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Numerical solution for the fluid flow between
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Abstract

We analyse a model of the fluid flow between elastic walls simu-
lating arteries actively interacting with the blood. Lubrication theory
for the flow is coupled with the pressure and shear stress from the
walls. The resulting nonlinear partial differential equation describes the
displacement of the walls as a function of the distance along the flow
and time. The equation is solved numerically using the one-dimensional
integrated radial basis function network method. A solution in the form
of a self-sustained train of pulses is obtained. Numerical experiments
demonstrate the process of formation of the train from randomly chosen
initial conditions. Dependence of the pulses on the boundary conditions
is explored.
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1 Introduction

Mathematical models of arterial blood flows typically treat arteries as passive
material [1, 2]. A popular approximation of the flow-artery interaction is
the proportionality between the increment in the artery’s cross-sectional
area and the flow pressure, p − p0 ∼

√
A −

√
A0 , where p0 and A0 are the

reference pressure and cross-sectional area, respectively [3]. Studies of pulse
propagation then focus on passive response to the pre-formed time-periodic
boundary condition at the artery’s inlet [4].

Very few models assume that the arteries actively exert pressure [5]. These
models are non-autonomous, that is, the active component of the pressure is
introduced in the form of a prescribed function of time and coordinate. This
renders the pulses a result of an unexplained external factor.

Previously we formulated an autonomous pulse model describing the hypo-
thetical flow between active elastic walls [6]. The geometry of the flow is the
channel between infinitely stretching elastic walls rather than tubes. The flow
dynamics are governed by a partial differential equation partly constructed on
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phenomenological principles. The model cannot be directly applied to actual
arteries. However, it is based on the physical idea of the balance between
forces which play the key role in the pulse propagation: the push from the
walls and viscous friction.

Thus, from a dynamical point of view our model is active-dissipative and the
pulses are auto-waves, that is, self-sustained dissipative structures. Unlike
conservative waves, for example waves on fluid surface in gravity, the auto-
waves have unique speed and unique amplitude.

2 Pulses as auto-waves

Previously we formulated an auto-wave model for spinning combustion
fronts [7]

∂tF = ∂
6
xF− ∂x

[
(∂xF)

3
]
+ (∂xF)

4 , (1)

where F(x, t) stands for the distance passed by the front (a line between
unburned and burned mixture) along a cylinder as a function of the transversal
coordinate x and time t. The function F(x, t) is subject to periodic boundary
conditions. This system is active-dissipative: its active nature is due to the
heat released from chemical reactions, and its dissipative nature is due to
heat conductivity.

On differentiating equation (1) by x and defining ∂xF =W we obtain

∂tW = ∂6xW − ∂2x
(
W3
)
+ ∂x

(
W4
)
. (2)

The spatially uniform solution F = const of (1) and corresponding uniform
solution W ≡ 0 of (2) are stable under small perturbations as the linearised
equation ∂tF = ∂6xF is purely dissipative.

For compactness, from now on we use primes/Roman numerals to denote
derivatives with respect to x.
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To explain the mechanism of (1), denote the typical amplitude of the per-
turbation of the uniform solution by ∆F > 0 and typical spatial scale of the
perturbation by ∆x > 0 . If the perturbation is sufficiently large, then it starts
to grow due to the pumping effect of the (third order) nonlinear excitation,
−
(
F ′ 3
) ′

= −3F ′ 2F ′′ . This term is interpreted as nonlinear anti-diffusion. Let
us evaluate the terms by the order of magnitude. We have in absolute value(

F ′ 3
) ′

∼ (∆F)3/(∆x)4 .

As the perturbation grows, the higher order nonlinearity comes into play,

(F ′)4 ∼ (∆F)4/(∆x)4 .

This nonlinearity makes side slopes of the F shape steeper (the W profile
locally surges in amplitude) with small ∆x. On those steep sections the
dissipation prevails because it has higher order in ∆x,

FVI ∼ ∆F/(∆x)6 .

As a result, the steep sections are prevented from developing into singularities.
Instead, smooth self-sustained dissipative structures are formed, as shown in
Figure 1. Each individual pulse is essentially a stable auto-soliton with the
amplitude and speed controlled by the governing equation.

