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Capabilities for turbulence calculations of the Lagrangian averaged Navier—StoR&S-a)
equations are investigated in decaying and statistically stationary three-dimensional homogeneous
and isotropic turbulence. Results of the LAMSsomputations are analyzed by comparison with
direct numerical simulationfDNS) data and large eddy simulations. Two different decaying
turbulence cases at moderate and high Reynolds numbers are studied. In statistically stationary
turbulence two different forcing techniques are implemented to model the energetics of the
energy-containing scales. The resolved flows are examined by comparison of the energy spectra of
the LANS-« with the DNS computations. The energy transfer and the capability of the LANS-
equations in representing the backscatter of energy is analyzed by comparison with the DNS data.
Furthermore, the correlation between the vorticity and the eigenvectors of the rate of the resolved
strain tensor is studied. We find that the LANSequations capture the gross features of the flow,
while the wave activity below the scale is filtered by a nonlinear redistribution of energy.
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I. INTRODUCTION Alternative approaches to simulations of turbulent flows
where one does not use the brute-force approach to resolve

Over the last 30 years, direct numerical simulation of_, . L ;
all important scales of motion like in DNS or for high Rey-
turbulent flows at small to moderate Reynolds numbers has . . .
olds number flows for which DNS is not feasible are usu-

been a valuable asset in understanding turbulence phenorpn- o . ] .
ena. In such simulations, the motion of eddies ranging in siz lly divided into t_WO groups: Reynolds averaggd Nayler—
from the physical system down to the Kolmogorov dissipa- tokes (RANS) simulations and large eddy simulations
tion length scale are explicitly accounted for. The capability(LES)' o )

of reproducing experimentally obtained data for various N the RANS approach, the flow field is decomposed into

flows has been demonstrated by these simulations; see RB ensemble averaged mean flow and a fluctuating perturba-
gallo and Moirt and Canutcet al2 for an earlier account on tion field. By invoking the ergodic hypothesis, ensemble av-

the progress in this area. The main difficulty in the turbu-€rages are usually approximated by time averages or aver-
lence engineering community is that performing direct nu-29eS over one or more spatial dimensions. Substituting this
merical simulationgDNS) of typical engineering problems decomposition into the Navier—Stokes equations results in a
(usually at high Reynolds numberis computationally very —Set of differential equations for the mean flow quantities con-
expensive, and therefore not likely to become feasible in théaining contributions from the time-varying, turbulent mo-
foreseeable future. This is mainly because the number dfon. This requires the introduction of a turbulence model to
degrees of freedom for a three-dimensional Navier—Stokeédescribe the effect of these fluctuations on the mean. How-
flow grows rapidly with Reynolds number; namely it is pro- ever, by providing only mean turbulence quantities, the
portional to R&* Consequently, increasing the Reynolds RANS approach significantly limits our ability to study
number by a factor of 2 will increase the memory size byspatio-temporal structures in turbulent flows.

about a factor of 5 and the computational time by an order of ~ This problem can be circumvented by using the LES
magnitude. At low Reynolds numbers, DNS remains aapproach. In LES, only large scales of motion are resolved
unique computational tool that provides information about awvhile the effect of small scales is modeled. The basic idea
number of quantities inaccessible in a laboratory; howeverhehind LES is to define a large scale field through low-pass
alternative approaches are needed for numerical simulatiorfiitering of the flow variables. The governing equations for
of high Reynolds number flows. the mean flow quantitiedarge scalesare obtained by filter-

ing the Navier—Stokes and continuity equations. In inhomo-
Telephone: (303 492 0286; fax: (303 492 7881; electronic mai: 9€Neous, e.g., wall bounded flows, the filter width must be a
mohseni@colorado.edu function of position to capture the average size of the turbu-
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lent eddies that vary in space. Due to computational limita-Recently, Hughest al*~*8described a two level variational
tions of the DNS approach, the LES technique has maturethultiscale method for large eddy simulation where they used
into a commonly used tool for studying turbulent flows in a priori scale separation instead of commonly used spatial
engineering applications. filtering. Collis'® extended this idea to a three-level approach
The closure problem in LES and RANS is a central issueto clarify the role of unresolved scales.
in turbulence modeling. It is believed that turbulence at small  In this study, we consider a new Lagrangian averaging
scales retains a higher level of homogeneity, which makes ipproach introduced in Holnet al?° and Marsden and
more susceptible to modeling. The rationale is that only theShkoller?* Unlike the traditional averaging or filtering ap-
large scale motions are noticeably affected by the geometrgroach used for both RANS and LES, wherein the Navier—
of the domain, while the small scale motions are self-similarStokes equations are averaged, the Lagrangian averaging ap-
or even universal throughout the bulk of the flow. Hence, theproach is based on averaging at the level of the variational
main goal of LES modeling is to accurately model the netprinciple from which the Navier—Stokes equations are de-
effect of small(subgrid scales on the dynamics of large rived. Namely, a new averaged action principle is defined.
scaleqgrid scalegwithout solving for the evolution of small Hamilton’s principle then yields the Lagrangian-averaged
scales. Euler (LAE-a) equations when the flow is deterministic;
LES as a method for numerical simulations of three-when the flow is a stochastic process and covariant deriva-
dimensional turbulent flows was developed by Lillyilly’s tives are replaced by mean backward-in-time stochastic de-
turbulence modeling approach was based on that used bivatives, the Lagrangian-averaged Navier—Stokes equations
Smagorinsk§ in which subgrid scaléSGS stresses are lin- (LANS-a) are obtained, via the Ito formula of stochastic
early related to the rate of deformation tensor with the posicalculus (just as the Navier—Stokes equations are obtained
tive semi-definite subgrid eddy viscosity as a proportionalityfrom the usual non-averaged action princjplEhe Lagrang-
factor. The first simulations based on Lilly's model were per-ian averaging procedure yields the LANSequations that
formed by Deardorffwho used LES to study high Reynolds describe the time evolution of large eddies in turbulent flows.
number boundary layers, such as those occurring in the atn this sense, the Lagrangian averaging approach is similar to
mosphere. Smagorinsky-type models are dissipative and cathat of LES.
not represent normal stress effects in sheared turbulent flows. The Lagrangian averaged Euler models were introduced
These limitations of linear, Smagorinsky-type models haveon all of R (the three-dimensional Euclidean spgiceHolm
been recognized after first LES were carried Biin an et al,?? on boundaryless manifolds in Shkolféron bounded
attempt to develop a better subgrid model, Leohasd-  subsets ofR® with boundary in Marsderet al.,?* and on
panded the filtered nonlinear term as a function of productsnanifolds with boundary in ShkolléP they were derived to
of filtered quantities and their derivatives and obtained a gramodel the mean motion of incompressible flows. A short
dient diffusivity model. McMillan and Ferzigérand Clark  review of the derivation of the Lagrangian-averaged equa-
et al® devised arm priori testing approach where they filter tions is presented in Sec. II.
DNS data to compute subgrid terrtissing their definitions The behavior of small scales in turbulent flows is often
and compare them to modeled subgrid terms. Bardiredl®  characterized by statistical isotropy, homogeneity, and uni-
used such tests to evaluate a scale similarity model that theyersality. Consequently, by investigating the simplest turbu-
developed. Scale similarity models are now often combinedent flow, i.e., isotropic homogeneous turbulence, we hope to
with Smagorinsky-type models and are commonly used irunderstand small scale turbulence. In this study, we shall
LESH concentrate on homogeneous isotropic flows. Such flows are
The dynamic approach to subgrid modeling was develunbounded and thus differ from flow in regions near solid
oped by Germanet al,*? who used an additional, test filter boundaries, but they provide an ideal test case for the adjust-
and tensor identities to dynamically determine the value ofment and verification of new turbulence theories and models.
the Smagorinsky coefficient. Such dynamic subgrid models Isotropic homogeneous turbulence can be categorized as
allow for negative eddy viscosity and can therefore represergither decaying or forced. While the forced isotropic turbu-
the backscatter of energy from small, unresolved scales dénce is usually designed to be statistically stationary, decay-
motion toward large, resolved eddies. Following Riviid’s ing turbulence is always statistically nonstationary. Recently,
suggestion, a class of Reynolds and subgrid stress modeGhen et al?® performed numerical computations of the
was developed basdds discussed lateon the constitutive forced LANS«w equations for homogeneous turbulence.
theory for second grade fluids. Due to their relation to theThey considered only one forcing technique, similar to the
LANS-« subgrid terms, these models will be discussed inforcing scheme B of the present stutsee Sec. Y. In this
more detail in Sec. Il. Subgrid parameterizations are necestudy we perform similar computations, extend the results of
sarily based on simplifying assumptions and a phenomendchen et al.?® and implement a different forcing scherffe.
logical approach, and represent the main source of uncertaitdowever, to obtain a better understanding of the modeling
ties and errors in LES. While some of the subgrid modelscapabilities of the Lagrangian averaging technique we con-
perform satisfactory in specific flow configurations, a generabkider more realistic idealizations of a turbulent flow than the
subgrid modeling problem remains open. In addition to aforced homogeneous turbulence cases. Consequently in this
recent review by Meneveau and KHtthat focuses on scale- study we consider two different decaying turbulent flows as
similarity models detailed reviews of the LES techniquewell. In the first case an initial condition from a realization of
have been presented by Masband Lesieur and Kais!®  the experiments by Comte-Bellot and CorfSif? is used®
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This initial condition has a broad energy spectrum with thedenote the associatdellerian velocity fluctuatioraboutu.
peak of the energy spectrum at a relatively high wave numThe corresponding.agrangian fluctuation(in spatial repre-
ber. In the second case we generate a sharply peaked initis¢ntation is given by

