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NUMERICAL SOLUTION OF AN EVOLUTION EQUATION
WITH A POSITIVE-TYPE MEMORY TERM
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Abstract

We study the numerical solution of an initial-boundary value problem for a Volterra
type integro-differential equation, in which the integral operator is a convolution
product of a positive-definite kernel and an elliptic partial-differential operator. The
equation is discretised in space by the Galerkin finite-element method and in time
by finite differences in combination with various quadrature rules which preserve
the positive character of the memory term. Special attention is paid to the case of
a weakly singular kernel. Error estimates are derived and numerical experiments
reported.

1. Introduction

We shall consider initial-boundary value problems of the form

u'(O+foP(t -s)Au(s)ds = fit), infi, fo r r>0 .
M = 0, on3n , fo r f>0 , (1.1)

u(0) = v, inn .

Here u, = du/dt, A is a second-order self-adjoint positive-definite elliptic
differential operator, and /8 is a positive-definite kernel, i.e., j8 e Ll\0C(R+),
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24 W. McLean and V. Thom6e [2]

where R+ = (0, oo), and satisfies

ff>«-
Jo Jo

s)<p(s)ds<p(t)dt>0, VT>0, <p e C([O, 7]). (1.2)

We assume that all functions occurring are real-valued.
Equations of the above type, and particularly nonlinear versions thereof, are

used to model phenomena in viscoelasticity and heat conduction in materials
with memory, e.g. MacCamy [12, 13] and Jin Choi and MacCamy [2]. Their
mathematical properties have also been studied in MacCamy and Wong [14],
Londen [10], Dafermos and Nohel [5] and Staffans [18]. For P smooth on R+

they are hyperbolic in character whereas if P has a weak singularity at 0, such as
if p(t) = ta~1/ F(a), 0 < a < 1, then they adopt a parabolic behaviour, more
so the stronger the singularity. This latter kernel is of particular interest, cf. Jin
Choi and MacCamy [2].

We recall that P is positive definite if and only if

ReP(i6)= p(t)cos(6t)dt>0, V9eR, (1.3)
Jo

where ft denotes the Laplace transform of ft, and that a sufficient condition
for this to hold is that 0 € L,(R+) n C2(R+) and (-l)JpU) > 0 on R+ for
y = 0 , 1,2. This class of functions contains the totally positive functions, i.e.,
functions which may be represented as

where /x is a positive measure with the appropriate number of finite moments.
The hypothesis (1.2) on p easily implies the stability property

[
Jo

\\u(T)\\ < ||u|| + 2 [ \\f(t)\\dt, for T > 0, where || • || = || • ||MQ).
J

(1.4)
To show this, simply take inner products in L2(£2) °f b°th sides of (1.1) with
2M (t), and then integrate over [0, T] to obtain

|2+2 / / p(ts)A(u(s)u(t))dsdt < |M|2 [||M(T)||2+2 / / p(t-s)A(u(s),u(t))dsdt < |M|2+2 [ ||/(0H \\u(t)\\dt,
Jo Jo Jo

for each T > 0, where A( , •) is the bilinear form associated with the elliptic
operator A. It is easy to see that (1.2) implies that the double integral is
nonnegative (cf. Lemma 2.1 below), and (1.4) then easily follows.
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[3] Numerical solution of an evolution equation 25

We shall study the numerical solution of (1.1) and consider first discretisation
in space by a Galerkin finite-element method. Let thus {Sh} be a family of
finite-dimensional subspaces of HQ (£2) with the approximation property

inf {||v - xll +h\\v -X\U) < Chr\\v\\r, for i; e H*(Q) D H'(Si),

(1.5)
where || • ||r denotes the norm in Hr(£2). In applications, h is typically the
maximum diameter of a triangle in the triangulation underlying the definition
of the finite element space Sh (cf., e.g., Ciarlet [3]). We define the spatially
semidiscrete problem by

(«*./, X) + [ PO - s)A (uh(s), x) ds = (/, X), VX € Sh, t> 0,
Jo

«*(0) = vh,

where (•, •) is the inner product in L2(£2). Setting x = " A ( 0 and integrating in
time we find easily that this semidiscrete problem inherits the stability property
(1.4) of the continuous problem. As a result of this, we show in a routine manner
an error estimate of the form

ll«*(0 - "(Oil < \\vh - v\\ + C(u)hr, for t > 0,

as well as an optimal-order error estimate for VMA.
We then turn to discretisation of (1.1) in time. We introduce a time step k,

set tn = nk, and let U" be the approximation of un = u(tn). A natural approach
for time stepping is to replace u, by a difference quotient such as the backward
difference quotient

k

and then replace the integral in (1.1) by a finite sum so that the equations become

(d,Un, X) + f^conJA(Uj, X) = (/„, X), for n > 1, VX € SA, (1.6)
;=o

f/° = u*.

with /„ = /(*„). Setting

/I

" >ni&, (1.7)
y=0
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26 W. McLean and V. Thomde [4]

it is then natural to try to choose the quadrature coefficients in such a manner
that the following analogue of (1.2) holds, namely

(1.8)
n=\

We shall call such a quadrature formula positive. We note that this is not possible,
in general, unless the con0 vanish. In our technical work we shall therefore have
to introduce some modifications of this concept. In the particular case that qn {<p)

is of convolution type, so that wnj — bn-j, for 1 < j < n, the positivity of qn(<p)

is related to a discrete analogue of (1.3), namely

oo

^2 bj cos jd > 0, V6> e R.
;=o

One natural choice of quadrature formula is the rectangle rule determined by
the values of the integrand at the right-hand end-points of the time intervals, so
that conj = kfin-j for 0 < j < n, where /},• = )8(f,-), with con0 = 0. As we shall
see, this choice does satisfy (1.8), and we may then derive an error estimate of
the form

\\Un-u(tn)\\<\\vh-v\\+C(u)(hr+k).

Another, perhaps equally natural, choice would be to use a rectangle rule
based on the left-hand end-points of the intervals, i.e., to choose conn — 0 and
conj = kfin-j for j < n. This would have the added advantage of making the
equation explicit, or at least only dependent on the mass matrix, at each time
level. It turns out, however, that the property (1.8) does not hold for this choice.
Thus, just as in the case of the standard heat equation, the implicit method has
better stability properties than the explicit one.

The quadrature rules just described are first-order accurate, thus matching
the first-order accuracy of the backward time difference quotient. One could
also choose the second-order accurate trapezoidal rule, which turns out to be a
positive quadrature formula, and combine this with the second-order accurate,
three-level backward difference operator DJ2)U" = d,U" + \kd}Un. This
method is stable, and we may show an error estimate that is O(hr + k2).

As in the Crank-Nicolson scheme for the heat equation, it would also be
natural to consider dtU" as a second-order accurate approximation to u,{tn_ 1/2),
and then choose qn to approximate the integral with upper limit t = tn_l/2.

Doing this by an average between the trapezoidal approximations at t — tn and
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[5] Numerical solution of an evolution equation 27

fn_i does not produce a positive quadrature formula in the above sense, but
nevertheless yields a stable scheme of order O(hT + k2) as can be seen by a
slight modification of the arguments.

