es ≈ v̄∗2

j as discussed around (1.1).
Most of the released surface energy is viscously dissipated, including the majority
of the energy that is first stored in the oscillatory motion (figure 8). Since the
translational kinetic energy is only a small fraction, it is important to decompose the
kinetic energy into translational and oscillatory components. Otherwise, the energy
conversion efficiency appears artificially large as reported in Nam et al. (2013).

The details of the flow field are ignored in our heuristic model with the lumped
equation (4.1). To probe the role of the internal flow, we run simulations with the
velocity field reinitialized at a particular moment. For example, at t∗ = 0.88 when
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FIGURE 15. (Colour online) Non-dimensional jumping velocity (v̄∗
j ) and the dynamic

symmetry-breaking mass fraction (21md/m) as a function of the separation from the
substrate (h∗); the conditions are otherwise the same as those of figure 3. The inset defines
the crossing mass (1md), the portion of the maximum prolate deformation in the air that
is intercepted by an imaginary line situated at the same position as the substrate.

the liquid bridge impingement first occurs, all the velocity field (including that on
the air side) is reset to zero but the shape of the merged drop is left intact. After
this reinitialization, the simulation proceeds as usual. The reinitialization at t∗ = 0.88
delays the jumping process slightly, but the ultimate jumping velocity is nearly
unchanged. Note that the velocity field is almost entirely oscillatory at t∗ = 0.88
because of the lack of interaction with the substrate. For any other instant prior to
departure, a similar reinitialization procedure is adopted, with only the oscillatory
component turned off while the translational component is kept intact; the resulting
jumping velocity is within 20 % of the unmodified case. These additional simulations
are in line with figure 8: although the oscillatory motion dominates the kinetic energy,
it is largely dissipated in the end. The detailed flow field can therefore be neglected
in our derivation of (4.1), which is a lumped model for the translational jumping
velocity. On the other hand, we should note that the oscillatory motion is only turned
off at a selected moment (such at t∗ = 0.88), and the oscillation is playing an obvious
role in the evolution towards the drop shape at that particular moment, as well as the
subsequent shape evolution after the reinitialization. Accordingly, the capillary–inertial
velocity (uci) characterizing the oscillatory motion has its role in the lumped model.

Although our heuristic model borrows the concept of elastic rebound from drop
impact on non-wetting surfaces (Quéré 2005), the drop impact associated with
coalescence-induced jumping is markedly different. (i) Prior studies usually deal with
the impact of individual drops with a uniform incoming velocity that is entirely
translational, while the self-propelled jumping results from drop coalescence with
highly non-uniform internal velocity that is entirely oscillatory prior to impingement.
(ii) Judging from the restitution coefficient, which is the rebound velocity over the
impacting velocity, the impact of individual drops on non-wetting surfaces is elastic
(i.e. no appreciable loss in energy) for low-Weber-number cases (Richard & Quéré
2000) and inelastic for high-Weber-number cases (Clanet et al. 2004). In contrast,
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the coalescence-induced jumping is always dissipative and the ‘rebound’ is limited
to a fraction of the mass (21md), even though the capillarity-driven impingement
is inherently at a low Weber number (Liu et al. 2014a, § 3.4). (iii) For the elastic
rebound of individual drops upon impact, kinetic energy is first absorbed and then
released through surface deformation, but the rebounded drop has the same surface
energy as the incoming drop. For the coalescence-induced jumping, surface energy is
released upon coalescence, so the merged drop always carries a lower surface energy
compared to that of the initial drops. Part of the released energy powers the jumping
motion, and the rest is (eventually) dissipated.

5. Conclusions

We have numerically simulated the 3D self-propelled jumping process upon
drop coalescence on a flat non-wetting surface with a contact angle of 180◦. The
simulations compare favourably with experiments on both superhydrophobic and
Leidenfrost surfaces. The agreement supports the physical model viewing the initial
state as a two-lobed perturbation to the eventual equilibrium shape of a larger
spherical drop. The jumping velocity follows the capillary–inertial scaling, as long as
the drop radius is above the viscous cutoff radius. The numerically predicted cutoff
radius is of the order of 0.1 µm, which is consistent with available Leidenfrost
data. The consistency suggests that the much larger cutoff radius observed on
textured superhydrophobic surfaces is probably a result of the complex drop–surface
interaction, which is not captured by the perfectly smooth boundary condition without
any drop–surface adhesion.

Based on drop coalescence processes with and without the substrate, the out-of-
plane jumping results from the non-wetting substrate interfering with the oscillation
of the merged drop. Excellent agreement is found for the non-dimensional jumping
velocity, which is approximately 0.2. The relatively small velocity is attributed to
the substrate only intercepting a small fraction of the oscillating drop. Consequently,
only a tiny fraction of the released surface energy is converted into translational
kinetic energy for the upward motion, the rest being stored in oscillatory modes and
eventually dissipated.
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