energy spectrum with the peak of the energy spectrum at a

relatively low wave number. In this way the effects of the g’(t,x)=i £4(t,%).
initial energy spectrum on the performance of the LANS- da =0
calculations are also investigated. o

This paper is organized as follows. In the next section 2>milarly, let
review of the Lagrangian averaging technique is presented. g2
The numerical technique adopted in this study is described in  u”(t,x) =~ a u(t,x),
Sec. IlIl. Our main numerical results are presented in Secs. a=0

IV=VI where computations on the LAB-as well as forced gpq
and decaying LANSx calculations are discussed. Finally

. . . . 2
our findings are summarized in Sec. VII.

d
S (t,X):Ezz azof (t,X).

Il. THE LAGRANGIAN AVERAGING TECHNIQUE Recall that the inviscid portion of the dynamics of the
Navier—Stokes equations is governed by a simple variational

In this section, we give a brief summary of the relevantprinciple, or action, which is just the time integral of the
background material on the Lagrangian averaging approackinetic energy of divergence-free vector fields:
and the resulting Lagrangian averaged EUleAE-«) and
Lagrangian-averaged Navier—StokdsANS-«) equations. S= E ftlf | g,us(t,x)|2 dx dt )
The detailed derivation of the LAR-and LANS« equations 2 )ty Ja e
can be found in the articf#. Analytic results concerning
these equations can be found in the literafdrd 253234

The well-known Reynolds decomposition is an additive
decomposition of the spatial velocity field of the fluid into its
mean and fluctuating components. The Lagrangian averagi
procedure takes an entirely different starting point, by de
composing instead the Lagrangian flow of the velocity field.

Let X denote the vector space of initial velocity fields for
which the Euler equations af@at least locally well-posed,
and let> denote the unit sphere K. Foruge X, let u(t,x)

The Euler—Lagrange equations f8fu) are the incompress-
ible Euler equations, and if one allows the flow of the Euler
solution to undergo a random walk, then the Navier—Stokes

uations immediately arise® Our goal is to average over
all possible solutions of the Euler equations with initial data
ug in an X-ball of radius @ aboutu; since each solution
u¢(t,x) is obtained from the first variation of the action as
we described above, it is appropriate to defineakeraged
action function

denote the solution of the Euler equations witt0,-) =uj. 1T
Similarly, let u¢(t,x) denote the solution of the Euler equa- S=<§f f |o,u€|? dx dt>. (3)
tions with initial datau§, where 0/

US=Uo+ew, wel, ec[0a] Here, overbar denotes averaged quantity. Expandifig

aboute=0, we get
for some smalla>0. Of course,u¢(t,x) depends orw as

well, but we suppress that for notational simplicity. US(t,x) =u(t,x)+eu’(t,x) + 3°U"(t,x) + ().  (4)

We letv denote a chosen measure on the unit spBdre
X, and define theaverageof vector-valued function$(e,w)
on[0,a] X2 by

We insist that our measure is invariant so that)=u; cor-
respondingly, we calll the mean. By differentiating Eq1),

one obtains the relations between Eulerian and Lagrangian
fluctuations

t a
fy=— f(e,w)vde,
() afo fz eree U =0 +(U-V)E —(£-V)u, (5a)

wheret is a characteristic time scale.

Let » be the Lagrangian flow ofu, which solves U=+ (U V)= (€7 V)u=2(¢"-V)u

drm(t,X)=u(t, n(t,x))) with »(0x)=x. Similarly, let »¢ —VVu(é' ¢, (5b)
denote the Lagrangian flow of. We define thd.agrangian ) )
fluctuation volume-preserving diffeomorphigmby where, in coordinates,

(LX) = (L7 H(t,x)), (1) VVU(E €)= Ul g e

so that nf= &fon,, with o denoting composition of maps. )
Clearly, £9(t,x)=x, since 7°=°(t,x)= »(t,x) for all t=0. A. Generalized Taylor or frozen turbulence

Let hypothesis
d To derive the LANSe equations, Marsden and
u'(t,x)==—  u“t,x) Shkollef! used a generalization of the classical frozen tur-
daf _, bulence hypothesis of Tayldf.According to Taylor hypoth-
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esis the streamwise scalar component of the fluctuation i$he superscriptr denotes that the actio®® depends on the
considered frozen over the time scale of the temporal derivgparameterr. Notice that the velocities obtained using this

tive, giving expression will also depend on parametgrhowever, we
J J will not explicitly indicate this dependence in the following
=—U—, equations. We refer the reader to Marsden and ShRblier
X

the anisotropic case.
where U is the local mean velocity along the streamwise  APPlying the calculus of variations machinery to E8)
direction, which is denoted by. yields the isotropic LANSz equation

The generalized Taylor hypothesis of Marsden and U+ (U-VIU+UYSU) = — (1— ?A) "L gradp— vAu
ShkolleP! consists of assumptions associated with behavior e ) (W (1=a”4) "gradp—vAu,

of the Lagrangian fluctuations at different ordersaofHere divu=0, u(0x)=uy(x), (10)
we present their closure ©(e?), achieved by making the
following assumptions: u=0 on 49,
&' +(u-V)¢&'—(&-V)u=0, (63  where
D US(u)=a?(1— a?A) "1 Div[Vu-Vu'+Vu-Vu
— (&L u, (6b)
pt (¢ —vuT-vul. (11)
where the orthogonality is taken I and, as usual, Marsden and Shkollét showed that while this form of
D LANS-« equations is equivalent to that presented by Foias
—v=dw+(u-V)u. et al32%83%t reveals the additional boundary condition that

