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SUMMARY 

A recently proposed new nonlocal concept based on microcrack interactions is discussed, its implementation 
in a smeared cracking finite element code for concrete is presented, numerical studies are reported, and 

comparisons with experimental results are made. The nonlocality is not merely a mathematical device to 
prevent excessive spurious localization into a zone of zero volume but is a necessary physical consequence of 
microcrack interactions. Since the constitutive law itself is strictly local, the new nonlocal concept can be 
combined with any type of constitutive law for strain-softening nonlocal damage, which is here chosen to be 

the micro plane model. A simple method is formulated to approximately identify the material parameters in 
the model from the basic characteristics of concrete such as the tensile strength, fracture energy and 
maximum aggregate size. The results of finite element analysis are shown to be mesh insensitive, and good 
convergence is obtained. Cracking damage is found to localize into a volume whose size and shape depend 
on the macroscopic concrete properties as well as the current stress-strain state. Although the damage is 
considered to be tensile on the microlevel, due solely to mode I microcracks, the new non local model can 
describe well not only mode I fracture tests but also complex shear-dominated and mixed-mode types of 
failure such a diagonal shear, and can do so for the same values of material parameters (which was not the 
case for previous nonlocal models). Most importantly, the new nonlocal model can correctly capture the size 
effect of quasibrittle fracture, in approximate agreement with Bazanfs size effect law. 
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1. INTRODUCTION 

More than a decade ago, the nonlocal continuum concept was proposed as a general way to avoid 

spurious mesh sensitivity and excessive localization in macroscopic modelling of fracture process 

in quasi-brittle materials such as concrete, rocks, tough ceramics and fibre composites. 1
•
35 

Although most of the finite element codes in engineering practice are still based on the classical 

local continuum approach to smeared cracking, there is now much evidence that the local finite 

element codes, even those based on the partially nonlocal crack band approach, 2.3 often cannot 

simulate brittle failures of concrete structures correctly.4 
- 6 To suppress spurious mesh sensitivity 

and excessive localization and, most importantly, to capture the size effect, the finite element 

code must contain a mathematical device called the localization limiter, which prevents from 

localizing damage into a zone of zero volume. Alternatively, correct prediction often can also be 

obtained by a discrete cohesive crack approach characterized by a softening crack-bridging law. 
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This alternative approach, however, seems less versatile in general situations than a nonlocal code 

with smeared cracking. 

A continuum model for a brittle heterogeneous material such as concrete must correctly 

represent the consequences of distributed defects due to heterogeneity of the microstructure. The 

defects such as microcracks or damage sites interact. Two types of interactions exist and must be 

somehow represented in the continuum model: (1) Interaction at distance among various sites, 

and (2) interaction among various orientations. The latter interaction controls non-linear triaxial 

constitutive behaviour and is most directly handled by the microplane model. 7.37 The interaction 

at distance controls localization of damage. It is ignored by the classical, local continuum models, 

but is taken into account in the nonlocal models. In these models, the stress at a point depends 

not only on the strain at the same point but also on the strain field within a certain neighbour­

hood of the point-an idea that was introduced for elastic deformations already by Eringen 8
•
9 

and Kroner. 10 For strain softening behaviour, this concept was introduced by Bazant.1.Il 

An effective form of the nonlocal concept, in which all the variables associated with strain 

softening are nonlocal and all the others are local, was introduced by Pijaudier-Cabot and 

Bazant. 12,36 The governing parameter in this concept is the characteristic length lover which the 

strains are averaged. This length has a major influence on the results of analysis, especially on the 
size effect. 6,13 

Initially it was assumed that 1 is a material parameter of concrete that can be correlated to the 

maximum aggregate size da, perhaps roughly as I = 3da• However, now it is clear that, in general 

applications, I cannot be correlated to the parameters of the concrete mix alone, but is influenced 

by other parameters as well. It has been demonstrated 14 that the optimum values of ratio llda, 

identified in numerical simulations using the previous nonlocal form of the microplane material 

model, change significantly from one type of problem to another, for example, from tensile 

fracture specimen to anchor pullout or diagonal shear failure of a beam. Such variation 

could not be explained by differences in the composition of concrete. Aside from that, recent 

theoretical work 15,16 also confirmed that 1 is not a material constant but a material function 

depending on the strain and stress field in the neighbourhood of a point in the fracture process 

zone. 

For characteristic length equal to the element size, the nonlocal approach degenerates into the 

crack band approach.2 In that approach one must adjust the local strain-softening behaviour 

such that the area under the tensile stress-strain curve multiplied by the average element size 

(crack band width) be equal to the fracture energy of concrete, Gr. Imposition of this condition 

does ensure objectivity (mesh-size insensitivity) when the mesh line coincides with the fracture 

path, but in general the analysis is still quite mesh dependent (initially, it was thought that 

arbitrary crack paths can be handled in the form of zig-zag crack bands, but this is now known to 

cause significant errors and bring about problems such as stress locking). 

The fracture process zone in concrete has a non-zero and variable size and variable shape, 

depending on the surrounding stress-strain field. Simple adaptation of the area under the tensile 

stress-strain curve for the elements in the crack band cannot adequately capture the variations of 

the fracture process zone, especially for various directions of the fracture path relative to the mesh 

lines. The crack band approach is a simple but scalar concept, and this is a severe limitation in 

general situations. 

In view of the foregoing picture, a nonlocal concept for smeared cracking analysis is inevitable. 

It is also dictated by the physical process of fracture. Recently it has been demonstrated that the 

nonlocality is a necessary consequence of microcrack interactions. 1 7 A new special form of the 

nonlocal concept that is deduced from the interaction of growing microcracks has been 

developed. 
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In the present study, this new nonlocal concept will first be reviewed and discussed. Then its 

implementation into a large finite element code with the microplane constitutive model will be 

presented. Identification of the basic material parameters involved will be studied, numerical 

examples will be presented, and comparisons with experimental data will be made. 