One of the difficulties in a numerical method such as (1.6) is that if a>nj ^ 0
for j < n, then all values of the solution UJ, j = 1, . . . ,«, have to be retained,
causing great demands for storage of the data. This is in contrast to the situation
for a parabolic or hyperbolic differential equation, where only a fixed low number
of time levels is involved at each time step, and the data can be discarded as
the computation goes along. As a way around this difficulty in the case of a
parabolic integro-differential equation (with a term of the form Au included
on the left in the equation) it was proposed in Sloan and Thom6e [17] that the
quadrature be based on fewer points, thus reducing the number of time levels at
which the data need to be saved. Unfortunately, it does not seem to be possible
to combine this approach with the positivity of the quadrature rule. One case
which appears to be common in practice, and when this problem can be handled,
is when fi (t) is a linear combination of a small number of exponential functions.

Earlier work on the numerical solution of problems of type (1.1) has been
done by e.g. Neta [15], Jin Choi and MacCamy [2], Sanz-Serna [16], and L6pez-
Marcos [11]. We shall make some comments on these papers below. Fairweather
[7] considers continuous in time and backward Euler-type time-stepping meth-
ods based on spline collocation in space; see also Yan and Fairweather [21].
The use of fast transform methods for the time discretisation has been studied
by Yan [20].

The rest of the paper is organised as follows. In Section 2 we treat the
spatially semidiscrete problem. Section 3 is concerned with the discretisation in
time. Here we introduce various positivity concepts for the quadrature rules used
to approximate the integral in (1.1), and show corresponding stability results.
Further, these stability results are used to obtain preliminary error bounds for the
completely discrete schemes, containing one term which depends on the as-yet-
unspecified quadrature rule. In Section 4 we study specific quadrature schemes
and relate them to the results in Section 3. In Section 5 we discuss the regularity
of the solution of (1.1) with particular reference to the regularity requirements
of our error estimates. It is shown that for ft smooth, all estimates needed can
be shown under appropriate assumptions on the data. For the weakly-singular
kernel fi(t) = ta~x/V[a), however, it turns out that, even with smooth data,
u,,(t) = 0{ta~{) and u,,,(t) = O(ta~2) for small t, so that u,, is integrable
at t = 0, but um is not. This will suffice for optimal-order convergence for a
first-order, but not for a second-order, method. Finally, Section 6 describes some
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28 W. McLean and V. Thornfe [6]

simple numerical experiments, the results of which agree with our theoretical
analysis.

2. Discretisation in space

In this section we shall consider the discretisation in space of the initial-
boundary value problem (1.1). The numerical solution is sought, for each t > 0,
in a finite-dimensional space Sh C //0' (£2) , depending on a small parameter h,

which we assume to have the property that (1.5) holds, uniformly in h.

Writing (1.1) in weak form as

- s)A (u(s), <p) ds = (/, <p), V<p 6 ffo'Cfl), t > 0,

ii(0) = v,

we define the semidiscrete solution uh : [0, oo) —*• Sh by

(«*.„ X) + f Pit ~ s)A (uh(s), X) ds = (/, X), VX e Sh, t> 0(2.1)
Jo

uh(-,0) = vh,

where vh is an appropriate approximation of v in Sh. It is easy to see that this
latter finite-dimensional problem has a unique solution.

We shall first show an L2-error estimate for (2.1). For this purpose we need
the following lemma.

LEMMA 2.1. Let B be a positive definite selfadjoint operator in a Hilbert space,

with B{-, •) the corresponding symmetric bilinear form on D(Bl/2), and let fi

be a positive definite kernel. Then

BT{u) = f ! M - s)B (H(J) , u(t)) ds dt > 0,

Jo Jo
Vr > 0, u e C ([0, T]; D(B1/2)).

PROOF. Letting {A.y-}yl, and {(Pj}^ be the eigenvalues and eigenfunctions of B,

and letting w, = (u,q)j), we have

u) = Tkj f ( Pit- s)Uj(s)uj(t)dsdt.
j=l Jo Jo
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[7] Numerical solution of an evolution equation 29

Since each of these integrals is positive by the positive definiteness of the kernel

fi, the result follows.

THEOREM 2.1. Assume that fi is a positive definite kernel, and that {Sh} satisfies

(1.5). Then under the appropriate regularity assumptions we have, for the

solutions of (2.1) and (1.1),

-«(OII<l|w*-w||+CAr(||u||r+ / | | « , i u 4 . fart>0. (2.2)

PROOF. AS is usual for parabolic and hyperbolic equations, we introduce the
Ritz projection Rh : //0' (£2) —> Sh by

A(Rhu-u,X)=O, Vxe5A) (2.3)

and write the error

uh-u-(uh- Rhu) + (Rhu -u) = 6 + p.

From a well-known error estimate for the elliptic problem [3], we have at once

J (2.4)

and it remains to bound 9{t). We have by our definitions

(0,, X)+ f Pit - s)A (6(s), X) ds (2.5)
Jo

= (/, X) ~ (RHU,, X) ~ [ PO - s)A (Rhu,(s), x) ds
Jo

= -(p,,x), VxeS* . t>0,

where in the last step we have used the definition (2.3) in the integral term.

Since 6 e Sh we may choose x — & to obtain

Pit- s)A (9(s), 0(0) ds = - ( A ( 0 , 0(t)).

By integration over (0, T) this yields

/' / P(t-s)A(0(s),6(0)dsdt< f llAl
o Jo Jo
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Lemma 2.1 shows that the double integral is nonnegative, and hence

\\2 + 2 f \\p,
Jo

\\9(T)\\2<\\0(0)\\2 + 2 f \\p,\\\\e\\dt, forr>o. (2.6)
J

For a given T, letting t0 be such that ||0(?o)|| = suPo<<<r 11̂ (011. w e conclude
from (2.6) that

l|0(7)||2 < ||0(fo)||
2 < {||0(O)|| +2 / \\p,\\dt\mh)\\,

and so

£ \\Pl\\dt\\

f
Jo

< | | 0 (O) | |+2 / \\p,\\dt.

Here,

I|0(O)|| < ||vA - v|| + \\Rhv - v\\ < ||v* - v|| + Chr\\v\\r,

and applying (2.4) to u, we conclude that ||p, || < Chr \\u, ||, and so

110(7)11 <Hv*-v||+C/i'J||i;||r + jf | |« , | | r ^j. (2.7)

Together (2.4) and (2.7) complete the proof of (2.2).

We now turn to an error estimate in Hx (£2).

THEOREM 2.2. Assume that fi is a positive-definite kernel, and that the finite-

element spaces [Sh] satisfy (1.5) and are such that the orthogonal projection

Ph of L2(Q) onto S/, is bounded in //'(£2), uniformly in h. Then under the

appropriate regularity assumptions we have, for the solutions of (2.1) and (1.1),

\\uh(t)-u(t)\U<C\\vh-v\\l + Chr-iUv\\r+ f ||«f||rrfjJ, fort>0.

(2.8)

PROOF. Since the //'-norm of p = Rhu — u is bounded by the right-hand side
of (2.8), it suffices to estimate 6 = uh — Rhu. Let Ah : Sh —> Sh be the discrete
analogue of A defined by

eSh. (2.9)
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[9] Numerical solution of an evolution equation 31

Then, setting x = Ah6 in (2.5) we have

A(6t, 6)+ f P(t-s) (AhO(s), AhO(t)) ds = -(p,, Ah6(t)) = -A(PhPt, 0(0),
J

or, noting that A(9t, 9) = (j,)A(9, 9)/2, after integration over (0, T),

oT ft

p(t - s) (Ah9(s), Ah9{t)) ds dt
0 ./0

T

<c\

By Lemma 2.1, applied with H = Sh and B = A\, the double integral is
nonnegative, and we conclude easily

1,+ /"<c{ 110(0)11,+ / ||P*AII 1*1. forT>0,

whence, using also the assumed boundedness of Ph in Hl,

Alh} forr>0.