Dt must be satisfied when wall bounded flows are considered.
Equation(6a) states that the Lagrangian fluctuatighis Lie ~ The additional boundary condition is
advected or frozen into the mean flow as a divergence-free _
vector field, i.e.,g&' +£,&=0. Note that this equation au- Au=0 on JQ. (12
tomatically preserves the divergence free naturé’of While this condition is naturally imposed upon the solution
Substituting the relationgsa) and (Sh) into the expan-  of the LANS- equations on bounded domains, we believe
sion(4) and using the generalized Taylor hypothéé@ and  that the anisotropic theory should be used to model turbu-
(6b), we find that lence in domains with boundaries. Herejs the Stokes op-
ey _1.2 e 3 eratorA=—PA whereP is the Leray(or the Helmholtz—
U=u—2eVVU(g', &)+ O(e). ™ Hodge projector. The most obvious scenario in which one
Substitution of Eq(7) into the averaged action functidB) might assume the covariance is isotropic is in decaying or

gives forced turbulence inside a periodic box. In this case, the in-
verse Helmholtz operator commutes with the divergence and
< E JTJ [|ul2+ a2V Vu:F,u+ O(a®)]dx dt, gradient operators, and the isotropic LANSequations are
2JoJa given by
where thelLagrangian covariance tensor 5 defined by du+(u-Vyu=—gradp+ vAu+Div 7¢(u),
' . 13
F=(&'®¢). divu=0, (13

whereu is the macroscopic velocity; is the kinematic vis-
cosity, andr*(u) can be identified as theubgrid stress ten-
sor, defined by

B. The isotropic Lagrangian averaged Navier—Stokes
(LANS- @) equations

In this paper we focus on thesotropic form of the ) - . .
LANS-« equations which is intended for modeling fluid flow ~ 7*(U)=—a“(1—a“A)"[Vu-Vu' —Vu'-Vu
away from bo'un'darles..We start by assuming that the cova- +VU-Vu+vu'-vuTy, (14)
rlance tensor Is isotropic
or in the Cartesian coordinates
F=cld,
Au; du; AUy duy  AU; duy

a constant multiple of the identity. By integration-by-parts ¢=—a%(1-a?A) !
1 (9Xk &Xk &Xi (9XJ an &XJ

and truncation of the averaged action functiorOt?), we
find that Uy du;

OXj IXg ’ (15)

_ 1T
5“=§J J [|u[2+2a2|D[2]dx dt ®
0Ja In this equationw is a scale of the rapid fluctuations in the

flow map, below which wave activity is filtered by a nonlin-
ear redistribution of energy. Notice that the third term on the
D=4 Vu+(Vu)T]. (9 right hand side is equivalent to the tensor-diffusivity model

where
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developed by LeonarfiAlso, notice that the divergence of ear model and used it in simulations of atmospheric bound-
the last term on the right hand side can be expressed asaay layers>® This nonlinear model can reproduce normal
gradient of a scalar stress effects and represent the backscatter of energy without
. T o Ty Too T allowing for negative eddy viscosity.
Div(Vu'-Vu')=gradVu:vu?). (18) In addition to the relation between constitutive relations
Therefore, this term can be absorbed into the modified predor second grade fluids and LAN&-equations, Oliver and
sure functiorp. On the periodic box, the pressure function is Shkolle?® also demonstrated a connection between the
determined(up to a constantfrom the incompressibility LANS-« equations and vortex methods. While phenomeno-
condition as a solution of the Poisson problem obtained byogical nonlinear subgrid stress models and the subgrid term
taking the divergence of the momentum equation. in LANS-« equations share certain properties, the subgrid
We point out that LANSe equations can be rewritten so term in LANS- arises as a consequence of Lagrangian av-
that the stress terms take a form similar to the constitutiveeraging, and is not based on a phenomenological modeling

relation for second grade fluitfs*®4041 assumptions. Due to the existence of a variety of subgrid
models, mathematical properties of various ad hoc filtered

a_u+(u,v)u: Div o(u), (17  Navier—Stokes equations which are often used in LES have

ot not been studied in detail. Contrary to that, mathematical

properties of LANS« equations have been studied exten-

where the stressg, includes both viscous and subgrid F .
sively and the proofs of global well-posedness and regularity

stresses ) ;
of solutions even in the case of wall bounded flows have
o(u)=—pl+2v(1—a?A)D+2a°D. (18)  been presented by Foias, Holm, and*fitind Marsden and
. . o Shkoller?! One of the main problems of subgrid modeling
Here,D is co-rotational Jaumann derivative for LES is the problem of no-slip boundary conditions in

simulations of high Reynolds number wall bounded flows. In
order to avoid resolving the viscous sublayer, which would
whereR is a rate of rotation tensor defined as be equivalent to carrying out DNS, approximate boundary
1 conditions employing wall functions and assuming a loga-
R=2[Vu—(Vu)]. (19 rithmic velocity profile are usually imposed near the wall.
The key difference between the constitutive relation for secWhile this approach yields satisfactory results when simple
ond grade fluids and the subgrid stress given by @8  flow domain geometries are considered it cannot be easily
stems from the viscous stress term, that is, the second tergeneralized to transitional flows or complex flow geometries
on the right hand side of Eq18), which in the case of the regularly encountered in engineering applications. In the
LANS-a equations includes an additional Helmholtz opera-context of the isotropic LANS¥ equations, such an initial-
tor (1— a?A). Rivlin'® was the first to suggest that the con- boundary value problem is well posed if the additional
stitutive relations for non-Newtonian fluids could be used toboundary condition(12) is introduced. For the anisotropic
model turbulent stresses. Rivlin showed that unlike lineallANS-a equations, the degeneracy of the covariance matrix
models, in which turbulent stress is linearly related to theplays the role of the additional boundary condit®rin fu-
rate of deformation tensor, nonlinear relations are able tdure work, we shall determine if the LAN&-equations are a
represent normal stress effects observed in sheared turbuleviable wall-bounded turbulence model. As the first step to-
flows. Following Rivlin's suggestion, Lumlé§ and later ~ward this work, in this study, we shall focus on isotropic
Popé® explored and developed models for Reynolds stressetsirbulence simulations in a periodic box.
in the context of the RANS equations. This line of research
was continued and expanded by Spez_?éfé’.ln addition o |\ UMERICAL METHOD
the phenomenological approach, nonlinear models for Rey-
nolds stresses were also developed using statistical turbu- Our computational domain is a periodic cubic box of
lence theories by Yoshizatfawho employed a direct inter- side 2r. In a numerical simulation of decaying turbulence,
action approximation approach and Rubenstein and Btirtonthe size of the computational domain imposes an upper
who used renormalization group theory. As we have seebound on the growth of the large scales in the flow. This is
earlier the tensor-diffusivity model developed by Leorfard consistent with the observation in most experiments that the
can also be considered as a nonlinear model. This model waargest scales of motion are of the same order as the size of
combined with the Smagorinsky model aagriori tested by  the experimental apparatus. Given the number of grid points
Clark et al® Recently the nonlinear model of Leonard was and the size of the computational domain, the smallest re-
used in combination with the dynamic Smagorinsky modelsolved length scale or equivalently the largest wave number,
by Leonard and Wincklemaffsand Wincklemant al*® in Kmax, IS prescribed. In a three-dimensional turbulent flow the
the LES of incompressible wall bounded flows. Lund andkinetic energy cascades in time to smaller, more dissipative
Novikov® carried out an extensive priori study of a wide scales. The scale at which viscous dissipation becomes domi-
range of nonlinear constitutive relations as subgrid modelsnant, and which represents the smallest scales of turbulence,
At the same time, Worj proposed a way to combine a is characterized by the Kolmogorov length scaléwhose
nonlinear subgrid model together with the dynamic modelingdefinition is recalled beloy In a fully resolved DNS, the
procedure. Kosovié developed a phenomenological nonlin- condition k,,7=1 is necessary for the small scales to be

D=4D/dt+(u-V)D+DR—-RD,
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adequately represented. Consequehtly, limits the highest Where E(k) is the energy spectrum function at the scalar
achievable Reynolds number in a direct numerical simulatiowave numberk= (k-k)*% the Kolmogorov microscaley
for a given computational box. representative of dissipative scales is