2. NON LOCALITY DUE TO MICROCRACK INTERACTIONS 

Softening in a quasi-brittle material, such as concrete, is a consequence of the fact that many 

microcracks develop in the fracture process zone before a major continuous macrocrack is 

produced. Because of the randomness of microcracks as well as material heterogeneity, the 

material must be regarded as a random disordered material. The macro-continuum model for 

such a material cannot be written in the classical, local form in which the stress tensor (J" at any 

given point is a function of the strain tensor [ at the same point. Rather, (J" must be considered to 

be a function of the strain field in the neighbourhood of the given point. In the original nonlocal 

approach, the inelastic part of (J is assumed to be a function of the spatial weighted average of 

[ within a certain characteristic neighbourhood of the point, called the nonlocal strain t. A more 

sophisticated, physically based nonlocal concept, reflecting in a certain special way the interac­

tions among the microcracks randomly distributed in the material will be used in this paper, 

based on a recent formulation derived by BaZant. 1 R 

Because on the microlevel the material between the microcracks is assumed to be elastic, 

Bazant 1 7 proposed to calculate the response of the microcracked continuum on the basis of the 

superposition principle, which has been used for discrete crack systems by Collins 19 (with 

displacements as unknowns), Kachanov 20
.
21 (with crack pressures as unknowns) and others. 

According to this principle, each loading step is decomposed in two substeps: 

1. In the first substep, the strain increment ~E (Figure 1) is applied imagining all the micro­

cracks to be temporarily closed (as if glued or frozen) and the stress increment ~(J" is easily 

calculated as the elastic stress increment, which implies the microcracks to be able to 

transfer the stresses. 

(J 
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Figure 1. Local and nonlocal inelastic stress increments for known strain increment 
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2. In the second substep, the stresses transmitted between the microcrack surfaces are relaxed 

(as if the cracks were unglued or unfrozen). This is equivalent to applying pressure on the 

crack surfaces. 

If, during the load step, no crack would grow due to the unglueing (unfreezing) in substep 2, one 

would get the stress drop 34 shown in Figure 1. But because in general the cracks grow, a larger 

stress drop ~S = 32 takes place. This stress drop is defined by the local stress-strain law, which is 

the law describing a material element that can be deformed homogeneously in the macroscopic 

sense. However, the crack opening and growth (or closing) at one macro-continuum point 

generally causes crack opening and growth (or closing) at another macro-continuum point, 

because the microcracks interact. Due to this interaction, the actual stress drop is different, as 

shown by ~S = 35 in Figure 1, and is called the nonlocal stress increment. If ~Sll represents the 

local inelastic stress increment tensor at the location of microcrack number )1, then the normal 

traction (pressure) applied at the crack surfaces of microcrack number )1 is: 

(1) 

where nil = unit normal to the surfaces of micro crack )1. Since ~PII represents only a local pressure 

(traction) drop at location )1, the stress drop due to the unglueing of microcracks at other adjacent 

locations v must be added. Together with two important simplifications/ 7 namely: (1) uniformity 

of stress ~PII along the crack surface (justified by Kachanov20. 21) and (2) consideration of mode 

I crack openings only, the superposition principle then provides for the total nonlocal inelastic 

stress increment ~PII the following relation (introduced by Kachanov):21 

~PII = <~PII> + L AII,!!.p, (2) 
v oF II 

Here <- . -> is the averaging operator over the crack length ()1 = 1, ... , N, v = 1, ... , N with 

N = total number of microcracks) and All' are the crack influence coefficients representing the 

average pressure at the glued (frozen) target microcrack )1 caused by a unit uniform pressure 

applied on the surfaces of an unglued (unfrozen) source microcrack v, with all other microcracks 

being glued (frozen). In consequence of Kachanov's22 approximation for discrete microcrack 

systems, instead of the local stress increment !!.PII , one may use in (2) the local stress increment 

<!!.PII> averaged over the surface of the target microcrack. Introducing (1) into (2), it follows 
that 17 

N 

~(nIlSllnll) = <~(nIlSllnll) > + L AII,~(n,Svn,) (3) 
,= 1 

Note that Ailil = 0 since interaction of a crack with itself has no physical meaning. 

Equation (3) must be adapted for smeared cracking on the macro-continuum level. To do this, 

Bazant 17 introduced two simplifying hypotheses: (1) The influence of the microcracks at point 

!; of the macro-continuum upon the microcracks at point x (Figure 2) is determined only by the 

dominant microcrack orientation at each point, which is assumed to be normal to the current 

direction of total maximum principal strain £( 1) (it might be more logical to assume it to be normal 

to the maximum principal direction of S, but this would be more complicated in programming 

and the difference would probably be unimportant); and (2), rather than working with tractions 

perpendicular to the individual random microcracks, one may work with tractions whose 

direction is defined on the macro-level. Based on these assumptions, (3) may be adapted to 
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x 

Figure 2. Interaction between two discrete microcracks of different orientations (the shaded zones indicate areas with 

positive crack interaction function) 

a continuum form by replacing the discrete sum with an integral. This yields 17 

(4) 

where dS(1) (x) and dS(I)(X) are the nonlocal and local inelastic stress increments in the direction 

normal to the dominant microcrack orientation, and A(x,~) is the crack influence function 

characterizing microcrack interactions in the given body, determined from the stress field of one 

crack in the body of given geometry. For the sake of simplicity, however,we will later use function 

A(x,~) corresponding to a crack in an infinite body and modify it in an approximate manner to 

take into account the effect of boundaries. Because the structure is much larger than the 

microcracks, such a modification will be necessary only for points near the boundaries. 

Note that the micro-macro transition from (3) to (4) has not been effected by a homogenization 

technique. These classical techniques for elastic constants cannot be used because they apply only 

to statistically homogeneous states, i.e., uniform macrostrain field. 

In the finite element formulation, the integral in (4) is approximated by a sum running over the 

coordinates of integration points of all finite elements (instead of individual microcracks); 

N 

dS(I) = <dS(l» + " A dS(I) dV 
/J /J L... /JV v y (5) 

v=1 

where .1 Vy = part of finite element volume corresponding to integration point v. The subscripts 

J1 and v now label the coordinates of the integration points rather than the microcracks. Over an 

infinite body, the integral of A(x,~) has been shown to be zero (provided a certain integration 

path is excluded, as explained in Reference 17). 