An application of (2.4) now completes the proof.

We remark that a sufficient condition for the L2-projection Ph to be bounded
in H' (fi) is the standard inverse inequality

\\xh<Ch-x\\xt Vxe5A;

weaker conditions have been given in Crouzeix and Thom6e [4].
We shall complete this section by citing some previous work on the spatially

semidiscrete solution of equations of type (2.1).
Neta [15] treats a nonlinear equation, with yS smooth and Au replaced by the

one-dimensional operator o(us)x (fi = (0, 1)) where o' is positive, and claims
an error estimate of the form
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32 W. McLean and V. Thomde [10]

However, his argument uses an assumption which is incorrectly stated to be a
generalisation of a known property for positive definite kernels in the case when
a' is constant, and which is not satisfied for simple kernels.

Jin Choi and MacCamy [2] consider the weakly-singular kernel Pit) =

cta~le~', with 0 < a < 1, where the exponential is included in order that
P e Li(R+). Letting Ha denote the Hilbert space defined by

ll«ll#- = (H"llW2) + NI2
W-/2(W1,)

I/2, with H'(V) = W (R+;

where the fractional-order Sobolev norms in time are defined in terms of Laplace
transforms, they show that

i.e., that the semidiscrete solution is optimal with respect to Ha, thus extending
a result from Douglas and Dupont [6] for the parabolic case (a = 0). As a result,

\\uh - U\\H* < Ch (||w||wi/2(Hi) + \\U\\H-IHH*)) •

They also demonstrate that for this kernel

\\Uh ~ «IL2(L2) < C/!2||M 11̂ (7,2),

which result is based on, in our above notation, the inequality

H0||t2u.2) <

3. Discretisation in time

We shall now consider the discretisation in time of the spatially semidiscrete
problem (2.1) studied above. Introducing the time step k, setting tn — nk, and
letting U" G Sh be the approximation of uh{tn), we shall first consider discret-
isations in which the time derivative is replaced by the backward difference
quotient d,U" = (C/n - U"~l)/k. Using a quadrature formula

nj<p> « / P(tn - s)<p(s) ds, with <pj = <p(tj), (3.1)
j=o Jo
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[11] Numerical solution of an evolution equation 33

to handle the integral term, we then arrive at the fully discrete problem

(dtU", X) + qn (A(U, X)) = (/„, X), for n > 1, with /„ = /(*„),
U° = vh.

(3.2)
Later, we shall also analyse schemes with second-order approximation of the
time derivative.

We introduce the quadrature error

r

~ /

Jo
P(*n - s)<p(s) ds, (3.3)

o

and say thatgn is accurate of order p if €n((p) = O(kp) forcp sufficiently regular.
In our estimates below, we shall use the "global quadrature error"

N

€N(<P) =kJ2 llcfoOII, for tN < T, (3.4)

when (p e C ([0, T], L2(fi)). Precise estimates for this quantity are given in
Section 4, where we discuss specific choices for qn.

In order to show an error estimate for (3.2) we shall need a stability result.
For this purpose, as we mentioned in the discussion of stability in Section 1, it
is natural to assume that for the quadratic form analogous to the double integral
in (1.2) we have

N

Vd> = (<D°, . . . , <D")T- (3.5)

We shall term such a quadrature rule qn positive. We note that, in general, if
some of the con0 are nonzero, (3.5) cannot hold since QN(<&) lacks a quadratic
term in O0- However, in our first result we may assume that a)n0 = 0 for n > 1,
since the quadrature rules of first order that we shall propose in Section 4 have
this property.

We note that conn > 0 for n > 1 is a necessary condition for qn to be positive.
This means that the matrix coefficient of U" in (3.2) contains a term in the
stiffness matrix corresponding to A; in particular, this equation is implicit.

We are now ready to present our stability result for (3.2).

LEMMA 3.1. Assume that /3 is positive definite and that qn is positive. Then the

solution of (3.2) satisfies

N

/,)||) forN>\.
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34 W. McLean and V. ThormJe [ 12]

PROOF. Setting x = U" in (3.2) and noting that qn (A(U, *)) = A (qn(U), x)

we have

\ ^ Un) = (fn,U
n), forn>l,

so that, with Ah defined by (2.9),

\\Un\\2 - \\U"~X\\2 + 2k(qMfU), A^U") <2k\\Un\\\\fn\\. (3.6)

Since the quadrature formula is positive,

N r

J^U (qn(Al/2U), Al
h

/2U") = 2 / QN(Al
h
/2U)dx > 0,

and so, after summation of (3.6),
N

\\UN\\2 - \\vh\\
2 <2kJ2 \\Un\\ II/JI, VÂ  > 1.

Now, with M chosen so that ||f/M || = maxo^^^ ||f/-/1|, we have
M

\\UNf <\\VMf <\\vhf + 2kYJW
n\\\\fn\\

n=\

M{ M i

| | v A | | + 2 * £ | | / n | | \\\UM\\,
n=\ >

n=\

from which the result follows.

We can now state and prove our error estimate for (3.2). It shows an O(hr+k)

convergence rate provided the solution of (1.1) is sufficiently smooth and qn is
first order accurate.

THEOREM 3.1. Assume that fi is positive definite, and that {Sh} satisfies (1.5). If
qn is positive and if vh is chosen so that

\\vh-v\\<Chr\\v\\r,
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[13] Numerical solution of an evolution equation 35

then for the solutions of (3.2) and (1.1) we have

\\UN -u(tN)\\ <Chrl\\v\\r + j"\\u,\\rds\

+Ck / ||u,,|| ds + 2eN(Au), for tN > 0.
Jo

PROOF. Using the elliptic projection Rh : H$(Q) -*• Sh defined in (2.3) we write

e" = Un- u(tn) = (£/".- Rhu(tn)) + (Rhu(tn) - «('„)) = 9" + pn.

By (2.4) we have

For 9" we obtain by our definitions that

= (d,Un, X) + A (qn(U), X) ~ (d,RhUn, x) - A (qn(Rhu), X)

= (/„, X) ~ (3,«n, X) ~ &P\ X) ~ A(qn(u), X)

= (u,(tn) - d,un, x) + / P(tn - s)A (u(s), X) ds
Jo

Thus, letting

T" = r," + r2" + T"
2 + T3

= {u,(tn) - d,u(tn)\ + J j£(tn - s)Au(s) ds - qn(Au)\ - d,p",

we have

(dl0
n,x) + A(qn(9),X) = (rn,x),

and so, applying Lemma 3.1,

Here,

\\9°\\ = \\vh - Rhv\\ < \\vh - v\\ + \\Rhv - v\\ < Chr\\v\\r.
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36 W. McLean and V. Thom6e [14]

Further

*£)KII<C*£ /"" \\un\\ds = C

and

*X>3"|| < £ /"" \\P,\\ds<Chr P \\ut\\rds.

Together these estimates complete the proof, because r^ = — en(Au).

Since the backward difference quotient used above to approximate u, is only
first-order accurate, we now try to obtain higher accuracy by employing instead
a second order backward difference operator. Thus set

kdfun
= d,U'

z
and let U", n — 0, 1 , . . . , be defined by

(D?)Un,X)+qn(A(U,x)) = (fn,x), for n > 2,
(d,Ul,x)+qAA(U,x)) = (/,,*), (3.7)

U° = vh.