The full range of scales in a turbulent flow for even a L3\ 174
modest Reynolds number spans many orders of magnitude, 77=(—) , (21
and it is not generally feasible to capture them all in a nu-
merical simulation. On the other hand, in turbulence modelwheree is the volume averaged energy-dissipation rate; and
ing, empirical or theoretical models are used to account fothe Taylor microscale\ characterizing the mixed energy-
the net effect of small scales on large energy-containinglissipation scales is defined as

scales. In the next sections, the numerical simulations of 5

€

forced and decaying homogeneous turbulence based on the  _ Urms 22)
full DNS, LES modeling, and the LAN% modeling are ((&ullo'?xl)2>’

presg_ntettj. ical simulation€DNS) of isotropic fl whereu,s is the root mean square value of each component
irect numerical simulation$ ) of isotropic flows Orr velocity defined as

using pseudospectral methods was pioneered by the work o

Orszag and Pattersdhand Rogall®® The accuracy in the 5 max

calculation of the spatial derivatives that appear in the Ums=3 fo E(k)dk. (23

Navier—Stokes equations is improved substantially by using[ ) o o

the pseudospectral technique as compared with the finite diftn€ time scale of the energy containing egdles is the large-

ference method. The core of the numerical method used igddy-turnover timeT defined asT=I/ums.>" The Taylor

this study is based on a standard parallel pseudospectr&eynolds numbefdefined based on the Taylor microsoate

scheme with periodic boundary conditions similar to the one TN

described in Rogalld® The spatial derivatives are calculated  Rg = . (24)

in the Fourier domain, while the nonlinear convective terms v

are computed in the physical space. The flow fields are adi/e expect that simulations which share the same value of

vanced in time in physical space using a fourth ordemoth Rg and the nondimensional Kolmogorov length scale

Runge—Kutta scheme. The time step was chosen appropto? should be identical in a statistical sense.

ately to ensure numerical stability. To eliminate the aliasing  In the next sections, we present results of our numerical

errors in this procedure the two thirds rule is used, so that theimulations of the LANSz equations. We first demonstrate

upper one third of wave modes is discarded at each stage tfe characteristics of the nonlinear redistribution of energy in

the fourth order Runge—Kutta scheme. the LAE-a equations, and then present results of our viscous

In addition to LANS« computations, we also performed computations.

simulations using a dynamic SGS modste, e.g., Germano

et al'?). Germanoet al? suggested a dynamic procedure in

v_vhich.the model coefficient of an arbitrgry functional rela- |\, +HE | AGRANGIAN-AVERAGED EULER

tionship, selected to represent the subgrid scale stress te”SEbUATIONS

can be evaluated as part of the simulation. This procedure,

applied to the Smagorinsky eddy-viscosity model, has In Sec. Il, we argued that the LAE-equations redistrib-

proven quite versatile and is used here as a representative ofe the energy content among the small scales through a

a class of LES models. The filter aspect ratio in the dynamimonlinear redistribution mechanism. This is illustrated in Fig.

LES model is a free parameter and the final result depends where various energy norms in the LAEsimulations

on the value of this parameter particularly in severe test casdge., no viscous dissipatigmre contrasted against the energy

such as the one considered here. The model coefficient in theorm in the Euler calculation. The initial condition is the

dynamic LES is averaged over the whole computational dosame as the one described in Sec. IV A for the viscous com-

main. However, the LES computations were repeated foputations based on the initial data from Comte-Bellot and

many filter aspect ratiogat least fouy, and the parameter Corrsirf®?°test caséCBC). As expected, théi'-equivalent

that matched the best with the turbulence decay of the DN®&nergy norm for the LAEx equations given by

data or the DNS energy spectra was used in the computations 1

of the next sections. Hi(u)= _f [u-u+2a?D-D]d3x, (25)

There are three main characteristic length scales in an 2

isotropic turbulent flow: thentegral scale Icharacterizing s a conserved quantit is defined in Eq(9). In the case of

the energy containing scales is defined as periodic boundary conditions, this energy function may also
be expressed dd'=1fu-(1— a?A)u. The value oH! de-
pends on the initial condition, as well as the paramatd¥or

Kmax E(k)dk given initial data and fixedr, on the other hand, the,
37 Jo k energy function
- T kmax ' (20) 1
. E(k)dk Lo(u)= Ef u-u d3x (26)
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FIG. 1. Euler and the LAERr simulations starting with CBC initial data &t t,=1.8. Euler(solid with circles (a) ny=643 for «=1/16,(b) a=1/16; with
Ni=483, 64%, and 128. Note that the flat part of the,(u) curves for the LAE« cases is due to the finite resolution of the computational domain, and it
is not a characteristic of the LAR-equations.

drops significantly from its normalized initial value of 0.5. It numerical scheme. The fourth order Runge—Kutta has
is precisely this quantity that we shall compare with the nuproved to be adequate in our case. However, numerical ex-
merical simulation of Navier—Stokes equations. Again, theperimentation has shown that lower-order time integration
absolute drop i ,(u) depends on the initial velocity as well schemes might result in a slight decay in th&norm. All of
as the value ofv. SinceH(u) is constant along solutions of the reported computations in this study are performed using
the LAE-« equations, any decay in,(u) is followed by an  the same fourth order Runge—Kutta scheme.
increase inaL,(Vu). After some initial transient all of the
energy norms saturate. We remark that whegoes to zero,
by definition the LANSe computations approach DNS. In
other words wherr=0, theH?* energy norm(25) reduces to Forced isotropic turbulence in a periodic box can be con-
the usualL, norm for the kinetic energy. sidered as one of the most basic numerically simulated tur-
In homogeneous flows the following equality holds bulent flows. Forced isotropic turbulence is achieved by ap-
2D-D=0- o @27 plying isotropic forcing to the low wave numbe.r modes S0
' that the turbulent cascade develops as the statistical equilib-
where w is a vorticity vector,w=V Xu. It follows that in  rium is reached. Statistical equilibrium is signified by the
such flows thed* norm can be expressed as a sum oflthe  balance between the input of kinetic energy through the forc-
norm and enstrophgthe L, norm of vorticity) multiplied by  ing and its output through the viscous dissipation. Isotropic

V. FORCED TURBULENCE

a factora?. forcing cannot be produced in a laboratory and therefore
H(u) = L,(u)+ a2&(u). (28) forced isotropic .turbulence is an idealized flow copﬁgurauop
_ _ that can be achieved only via a controlled numerical experi-

Here, enstrophy is defined as ment; nevertheless, forced isotropic turbulence represents an

1 important test case for studying basic properties of turbu-
Eu)=Ly(w)= Ef - o d3x. (29 lence in a statistical equilibrium.
The numerical forcing of a turbulent flow is usually re-

Therefore a drop in kinetic energy § norm) is accompanied ferred to the artificial addition of energy to the large scale
by a proportional increase in enstrophy. (low wave number velocity components in the numerical

In a viscous computation the decay linp(u) is aug-  simulation. Forcing of the large scales of the flow is often
mented by the viscous decaylip(u), as the viscous effects used to generate a statistically stationary velocity field, in
remove energy from small scales. Viscous computations arehich the energy cascades to the small scales and is dissi-
performed in the next sections to quantify the nature of thgated by viscous effects. In the statistically stationary state,
viscous decay. the average rate of energy addition to the velocity field is

In Fig. 1(b) the effect of grid resolution on the LAR- equal to the average energy-dissipation rate. The Reynolds
simulations is shown. While the value Bff(u) is the same number attainable for a given size of simulation is substan-
in both 48, 64°, and 128 runs, thel, norm ofuandVu are tially higher for forced turbulence than for the case of decay-
significantly different after an initial transient. Therefore theing turbulence.
decay inL,(u) depends on the size of the computational It is generally believed that the Kolmogorov cascade
domain. One should note that the conservation of e  theory® provides an approximate description of homoge-
norm is slightly sensitive to the accuracy of the implementecheous isotropic turbulence. The almost universal scaling of
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the dissipation range in Kolmogorov variables andkh&®  B. Forcing scheme A

energy spectrum are among the most successful predictions The first method consists of applying forcing over a
in turbulent flows. It is expected that any turbulent modelg,, o oo shell with shell walls of unit width centered at
must accurately predict this energy spectrum. Statisticall ave number one, such that the total energy injection rate is
stationary and homogeneous turbulence provides an idegl,siant in time. This forcing procedure was used by Misra
framework to study the capabilities of any turbulence model,y pjjin3 The forcing amplitude is adjustable via the pa-
in predicting the Kolmogorov energy spectrum. To this endy,meterswhile the phase of forcing is identical to that of the