As can be seen from (4) and (5), the nonlocal inelastic stress increment dS~l) consists of the 

inelastic stress increment arising from microcrack interactions (which are long-range), and the 

average local inelastic stress increment <dS~l), which is obtained by short-range averaging ofthe 

local inelastic stress increments over a domain of about the same size as the microcrack. The 

averaging operator < ... ) introduced in (3) is reflected on the macro-level by averaging of the 

microcrack surface tractions over the microcrack. However, in smeared crack analysis, there is no 

crack, and so one must average over a volume instead of the microcrack surface. We assume this 

averaging volume to be of about the same size as the dominant microcracks, which is about the 
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y micro crack length = da 

Figure 3. Loeal normalizing volume -·its orientation and size 

same as the aggregrate size. The averaging of the local inelastic stress increments introduced in (5), 

which reflects averaging over microcrack area, is performed as: 

(6) 

where VII = I:=!(Xllv~Vv = local normalizing volume, n = number of all the integration points 

inside this volume and (XlIV = weight coefficients whose distribution has a bell shape in both x and 

y directions, described by a polynomial of the fourth degree. The bell shape, which is similar to 

that in the nonlocal damage approach, is convenient for numerical reasons, giving smoother 

results than a rectangular weight distribution.!3 The size of VII is taken about the same as the 

maximum of one aggregate piece volume. For two-dimensional analysis, the region of averaging 

is taken as a rectangle with its longer side in the microcrack direction and its shorter side in the 

perpendicular direction (see Figure 3). 

The long-range interaction in equations (4) and (5) is controlled by the crack interaction 

function, 1\ (x, 1;). It adjusts the locally averaged inelastic stress increments as a consequence of 

microcrack openings or closings in the neighbourhood of each integration point. For the purpose 

of numerical analysis, some properties of the crack interaction function must be preserved while 

others must be simplified.! 7 Preserved must be the long-range asymptotic form of the crack 

influence function. Simplified must be the close-range properties of this function because on the 

macroscale it is impossible to deal with randomly located microcracks of a finite size and the 

singularities at the crack tips must be smoothed out. 

Assuming the body to be much larger than the microcracks, one can calculate the crack 

interaction function as the stress field of a crack in an infinite body, loaded by a unit uniform 

pressure (f = 1 on the crack surfaces. However, on the macrolevcl, one must take into account the 

statistical distribution of the dominant microcracks. For this purpose, one may consider, as 

a simplified picture, the body to be subdivided into a regular array of cells the size of which is 

equal to the typical spacing of the dominant microcracks, which is approximately the same as the 

typical spacing s of the largest aggregate pieces. For the sake of simplicity, one may take these 

cells (in two dimensions) to be squares of size s, and in each cell there is one and only one 

microcrack whose centre occurs within the cell randomly, with a probability given by a weight 

function w(x, y) that smoothly decreases toward the boundaries of the cell (this decrease approx­

imately substitutes for the consideration of joint probability of occurrence of microcracks in 
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adjacent cells). By this reasoning, the following expression for the crack influence function has 

been obtained (Reference 17, Addendum): 

1 IS I

2 [S/2 
A(O,~) = 2 W(X, y)(j(1)(~ - x, '1 - y)dxdy 

S -s/2 J -s/2 

(7) 

where the origin oi co-ordinates is placed into the centre of the s x s cell, axis x is normal to the 

crack, and (j(l) is the principal stress at point I; = (~, '1) caused by a unit uniform pressure applied 

on the faces of a crack of length 2a centred at x = (x, y) (in more detail, see Reference 22). 

As it turns out, the evaluation of the foregoing integral yields complicated expressions which 

need to be suitably simplified. This has not been achieved ¥et. However, an approximation 

proposed in Bazant 17 is probably adequate for most practical purposes. This approximation is 

based on the fact that the foregoing statistical averaging integral must preserve the long-range 

interactions exactly because, for a source crack and a target crack located in two remote cells, the 

rays connecting the cracks are about equally long and have about the same directions for all the 

possible random realizations of these cracks. The two- and three-dimensional long-range asymp­

totic fields for cracks in two and three dimensions have been determined from Westergaard's and 

Fabrikant's solutions, respectively.23.24 For the former, this field may be written as: 

A(x, 1;) = k(r)!(4» (8) 

Here rand 4> are polar co-ordinates with origin in the centre of a crack, 4> being measured from 

the crack direction (see Figure 2); x is location of the centre of an unfrozen source microcrack on 

whose faces the unit pressure «1 = 1) is applied; and I; is the location of the frozen target 

microcrack at which the stress perpendicular to the microcrack is calculated. As a consequence of 

elastic properties, function A(x, 1;) is symmetric with respect to interchanging x and 1;. Function 

k is found to be k(r) = a2 /r2. It exhibits singularity at the source crack centre. Since in continuum 

analysis the short-range values have no meaning, it has been proposed to use (9) as an 

approximation for the entire space, but with a modified function k(r) which preserves the 

long-range asymptotic field. For reasons stated in Bazant,17 one may use for two dimensions the 

approximation: 

( 
Klr )2 

k(r) = r2 + 12 (9) 

and for three dimensions the approximation: 

k(r) = 
( 

Klr )3 
r2 + 12 

(10) 

where 1 is an empirical constant which may be identified with what has been called the 

characteristic length of the nonlocal continuum, 12.36 and K is an empirical parameter. 

Because of crack growth, one might think that K should be considered to increase as the 

dominant microcrack grows, and therefore, in numerical analysis, it should be correlated to the 

total principal strain, i.e., K = !(t;<1), L) where e(1) = total maximum principal strain and 

L = constant related to the maximum aggregate size. However, because we take the local 

constitutive law for S as given (determined empirically from material test data), and because this 

law already takes into account the effect of the growth of dominant microcracks (under the 

assumption that they are all equally large and the macro-strain field is uniform), K must be used as 

a constant, determined empirically. There are reasons to assume that the average microcrack 

length KI is proportional to the spacing of the major inhomogeneities (aggregate pieces), which in 



642 1. OZBOL T AND Z. P. BAZANT 

turn is proportional to the maximum aggregate size da or to prevalent spacing of the major 

aggregrate pieces. In numerical implementation of the present model discussed later, good results 

are obtained with the assumption Ki = da• 

The micro crack directions at two different locations x and; are generally not the same. 