Notice that since the second-order backward difference quotient can only be
applied for n > 2, we have had to use a separate equation for n = 1.

Since we now need a second-order quadrature rule, we shall need to include
in it a term in <t>°. For this reason, as mentioned earlier, (3.5) will not be satisfied,
and we shall have to modify our requirements on qn. Thus we say that qn is
weakly positive if QN{®) > 0 for all <t> with <I>0 = 0. This will suffice in the
analysis when vh is chosen as Rhv. In order to treat more general choices, we
say that qn is wo-positive if

QN(*)> -6>o(<J>°)2, VW> 1, <D = (<D°, ...,<t>")T- (3.8)

Note that 0-positive is the same as positive, and that conn > 0 for n > 1 is
necessary for weak positivity.

We now have the following stability result.

LEMMA 3.2. Assume that fi is positive definite and that qn is coo-positive. Then

the solution of (3.1) satisfies

\\UN\\ < \\vh\\+3coi
0

/2\\Al/2vh\\ + 3kJ2\\fn\l forN>\.
n=l
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Ifqn is weakly positive, then

N

fn\l forN>\, whenvh=O.

PROOF. We prove the first statement. The proof of the second follows at once
by setting U° = 0 in the argument. With AkU

n = U" - Un~k for it = 1, 2, we
may write

kD\2)Un = 11/" - 2f/n-1 + -U"-2 = 2&iU" - -A2U".

Since

we have

k(D™Un, Un) = A1||C/"||2-^A2||f/n||2+l|A1f/'1||2-^||A2f/"||2, for n > 2.

By summation from 2 to N,

^ / " ! ! 2 - U2\\u"\\2) = l\\uN\\2 - j u ^ f - l u t / ' i i 2 + l-\\u°\\2,
n=2 4 4 4 4 4

and further, since A2U" = AiU" + Ait/""1, we obtain

N 1 N 1

n=2 ^ n=2

n=2

Hence,

7', £/') + jfc
n=2

(3-9)
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But by (3.7) we have

/
n=2 JQ n=\

and by (3.9) and (3.8) this yields

" n=\ •"

As in the first-order case, suppose ||f/M|| = maxo<n<Ar ||f/"||. Then

\\uMt < \ {\\uM-l\\2+ \\ul\\2+ \\u°f} + \i

< \\\UM\\2 +j{llt/'|| + \\U°\\+4kY)\fn\\\\\U
M\\ + ̂ ollAf U°\\2

so

iif/A/ii2<{^(iif/iii + i i t /u i i )+2o:n/ni i

and hence

\\UM\\2 < \U\\Ul\\ + \\U°\\) +2kJ2 Wfn\\\ +4a.0||^
/2f/°||2

I n=\ I

1

-(\\u II +

2

from which we conclude that

l|t/
A
'll<^(l|f/

1
|| +

Since

(£/' - U°, Ux)+kA M t / ) , Ul) = k(fu f/1),

we easily obtain, using (3.8) for Â  = 1, that

llf/'ll
2
 <
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and hence

\\U'\\ < \\vh\\ + (2cooy
/2\\Al/2vh\\ + k\\M.

The proof is now complete.

As a consequence of Lemma 3.2 we have the following error estimate, where
again the global quadrature error is defined by (3.4).

THEOREM 3.2. Assume that ft is positive definite, and that {Sh} satisfies (1.5). If
qn is weakly positive, then for the solution o/(3.7) with vh = Rhv we have, for

tN >0 ,

\\uN-u(tN)\\ < c/I
r{ j

+Ck/* ||«M|| ds + Ck2 Jl" \\uut || ds
for tN > 0.

(3.10)
Ifqn is coo-positive and vh is chosen so that

\\vh-v\\+h\\vh-v\\x<Chr\\v\\r, (3.11)

then the error estimate (3.10) remains valid after the addition of a term

Chr-lcol
0

/2\\v\\r to the error bound.

PROOF. We note that for smooth solutions this error estimate is of order O {hr +

k2) plus the quadrature error. The form of the terms in k is chosen to accomodate
also weakly singular kernels.

The proof parallels that of Theorem 3.1. This time the equation for 6" for
n > 2 is

where x" = x" + x% + x% is given by

T," = «,(*„) - £><2)u(/n), r2" = -€n(Au), r3" = - D , < V .

Treating the first term in the approximation of u, separately we now get

> / \\utlt\\ds
n=2 JO Jk

https://doi.org/10.1017/S0334270000007268 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007268


40 W. McLean and V. Thomfe [ 18]

and

kf]\\T?\\<Chr I'" \\u,\\rds.
„=? Jon=2

Also, using the estimates for the standard backward Euler method from the proof
of Theorem 3.1 for n = 1 we have

fk , fk

k\\r!\\<k \\uir\\ds and k||r3'|| < Chr / | | « , | | r ^ .
Jo Jo

For the case that qn is positive these estimates complete the proof by Lemma 3.2.
In the wo-positive case we also need to note that after writing 90 = {vh — v) —

(Rhv — v) we have

^ / 2 ^ ^ /2||^olli < C(hr+a)]
0

/2hr-l)\\v\\r.

A possible alternative to (3.7) would be to think of d,U" in (3.2) as an
approximation to ut{tn_\/2), and to approximate the integral with upper limit
fn_i/2 to second-order. As we shall see in Section 4 below, this appears difficult
to combine with positivity of qn in the above sense, and suggests a modification
in the definition of the quadratic form QN^) in this case.

4. Positive-definite quadrature formulas

We now turn to a discussion of quadrature formulas suitable for application
in the difference schemes proposed above. We recall the notation

6*"^' f o r n - 1 ' ( 4 1 )

and
N N n

QN(<t>) = k
n=\ n=l j=0

We are interested in conditions for qn to satisfy our various positivity properties
introduced in Section 3, and also in giving bounds for the global quadrature
error eN(Au) appearing in the error estimates of Theorems 3.1 and 3.2. We first
show the following lemma which is relevant for the case that the quadrature
formula is of convolution type.

https://doi.org/10.1017/S0334270000007268 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007268


[19] Numerical solution of an evolution equation 41

LEMMA 4.1. Let {bj}^ e l\ be a sequence of positive numbers such that

b(6) = J^ bj cos j8 > 0, for 9 e R. (4.2)

Then
N n

n=i j=\

PROOF. Letting " denote the Fourier transform, so that, e.g.

we have, by a simple calculation, with <£-' = 0 for j'< $. [1, N],

[ b(0)me)\2d0 = -̂ - f Reb(d)\4>(0)\2d9,
o 2n Jo

where the latter equality follows since BN(<&) is real-valued. Since Reb = b >

0, this shows the result.

It follows, in particular, from Lemma 4.1 that if (4.2) holds and a>nj = bn-j,

then the quadrature formula qn in (4.1) is weakly positive. Further, if<wn; = &„_,,
for j = 1, . . . , n, but con0 = 0, then the quadrature rule is positive. Sufficient
conditions for (4.2) will follow from our next lemma:

LEMMA 4.2. Assume that the sequence {aj}^ € l\ is positive and convex. Then

1 °°
-a0 + ^ a, cos j6 > 0, V^ e R.

PROOF. See Zygmund [22].

