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Abstract. This paper describes a collocation method for solving numerically a sin-

gular integral equation with Cauchy and Volterra operators, associated with a proper

constraint condition. The numerical method is based on the transformation of the given

integral problem into a hypersingular integral equation and then applying a collocation

method to solve the latter equation. Convergence of the resulting method is then dis-

cussed, and optimal convergence rates for the collocation and discrete collocation meth-

ods are given in suitable weighted Sobolev spaces. Numerical examples are solved using

the proposed numerical technique.

1. Introduction. Let us consider the singular integral equation

− 1

π
−
∫ 1

−1

v(x)

x− t
dx+ g(t)

∫ t

−1

v(x)dx+
1

π

∫ 1

−1

k(t, x)v(x)dx = f(t), |t| < 1, (1.1)

with the condition ∫ 1

−1

v(x)dx = C, (1.2)

where C is a preassigned constant. Here the symbol −
∫ 1
−1

denotes the Cauchy principal

value, and g, f and k are given functions on [−1, 1] and [−1, 1]2, respectively. Substituting

v = σv̄ , σ−1(x) = ϕ(x) =
√
1− x2 in (1.1), we shall consider in the sequel the equation

written in operator form

(−Sσ +MgVσ +Kσ) v̄ = f, (1.3)
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80 M. R. CAPOBIANCO AND G. CRISCUOLO

where (Mgh)(t) = g(t)h(t), Sσ and Vσ are the Cauchy singular integral operator and the

Volterra operator defined by

(Sσ v̄)(t) =
1

π
−
∫ 1

−1

v̄(x)

x− t
σ(x)dx,

(Vσ v̄)(t) =

∫ t

−1

v̄(x)σ(x)dx,

respectively, and Kσ denotes the integral operator

(Kσv̄)(t) =
1

π

∫ 1

−1

k(t, x)v̄(x)σ(x)dx,

corresponding to the perturbation kernel k.

In practice equations such as (1.1) with (1.2) occur quite often in the theory of elastic-

ity and fluid mechanics, in particular in the mathematical solution of the plane contact

problem. A.I. Kalandija [9, Chapter Three] describes a series of problems which can be

formulated in terms of equations such as (1.1) with a condition similar to (1.2). Applica-

tions of integral equations of the first kind with both Cauchy and Volterra operators are

also related by G.M.L. Gladwell in [7]. An exhaustive review of a collection of singular

integro-differential equations arising from practical applications in applied mathematics

and mathematical physics has recently been presented in [5].

The collocation method for the above equation to be considered here, based on Cheby-

shev polynomials, represents the endpoint singularities of the exact solution. Lots of pa-

pers have dealt with the classical collocation or quadrature method for (1.3) dealing with

the case g ≡ 0. Among others we refer the reader to [1] and the references cited therein.

The aim of the present paper is to prove optimal convergence rates for collocation and

quadrature methods for (1.3) in a suitable weighted Sobolev norm.

The paper is organized as follows: in Section 2, we give some notation and investigate

the property of the integral equation (1.3); in Section 3, we present a procedure to solve

(1.3) numerically, proving its stability and optimal convergence rates. Finally, in Section

4, we report some numerical results and we give some computational considerations.

2. Notation and preliminaries. In order to make the paper more readable we start

with some notation and preliminary results.

Let L2
w, w(x) = (1 − x)α(1 + x)β, α, β > −1 denote the weighted space of square

integrable functions on the interval [−1, 1] endowed with the scalar product and the norm

〈u, v〉w =
1

π

∫ 1

−1

u(x)v(x)w(x)dx, ‖u‖w =
√
〈u, u〉w,

respectively. Moreover, let pwn refer to the normalized Jacobi polynomial (with positive

leading coefficient) of degree n with respect to the Jacobi weight w. For real numbers

s ≥ 0 define the weighted Sobolev space L2,s
w by

L2,s
w =

{
u ∈ L2

w :
∞∑

n=0

(1 + n)2s |〈u, pwn 〉w|
2 < ∞

}
,
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SINGULAR INTEGRAL EQUATION IN THE PLANE CONTACT PROBLEM 81

with the norm

‖u‖w,s =

[ ∞∑
n=0

(1 + n)2s |〈u, pwn 〉w|
2

]1/2
.