Therefore, when a unit stress a is applied perpendicular to the microcrack direction at location x, 

A(x,~) represents the stress component normal to the microcrack at location~, i.e., A(x, ;) should 

not only be a function of distance r between two microcracks, but also a function of their 

orientations. In the sense of (5), A is a scalar, and so different microcrack orientations can be 

taken into account simply by projecting the stress tensor obtained from the asymptotic form of 

Westergaard's or Fabrikant's solution for (1 = 1 at location x on the plane of the dominant 

microcrack at location ;.17 

A practically important property of function A(x, ;) is its positive value in sectors about the 

microcrack direction and negative values in wide sectors about the normal to the microcrack 

(Figure 2). The negative values represent the phenomenon of shielding. In other words, the 

formation and growth of the source crack opposes the formation and growth of a target crack in 

these sectors. Finite element applications show that the shielding property is important for the 

correct representation of macro-crack propagation and, especially, the consumption of energy 

when many randomly distributed microcracks localize into a single macrocrack. The shielding 

is significant in a volume of diameter D ~ 8Ki and, therefore, it affects long-range interactions. 

This helps significantly to obtain correct predictions of cracking when the finite element discretiz­

ation is relatively coarse. It provides an important correction to the previous local finite 

element model. 

3. GENERAL PROCEDURE AND ASSUMPTIONS OF 

FINITE ELEMENT IMPLEMENTATION 

In finite element codes, non-linearity is usually treated by equilibrium iterations during the 

loading steps. Typically, for a given strain increment and material constitutive law, the stress 

increments in the local constitutive law are calculated for each integration point as 

,1(1 = E: (,1[ - ,1[") = E:,1L; - ,1S (11 ) 

in which ,1(1, ,1[ = stress and strain increment tensors, E = fourth-rank tensor of elastic moduli of 

uncracked material, ,1[" = inelastic strain increment tensor, and ,1S = inelastic stress increment 

tensor. The nonlocal formulation is obtained from (11) if the local inelastic stress increment tensor 

is replaced by the nonlocal one: 

,1(1 = E: (,1[ - ,1[") = E:,1[ - ,1S (12) 

where ,18 represents the nonlocal inelastic stress increment tensor. In classical nonlocal analysis, 

,18 has been calculated by a spatial averaging integral. 12
,13 

In the present nonlocal approach, ,1S for each iteration step, each finite element and each 

integration point can be calculated using the given local constitutive law. The numerical 

implementation assumes that: (1) the dominant microcrack is opening, and thus interacting with 

another dominant microcrack, if and only if the inelastic stress increment normal to the 

microcrack direction is positive (,1S(l) > 0, i.e., the crack grows); and (2) the microcrack is normal 

to the total principal strain direction. Interaction between two microcracks at locations 11 and v is 

considered only if both microcracks fulfill assumption (1), i.e., ,1S~l) and ,1S~l) are both positive. 

The direction of the maximum local inelastic stress increment generally does not coincide with the 

normal to the microcrack nil' Therefore, assumption 2 requires that the total inelastic stress 
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increment tensor ,1SI' be projected on the direction normal to the microcrack Ow The maximum 

principal local inelastic stress increment in direction 01' is obtained as: 

,1S~l) = ,1(0I'SI'0I') (13) 

Introducing ,1S~l) into (5) and solving the system of N linear equations (where N = total number 

of integration points), one obtains ,1S~1). Replacing the local inelastic stress increment ,1S~l) with 

the nonlocal ,1S~l) in the stress tensor ,1SI" one gets the nonlocal stress increment tensor ,181'" The 

subsequent procedure is the same as in any nonlinear finite element code, i.e. the iterations for the 

current load step are terminated when equilibrium between the nodal loads and nodal resisting 

forces is reached, with a prescribed tolerance of error. The flow chart of the procedure just 

explained is shown in Figure 4. 

F - load vector 

R - resistance vector 

a -displacement vector 

n -load step 

i-global iteration step 

r - Gauss-Seidel iteration step 

I1s~ll - < 115 Ill> + L 1 I Yc A I1S~llL\ v 

r-r+1 

n-n+1 
'---------< nsn,.. 

v 

Figure 4. Flowchart of the numerical procedure employed in the finite element code 
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The crack influence function A(x,~) is implemented in a finite element code in the form 

of (8) with (9) or (10). To take into account the effect of different microcrack orientations, the 

stress tensor at point x, calculated from the stress field produced by a unit normal stress applied 

on the surfaces of microcrack ~ (definition of the crack interaction function), is simply projected 

on the direction normal to the microcrack. In this manner, the stress field of the aforementioned 

far field based on two-dimensional Westergaard's solution can be shown!7 to lead to the 

expreSSIOn: 

k(r) 
A(x,~) = - 2 [cos 28 + cos 2t/1 + cos 2(8 + t/I)] (14) 

Here 8 and t/I denote the angles of the normals of the source and target microcracks at ~ and 

x with the ray connecting the centres of these microcracks (see Figure 2). A similar expression 

could be derived for three dimensions using the far field based on Fabrikant's solution, for­

mulated in Reference 17. 

The size of the averaging volume in which the weight function (X has non-zero or non-negligible 

values is controlled by the average microcrack length Kl. Since this length is taken to be 

approximately equal to the maximum aggregate size (Kl = da), the averaging volume at each 

microcrack may be, for two-dimensional problems, defined as a rectangle whose longer size is 

4Kl = 4da (in the microcrack direction) and shorter side is 2Kl = 2da (in the normal direction; see 

Figure 3). For three-dimensional problems, the averaging volume is defined as a cylinder of radius 

2Kl = 2da and length 2Kl = 2da, with the axis normal to the microcrack plane. 

In the present implementation, the microcrack orientations are calculated in the first iteration 

of each loading step and are kept constant during the subsequent iterations even though the 

direction of the maximum total principal strain in general changes during the iterations. This 

simplification seems acceptable because, according to numerical experience, the total principal 

strain directions do not change significantly from one iteration to the next, in the same loading 

step. 

4. SOLUTION STRATEGIES 

To calculate the nonlocal inelastic stress increments, a system of N linear equations with 

N unknown values of ~S~l) must be solved [equation (5)]. This can be done either analytically or 

numerically, by iterations. Due to symmetry and physical meaning of the crack influence 

function, Gauss-Seidel iterative solution process ought to converge and may, therefore, be used 

to solve these unknowns. 17 If subscript r refers to the current iteration, then the approximation in 

the (r + 1 )st iteration of the loading step is obtained as 17 

N 

~S~I)[r+ I) = <~S~I» + L N"v~s~,I)[r)~ Vv (/1 = 1,2, ... ,N) (15) 
v=1 

with N"v = matrix of the adjusted crack influence function. 