Together, Lemmas 4.1 and 4.2 show the following, where we have replaced
the /i assumption by boundedness.
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LEMMA 4.3. Assume that the sequence {cij}°Z0 e /,» is positive and convex, and

let b0 = ao/2, bj = Oj ,for j > 1. Then

N n

^ ^ . ^ ^ " ^ O , V(<D' <D N )eR N , i V > l . (4.3)
n=l j=\

PROOF. For any p e (0, 1) we find easily that [ajPJ}Ji0 e l\ and is convex.
Therefore (4.3) holds with bj replaced by bjPj. The result now follows by
letting p —>• 1.

We shall now consider specific examples of quadrature formulas and discuss
their positivity. We shall assume first that the kernel fi is smooth for t > 0 and
satisfies

fi e C 2 (R + ) , and (-l)JfiU)(f) > 0 fort > 0, j =0,1,2.

(4.4)
As was mentioned in Section 1, this is sufficient for fi to be a positive definite
kernel if, in addition, fi e Li(R+). Similarly to the proof of Lemma 4.3, this
latter condition may be reduced to requiring fi integrable at t = 0. In fact,
&(r) = P{t)e~tl satisfies (4.4) for any e > 0, and & e L,(R+), so that (1.2)
holds with fi replaced by &, and hence also for fi, by letting e —> 0.

As our first example we consider the rectangle rule using the values of the
integrand at the right-hand end-points of the intervals (/)_j ,tj). This corresponds
to taking

= k} Pn-j&, with ft = fi{tj), (4.5)

so that (on0 = 0 and conj — kfin-j for j = 1, . . . , n.

LEMMA 4.4. Assume that fi € C([0, T]) and that (4.4) holds. Then the in-

tegration rule (4.5) is positive. Further, if fi € C'([0, T]), we have for the

corresponding global quadrature error defined in (3.4)

for tN < T." \ty,\\ds\,

PROOF. AS a result of (4.4) the sequence {ft }?i0 is positive, bounded, and convex.
The assumptions of Lemma 4.3 are therefore satisfied for ay = ft, and so, with
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b0 = /Jo/2, bj — ft for j > 1, we have

N N n 1 1 W

B (<t>") + y ' ^ ^Z?n_yQ-/<I>" J > —k2Po / (<t>n) > 0,
n = l y = l •* n = l

for all <1>.
The quadrature error (3.3) satisfies

<Ck !

Jo
— [P(tn-s)<p(s)]
as

ds, (4.6)

for each x € fi, and therefore an application of Minkowski's inequality yields

f" f /"" 1
lkn(#OII 5 CJt I (||o?|| + 11̂ ,11) ds < Ck{ \\<p(0)\\ + I \\<p,\\ ds \,

Jo [. Jo )

which implies the required estimate by summation over n.

Combination of Theorem 3.1 and Lemma 4.4 thus shows that for the backward
Euler approximation, combined with the present quadrature formula, we have,
for tN < T,

\\UN - u(tN)\\ < Chrl\\v\\r + J N \\u,\\rds\

We recall from Section 3 that a weakly-positive quadrature rule has to be
implicit in the sense that conn > 0 for n > 1. In particular, therefore, the
rectangle rule using the values of the functions at the left- rather than the right-
hand end-points of the intervals (r,-_i, tj) does not satisfy the required weak
positivity.

Next, we consider the trapezoidal rule for approximating the integral, i.e.,

+ X>"-;*' + \ ^ \ with ^ = PM- (4-7)

LEMMA 4.5. Assume 0 G C([0, T]) and that (4.4) holds. Then the integration

rule (4.7) is co0-positive with co0 = k2p0/4. Further, provided f$ e C2([0, T]),

we have

r \wu\\dsV
Jo J

< CTkz\ ||?(0)|| + ||^,(0)|| + / \W,,\\ds\, for tN < T.
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PROOF. Setting b0 = po/2 and bj = ft, for j > 0, (4.7) may be written

J=i

We therefore obtain

{
N n 1 " 1

G
y \ b — • Q^ &n ~\~ z b 0 C|)n \

/ ' / J
 n~J *} / , n I

n=\ j=\

or, after a simple rearrangement,

H j 1 b j \ (4-8)

Since fi satisfies (4.4), application of Lemma 4.3 shows that the two sums inside
the brackets in (4.8) are nonnegative (the first after a simple shift of the indices).
Hence we conclude that qn is &)0-positive with <y0 = k2b0/2 = k2f30/4.

The quadrature error is handled by repeating the argument used for the cor-
responding estimate in Lemma 4.4, except that now, instead of (4.6), we have

ck
Jo

T" [̂ ('- - ds.

For the second-order backward-differencing scheme (3.7), using the trape-
zoidal rule (4.7), Lemma 4.5 and Theorem 3.2 thus yield an error estimate which
is O (hr + k2) if vh = Rh v, and which for a general vh satisfying (3.11) contains
an additional term of order O(khr~l).

A perhaps more obvious way than the backward-differencing scheme (3.7)
discussed above to attain second-order accuracy for the integro-differential equa-
tion would be to consider 3, U" as a second-order approximation to u, (tn_i), as in
the Crank-Nicolson scheme for the heat equation, and then replace the integral
by an approximation to second order of

I
or nr

„_. -s)Au(s)ds

's+ / /3(rn_, - 5 ) A M ( * ) ^
0 J
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However, such a procedure does not necessarily yield the positivity required in
our above framework. In order to demonstrate this, we consider the quadrature
formula obtained by approximation of the integrals over [0, tn_\] and [0, tn] by
means of the trapezoidal rule, i.e.,

2 | 2

and, for n > 2,

n - l

This gn is not weakly positive. In fact, weak positivity would require, in
particular, QT.{®) to be nonnegative for all <J> = (0, O1, 4>2), or, equivalently,
the matrix

O l i o O

P\ + 5P0 Po

to be positive semidefinite. But, since fi\ = f)(k) —>• )3(0) = )3o as k —> 0, this
is impossible for small k as the limiting matrix is indefinite.

In spite of this, the scheme just discussed will yield a viable method of order
O{hr + k2), as will follow from the following stability estimate. Its proof
suggests a modification of the definition of positivity of the quadrature rule for
the present case. We note that the scheme under consideration may be written
as

(d,Un, X) + fc-1/2 (A(U, x)) = ifn-Mi, X), for n > 1, (4.9)

U° = vh,

with /B_1/2 = f(tn_i/2) and

* ) / 2 ,
f o r n > 2 , ^ " l u ;
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where qn now denotes the trapezoidal rule (4.7).

LEMMA 4.6. If P e C[0, T] and (4.4) holds, then the solution of the Crank-

Nicolson scheme defined by (4.7), (4.9) and (4.10) satisfies

wN\\<\\Vk\\ + \pm

PROOF. Let 0" = (Un + Un~l)/2 for n > 1, so that with x = 0" in (4.9) we
obtain

\\U"\\2 - \\U"-1 \\2 + 2k (qn-U2(AhU), 0") = 2A;(/n_,/2, U"). (4.11)

Put U° = 0, and observe that

so

N r ,2N

),Un)=2

n=\ Jii n=\

By Lemma 4.5, the trapezoidal rule qn is weakly positive, and hence after
summing over n = 1 , . . . , N in (4.11), we arrive at

n=\ n=l

Since (4.4) implies

N N

(Pn-\ — Pn) = A) "" PN £ A)>
n=l n=l

if we choose M so that \\UM\\ = maxo<n<w | |i/"| |, then

\\UM\\2 < (||t/°|| + i^2 | |^f/° | | +2^f]||/n_1/2||}||[/M||,

and the result follows at once.
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Applying this stability estimate to 6" = U" — Rhu(tn), as in the proof of
Theorem 3.1, we see that if /J is smooth and if vh = Rhv, then

N

||0*|| < 2* £ || T" ||,

where pn = Rhu(tn) - u{tn) and

r" = {«,(*») - ftufo,)} + { I 2 pU-1/2 -s)Au(s)ds -qn_l/2(Au) 1 - ftp".