It is well established that in fluid flows between elastic walls, the dissipation
is represented by the sixth order spatial derivative [8, 9]. This brings about
an idea to extend the model formulated by Huang and Suo [8] by excitation
terms representing active motion of the elastic walls. On this foundation we
construct the following model, which is structurally similar to (2) [6],

∂tw =
D

3η

(
H3wV

) ′
−

Eh

6η(1− ν2)

[
H3
(
w ′ 3) ′′] ′

−
1

3η
α
[
H3
(
w4
) ′] ′

+ β
(
w5
) ′ . (3)
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Figure 1: A train of kink-shaped (F) and pulse-shaped (W) auto-waves. The F-
wave moves upwards and to the left; the W-wave moves horizontally to the
left.
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In pde (3) H(x, t) is the half-width of the channel, x the coordinate along
the flow, w(x, t) the transversal displacement of the wall counted from the
neutral position, z = H0 (z is directed across the flow), so that H = H0 +w ,
D is the flexural rigidity of the wall, E is Young’s modulus, h is the thickness
of the wall, ν is Poisson’s ratio, η is the viscosity, and α and β are empirical
parameters.

Equation (3), written in terms of f defined by w = f ′ , becomes

∂tf =
D

3η
H3fVI−

Eh

6η(1− ν2)
H3
[
(f ′′)3

] ′′
−
1

3η
αH3

[
(f ′)4

] ′
+β(f ′)5+C , (4)

where C is the constant of integration. The constant is eliminated by the
change f→ f+Ct , so we assume C = 0 . The first two terms on the right-hand
side of (4) follow from the classical theory and are therefore dissipative.

Comparing (4) with (1), notice the higher order of nonlinearity of the excita-
tion (fourth instead of third); this is necessary to overpower the third order
classical term in (4). Accordingly, the last term in (4) has an even higher fifth
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order of nonlinearity, required to counterbalance the excitation. Evaluate the
terms by the order of magnitude in absolute value. The excitation is

1

3η
αH3

[
(f ′)4

] ′
∼ (f ′)3f ′′ ∼ (∆f)4/(∆x)5 .

As the amplitude of the perturbation increases, the fifth order nonlinearity
comes into play,

β(f ′)5 ∼ (∆f)5/(∆x)5 .

This nonlinearity steepens the profile of f at certain sections where the
dissipation eventually prevails due to the higher order in ∆x,

D

3η
H3fVI ∼ ∆f/(∆x)6 .

This mechanism is similar to that of (1), so the pulse waves should exist in
the hydro-elastic model (3).

Unlike the combustion model (2), the hydro-elastic model should generate only
pulses travelling to the left. This is caused by the asymmetry: the excitation
term produces energy only on the sections with positive slopes, f ′ > 0 , where
−(f ′)3f ′′ is indeed the (nonlinear) anti-diffusion. However, on the negative
slopes, f ′ < 0 , the model acts as normal (yet nonlinear) diffusion. We are
satisfied with this property as it implies that our quasi-artery differentiates
between the direction to and from the ‘heart’. The direction to the heart is
to the right in Figure 1, accordingly the pulses go in the opposite direction,
that is, to the left.

Our last remark in this section concerns the coefficients α and β. These
parameters are empirical; however, having only two empirical parameters is a
rather positive feature because, when modelling a biosystem, the more details
one takes into account the more coefficients need to be involved. Then the
difficult issue of how to determine their values arises. With this in mind, a
model with only two empirical parameters is quite attractive.
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3 Numerical approach

To solve equation (4) we developed numerical codes based on the one-
dimensional Integrated Radial Basis Function Networks (1d-irbfn) method.
This method was tested in many engineering problems including viscous
flows [10] and structural analysis [11]. It was demonstrated that the 1d-
irbfn method has advantages over other numerical methods, for example
finite difference and finite element methods, in terms of accuracy, faster
approach and efficiency [12].