Let Tj and Uj be the Chebyshev polynomials of the first and of the second kind,

respectively, normalized by 〈Tj , Tj〉σ = π/2, j 
= 0, 〈T0, T0〉σ = π, and 〈Uj , Uj〉ϕ = π/2.

Then, we define the spaces H2,s
ϕ and H̃2,s

σ to be the closures of all polynomials with re-

spect to the norms ‖ ‖H2,s
ϕ

= ‖ ‖ϕ,s and ‖u‖H̃2,s
σ

=
[∑∞

j=1 j
2s|〈u, Tj〉σ|2 + |〈u, T0〉σ|2

]1/2
,

respectively. For the operator V̄σ = σVσ, the following result holds.

Theorem 2.1. The operator V̄σ : H̃2,s
σ \{T0} −→ H2,s+1

ϕ is continuous with continuous

inverse.

Proof. Let V̄σμ = ν and μ ∈ H̃2,s
σ \{T0}. Due to

V̄σTj = −Uj−1

j
, j = 1, 2, ... , (2.1)

we have, with μ = 2
π

∑∞
j=1〈μ, Tj〉σTj ,

V̄σμ = − 2

π

∞∑
j=1

〈μ, Tj〉σ
Uj−1

j
,

yielding

〈ν, Uj〉ϕ = −〈μ, Tj+1〉σ
j + 1

, j = 0, 1, ... .

Hence,

‖ν‖2
H2,s+1

ϕ
=

∞∑
j=0

(j + 1)2s|〈μ, Tj+1〉σ|2 = ‖μ‖2
H̃2,s

σ
− 〈μ, T0〉2σ, (2.2)

from which the assertion follows. �
In order to describe an algorithm for the numerical solution of the contact reactions

represented by the singular integral equation (1.3), we start by observing that in view

of the previous theorem the solution of the integro-differential problem (1.1)–(1.2) is

equivalent to solving the hypersingular integral equation

(Aϕ + Ŝϕ + K̂ϕ)u = h, (2.3)

where

u(t) = σ(t)

[∫ t

−1

v̄(x)σ(x)dx− C

2
(1 + t)

]
, u(−1)ϕ(−1) = u(1)ϕ(1) = 0, (2.4)

h(t) = f(t)− C

2

[
(1 + t)g(t)− 1

π
log

1− t

1 + t
+

1

π

∫ 1

−1

k(t, x)dx

]
,

and Aϕ, Ŝϕ, Kϕ are the operators

(Aϕu)(t) = g(t)ϕ(t)u(t),

(Ŝϕu)(t) = − 1

π

d

dt
−
∫ 1

−1

u(x)

x− t
ϕ(x)dx,
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82 M. R. CAPOBIANCO AND G. CRISCUOLO

(K̂ϕu)(t) = − 1

π

∫ 1

−1

kx(t, x)u(x)ϕ(x)dx.

We remark that relation (2.4) respects the symmetry of the considered functions. In fact,

if v̄ is even, it follows that u is odd. We use (2.3)–(2.4) as the basis for the proposed

numerical method to solve the problem (1.1)–(1.2). This implies that an approximation

of the solution u is generated, but the desired approximation for the original solution

v does not require the additional step corresponding to the numerical differentiation

(cf. relation (3.7)). Further, this reformulation allows us to use standard mathematical

techniques (see [2, 3]) for the stability and the convergence analysis.

In the last few years, several authors have been working on the development of nu-

merical methods for hypersingular integral equations similar to (2.3) (see [4], [10] and

the references cited therein). Collocation and quadrature methods for solving numer-

ically integral equations such as (2.3) are presented in [2]. In that paper the authors

develop widely the necessary theory for establishing the convergence results in weighted

Sobolev spaces. In a subsequent paper [3], the solution by means of a polynomial collo-

cation method is proposed and for this case uniform convergence results are thoroughly

derived. Following the technique of [2, 3], we derive the collocation and quadrature

methods to solve (1.1) with optimal convergence rates.