From this, we easily conclude \\U" - u(tn)\\ = O(hr + it2), as stated. We shall
not pursue this line of investigation in further detail.

One of the difficulties encountered in the numerical solution of integro-
differential equations such as (1.1) by time stepping is that the solution has to
be stored at back time levels t} < tn in order for the succesive integrals to be
approximated. For instance, the difference equation in (1.6) may be written as

n - l

(l+kconnAh)U
n+kY/<»njAhU

J = U"~l+kPhfn, for n > 1, (4.12)

where Ah is the positive-definite, discrete elliptic operator defined in (2.9), and
Ph is the L2-projection onto Sh. This difficulty does not occur for standard
differential equations, which are local in character and where the solution only
has to be retained at a small fixed number of levels. In [17] this problem was
addressed and it was proposed, in a similar situation, that the quadrature formula
employed be made sparse. We shall now show that such quadrature schemes
cannot be expected to be weakly positive.

For this purpose, let us consider a quadrature scheme which uses, as far as
possible, the larger time step it! = mk, where m = [k~l/2]. With / = /(«) the
largest integer such that lkt <nk = tn we write [0, tn] = [0, lkx] U [lkx,nk] and
use the trapezoidal rule on [0, lk{\, and the rectangle rule with the right-hand
end-point values for [lk\, nk], i.e.,

+ k) + ... + <p(nk)].

This is a slight modification of a method studied in [17] in that the right-hand
rather than the left-hand endpoint values are used—this in order to make the
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method more implicit and thus more stable. This quadrature rule is of order
O(k\ + k\k) = O(k), and thus matches the order of accuracy of the backward
Euler discretisation of the time derivative.

In order to see that this quadrature rule is not weakly positive, let TV =
1 (modm). Applying the rule to ̂ (rn— s)<p(s) we find that the symmetric matrix
corresponding to the quadratic form QN(<J>),i.e.,Re(coNj) = ((coNj) + (cojN))/2,

would contain the 2 x 2 principal submatrix, corresponding to (<PN~], <t>N),

o( \
l P o \A/A 4/m )•

= ( 2 0,/ft
2*A> ) 2 l P o \A/A) 4/m

Since P\ —> f}0 and m —> oo as k -> 0, this matrix is indefinite for small £,
which shows our claim.

We remark that when the kernel has the simple form

M

Pit) = ^ P Yie~v''y w i m Yh vi > 0, and M small,

then the storage problem can be handled easily. For example, in the case of
(4.12) corresponding to the right-hand rectangle rule,

n-\ M n-1

J2VnjAhU
j =kJ2Yie~v"aS", where 5," = ^ev">AhUJ.

j=\ • 1=1 y = l

The Uj now only enter in the subsequent calculations through the Sf and may
therefore be discarded once the S" have been updated.

We now turn to the case of a kernel Pit) that is weakly singular at t = 0.
In this case the integrand is singular even when the solution is smooth, and we
shall therefore use product integration.

We shall first consider the quadrature rule obtained by approximating <p in
the integrand by a piecewise constant function (pit) taking the value (p(tj) in
(tj-\, tj], and thus use

f (4.13)
7 = 1 Jtj-i j=\

where

[J+] P(s)ds. (4.14)

For fi convex on R+ we shall show the following:

https://doi.org/10.1017/S0334270000007268 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007268


[27] Numerical solution of an evolution equation 49

LEMMA 4.7. Assume that P € Li(0, T) and satisfies (4.4). Then the integration

rule (4.13), (4.14) is positive and we have

< CTk / \\<p, || ds, for tN < T.
J

PROOF. The sequence [K^JLQ is convex since, as a result of the convexity of
Pit),

'+2 - 2KJ+I +KJ= I {P(s + 2k) -2p{s + k) + P(s)} ds > 0.
J

The Kj are also bounded, so we conclude from Lemma 4.3, as in the case of a
smooth ft, that the quadrature formula is positive.

Next, by the definition of the Kj we have

fen(fp) = J2 f P^ ~ s) Wifj) - (pis)) ds,
j= A

so that

K(fP)\ < Yl f P^"-') \ Wi0)\d0ds < [

Applying Minkowski's inequality, summing over n and then reversing the order
of summation, we arrive at

n=\ j=\ I n=j

whence the result, because

v \ .= ry+i

n=j JO

Pis)ds<\\p\\Ll(Q,T), for tN<T.

For the special case P{t) = r~1 / 2 /F(l/2) = (nt)~l/2, using an argument
involving generating functions, Sanz-Serna [16] has proposed the quadrature
rule

n-y, where Yj = <-l)'(~V2) = ^ T P 1 '
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and proved an error estimate for the homogeneous equation by spectral methods.
His analysis has recently been carried further by Lopez-Marcos [11] using
arguments of the type of the present paper. We shall demonstrate that this rule
fits into the present framework.

It is easy to see that {yj}JL0 is convex and that yy ->• 0 as j -> oo, so
that Lemma 4.3 applies and hence the quadrature formula is positive. In order
to show that it is first-order accurate and to derive an estimate for the global
quadrature error, we note that since this has already been shown for our scheme
(4.13), (4.14), it suffices to study the difference between the two quadrature
formulas, i.e.,

dn{<p) = k1'2 J^ Sn-Mtj), where Sj = Yj - k~i/2Kj.
j=i

We shall show that, uniformly in Q,

\dn(fP)\ < Ck\t^2\cp(O)\ + J2C(-j [ \<P'(s)\ds\, for n > 1, (4.15)
I j=i Jtj-, )

from which it follows easily that

J" \ for tn < T.J" \\<p,\\ds\,

In conjunction with Theorem 3.1 and given sufficient regularity, this yields an
O(hr + k) error estimate, which slightly improves the result in [16].

It remains to show (4.15). For this purpose, we set a, = X!/=o '̂> f° r J — 0.
with cr_i = 0 , and note that by summation by parts,

The desired result therefore at once follows from \on\ < C(n + l)~ l / 2 , for n > 0.
To prove this bound for on we note that by (4.14)

k'1'2 f > y = *~m f'+' fi(s)ds = (/br)-1'2 f'"+>
 S-

X'2ds = 2n-l/2(n + I)1'2.
j=o Jo Jo

Further, using, as in [16], a known identity for binomial coefficients and Stirling's
formula, we have

J2 Yj = 2(n + l)yn+1 = 2(n + l)1/2^-1/2 + O ((n + 1)'1/2) .
j=O
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Together these estimates show

n
/->/•_ , i \ —1/2

< C (n -\- 1) ,
J=0 7=0

which completes the proof.
We shall complete this section by exhibiting a second-order quadrature rule

which is weakly positive for any positive-definite kernel p\ not just for kernels
satisfying (4.4). To do so, we replace <p in the integrand by its continuous
piecewise linear interpolant, i.e., we set

j j , fi(tn - S) {(tj - S)<p(tj-i) + (S - tj.tMtj)} ds

j ( t j ) ,

(4.16)
where, in terms of the hat function h{t) = max(l — \t\, 0),

(4.17)
/•min(*,rn.;)

nj= P(tn-j-
J — min(k,tj)