For points near the boundaries in a finite body, the precise expression for function A(x, ~) is not 

yet known. As a simple approximation, we will use the same function A(x,~) as for an infinite 

body. But one correction to this function must be introduced. For the case of homogeneous 

deformation of a homogeneous body, nonlocality must disappear, i.e. ~S(1)(x) = <~S(1)(x» 
= ~S(1)(x) must satisfy equation (4). Substituting this into (4) we get the condition 17 Sv A(x,~) 
d V(~) = o. Thus the matrix form of the crack influence functions must be adjusted so as to satisfy 

the condition L~= I N llv = O. Because this condition may be written as Lnterior A llv + 
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kbLboundary AJlv = 0, the following adjustment is needed for the integration points of the elements 

adjoining the boundary: 17 

(16) 

For the integration points of the remaining elements in the interior, no adjustment is done. 

The foregoing correction of AJlv values is of course empirical. Neither analytical solutions nor 

test data exist to check it. In view of this fact, an even simpler procedure, replacing equation (16), 

has been used in all the computations reported here: The weighted sum of all AJlv values (weighted 

by L\ Vv) corresponding to each point J1 was checked continuously. Whenever its magnitude 

exceeded a certain very small tolerance, the sum with A~v was simply deleted from equation (15), 

which means that only the spatial (local) averaging was performed. 

The average local inelastic stress increment normal to the microcrack is calculated as 

( 17) 

where VJl = L:= 1 CiJlvL\ Vv (normalizing volume) and n = total number of integration points within 

the region in which the values of the weight function CiJlv are non-zero and non-negligible. Same as 

for the preceding sum, the integration points are considered to contribute to this sum only when 

the stress increments for both J1 and v are positive. The weight function is implemented in the form 

of a bell-shaped function (4th degree polynomial, Reference 13). It equals unity at the microcrack 

centre and attains zero at the boundary of the averaging region (rectangle or prism). 

Each Gauss-Seidel iteration is initialized by setting the nonlocal stress increments L\S~l) to be 

equal to the local inelastic stress increments L\S~l) obtained from the constitutive law, which is 

strictly local (as it characterizes the behaviour of a homogeneously deforming material element). 

The values of L\S~!) are progressively updated during the iterations. The solution converges when 

the maximum stress difference bctwcen the current and the previous iteration becomes less that 

the prescribed tolerance on the relative stress changes. From experience, the convergence of 

iterations is good. 

The foregoing iterative procedure, however, causes slight non-symmetry of the response in the 

structural softening regime even when the structure is symmetric. The reason is that the 

integration points from one side of the symmetry axis have already been updated when the 

nonlocal stress increments at the symmetric point on the other side of the symmetry axis are being 

calculated. Nevertheless, this non-symmetry can be made as small as desired by prescribing 

a small enough tolerance for termination of the iterations. 

Efficiency of the Gauss-Seidel iterative procedure also depends on which solution strategy 

is used at the level of each loading step, for example, the constant initial stiffness matrix 

method or the tangent stiffness method. Strictly speaking, the foregoing formulation calls for 

using in each loading step separate Gauss-Seidel iteration procedures, one for the local non­

linear constitutive law (to calculate the local inelastic stress increments), and another for the crack 

interactions (to calculate the nonlocal inelastic stress increments). However, as suggested in 

Bazant,17 both iterations may be combined into one iteration loop. Experience with this 

approach, which is more efficient and simpler to program, indicates that it normally converges 

satisfactorily. 

Note that the Gauss-Seidel iteration procedure for solving the system (5) is analogous to the 

relaxation method known from the analysis of frame structures, in particular the Cross method or 

moment distributions method. 
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On the global solution level of the present numerical implementation, the total stress tensor is 

updated after each iteration rather than only after each loading step. Experience from the present 

numerical studies indicates no significant dependence on the loading path. Of course, the degree 

of path dependence is also related to the choice of the local constitutive model. In principle, any 

constitutive model that is able to handle post-peak material softening may be combined with the 

present approach to nonlocality due to microcrack interactions. So far, however, broad experi­

ence exists only for the recently improved microplane constitutive model for concrete.13.25-27 

A very effective new microplane model with stress-strain boundaries 7 could also be used. Note, 

however, that the path dependence could be stronger for plasticity models. In that case it might 

be better to use a solution strategy in which the total stress tensor is updated only after each 

loading step. 

5. IDENTIFICATION OF NONLOCAL MATERIAL MODEL PARAMETERS 

The main difficulty in using the present model lies in identifying the material parameters of the 

nonlocal material model according to the given basic macroscopic properties of concrete. 

A theoretically rigorous and accurate closed-form solution to this problem is not only unavail­

able but also hardly feasible. However, based on the physical meaning of the present nonlocal 

concept, an approximate procedure can be formulated. It transpires that: (1) the uniaxial tensile 

strength is mainly controlled by the tensile strength};' for the local constitutive model, and (2) the 

macroscopic fracture energy Gr is mainly controlled by the maximum aggregate size da (which is 

roughly proportional to the dominant microcrack spacing) and to the area under the local 

stress-strain curve for direct tension (Figure 5). The following procedure has been found to give 

good results. 

As already mentioned, the characteristic length for the nonlocal interactions may be approxim­

ately given by 

(18) 

because the size and spacing of the dominant microcracks must be roughly proportional to da• 

Then one needs to estimate Gr and};'. Since the tensile resistance depends on size and shape, one 

must take into account the size effect, which at the same time offers the easiest approach for 

determining Gr. Thus, one may conveniently apply the size effect law proposed by Bazant18 to the 

analysis of maximum loads P u of geometrically similar fracture specimens of different sizes, using 

a procedure based on fitting the maximum load values with the size effect law.28 The extrapolation 

a 

Figure 5. Simple and realistic tensile local stress- strain curve for concrete (J.' and Ar are the input parameters and the 

curve is exponential) 



NUMERICAL SMEARED FRACTURE ANALYSIS 647 

to very large size yields the approximate values of fracture energy Gr. The material tensile 

strength can be approximately obtained as It' = Pu/ Ae where Ae = cross-section area of concrete 

in the critical cross-section and P u = failure load at crack initiation (approximately homogeneous 

uniaxial tensile stress-strain field). 