In the following we summarize some results concerning the properties of the hypersin-

gular integral equation (2.3).

Lemma 2.2 ([6, Theorem 1]; [2, Corollary 2.8]). The finite part integral operator Ŝϕ is a

continuous isomorphism between the spaces L2,s+1
ϕ and L2,s

ϕ . Moreover, for u ∈ L2,s+1
ϕ ,

Ŝϕu =

∞∑
j=0

(j + 1)〈u, Uj〉ϕUj ,

where the series converges in the sense of L2,s
ϕ .

Lemma 2.3 ([3, Proposition 2.3]). The inverse operator Ŝ−1
ϕ : L2,s

ϕ → L2,s+1
ϕ of the

hypersingular integral operator Ŝϕ can be written in the form

Ŝ−1
ϕ := SσWσSϕ,

where the continuous operators

Sϕ : L2,s
ϕ → L2,s

σ , Wσ : L2,s
σ → L2,s+1

σ , Sσ : L2,s+1
σ → L2,s+1

ϕ

are defined by

(Sϕu)(t) =
1

π
−
∫ 1

−1

u(x)

x− t
ϕ(x)dx,

(Wσu)(t) =
1

π
−
∫ 1

−1

log |t− x|u(x)σ(x)dx,

(Sσu)(t) =
1

π
−
∫ 1

−1

u(x)

x− t
σ(x)dx,

respectively. Moreover,

(Ŝ−1
ϕ )Uj = (SσWσSϕ)Uj =

Uj

j + 1
, j = 0, 1, 2, ... .
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The following lemma was proved for the first time by P. Junghanns in [8], in a different

context. Here, we report a different proof, only for the clarity of the reader.

Lemma 2.4. Let r ≥ 0 be an integer and γ = gϕ. If |γ(k)|ϕk ≤ const, k = 0, 1, ..., r,

then Aϕu ∈ L2,r
ϕ when u ∈ L2,r

ϕ .

Proof. Let u ∈ L2,r
ϕ . Since u ∈ L2,r

ϕ ⊆ L2
ϕ, and r is an integer, we have

∫ 1

−1

[Dku(x)]2(1− x)k+1/2(1 + x)k+1/2dx < ∞, k = 1, 2, ..., r.

Moreover γu ∈ L2
ϕ, γ being bounded and u ∈ L2

ϕ. Thus, to prove that γu ∈ L2,r
ϕ it is

sufficient to prove that∫ 1

−1

[Dk(γ(x)u(x))]2(1− x)k+1/2(1 + x)k+1/2dx < ∞, k = 1, 2, ..., r

(see also [1]). Now, by applying the Cauchy-Schwarz inequality,∫ 1

−1

[Dk(γ(x)u(x))]2(1− x)k+1/2(1 + x)k+1/2dx

=

∫ 1

−1

⎡
⎣ k∑
j=0

(
k

j

)
Dk−jγ(x)Dju(x)

⎤
⎦
2

(1− x)k+1/2(1 + x)k+1/2dx

=

∫ 1

−1

k∑
j=0

(
k

j

)2

[Dk−jγ(x)]2[Dju(x)]2(1− x2)k+1/2dx

+ 2

∫ 1

−1

k−1∑
j=0

(
k

j

)
Dk−jγ(x)Dju(x)