LEMMA 4.8. Assume that p" e Li(0, T) is a positive-definite kernel. Then the

integration rule (4.16) is weakly positive, and satisfies

/

k pin

lift || ds + Ck2 \ lift, || ds, for tN < T.
Jk

PROOF. Recalling the notation ip(t) for the piecewise constant function taking
the value <&j = cp(tj) in (f,-_i, tj], we may write

0, in (0,tN),

where Xj is the characteristic function of (*)_i, tj]. Writing

/ " f P(t - s)<p(s)<p(t)dsdt =
o Jo

a simple calculation shows that, with icnj defined in (4.17),

/

»„ /•min(ry,r)

/ p{t-s)dsdt = kknj,

https://doi.org/10.1017/S0334270000007268 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007268


52 W. McLean and V. Thomee [30]

and thus, since fi is positive definite,

/

IN ft

/ p(t - s)$(s) ds <p(0 dt > 0, when <J>° = 0.
Jo

We now consider the accuracy and global quadrature error of qn. Using
Newton's form of the remainder for linear interpolation, we find that

" ^ r'j

tn(<p) = Z2 W" ~ s^s ~ h-Mh - s)<p[tj-utj,s]ds.
j=\ J'j-i

In the first term, we use the estimate

\s<p[0, k, s]\ = \cp[s, k] - (p[0, k]\<2 I \(p'(y)\ dy, for 0 < s < k,

Jo

and in the remaining terms we apply, with Kj the Peano kernel for the divided
difference,

\<p[tj-utj,s]\= [' Kj(s,y)<p"(y)dy

/ \cp"(y)\ dy, for f;_, < s < tj.

Hence, with /Xj — J'i+i \fi(s)\ ds, we have

\€n(.v)\ < 2klin.l f \<p'(y)\dy + k2J2vn-j [' \<p"(y)\dy,
J0 j=2 Jtj-i

from which our statement follows as in the proof of Lemma 4.7.

5. Regularity of solutions

In this section we shall present some results concerning the regularity of solu-
tions of our integro-differential equations. The purpose is to exhibit conditions
on the data which are sufficient for our error estimates in Section 3 to be applic-
able. We first define our solution concept by means of a representation formula
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in terms of data, and show the existence of a unique such solution, requiring only
that /3 e Li,ioc(R+). We then show regularity results under various assumptions
on /3 and the data. In the latter part of the section we study the particular weakly
singular case P{t) = ta~l/r(a),0 < a < 1. For the case of a smooth kernel /3,
any regularity desired can be guaranteed under the appropriate assumptions on
data, whereas in the weakly singular case the regularity is limited.

Letting * denote Laplace convolution, so that

(f*g)(t)= / f(t-s)g(s)ds, t>0,
Jo

and using a dash to denote differentiation with respect to time, the initial-value
problem (1.1) may be written as

u' + P * Au = f, fort> 0, M ( 0 ) = v, (5.1)

where we also keep in mind that u(t) = 0 on dQ, for all / > 0. We begin by using
a spectral decomposition to derive a formal representation of the solution of this
problem. Letting {A,}?!, and [<Pj}]ti denote the eigenvalues and normalised
eigenfunctions of A, we find for the Fourier coefficients Uj(t) = (u(t), tpj) of
the solution that

u'j + kjP*Uj = fj, fort>0, Uj(O) = Vj, (5.2)

where fj = fj(t) and Vj are the Fourier coefficients of / and v. For X > 0,
suppose that Wk satisfies

W'x + Xp * Wk = 0, for t > 0, Wx(0) = 1. (5.3)

It is then easy to see that a solution of (5.2) is provided by

Thus, a formal solution of (5.1) is given by

M(0 = E(t)v + I E(t- s)f(s)ds, for t > 0, (5.4)
Jo

where the linear operator E(t) is defined by

(5.5)
7 = 1

https://doi.org/10.1017/S0334270000007268 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007268


54 W. McLean and V. Thomee [32]

Note that each tpj vanishes on 3£2, so the function u defined by (5.4) satisfies
the boundary conditions, at least formally.

We now show that (5.3) does indeed have a solution such that the operator
E(t) is uniformly bounded in

THEOREM 5.1. Assume that 0 e L | ( 0 , T) for each T > 0 and that 0 is positive

definite. Then, for each k > 0, the initial value problem (5.3) has a unique

solution in C'(R+), and

U fart>0.

Further, the sum (5.5) defines a bounded mapping in L2(£2) with

\\E(t)v\\<\\v\\, fort>0 andveLiW). (5.6)

Moreover, for each v e L2(£2), the mapping t \-t E(t)v is continuous from R+
into

PROOF. With Pit) = /0' f)(s) ds, (5.3) is equivalent to the Volterra equation

Wk(tt) + k I fi(t- s)Wk(s)ds = 1, for t > 0,
./o

which has a unique solution in C(R+) because /J is continuous on R+. To
obtain the estimate for W^(t), we multiply both sides of (5.3) by 2Wk, then
integrate over [0, T] and use the positive definiteness of fi to conclude that
Wk(T)2 - Wx(0)2 < 0. Parseval's relation now implies (5.6) and also that, for
a fixed v e L2(Sl), the sum (5.5) is continuous for / e R+.

For v € L2(Q) and / e C ([0, T]\ L2(Q)), and for each T > 0, the repres-
entation formula (5.4) defines a function u e C ([0, T]; L2(£2)), which we shall
thus consider our solution of (5.1), and for which, by (5.6),

< IMI + / \\f(s)\\ds forO<t<T,
Jo

cf. (1.4). We proceed to discuss conditions on the data v and / for this solution to
possess various regularity properties. In particular, these will contain conditions
for the solution to belong to C ([0, T], L2(£2)) D C ([0, T], D(A)), and thus to
be a genuine solution of (5.1) on [0, T].
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Given r € R, let Hr(Q) denote the subspace of L2(£i) consisting of those
functions v for which the norm

(
x 1/2

l>;0',¥>,-)2) (5-7)

( oo

j=\

is finite. It can be shown that for r > 0 (and r — 1/2 not an integer) v e W if
and only if v € # r(f t ) and Aj'v = 0 on 9ft for all integers j with 0 < j < r /2.
Moreover, the norm (5.7) is then equivalent to the usual norm in Hr(Q,), which
we have been writing simply as ||u||r (cf. [8, 19]).

In discussing the regularity of u, it is convenient to deal separately with each
of the two terms in (5.4). We consider first the homogeneous equation and
denote by [y] the largest integer < y.

THEOREM 5.2. Letm>0 and suppose £ (p) e L,(O, T) for some T > 0, with

p = max{0, m — 1}. Then

\E{m\t)v\r < C|w|r+2I0B+1)/2], for 0 < t < T, r > 0,

where C depends on /?, T, m, and X\.

PROOF. In view of (5.5) it suffices to show that Wx e Cm ([0, T]) and

\W[m\t)\ < CXl(m+l)/2] for 0 < t < T and X > A.,.

In the process of doing so we also show that

IW™ (0) | < CXtm/2], for X > ki.