For the estimation of strain-softening, consider the approximate relation abGr = abwe Ar where 

a, b = crack length and width (ab = crack surface area), We = effective width of the crack band at 

the fracture front (abwe = volume traversed by the advancing crack band front), and Ar = 

complete area under the local stress-strain diagram (Figure 5), which represents the energy 

dissipated per unit volume (cracking energy density). Again, We obviously ought to be propor­

tional to da. Empirically, it has been found that the value We = 8da gives good results, which 

means that 

(19) 

The ratio of We to da may seem much too large. But it does not seem so if one realizes that on the 

micro scale the fracturing localizes mainly in the zones of near contact between aggregate pieces, 

while the local stress-strain relation describes the fracturing deformations in a smeared way. 

Knowing Ar, one can correctly choose the mean downward post-peak slope of the local uniaxial 

tensile stress-strain diagram (Figure 5). 

Before equation (19) can be applied, the shape of the local stress-strain diagram must be 

selected. A good and simple approximation is the exponential shape (e.g. Reference 29, Figure 5), 

which was adopted for the present calculations. This shape may have considerable influence on 

some types of structural response. 

The foregoing procedure allows simple albeit crude calibration of the material model. It applies 

not only to tension (or mode I) dominated failures, but also to shear (or modes II and III) 

dominated failures, provided the shear failure microscopically develops through mode I micro­

cracks inclined with respect to the direction of shear (as demonstrated already in Reference 30). 

Nonlocal finite element calculations of notched fracture specimens according to the present 

method have been carried out to check whether the tensile strength and fracture energy values 

obtained from the microplane model with crack interactions are about the same as their initial 

estimates according to the foregoing procedure. The specimen geometry, boundary conditions 

and finite element discretization are shown in Figure 6. The specimen was loaded by controlling 

~ ________ d_5_2i_d/_6 ______ -4 ~. 
2.5d 

d=152 mm 

Figure 6. Uniaxial tensile specimen and finite element mesh used to check the calibration procedure of the model 
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the horizontal displacement at the vertical edges. The plane strain analysis was carried out using 

the microplane material model with linear pre-peak stress-strain curve on each microplane and 

an exponential curve for tensile post-peak softening.29 The specimen thickness was adjusted so as 

to avoid snapback instability of the response, and was taken as b = 38 mm. The maximum size of 

the finite elements was approximately 3 mm. The properties of concrete were taken as follows: 

Young's modulus E = 27 000 MPa, Poisson ratio v = 0·18 and tensile strength fr' = 2·5 MPa. 

In the analysis, three different maximum aggregate sizes were considered (da = 4, 8 and 

12 mm). The corresponding fracture energies were estimated from experimental evidence3 ! as 

Gf •da =4 = 0·05 N/mm, Gf •da =8 = 0·08 N/mm, Gr.da =!2 = D·10N/mm. The corresponding local 

tensile stress-strain curves used in the analysis are shown in Figure 7. 

The calculated nominal stress-crack opening curves are plotted in Figure 8 for all the three 

cases. The resulting tensile strength is calculated as the peak load divided by the net cross-section 

area. The fracture energy is calculated from the area under the resulting stress-crack opening 

curve. Note, however, that this method of calculating fracture energy is only approximate, for 

reasons mentioned above and other well-known reasons. 

The estimated input and the resulting values of the basic material parameters are summarized 

in the table in Figure 8. As can be seen, the calculated tensile strengths are for all the three cases 

approximately the same and equal toft' = 3·0 MPa. These values are slightly larger than the input 

tensile strength (fr' = 2·5 MPa). The reason for this is the size effect caused by cracking. The table 

in Figure 8 demonstrates that the input value of fracture energy estimated using (19) is indeed 

a relatively good approximation of the fracture energy value actually calculated from the 

nonlocal microplane model with crack interactions. The error is approximately 20 per cent. For 

smaller aggregate sizes, the input values underestimate, and for larger sizes, overestimate, the 

actual value for the model. The reason for this probably is that, in all our examples, the size of the 

finite elements in the mesh has been kept constant, which caused that for larger aggregate sizes the 

description of the strain field was 'more smooth' than for smaller aggregate sizes. 

The calculated crack-opening curves are compared in Figure 9 with the experimentally 

measured (average) results (da = 2 and 16 mm,3!). As we can see, the calculated critical crack 

openings We show qualitatively the same trend as in the experiments, i.e., for larger aggregate sizes 
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Figure 7. Three different local tensile stress-strain curve corresponding to three different aggregate sizes and fracture 
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Figure 9. Comparison between calculated and experimentally measured average stress-crack opening curves for two 

different aggregate sizes (micro-concrete and normal concrete) 

the stress-crack opening curve is more ductile. The shape of the calculated crack opening curves 

for micro-concrete (da = 4 mm) is practically a straight line, without any ductility before the 

failure. However, for a large aggregate size (da = 12 mm), pronounced ductility before failure may 

be observed. 

The aforementioned procedure for calculating Gr can be used only under the condition that the 

finite element size Le in the fracture process zone is not larger than the maximum aggregate size. 

This is the upper limit for Le. For Le ~ da = /, the nonlocal analysis becomes equivalent to the 
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crack band approach. However, this is inevitable in practical analyses of large structures (or in 

size effect studies). To handle such cases, Baiant32 proposed to increase the characteristic length 

I such that it becomes at least the same or larger than the element size, i.e., I = d: ~ Le with d: = 

equivalent aggregate size. But, in order to compensate for the effect on fracture energy (under the 

assumption that damage does not remain uniform), one must at the same time replace the crack 

energy density (Ad with a modified value, Ar, so as to keep Gf constant. Therefore, according 

to (19), 

(20) 

and 

(21) 

In (21), At must be calculated keeping constant both the hardening part of the stress-strain curve 

and the local concrete tensile strength. Only the softening part of the local stress-strain curve 

must be adjusted. If this modification is not possible, the mesh with Le ~ da cannot be used and 

must be refined. However, in practice there exist problems that are insensitive to the tensile 

strength, as the structural response is mainly controlled by Gf . For such a case, beside the 

hardening part of the tensile local stress-strain curve the local tensile strength may be also 

modified. (Note that the softening part of the local tensile stress-strain curve must always exist 

since otherwise continuum fracture analysis based on the microcrack interaction approach would 

make no sense.) 