k∑
i=j+1

(
k

i

)
Dk−iγ(x)Diu(x)(1− x2)k+1/2dx

=

k∑
j=0

(
k

j

)2 ∫ 1

−1

[Dju(x)]2(1− x2)j+1/2[Dk−jγ(x)ϕk−j]2dx

+ 2

k−1∑
j=0

k∑
i=j+1

(
k

j

)(
k

i

)∫ 1

−1

Dk−jγ(x)Dk−iγ(x)Dju(x)Diu(x)(1− x2)k+1/2dx

≤ const
k∑

j=0

∫ 1

−1

[Dju(x)]2(1− x2)j+1/2dx

+ 2

k−1∑
j=0

k∑
i=j+1

(
k

j

)(
k

i

)∫ 1

−1

[Dk−jγ(x)]2[Dju(x)]2(1− x2)k+1/2dx

×
∫ 1

−1

[Dk−iγ(x)]2[Diu(x)]2(1− x2)k+1/2dx < ∞,

where we have used the assumptions on u and γ. This proves the lemma. �

Lemma 2.5. Let s ≥ 0 and γ = gϕ. If |γ(k)|ϕk ≤ const, k = 0, 1, ..., [s + 1], [s + 1]

being the integer such that s ≤ [s+ 1] ≤ s+ 1, then the operator Aϕ : L2,s+1
ϕ → L2,s

ϕ is

compact.
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84 M. R. CAPOBIANCO AND G. CRISCUOLO

Proof. Since [s + 1] ≤ s + 1 implies L
2,[s+1]
ϕ ⊇ L2,s+1

ϕ , it follows that u ∈ L
2,[s+1]
ϕ .

Thus, in view of the previous lemma and recalling that L2,r+ε
ϕ , r ≥ 0, ε > 0, is compact

imbedded in L2,r
ϕ (cf. [1]), the assertion follows. �

Lemma 2.6. Let k(·, x) ∈ L2,s+1+ε
ϕ , ε > 0 uniformly with respect to x ∈ [−1, 1], and

kx(·, x) ∈ L2
ϕ. Then the operator K̂ϕ : L2

ϕ → L2,s
ϕ is compact.

Proof. The assumptions assure that kx(·, x) ∈ L2,s+ε
ϕ uniformly with respect to x ∈

[−1, 1]. Thus, the assertion follows by applying Lemma 4.2 in [1]. �
We remark that the previous lemma remains true for other perturbation kernels k

(see [2]).

Theorem 2.7. Assume that the hypotheses of Lemmas 2.5 and 2.6 are fulfilled. If

Ker(Aϕ + Ŝϕ +Kϕ) = {0} in L2
ϕ, then the operator Aϕ + Ŝϕ + K̂ϕ is bounded having an

inverse.

Proof. The assertion follows by Lemmas 2.2, 2.5, 2.6. �

3. Numerical algorithm. Finite and boundary element methods are two of the

most frequently used numerical approaches for solving crack problems in fracture me-

chanics. An alternative approach is the integral equation method, which gives significant

simplifications and advantages (e.g., it reduces a partial differential equation (PDE) in

two dimensions to a one-dimensional singular integral equation (1D SIE)) and, in gen-

eral, is more accurate than the aforementioned methods. This becomes obvious when

it is possible to prove stability and convergence of a suitable numerical method to solve

the 1D SIE. The convergence analysis of the numerical methods (e.g., finite elements,

spectral method) to solve the same problems formulated by PDE accompanied by proper

boundary conditions requires different arguments. We solve (1.3) numerically, proving

stability and optimal convergence rates of the proposed procedure.

We investigate equation (2.3) in the pair of spaces (L2,s+1
ϕ , L2,s

ϕ ). Let xϕ
n,j be the zeros

of Un and denote by Lϕ
n the Lagrange interpolation operator

(Lϕ
nδ) (x) =

n∑
j=1

δ(xϕ
n,j)�

ϕ
n,j(x), �ϕn,j(x) =

n∏
i=1,i �=j

x− xϕ
n,i

xϕ
n,j − xϕ

n,i

, j = 1, 2, . . . , n.

The collocation method consists in looking for an approximate solution un ∈ Πn−1 of

(2.3) by solving the equation

Lϕ
n(Aϕ + Ŝϕ + K̂ϕ)un = Lϕ

nh,

Πn−1 being the set of all polynomials of degree at most n−1. In view of Lemma 2.1 and

Ŝϕu =
∑∞

j=0(j + 1)〈u, Uj〉ϕUj , this equation is equivalent to

(I + Ŝ−1
ϕ Lϕ

n(Aϕ + K̂ϕ))un = Ŝ−1
ϕ Lϕ

nh. (3.1)

The following theorems prove the stability and the convergence of the proposed method.
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Theorem 3.1. Assume that the hypotheses of Lemmas 2.5 and 2.6 are fulfilled.