In the 1d-irbfn method the highest order derivative in a differential equation
is approximated by radial basis functions (rbfs) and, further, the lower order
derivatives and function itself are then obtained by integration. The purpose
of using integration to construct the approximants is to avoid the reduction in
convergence rate caused by differentiation and also to improve the numerical
stability of a discrete solution. The integration process naturally gives rise to
arbitrary constants that serve as additional expansion coefficients. Therefore
the constants facilitate the employment of some extra equations in the process
of converting the rbf weights into the function values, which helps in the
implementation of multiple boundary conditions. The rbfs yield better
accuracy, are easy to implement and have the capability to provide a very
accurate solution using relatively low numbers of grid points. The so-called
multiquatric functions were found to be the most efficient basis function to
use in the method [12]. The irbfn ability to capture sharp gradients enables
us to effectively investigate equation (4). For time integration we used the
second order Crank–Nicolson method.
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4 Numerical experiments

In this section we report the numerical results on equation (4) presented in
nondimensional form as

∂tf = Af
VI − B

[
(f ′′)3

] ′′
− C

[
(f ′)4

] ′
+ F(f ′)5 . (5)

The main question that we want to answer is whether the equation has the
desired pulse-like solutions. Determining the values of the (dimensional)
coefficients present in (3)–(4) may not be easy, this especially concerns the
empirical coefficients α and β; we plan this as a separate study. In this
article we arbitrarily select the values of the coefficients in the nondimensional
form (5) just to demonstrate that the desired solutions exist.

Figure 2 shows the settling of a fixed-shaped travelling front evolving from a
step-like initial condition. The boundary conditions set zero values of the first
three derivatives of f on the left edge and on the right edge of the domain.
Observe how the step grows from the initial amplitude of around 2 to 5; this
eventual size is dictated by the equation, not the initial condition. Notice the
little cavity ahead of the main front—this cavity is an anticipated feature
caused by the high order dissipation. The left-most line in this experiment
corresponds to the moment when the main front is just about to hit the
left boundary. The shape of the front has already settled by this time. If
the left edge was located farther to the left in this experiment, giving more
space for the front to propagate, then the front would continue to move with
constant velocity. The w-plot shows the settling of the pulse and its steady
propagation to the left.

Figure 3 presents the dynamics originating from the initial condition that is
a mirror image of the initial condition in the experiment shown in Figure 2.
The initial step has the same vertical size but has opposite orientation: it
subsides from the left to the right. This is the way we configured it so as to
‘help’ the front move to the right, rather than to the left as in the previous
experiment of Figure 2. To our satisfaction, the right-directed front motion
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Figure 2: A = 1 , B = 0.167 , C = 1.625 , F = 0.05 . The left-most line
corresponds to t = 39 . The initial condition is f(x, 0) = 1.2 tanh(x+ 5) . The
number of grid points is 100, time step is 0.001.
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Figure 3: A = 1 , B = 0.167 , C = 1.625 , F = 0.05 . The lowest line
corresponds to t = 39 . The initial condition is f(x, 0) = 1.2 tanh(−x) . The
number of grid points is 100, time step is 0.001.

never eventuates, in agreement with the qualitative analysis of the governing
equations (4)–(5). As predicted, the dynamics decay due to the lack of energy
supply.

The second group of numerical experiments use periodic boundary conditions.
The solution is assumed periodic in space with a prescribed value of the period.
As equation (4) is of sixth order, the first five derivatives of the function f
are also assumed periodic. The experiment displayed in Figure 4 starts from
the initial condition in the form of two peaks. Over time the peaks evolve
into the two-step settled configuration. This represents two pulses following
one another, as is seen in Figure 5.
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Figure 4: A = 1 , B = 0.167 , C = 977.4 , F = 9720 . The initial condition is
f(x, 0) = 0.2 sin(x/2) . The shown profiles are for t = 0, 9, 13 .

5 Conclusion

We presented an autonomous model, without claim of a direct link to biology
at this stage, of a hypothetical flow between active elastic walls. Lubrication
theory is used for the flow, and the walls are supposed to actively exert
pressure and shear stress. The analogy with the combustion front equations
indicates that the model should have auto-wave solutions in the form of pulses.
We developed the numerical code solving the model using the one-dimensional
integrated radial basis function network (1d-irbfn) method. In line with
expectations the computations gave the trains of pulses travelling in self-
sustained fashion in the preferred direction. The two-pulse settled regime is
obtained when the initial condition has the proper form to seed two pulses.
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Figure 5: The settled regime for the experiment shown in Figure 4. The
snapshot times are t = 35, 35.05, 35.1, 35.15, 35.9, 35.95, 36, 36.05 .
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