To illustrate the procedure when Le > da, the aforementioned test specimen has been analyzed 

using the following input values for concrete properties: It' = 2·5 MPa, Gf = 0·08 N/mm and 

da = 8 mm, with all the other parameters the same as in the preceding example. Let us now 

consider two different characteristic lengths: the actual one, I = da = 8 mm, and the modified one, 

1= d: = 12 mm. For the original value I = do = 8 mm, Af is calculated using (19). To keep 

Gf constant when the characteristic length is changed, the cracking energy density Af for I = 12 

1.2.------
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Figure 10. Stress-crack opening curves calculated when concrete properties correspond to different characteristic lengths 
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Figure 1 I. Geometry, typical finite element mesh, and material properties used in calculation of pull-out of headed stud to 

check the calibration procedure 

mm must be modified according to (21). The calculated stress-crack opening curves for both cases 

are plotted in Figure 10. As we can see, the response as well as the calculated Gr values for 

1= d: = 12 mm are approximately the same as for the actual value of I = da = 8 mm. 

Another example is simulation of the pull-out of a headed stud from a plain concrete block. The 

analysis is carried out using axisymmetric finite elements and the microplane constitutive model 

for concrete. The geometry, material properties and typical mesh are given in Figure 11. The 

maximum aggregate size is da = 16 mm. The bar embedment depth is d = 1350 mm. For such 

a large structure it is not possible to use finite element size Le < da since at least lO 000 finite 

elements would be required. Obviously, a courser mesh must be used in order to reduce the 

num ber of elements. To check the objectivity of the analysis when the discretizations are relatively 

coarse, two companion analyses are carried out. In the first, a relatively coarse mesh, with 

approximately 1400 elements, is used along with the modified value I = d: = 60 mm. In the 

second, the mesh is refined to approximately 2500 elements, and the actual value I = d: = 30 mm 

is used. 

The calculated load-displacement curves for both examples are plotted in Figure 12. As we can 

see, the peak loads for both cases are practically the same (note that they are also approximately 

equal to the peak load calculated from Eligehausen and Sawade's33 empirical formula). 

The foregoing examples confirm that calibration of the nonlocal material model parameters to 

match the macroscopic properties of normal concretes with reasonable accuracy is not difficult 

with the proposed procedure. However, beside the 'aforementioned lower limit for the character­

istic length (l > L e), an upper limit also exists. Namely, due to the smeared cracking concept, it 

turns out and experience confirms that the characteristic length must be I < D/lO, with D = 
characteristic dimension (size) of the structure (e.g., the beam depth, embedment depth, etc.). 

Otherwise, for the crack influence function based on the stress field of a crack in infinite solid, the 

microcrack interaction becomes meaningless because the influence of boundaries becomes too 

strong and condition (6) cannot be fulfilled. Thus, for small structures, it may happen that I must 
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Figure 12. Calculated pull-out load·-displacement curve for two different meshcs--fine and coarse 

be set smaller then da , as indicated by the present approximate calibration procedure. However, 

this procedure may generally lead to an excessively ductile local tensile stress-strain curve, which 

may influence the results unrealistically. For instance, it may prevent localization of damage and 

completely change the failure mechanism. To avoid such problems for I < da , the local tensile 

stress-strain curve must be modified by introducing into it a short horizontal plateau or, 

alternatively, by increasing the local tensile strength, provided that, of course, one deals with 

a response that is insensitive to tensile strength. 

The choice of the finite element type is also important for the present approach. Generally, 

higher-order elements are more effective since the same strain field can be represented with 

a smaller number of elements equally well. When higher-order elements are used, the size of the 

elements does not need to be smaller than da /2. Namely, fracture energy is consumed in a finite 

volume of concrete (rather than zero volume-a line or surface), which is proportional to the 

maximum aggregate size da. Therefore, when the structure is so small that the characteristic 

length must be less than da (due to boundary influence), the local tensile stress-strain curve may 

be too ductile and make the analysis unobjective. This is always a problem in the crack band 

approach because for that approach the local tensile stress-strain curve is related only to the 

element size, instead of the maximum aggregate size and the stress and strain fields. This is what 

in general leads to excessive mesh sensitivity. Thus, in the present approach, the optimal choice 

for the given macroscopic concrete properties U;, Gr) is to relate both the material model 

parameters and the size of finite elements to the maximum aggregate size. 

6. NUMERICAL STUDIES 

6.1. Influence of microcrack interaction 

To demonstrate the influence of microcrack interactions, the tensile specimen shown in Figure 

6 is analysed with and without the contribution of microcrack interaction (i.e. using only local 
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Figure 13. Calculated load-displacement curves of the tensile specimen from Figure 6, with and without microcrack 

interaction 

averaging in the latter case). The geometry of the specimen and the material properties are the 

same as used for the previous example with Figure 6, i.e. da = 8 mm and Gr = 0·08 N/mm. 

The calculated load~displacement curves are plotted in Figure 13. For both cases, the same 

peak load is obtained, however, the softening curve calculated without microcrack interactions 

exhibits a more ductile response. The reason is that the crack influence function correctly releases 

the stresses (i.e., reduces them to zero) when the microcrack system tends to coalesce into a single 

macrocrack. Note that a similar result has been obtained theoretically by Pijaudier-Cabot and 

Berthaud. 34 

6.2. Mesh sensitivity study 

As already mentioned, an important requirement for continuum smeared cracking analysis is 

that the results must be independent of the mesh size and geometry, especially the orientation. To 

check it, a simple specimen, loaded in eccentric tension, is analysed up to failure under the 

assumption of plane strain, using four different finite element discretizations. The geometry of the 

specimen, finite element meshes and material model properties are shown in Figure 14. The 
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Figure 14. (a). 
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Figure 14. Geometry of single-edge-notched tensile fracture specimen, material properties, and four different FE meshes 

used in mesh sensitivity study 
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Figure 15. Calculated load-crack opening curves for four different finite element discretizations 

calculated load-displacement curves for all the four cases are plotted and compared in Figure 15. 