If Ker(Aϕ + Ŝϕ + K̂ϕ) = {0} in L2
ϕ, then for sufficiently large n the operator

I + Ŝ−1
ϕ Lϕ

n(Aϕ + K̂ϕ) has a bounded inverse in L2,s+1
ϕ .

Proof. In view of Lemmas 2.5, 2.6 the operator

Aϕ + K̂ϕ : L2,s+1
ϕ → L2,[s+1]−ε

ϕ ,

is compact. Further∥∥∥Ŝ−1
ϕ (Lϕ

n − I)(Aϕ + K̂ϕ)
∥∥∥
L2,s+1

ϕ →L2,s+1
ϕ

≤ const
∥∥∥(Lϕ

n − I)(Aϕ + K̂ϕ)
∥∥∥
L2,s+1

ϕ →L
2,[s+1]−ε
ϕ

,

where we have used Lemma 2.2. On the other hand,

lim
n→∞

‖δ − Lϕ
nδ‖ϕ,[s+1]−ε = 0, δ ∈ L2,[s+1]−ε

ϕ ,

since [s+ 1]− ε > 1/2 with suitable ε > 0 (see Theorem 3.4 in [1]). Thus∥∥∥Ŝ−1
ϕ (Lϕ

n − I)(Aϕ + K̂ϕ)
∥∥∥
L2,s+1

ϕ →L2,s+1
ϕ

→ 0,

and, consequently,∥∥∥∥
(
I + Ŝ−1

ϕ Lϕ
n(Aϕ + K̂ϕ)

)−1
∥∥∥∥
L2,s+1

ϕ →L2,s+1
ϕ

≤ const.

This proves the theorem. �

Theorem 3.2. Assume that the hypotheses of Lemmas 2.5 and 2.6 are fulfilled. If

the constant C in (1.2) and the given functions g, f, k are such that h ∈ L2,r
ϕ , and

(Aϕ + K̂ϕ)u ∈ L2,r
ϕ , with r ≥ s, r > 1/2, then for sufficiently large n,

‖u− un‖ϕ,s+1 ≤ const

nr−s

{
‖h‖ϕ,r +

∥∥∥
(
Aϕ + K̂ϕ

)
u
∥∥∥
ϕ,r

}
.

Proof. Equation (2.3) can be rewritten as follows:[
I + Ŝ−1

ϕ Lϕ
n(Aϕ + K̂ϕ)

]
u+ Ŝ−1

ϕ (Aϕ + K̂ϕ)u− Ŝ−1
ϕ Lϕ

n(Aϕ + K̂ϕ)u = Ŝ−1
ϕ h. (3.2)

By (2.3) and (3.2) we deduce[
I + Ŝ−1

ϕ Lϕ
n(Aϕ + K̂ϕ)

]
(u− un) =− Ŝ−1

ϕ (Aϕ + K̂ϕ)u

+ Ŝ−1
ϕ Lϕ

n(Aϕ + K̂ϕ)u+ Ŝ−1
ϕ h− Ŝ−1

ϕ Lϕ
nh,

which implies that[
I + Ŝ−1

ϕ Lϕ
n(Aϕ + K̂ϕ)

]
(u− un) = Ŝ−1

ϕ {(h− Lϕ
nh)

+
[
Lϕ
n(Aϕ + K̂ϕ)− (Aϕ + K̂ϕ)

]
u
}
.