26 - - - -
Chenet al™ numerically investigated the LANS-equations e|qcity components at the corresponding wave vectors. The
in the case of forced homogeneous turbulence with a forcing o rier coefficient of the forcing term is written as

technique similar to the forcing scheneimplemented in
this study. They concluded that the LANBsimulations ac- 0
curately predicts the Kolmogorov energy spectrum for scales \/0_‘*

) . KUk
larger than the parameter. However, one might attribute
their results to the nature of their forcing technique; that isfor all the modes in the specified shell. Hefe,and 0; are
forcing based on the Kolmogorov scalikg®* in the forced  Fourier transforms of the forcing vectér and velocity,u; ,
region. In this section we repeat their numerical experimentin the momentum conservation equatidhis the number of

expand it and perform a new set of forced calculations with dvave modes that are forced. The above form of forcing en-
different forcing technique that does not have the limitationsyres that the energy injection ratef,-0;, is a constant
1 I

of the forcing scheme implemented in Chetral * The reso-  \\nich is equal to5. We choses=0.1 for all of our runs.
lutions of all of our forced DNS computations are £70

(256° before dealiasing C. Forcing scheme B

“ _5
fi=§ (30

A. Forcing schemes The second method corresponds to the forcing used by
. . Chen and Sh&f where wave modes in a spherical shell
In using a low wave number forcing, we assume that the | — i of a certain width are forced in such a way that the

time averaged small scale quantities are not influenced by th%rcing spectrum follows Kolmogorov's-5/3 scaling law
details of the energy production mechanisms at large scales.

This assumption is closer to the truth at high Reynolds num- ? _ 5 0 503

bers, where the energy containing scales are widely sepa- "' N /5 n* (31)

rated from the dissipation scales. The forcing parameters in-

fluence both the small scale quantities and the flow quantityhis is done in order to obtain as long a range of near-inertial

variables such as the Reynolds number and the Kolmogorobehavior as possible. This type of forcing ensures that the

length scale; however, a physically plausible forcing schemenergy spectrum assumes inertial range scaling starting from

should not influence the small scales independently of théhe lowest wave modes and thus an extended inertial range is

flow quantity variables. artificially created. Imposing inertial range scaling is particu-
There are many methods for forcing homogeneous turlarly useful for studying inertial range transfer as well as

bulent flows. Siggia and Pattersriorced their simulations scaling laws at higher wave numbers. We have chdggen

by applying a constant value for the amplitude of the Fourier=2 and §=0.03 in all the runs.

coefficients 01 in the shell &=k=2. Eswaran and Pof

implemented a different method. They used an Uhlenbeck-D. Results for forcing scheme A

Ornstein stochastic diffusion processcorrelated over time To present the results in a nondimensional form, we use

with a choseAn time scale to generate the random forcing qf,o integral length scaleand the root mean square of veloc-
the form fi(k,t)=(5;—kikj /k)w;(k,) X[@(k)=O(k ity u,. Throughout the forced simulations, these two quan-
—kg)] whereg;; is the Kronecker delta function artdlis the  tities vary significantly; however, as equilibrium is ap-
Heaviside function. However, the velocity-force correlationproached, the integral length scale for the simulation with
contributes to the net forcing because there is a certain timgrcing scheme A approaches the value of approximately
scale over which the force is correlated. Ghosalal®* ~0.2, and the root mean square of velocityjse~0.25. It
implemented a technique to guarantee that the production ®llows, that the corresponding eddy-turnover time Tis
balanced by the desired value of dissipation. They used &|/u,,.=0.8. The computations are continued for more than
volume force of the fornf(k)=el/(NUA(k)) at the wave 30 eddy-turnover times. The equilibrium Taylor Reynolds
numberk in the shellk=k, containingN wave numbers number in this simulation is approximately 80.

wheree is the dissipation rate. Instead of forcing all the wave  The energy spectra at the nondimensional tim&0.5 is
numbers in the shek=k, Caratiet al®? forced only a ran- depicted in Fig. 2. It is interesting to note that for fixed value
domly chosen wave numbel’ <N to eliminate the strong of « the lower resolution LANSx cases (6% are good rep-
correlation of the forcing with the velocity field. Clearly, the resentations of the higher resolution LANSeases (17%)
external force injects the energy at the constant ratéor a large range of wave numbers. The low wavemodes of

[f-udx/V=23f,-u,= e observed in Ghosat al®! the DNS energy spectra are well captured by the LANS-
Here we adopt two well-studied forcing methods that aresimulations with the expected trend; as-~0 the LANS«
different than the ones discussed above. simulations approach the DNS spectra over the fully re-
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k FIG. 4. Flatness and skewness for forcing scheme A in the DNS run.

FIG. 2. The energy spectra at the nondimensional tim25/0.82=30.5 for

forcing scheme A. . . .
units. The Taylor Reynolds numbeR, , is approximately

115 for these computations. The energy spectra at the nondi-
solved wavemodes. The total kinetic energy(u)) for the ~ mensional time 14.1 are shown in Fig. 5. There is a well
DNS and LANSe& computations are shown in Fig. 3. In developedk ~> region over one decade in wave numbers.
these runs the flow is initialized from a fully developed tur- The LANS-« calculations at the same full resolution follows
bulent flow at a higher Reynolds number. Consequently, théhe same behavior up to the spatial scale of owdewhere
total kinetic energy drops as time evolves. The total kinetiche inverse Helmholtz operator in the LANBeomputations
energy passes through an initial transient state but eventualfarply steepens the energy cascades to smaller scales. While
reaches a relative steady state. The plot of flatness and skeiytakes a relatively long time for the total kinetic energy to
ness of the DNS rurtshown in Fig. 4 and the plot of the settle(see Fig. §, the values of the skewness and the flatness
total kinetic energy indicate that after 10 eddy turnover timed®ach an aimost statistical equilibrium at around time, as
the flow is essentially in statistical equilibrium. shown in Fig. 7.

E. Resullts for forcing scheme B F. Subgrid energy transfer and alignment of subgrid

. ) ) ] stress eigenvectors
The integral length scale for this run is approximately
~0.32, and the root mean square of velocityuig,e~1.4. In order to evaluate the performance of any SGS model,

Consequently the eddy-turnover time can be calculated d& 1S (in principle) possible to compare the modeled SGS
T=I/ums=0.23. All of the computations for the forcing
scheme B are continued for almost 25 eddy-turnover time