As can be seen, no significant differences in the resulting load-displacement curves can be 

observed for the four different meshes. Objectivity of the analysis is also confirmed by Figure 16 

where the final damage zones at the end of loading are seen for two different meshes. The dark 

zone in Figure 16, which represents the zone where the strains are increasing near the end of the 

analysis, indicates localization of damage. Regardless of the mesh configuration, the damage is 

seen to be localized into a band of approximately constant width which is related to the 
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Figure 16. Crack patterns at termination of analysis for mesh 1 and mesh 3 

characteristic length (maximum aggregate size). This means that the energy consumed by fracture 

is approximately the same and independent of the mesh. 

6.3. Size effect studies for prototype problems 

In the microcrack interaction approach, the effective characteristic length, expressed in the 

sense of the nonlocal strain approach, depends on the stress and strain fields and is changing 

during the analysis. As already discussed, heterogeneity of concrete strongly depends on the 

aggregate size and shape. It seems reasonable to assume the microcrack length to be proportional 

to the maximum aggregate size which, together with the stress and strain fields, controls the reach 

of microcrack interaction. To check whether such approach can correctly predict failure for 

different problems using only macroscopic concrete properties (f(, Gt and da) as the input data, the 

size effect studies for prototype problems, such as uniaxial tension, three-point bending, eccentric 

compression, diagonal shear and pull-out of headed studs, have been carried out and compared 

with the available experimental evidence. 

Furthermore, geometrically identical specimens under different loads, shown in Figures 

17(a)-17(d} and 11, are analysed using the microplane model as the constitutive law for con­

tinuum damage, with the material properties indicated in the figures. The experimentally 

obtained and calculated peak loads for all the specimens are plotted and compared in Figure 

18(a)-18( e}. In the same figures, the calculated results are also compared with the size effect law,18 

which has been extensively validated before. This law is seen to fit the test data for the present size 

ranges quite well. The calculated peak loads are seen to be in good agreement with the 

experimental evidence. To illustrate the power of the present approach and the objectivity of the 

smeared fracture analysis, the typical failure modes of reinforced concrete beams and pull-out 

specimens are revealed by the shapes of the damage zones at different loading stages in Figures 19 

and 20. 

The foregoing numerical results confirm that the present microcrack interaction approach is 

able to correctly predict failure for the basic prototype problems using only standard, usually 

known, macroscopic concrete fracture properties. This is the main practical advantage of the 
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Figure 18. Calculated failure loads for different sizes compared with test results and Baiant's size effect law: (a) uniaxial 

tension, (b) three-point bending, (c) eccentric compression, (d) diagonal shear, and (e) pull-out of headed stud. For each 

problem type the constants B and do, for plotted size effect curves, are obtained by the linear regression analysis of 

calculated data 

nonlocal microcrack interaction approach over other the previous nonlocal approaches, in which 

different material properties had to be used for different types of problems. 

7. CONCLUSIONS 

1. Nonlocality is not merely an expedient mathematical device serving as a localization limiter 

in smeared fracture analysis. The new nonlocal microcrack interaction approach has its 

physical origin in the interaction of growing microcracks. In this new nonlocal approach, 

one must distinguish two kinds of spatial integrals: (1) the local averaging and (2) the 

long-range interaction. The former defines the volume in which energy consumption by 
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a) 

b) 

c) 

d) 

Figure 19. Crack pattern (traced from principal strains) for RC beam without shear reinforcement (h = lOOmm) at 

different loading stages; (a) initiation of bending cracks, (b) 75 per cent of peak load, (c) peak load and (d) termination of 
the analysis (displacement factor = 50) 

a) b) 

Figure 20. Crack pattern for pull-out of headed stud from a concrete block with embedment depth d = 900 mm; (a) peak 
load and (b) termination of the analysis 

fracture takes place. The latter controls crack opening and propagation as a function of the 

stress and strain fields in the neighbourhood of a microcrack and, which is practically most 

important, it achieves correct (mesh-independent) energy release and reduction of stresses to 

zero when the system of microcracks coalesces into a single macrocrack. 

2. As numerical examples show, the new approach ensures damage to localize into a material 

volume whose size and shape are independent of the shape and size of the finite elements. 
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According to arguments of concrete heterogeneity and randomness of microcrack distribu­

tion, the size of the domain of nonlocal integrals is a function of the current stress-strain 

state and the typical dominant microcrack length (approximately equal to the maximum 

aggregate size). 

3. It is demonstrated that the nonlocal material model parameters can be approximately 

correlated to the given macroscopic concrete properties (tensile strength, fracture energy 

and maximum aggregate size). These input parameters may then be used in fracture 

analysis of different problems with no need for their calibration according to the 

problem type. Together with a realistic local material model for concrete, the new approach 

is thus able to predict more complicated failure modes (including modes II and III) 

automatically (as long as Mode II and III fractures consist of a band of inclined Mode 

I microcracks). 

4. The best results in fracture analysis are obtained if both the material model parameters and 

the finite element sizes are related to the maximum aggregate size. The reason is that the 

energy is consumed by concrete fracture in a finite material voJume (rather than in a line or 

surface of zero volume). The size of this volume may be approximately related to the 

maximum aggregate size. The local type of smeared crack band analysis, even with 

extremely fine meshes, generally leads to mesh dependence unless the mesh lines are laid in 

the correct crack propagation direction. The crack band model is objective only when the 

mesh line coincides with the fracture path. 

5. In the finite element implementation, the nonlocal inelastic stJ:ess increments are calculated 

from the known tensile local stress-strain curve using the superposition principle and the 

Gauss-Seidel iterative procedure. The concept is independent of the non-linear triaxial 

constitutive model, which is local. Any model for strain-softening may be used. So far, broad 

experience exists only with the microplane constitutive model. Further studies are required 

to determine the influence of various solution strategies and constitutive models when the 

new nonlocal concept is used. 

6. The results of analysis are shown to be mesh insensitive. Cracking damage is found to 

localize into a volume whose size and shape depend on the macroscopic concrete properties 

as well as the current stress-strain state. 

7. Although microscopically the damage is treated as tensile, being caused by mode I micro­

cracks, the experience with the new nonlocal approach indicates that it can also describe 

quite well the complex shear-dominated mixed-mode types of failure, and can do so for the 

same values of material parameters as for Mode I failures (which has not been achieved with 

the previous nonlocal models). 

8. The new nonlocal model can correctly capture the size effect of fracture and damage 

mechanics, in approximate agreement with the size effect law proposed by Bazant. 18 
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