Applying Theorem 3.1 together with Lemma 2.2 we obtain

‖u− un‖ϕ,s+1 ≤ ‖h− Lϕ
nh‖ϕ,s +

∥∥∥(I − Lϕ
n)(Aϕ + K̂ϕ)u

∥∥∥
ϕ,s

. (3.3)
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Moreover, in view of Theorem 3.4 in [1], we have

‖h− Lϕ
nh‖ϕ,s ≤

const

nr−s
‖h‖ϕ,r, (3.4)

∥∥∥(I − Lϕ
n)(Aϕ + K̂ϕ)u

∥∥∥
ϕ,s

≤ const

nr−s

∥∥∥(Aϕ + K̂ϕ)u
∥∥∥
ϕ,r

, (3.5)

since h ∈ L2,r
ϕ and (Aϕ + K̂ϕ)u ∈ L2,r

ϕ , with r ≥ s and r > 1/2. Comparing (3.3)–(3.5),

the theorem follows. �
With the help of Qϕ

n we will denote the application of the Gaussian rule with respect

to the weight ϕ, which means that∫ 1

−1

δ(t)ϕ(t)dt ≈ Qϕ
n(δ) =

n∑
j=1

λϕ
n,jδ(x

ϕ
n,j),

with

λϕ
n,j =

∫ 1

−1

�ϕn,j(x)ϕ(x)dx, j = 1, 2, . . . , n.

Now, we can approximate the operator K̂ϕ by

(K̂ϕ
nu)(t) =

1

π

n∑
j=1

λϕ
n,jkx(t, x

ϕ
n,j)u(x

ϕ
n,j).

The quadrature or discrete collocation method consists in solving the equation to

(I + Ŝ−1
ϕ Lϕ

n(Aϕ + K̂ϕ
n ))u

∗
n = Ŝ−1

ϕ Lϕ
nh. (3.6)

Lemma 3.3. Assume k(t, ·) ∈ L2,s+1
ϕ , for some s > 1/2 uniformly with respect to

t ∈ [−1, 1], and kx(t, ·) ∈ L2
ϕ. Then , for 0 ≤ r ≤ s and u ∈ L2

ϕ,∥∥∥Lϕ
n(K̂

ϕ
n − K̂ϕ)u

∥∥∥
ϕ,r+1

≤ const nr−s‖u‖ϕ.

Proof. The assumptions assure that kx(t, ·) ∈ L2,s
ϕ uniformly with respect to t ∈ [−1, 1]

(see [1]). Since, for a polynomial pn of degree less than n, ‖pn‖ϕ,r+1 ≤ nr+1‖pn‖ϕ, we
are able to estimate, with the help of the Schwarz inequality,∥∥∥Lϕ

m(K̂ϕ
n −K̂ϕ)u

∥∥∥2
ϕ,r+1

≤ n2r+2
∥∥∥Lϕ

n(K̂
ϕ
n − K̂ϕ)u

∥∥∥2
ϕ

=
n2r+2

π

n∑
j=1

λϕ
n,j

{∫ 1

−1

u(x)
[(
Lϕ
nkx(x

ϕ
n,j , ·)

)
(x)− kx(x

ϕ
n,j , x)

]
ϕ(x)dx

}2

≤ n2r+2

π
‖u‖2ϕ

n∑
j=1

λϕ
n,j

∥∥(Lϕ
nkx(x

ϕ
n,j , ·)

)
− kx(x

ϕ
n,j , ·)

∥∥2
ϕ

≤ const n2r−2s‖u‖2ϕ
n∑

j=1

λϕ
n,j

∥∥kx(xϕ
n,j , ·)

∥∥2
ϕ,s+1

≤ const n2r−2s‖u‖2ϕ,

where we have used that for all δ ∈ L2,s
ϕ ,

‖δ − Lϕ
n(δ)‖ϕ ≤ const n−s‖δ‖ϕ,s if s >

1

2
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(see [1]). �
The next theorem proves the convergence and the stability of the discrete collocation

method.

Theorem 3.4. Assume that the hypotheses of Theorems 3.1 and 3.2 are fulfilled. If

k(t, ·) ∈ L2,s+1
ϕ , for some s > 1/2 uniformly with respect to t ∈ [−1, 1], and kx(t, ·) ∈ L2

ϕ,

then, for sufficiently large n, equation (3.6) is uniquely solvable, and the solution u∗
n

converges in the norm of the space L2,r+1
ϕ , 0 ≤ r < s, to the unique solution u of (2.3),

where

‖u∗
n − u‖ϕ,r+1 ≤ const nr−s‖u‖ϕ,s+1.