10°
04 r
10"
10° ey
g . DNS, 170°
= 10° : prmaNE N T
S LANS, 170, ostitT N N -
10° LANS, 170°, a=1/16 N
10° N
AT
DNS, 170° 107
AR
. i L\ J‘\l [ |
108 L i i [ | L
0 ! 1 I 10° 10’ 10
0 10 20 30 k
t(ul)
FIG. 5. The energy spectra at the nondimensional tim8&.25/0.23=14.1
FIG. 3. Total kinetic energy for forcing scheme A. for forcing scheme B. The straight line represents a slope 9.
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5r herent fine scale structures have been observed in other types
of turbulent flows such as turbulent mixing layers and turbu-
lent channel flows where they exhibited similar
characteristic§®"°
A three-dimensional measurement technique such as ho-
lographic particle velocimetry(HPIV) was used by Tao
et al.”t""3to study the alignment of the eigenvectors of ac-
tual and modeled components of the subgrid stresses as well
as the alignments between eigenvectors of the rate of strain
tensor and vorticity vector. They confirmed the preferred lo-
cal alignment of the eigenvector of the rate of strain tensor
corresponding to the intermediate eigenvalue with the vortic-
ity vector, which was previously observed using pointwise
DNS data’*" They also found a preferred relative angle
between the most compressive eigendirection of the rate of
] strain tensor and the most extensive eigendirection of the
25 SGS tensor.
1 (u/l) Following the work of Taocet al., we will discuss the
statistics of alignment between the eigenvectors of the SGS
tensor 7%, and both the eigenvectors of the rate of strain
tensor,D, and the unit vorticity vectore, respectively de-
stressr* with the corresponding stress obtained by filteringfined by Eq.(9) and
DNS and computing correlation coefficients between SGS
stress components. However, Piomelial®® demonstrated o= ——
that such ara priori technique does not account for the dy- |Vxul’
namic effects qf_t_he subgrid model_s and therefore CaanI‘he actual SGS tensor, can be computed by filtering the
represent a definitive test of a subgrid model. . -
i . . DNS data and using the definition

With the development of novel experimental techniques
and Fhe availability of h.igh resolution DNS Qata, it is now r=(@—ﬁ®ﬁ). (33)
possible to study basic structural properties of subgrid
stresses with respect to the large scale characteristics of théere, overline denotes filtered quantities. We filter the DNS
flow field. A general feature of homogeneous isotropic tur-data by applying a wave cut-off filter with cut-off wave num-
bulence is the observation of the tubelike fine scaleber k,=21, corresponding to the largest wave number re-
eddies>®=%8 which are considered as the smallest structuresolved in LANS« simulation with 48 grid points.
related to the intermittency of turbulence. The fine scale  We denote the eigenvectors bfby [e;,e,,e;], ordered
structures of turbulence have been one of the most importartccording to the corresponding eigenvalues;,f,,\3),
subjects in turbulence research. A comprehensive knowledgeith A3<\,<<\. The eigenvectors of* are[t,,t,,t3] with
of the fine scale motions is essential in the development of aigenvalues ¥,,v»,v3), such thatys<y,<y,. Thus, for
proper turbulent theory and any turbulent model. These coexample, we refer t@&, as the most extensional eigendirec-
tion of D, and tot; as the most compressive eigendirection
of 7%. Also,®,, t, are intermediate eigendirections with cor-
responding intermediate eigenvalues, y,, respectively.

We first use 179 DNS data obtained using forcing
71 scheme A and the data from a*BANS-« simulation to
compute the distribution of the energy transfeyys= 7:D,
flatness due to the contribution of the subgrid term. The distributions
are presented in Fig. 8. Note that,c<0 corresponds to
backscatter. In Fig. 9, the same energy transfer is computed
for the cases with the forcing scheme B. Slightly skewed
Ny d.06 distributions presented in these figures with a significant por-
s skewness tion of negative energy transfer indicate not only that the
LANS-a model is capable of predicting backscatter of en-
—-0.8 ergy, but also that it can predict the probability distribution
of the level of backscatter accurately.

Using the same data sets we computed the distributions
25 1'0 2'0 -1 of the alignment(cosine of the anglgsbetween the eigen-

t (/) vectors of the rate of strain tensor and vorticity vector as well
as the SGS tensor. We first use forcing scheme A and the
FIG. 7. Flatness and skewness for forcing scheme B in the DNS run. LANS-« simulations with 62 grid points anda=1/8. Fig-

Ly(u)

FIG. 6. Total kinetic energy for forcing scheme B.

VXu
(32

1
.
<
~

flatness
skewness
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FIG. 8. Probability distribution ofesq=7:D; solid line—forced DNS . o .
17C—forcing scheme A, Re=80; dotted line—forced LANSx48® with FIG. 10. Probability distribution ofe-e,; forced DNS 178&—forcing
a=1/8 ande= 1/16—forcing scheme A. The scalings are done based on the®cheme A; Re=80.

energy transfell, sample sizeéN, and the bin siz&l €.

captured by the LANSx model. Similar observations can be

ures 10 and 12 indicate that in the LANSsimulations, the made based on the simulations where the forcing scheme B
preferential alignment between the vorticity vector and thevas used. For these cases, probability distributions of the
eigendirection of the rate of strain tensor corresponding t¢osine of the angles between eigenvectors and the vorticity
the intermediate eigenvalue is not as pronounced as in DNSector are obtained by filtering the DNS data using a wave
As can be seen in Figs. 11 and 13 the eigenvectors of theut-off filter with cut-off wave numbek.=32 and is given
modeled subgrid tensor® display qualitatively similar in Figs. 14 and 15. These results are compared to the
alignment as that computed from DNS data. In particular, thd-ANS-a results corresponding to simulations with®6grid

experimentally observed preferred angle betwegandt, is  points anda= 1/16 which are presented in Figs. 16 and 17.
We remark that commonly used linear, Smagorinsky-type,

0.5 T i I | 1
DNS —— 4 T T T T
LANS o = 1/4 --—-- &-h —
LANS a=1/16 ------ A —
04F - € dy -
sk -
0.3 N
FaeP6sg1)
p(é‘[i : t-;) 2+ -
0.2 - 1
0.1+ N
0 |
-15 -10 15
ﬁe 0 1 1 1 |
T s9¢ 0 0.2 0.4 0.6 0.8 1
FIG. 9. Probability distribution ofesg=7:D; solid line—forced DNS e“,;-tl

170—forcing scheme B, Re=115; dotted line—forced LANSx 64° with
a=1/4 anda = 1/16—forcing scheme B. The scalings are done based on thé-1G. 11. Probability distribution og,;-t3, e,-t,, ande;-t;; forced DNS
energy transfell, sample sizeéN, and the bin siz&l €. 17C—forcing scheme A; Re=80.
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FIG. 14. Probability distribution ofw-e,; forced DNS 178—forcing

scheme B; Re=115.

FIG. 12. Probability distribution ofw-e,; forced LANS« 48 with o

=1/8—forcing scheme A.

SGS models implicitly assume that the eigenvectors of the

SGS stress are locally aligned with the eigenvectors th@y of the initiated experimental work was generated by a
eigenvectors of the rate of strain tensor, which is contrary tqyrid in wind tunnels, where the turbulence decays as the flow

the experimental evidence.

convects downstream. This grid-generated turbulence is re-
garded as homogeneous and isotropic some distance down-
stream by using special arrangements such as a secondary

VI. DECAYING TURBULENCE
Decaying homogeneous turbulence is a more realisti€ontraction of _the test sectif.The cpmparison of expe_ri—
idealization of a turbulent flow than the forced homogeneougnental data with theory or computation assumes validity of

case. Numerous theoretical, experimental, and computation

studies followed the influential work of Taylé%.The major-

-
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™

FIG. 13. Probability distribution ofe;-t;, e-t,, and e;-t;; forced

LANS-a 48° with a=1/8—forcing scheme A.
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FIG. 15. Probability distribution o#,;-t3, e,-t,, ande;-t;; forced DNS
170—forcing scheme B; Re=115.
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FIG. 18. Spectrum of the energy for the CBC initial data, Reé2, N3DNS
=128, t=0 (solid); t=1 (dash; t=2 (dash dot, t=3 (dotted.

FIG. 16. Probability distribution ofw-e,; forced LANS«w 64° with «

=1/16—forcing scheme B. spectrum at a relatively low wave number. In this way the

effects of the initial energy spectrum on the performance of
. . . the LANS- calculations are investigated.

niques for generating turbulence without a mean flow are by

towing a grid through a stationary sample of fillidr by A initial data from Comte-Bellot and Corrsin test

using an oscillating grid® case

In this section we consider two different decaying turbu- . . . .

lent flows. In the first case an initial condition from a real- The most widely used published data on d_ecayl_ng grid

turbulence are due to Comte-Bellot and Cor?$fii which

ization of the experiments by Comte-Bellot and Corffd _ .
nyve will hereafter refer to as CBC. Their data are well docu-

is used. This initial condition has a broad energy spectru d and has b d widelv in the devel ¢
with the peak of the energy spectrum at a relatively highmente and has been used widely in the development o

wave number. In the second case we generate a sharp S, LE.S,’ _anq othgr turbulence models. )
The initial field is taken from Wra§® Wray provides a

peaked initial energy spectrum with the peak of the er]erg)filtered velocity field in physical space, derived from 812
data by a sharp truncation in Fourier space to>128 of the
computations performed in this study were started with this
data. The initial Taylor Reynolds number is Rer2. We
increased the physical Reynolds number so that the evolution
of this initial data is well resolved in a 132&omputation
(before dealiasing it is 153.

The evolution of the energy spectrum as predicted by
DNS using 128 points is illustrated in Fig. 18. The energy
of fully developed isotropic turbulence decays in time while
the scales of motion grow; the resulting,R#ecreases with
time. Consequently, a well resolved, fully developed field
will remain well resolved as it decays. On the other hand, the
integral scales grow in time and will eventually become
comparable to the size of the computational box. Since the
computational box contains only a small sample of the larg-
est representable eddies, eventually the computation will suf-
fer from a lack of sample in the energy-containing scales.
The rather wide initial energy spectrum with a peak around
the eighth Fourier mode provides a harsh test case for any
turbulence model at such a resolution. The initial condition
for LES and LANSe« simulations is obtained by spectrally
filtering fully resolved velocity field to the resolution of these
simulations. The best behavior of the LANSmodeling is
expected for applications in which the scalés within, or at

€5 - ta

™

FIG. 17. Probability distribution ofe;-t;, e,-t,, and e;-t;; forced

LANS-a 64° with a=1/16—forcing scheme B.
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FIG. 19. Decay of kinetic energy with the CBC initial data, full DNS 328olid); (a) Nf’,:483, LANS-a with @=1/16 (dash dot LANS-« with «=1/8
(dasB; dynamic LES with a filter ratio Zdotted; DNS sharply filtered to 48(dash dot dot (b) N2=643, LANS-a with «=1/16 (dash; LANS-« with
a=1/20(dash dot, dynamic LES with a filter ratio 4dotted; DNS sharply filtered to 64(dash dot dot The filter aspect ratio in the dynamic LES is an extra
free parameter. The dynamic LES computations were repeated for many filter aspeditdéast fouy, and only the results for the filter ratio with the best
match with the DNS data are reported hésee also Fig. 20

least close to, an inertial subrange. The CBC experiments dilter aspect ratios, and the parameter that matched the best
Re =72 barely satisfy this criterion and provide a severe testwith the turbulence decay of the DNS data or the DNS en-
case of the LANSz turbulence modeling capability. ergy spectra was used for comparison with the LANS-
The evolution of total kinetic energyff KE) of the DNS  equations. The best match between the DNS data and the
data is contrasted against various dynamic LES and LANS- dynamic LES results is achieved for a filter aspect ratio of 2
simulations in Fig. 19, for two resolutions: #&nd 64.  and 4 in the 48 and 64 calculations, respectivelisee Fig.
TKEs for DNS data, spectrally filtered to the resolution of 20). In the 64 computation both LES and LANG-satisfac-
the LES and LANS« computations, are also presented. Thetorily predict the decay rate. However, at the lower resolution
filter aspect ratio in the dynamic LES model is a free paramof 48* both models underestimate the decay rate, with the
eter and the final result depends on the value of this param-ANS-a model being more under-dissipative. It is clear that
eter particularly in severe test cases such as the one consiat such a low resolution the energy-containing part of the
ered here. In order to avoid introducing any further arbitraryspectrum is barely resolved. This is demonstrated in Figs.
parameters, the LES computations were repeated for mar31—23 where the evolution of the energy spectrum of various

05
04 '
5 DNS 128°
03F %
S =
N X
B~ [ . ~
02 R
[ \ Dynamic LES 48°,
N Filter ratio 2
B \~
01 I Dynamic LES 48", NG,
| Filter ratio 1.3 DA
[ DNS filtered 1o 48’/ T
owwlllllllllwwwllwlll
0 1 2 3 4
11,
(a)

FIG. 20. The effect of the filter aspect ratio in the dynamic LES with the CBC initial datdDynamic LES 48, (b) dynamic LES 62. dynamic LES with
a filter ratio 1.3(dash; dynamic LES with a filter ratio Zdotted; dynamic LES with a filter ratio 4dash dox; full DNS 128 (solid); DNS sharply filtered
to 64° (dash dot dot

Downloaded 24 Feb 2003 to 131.215.186.7. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



538 Phys. Fluids, Vol. 15, No. 2, February 2003 Mohseni et al.

e ; - e i 10"
10 E D'ynamjc:L%S,: : N e _E . : o
- Filter ratio \o . s 3l N
[ SN BT R LANS 64, a=l16 A 'DynarnicL4E‘ST64’
Lo e e : ’ ; Filter ratio
107 e g \?i"'v\'! T 107 e e J/ v
3 » ///f' , E NS T g - il
». o S K o -Z N
s b DNS 128° >4 N
10° E DLANS48':0=1/8 AN 107 : . N\ NS 1280
=2 F LANS 48", a=1/16""" o oo F , e \
S 3 e 1 i “LANS 64", a=1120 ,
10* 100 _
10°E 0°F
-6 IR | N i [ | -6 i L M S A A | I i
P 10
1010" 10 10? 10° 10' 10?
k k
(a) (b)

FIG. 21. The energy spectratat 1 for the CBC initial data.

computations are presented. The pile-up of energy at highexxtended inertial range and therefore a larger gap between
wave numbers in the 4&uns indicates insufficient dissipa- the energy-containing scales and thecale, this effect will

tion of energy due to inadequate resolution. This is morébe diminished. Existence of such a clearance between
pronounced in the LANS computations where the model is scales and the location of the energy peak requires resolving
heavily dependent on the nonlinear energy redistributiorat least a portion of the inertial subrange. LES methods will
mechanism of the Lagrangian-averaged equations as opf course also work better in such a situation.

posed to the dissipative model in the LES. Fof 6dlcula-

tions the energy spectrum is predicted reasonably well by. Second decaying turbulence case

both the LANS« and dynamic LES. The LANS: compu-

tati how bett t for hiah b In this section we perform a DNS computation of a de-
ations show betler agreement for higher wave nNumbers. Aéaying isotropic homogeneous turbulence with an energy
later times a dip at the peak of the energy spectrum is ob;

d. which i din the LANSSimUI spectrum peaked at the wave number 3, and the resolution of
Served, which 1S more pronounced in the Imuld- " the DNS computation is increased to $7(256° before
tions. This might be due to the introduction of the nonlineal

r .
2 : . dealiasing.
energy redistribution effects in the LAN&-equations at We start with a divergence free velocity field with a
scales of the order ofv. However,.due to the.broadband specified energy spectrum given by
nature of the energy spectrum with the maximum of the
spectrum at a relatively high wave number, we could not E(k)zAwexpfzkzlkg (34)
move « far from the energy-containing range. It is expected ’

that in a higher Reynolds number flow, where there is arwherek is the wave numbek, is the wave number of the
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FIG. 22. The energy spectratat 2 for the CBC initial data.
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FIG. 23. The energy spectra &t 3 for the CBC initial data.