Proof. Taking into account Lemma 3.3, the proof goes along the same lines as the

proof of Theorem 3.8 in [2]. �
Now, we come back to the original unknown. As we can deduce from relation (2.4),

we can write

v̄(t) = ϕ(t)
d

dt
[ϕ(t)u(t)] +

C

2
ϕ(t).

Moreover, we consider the approximate solution un(t) =
∑n−1

k=0 akUk(t) of the hyper-

singular integral equation (2.3), where the coefficients ak are obtained by solving, as

usual, the linear system (3.1) for the collocation method and the linear system (3.6) in

the discrete collocation method. In view of relation (2.1) of Theorem 2.1, we obtain an

approximate solution

v̄n(t) = −
n−1∑
k=0

(k + 1)akTk+1(t) +
C

2
ϕ(t), (3.7)

of the original equation (1.3). Furthermore, it is easy to see from relation (2.2) of Theorem

2.1 that

‖v̄ − v̄n‖H̃2,s
σ

≤ const‖u− un‖ϕ,s+1. (3.8)

4. Numerical considerations. In this section we state some numerical results ob-

tained using the algorithm described in Section 3. All computations reported in this

section were carried out in double precision. We observe that the numerical results are

in accordance with the theoretical ones. Furthermore, we point out some computational

aspects regarding the numerical resolution of the linear system (3.1).

Example 4.1. We solve the integral equation (1.1) with g(t) = 1/
√
1− t2, k(t, x) =

t2|t|x + 1
8

[
x2|x|

√
1− x2 − 2|x|

√
1− x2 + 2arcsin |x|

]
and f(t) = t|t|

4 (4 − t) + 4
15π −

t
π

[
2−3t2√
1−t2

log 1+
√
1−t2

1−
√
1−t2

− 6

]
. Assuming that

∫ 1
−1

v(x)dx = 0, the solution is given by

v(t) = 2|t|. We remark that the solution u(t) = t|t| of (2.3) is such that u ∈ L2,2.5−ε
ϕ for

all ε > 0. Moreover the convergence rate given by Theorem 3.2 for s = 0 is ‖u−un‖ϕ,1 =

O(nε−1.5), for ε arbitrarily small. Thus, in view of (3.8), we deduce ‖v̄−v̄n‖σ ≤ O(nε−1.5).

This convergence rate is confirmed by the numerical results given in Table 1.
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Table 1

n ‖v̄ − v̄n‖σ
8 3.53D-02

16 1.43D-02

32 5.43D-03

64 2.01D-03

128 7.21D-04

256 2.58D-04

512 9.15D-05

Table 2

n ‖v̄4096 − v̄n‖σ
8 6.35D-02

16 1.79D-02

32 4.99D-03

64 1.37D-03

128 3.70D-04

256 9.87D-05

512 2.59D-05

Example 4.2. In this example we solve the integral equation (1.1) with g(t) =

1/
√
1− t2, k(t, x) = 0, f(t) = (t2−3)|t|−log 1−t

1+t+π
√

1+t
1−t and assuming

∫ 1
−1

v(x)dx = 2π.

In this case the solution v is unknown. For this reason we compare the approximate so-

lution v̄n with v̄4096. Since h = (t2 − 3)|t|, we deduce that h ∈ L2,1.5−ε
ϕ , and Theorem

3.2 shows the following convergence rate: ‖u− un‖ϕ,1 = O(nε−1.5), for s = 0 and with ε

arbitrarily small. Thus, in view of (3.8), we deduce ‖v̄ − v̄n‖σ ≤ O(nε−1.5). Also in this

case the numerical results of Table 2 confirm the theoretical ones.

Finally, we remark that if the unknown function v̄ is even, as happens in some

particular contact problems, in view of (2.4) it follows that u is odd. For this rea-

son, there is a reduction to zero of half of the coefficients of the Chebyshev expansion

un(t) =
∑n−1

k=0 akUk(t).
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