peak of the energy spectrum, aAds a normalizing factor. computations for filter aspect ratios of 1.11, 1.33, 2, and 4
In all of the computations presented in this study we kse are performed. We found that the best match between the
=3, and we choosA such that the total kinetic energy of the DNS data and the dynamic LES results is achieved for a
initial velocity field is 0.5. The initial Taylor Reynolds num- filter aspect ratio of 1.11 for both 48&nd 64 calculations
ber is Rg=220. (see Fig. 28 In both the 48 and 64 computations the LES
The evolution of the energy spectrum in the DNS usingand the LANSe satisfactorily predict the decay rate. This
170 points is illustrated in Fig. 24. The energy of fully de- should be contrasted with the results for the simulation of the
veloped isotropic turbulence decays in time while the scale€BC experiment in Sec. VI A where a low resolution calcu-
of motion grow. As a result of the total kinetic enengyKE) lation at 48 was significantly in error. This confirms the
decay the resulting Relecreases with time. Consequently, aspeculation that for an accurate calculation based on the
well resolved, fully developed field will remain well resolved LANS-« or LES the bulk part of the energy containing wave
as the TKE decays. modes should be included in the simulation. The same con-
In Fig. 25 the evolution of the TKE of the DNS data is clusion is drawn from Figs. 27 and 28 where the evolution of
contrasted against various dynamic LES and the LANS- the energy spectrum of various computations are presented.
simulations, for two resolutions: 4&nd 64. TKEs for the  All 48° simulations indicate insufficient dissipation of energy
DNS data, sharply filtered to the resolution of the LES andat later times due to inadequate resolution. This is more pro-
the LANS-« computations, are also presented. Dynamic LEShounced in the LANS¥ computations withe=1/16 where
the model is heavily dependent on the nonlinear energy re-
distribution mechanism of the Lagrangian-averaged equa-

10° tions (activated at a higher wave numbes opposed to the
dissipative model in LES. For 84calculations the energy
10" spectrum is predicted reasonably well by both the LAMS-
and the dynamic LES.
10°
10° VIl. CONCLUSIONS
= . Our objective in this study was to investigate the utility
;o of the Lagrangian averaged Navier—Stokéise LANS-w)
5 equations as a subgrid scale model for three-dimensional iso-
10 tropic forced and decaying turbulence. Both viscous and in-
10° viscid computations were carried out. The essence of the
Lagrangian averaging method is the nonlinear redistribution
107 (not dissipative nature of the energy decay in the Lagrang-
: ian averaged EulefLAE-«) equations, where the energy is
10° L - el removed from the small scales while maintaining the crucial
10 10 10 features of the large scale flow. The finaj(u) level de-
k pends on the spectrum of the initial field, the size of the
FIG. 24. Energy spectrum for the second decay casg=Re0, N3, ~ Computational box, andv. In the viscous counterpafthe
=17C. LANS-a equation the nonlinear redistributing energy de-
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FIG. 25. Decay of kinetic energy for the second decay casdy®=48%; (b) N3=64°. The filter aspect ratio in the dynamic LES is an extra free parameter.
The dynamic LES computations were repeated for many filter aspect (atitesast fouy, and only the results for the filter ratio with the best match with the
DNS data are reported hetsee also Fig. 26

cay is accompanied by a viscous dissipation. Therefore, theesolved direct numerical simulatiot®NS). The filter as-
LANS-« equations can be considered as a nonlinearly energgect ratio in the dynamic LES model is a free parameter and
redistributive modification of the Navier—Stokes equationsithe final result depends on the value of this parameter par-
This modification appears in the nonlinearity, depends on thé&cularly in severe test cases such as the one considered here.
scalea, limits the effect of vortex stretching, and causes theln order to avoid introducing any further arbitrary param-
energy spectrum to fall rapidly for scales smaller thafo  eters, the LES computations were repeated for many filter
determine the slope of this drop at higher wave modes onaspect ratiogat least fouy, and the parameter that matched
can in principle use an argument similar to Kolmogorov'sthe best with the turbulence decay of the DNS data or the
argument which gives-5/3 inertial range slope. Results of DNS energy spectra was used for comparison with the
various simulations of the LAN&-equations are compared LANS-« equations.

with the dynamic large eddy simulationtES) and fully We performed two sets of forced isotropic turbulence
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FIG. 26. The effect of the filter aspect ratio in the dynamic LES with the second initial data depicted in Fig).2¢namic LES 48, (b) dynamic LES 62.
Dynamic LES with a filter ratio 1.11long dash; dynamic LES with a filter ratio 1.8dash; dynamic LES with a filter ratio 2dotted; full DNS 128 (solid);

DNS sharply filtered to 64(dash dot dot
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FIG. 27. The energy spectraat 1 for the second decay cade) N3=48, (b) N3 =64°,

simulations of the LANSx equations and studied their equi- computation with the scale close to the peak of the energy
librium states. The results of the LAN&simulations were spectrum could result in the contamination of large scales
compared to the results obtained from high-resolution DNSnd loss of accuracy.

simulations, characterized by the equilibrium Taylor Rey-  The equilibrium energy spectrum in our LANSsimu-
nolds numbers Re=80 and 115 for two different forcing lations were in good agreement with the DNS data at low
schemes. Furthermore, we studied the effect of varying thevave numbers. Our simulations, in agreement with previous
model scalea. In general, selecting an appropriaieis a  results by Cheret al,?® show dependency of the equilibrium
compromise between the accuracy at large scales and tlerbulence spectra on the model scalen the forced com-
minimum resolution requirement in the LAN&-simula- putations the slope of the energy spectra changes from the
tions. The LANSa equations accurately mimic the behavior inertial range slope ok ®® to a much steeper slope for
of the Navier—Stokes equations at small wave numberscales smaller tham. Even with 178 grid-point LANS-«
(large scalesas long as a minimum resolution is observed.simulations, due to the insufficient resolution, we were not
At the wave numberk,~1/a the slope of the spectra able to determine this second slope and confirm or falsify its
changes from the Navier—Stokes spectra to a much steepexisting estimatege.g., Foiaset al>%). We analyzed the en-
slope. The smaller the the larger the overlapping region of ergy transfer and the capability of the LANS represent-
the low wave number spectra of the LANS-and the ing the backscatter of energy by comparison with the DNS
Navier—Stokes equations. However, this higher accuracgata. We found that the LANG-simulations accurately pre-
comes with a price: The smallers require higher resolution dict the transfer of energy to small scales. We have also
for the LANS- simulations. An underresolved LAN&- tested the ability of the LANSx equations to reproduce the
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FIG. 28. The energy spectratat 2 for the second decay cade) N3=48, (b) N3 =64,
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observed alignments of eigenvectors of the subgrid stresséise tests. We therefore use sharply truncated DNS data as the
with respect to eigenvectors of the resolved stress tensor anitial velocity field (u) in the LANS-« simulations.
vorticity vector. The LANSe qualitatively reproduce the ob- Recently, Cheret al*° simulated a forced homogeneous
served alignments in experiments and DNS data. In this returbulent flow and reported favorable results using the
spect the LANS« equations are superior to linear turbulence LANS-« equations. Here, we demonstrated the modeling ca-
models (including the dynamic LESwhich imply perfect pabilities of the LANSea equations in decaying turbulent
alignment between eigenvectors of the subgrid stress and tli®ws. Apart from these satisfactory results the LANS-
resolved strain rate tensor. The average relative angle bequations have many attractive theoretical features that make
tween the most compressive eigendirection of the resolvethem a promising candidate for more complicated problems.
strain rate tensor and the most extensive eigendirection of thié this process the next natural step is to test the LANS-
subgrid stress tensor is captured accurately by the LANS-model in anisotropic flows. Numerical simulation of channel
equations. flow based on the anisotropic LAN&-equations is the topic
Our conclusions for the decaying turbulence are madef our future research.
based on two separate numerical simulations. In the first case In summary we conclude that for the test cases consid-
we start with a broad initial energy spectrum at,R2  ered in this study the LANSequations can capture most of
(CBC initial spectrum where the peak of the energy spec- the large scale features of the turbulent flow while the effect
trum is around the eighth Fourier mode. Correct predictiorof small scales on the large scales were modeled by Lagrang-
of the TKE decay rate and the corresponding spectra for sudan averaging.
a broadband initial spectrum represents a difficult test case
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