These estimates will be shown by induction on m. Since they are clear for
m = 0 by Theorem 5.1, we now assume m > 1 and that they have been shown
up to m — 1. Differentiating (5.3) m — 1 times we have

m-2

W[m) +XP* Wlm-l) = -X £ W^QDP0*-2-0 = fcm_,(X, t). (5.8)
1=0

By our induction hypothesis, we see first that W(m) e C ([0, T]) and

|W,{m)(0)| = \bm-i(X, 0)| < CA.1+[(m-2)/2] = CX[m/2\ for X > X,.
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Replacing m by m + 1 in (5.8) gives an equation of the form (5.2) for Wk
m), and

therefore

ft

Wlm\t) = Wk(t)W[m)(0) + / Wk(t - s)bm{\, s) ds.
Jo

It follows that

m - l

\Wlm\t)\ < |Wx
(m)(0)| + Ck^2 \W,

1=0

and the induction goes through.

We now turn to the nonhomogeneous equation with zero initial data, and
begin to consider the regularity in time.

THEOREM 5.3. Letm > OandassumeP{p)€ L,(0, T), where p = max{0, m-2).

Then, ifv = 0, we have for the solution (5.4)

m—\
((B)(OII < C J^ \f('\I«((B)(OII < C J^ \f('\0)\mm-im + / ||/(m)(s)|| ds, for t e [0, T].

i=o Jo

PROOF. Putting v — 0 in (5.4) and differentiating m times, we get

E(t- s)fm)(s) ds, (5.9)

/=o

from which the result follows by Theorem 5.2.

In order to discuss regularity in space, it is convenient to introduce the notation

I I / IU = ll/llc-((o.n;i#'(Q)) = max max | | / ( / )(0ll r
0<l<m 0</<r

for the Cm-norm of a function / : [0, T] -*• Hr(Q), where, for brevity, we
suppress the dependence on T in the notation.
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THEOREM 5.4. Let m > 0 and r > 1 be integers and assume p(m+2r~^ e

Li(0, T). Ifv = 0, then for the solution of (5.1) we have

(
m+2r-2

J2 l/W(0)l2[0»+2r-l)/2]
/=0

/=1

PROOF. We differentiate (5.1) to obtain

iu + p'*Au = f'-u", (5.10)

and think of this as a Volterra equation for Au. Since p is positive definite it is
easy to see that P(0) > 0 (unless P = 0). Let y be the resolvent convolution
kernel for (5.10), satisfying

P(0)y + P'*y =P', for / € [0, T].

Then y(m+2r-2> g Li(0, T) and we have

p(0)Au = ( / ' - u") - y * (/ ' - u").

Since u = 0 on 3fl, we conclude from elliptic regularity theory [9] that, for

0 < / < r - l ,

ll«l|m+2/,2r-2/ < C\\f -u"\\m+2l,2r-2l-2

< C(||/||m+2M-l,2r-2/-2+ "M Wm+2l+2,2r-2l-2),

whence, by repeated application,

2l-l.2r-2l + ll«IU+2r,0 )•

The proof is now completed by using Theorem 5.3 to bound the last term.

ML.2, < (
1=

As an example, assume fi e C1 ([0, 71]) and consider the backward Euler
method (3.2) using the right-hand rectangle rule (4.5). Theorem 3.1 (with
r = 2) and Lemma 4.4 together imply the error estimate

|w||2 + /"" (||«,,|| + ||u,||2) ds\,\\U" - u(tn)\\ < CQi2 + *){||w||2 + / (||«,,|| + ||u,||2) ds\, for tn < T,

(5.11)
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and, provided /?" e Li(0, T), our regularity results in Theorems 5.2-5.4 give

T

(\\ut,\\ + \\u,\\2) ds
0 i-o+L | | / /" ( 5 ) | | r f4

Of course, the latter estimate is meaningful only if the right-hand side is finite,
and this requires the validity of the conditions

v = Av = / (0) = / ' (0) = 0 on 3fi, (5.12)

partly caused by our considering the two terms in (5.4) separately.
For the remainder of this section, in order to consider an example of a weakly-

singular kernel, we shall consider in some detail the kernel fi(t) — coa(t), with
0 < a < 1, where

a>p(t) = tfi-l/F(p), for t > 0, p > 0. (5.13)

The kernel a>a,0 < a < 1, is positive definite because it satisfies (4.4).
However, since a>'a £ Li(0, T), Theorems 5.2 and 5.3 apply only when m = \,

while Theorem 5.4 does not apply at all. We shall see that, even for the special
case of the homogeneous equation with a fixed eigenfunction <pj as initial data,
we have u (m)(0 ~ cmta+1~m for small t, so that, in particular, u,, is weakly
singular and u,,, £ Li(0, T).

The convolution operator / i-* cop * / , with cop defined in (5.13), is known
as the Riemann-Liouville fractional integral of order p (see [1, page 393] for a
detailed discussion). By computing the Laplace transform

-"tp-'dt=o-», -n/2<arga <n/2, (5.14)cop{a) ^ l e t d t o ,
1 \P) Jo

we see at once that

coPl *o}fn— o)p,+P2, for pi > 0 and p2 > 0, (5.15)

a property we will now use to obtain an explicit representation for W^.

LEMMA 5.1. In the case of the weakly singular kernel P = coa, the solution

of (53) is given by

Wx(t) = W (Xi/(l+a)t) , for t>0 and A > 0, (5.16)
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where the junction W is defined by the series

tn(l+a)

)—<->«)> M t > o.

(5.17)

PROOF. Since a>\+p = u>p for p > 0, and u>\ = 1, it follows using (5.15) that

= -p * W,
n=\ n=0

whence, since W(0) = 1, W is the solution of (5.3) in the special case A. = 1.
Therefore, the function defined by (5.16) satisfies Wk(0) = 1 and, with v =

W'x(t) = vW'(vt) = -v(P * W)(vt) = -v / P(vt - s)W(s) ds

Jo

= -v2 I p[v(t-s)]W(vs)ds = -vl+a I P(t-s)Wx(s)ds
Jo Jo

= -HP * Wk)(t),

as claimed.

We observe in passing that W(t) = e ' i n the limiting case a = 0, and that
W{t) = cos t in the other limiting case a = 1.

In particular, Lemma 5.1 shows that W{m)(t) ~ cmta+i~m for small t, which
implies our earlier statement about the behaviour of a solution of the homogen-
eous equation corresponding to a simple initial Fourier mode. In order to derive
more complete error estimates we shall have use also for information concerning
the behaviour of W(t) for large t.

LEMMA 5.2. ForO < a < 1, the function W defined in (5.17) has the asymptotic

expansion

1 °°
W(t) Vsin(7T/ja) r[n(a + l)]rn(or+1), as t ^ oo.

IT ' — 'It
n=
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PROOF. Using (5.14) to take Laplace transforms in (5.3) with X — 1, we find

Therefore, the inversion formula yields the integral representation

1 f ea'aa

W(t) = — / -da, fort>0,(o>0. (5.18)

For any complex number z, let (—oo, z] denote the set of complex numbers a
statisfying —oo < Re(cr) < Re(z) and Im(cr) = Im(z). Next, for e > 0,
let C((z) denote the contour formed by the lines (—oo, z ± ie] and the semi-
circle a = z + ee'6 {—it/2 < 9 < n/2), oriented so that Ce(z) passes around z

counterclockwise. The integrand in (5.18) has branch points at a = 0 and
o = e

±i"Ka+i)t so we cut the complex plane along the negative real axis (—oo, 0]
and along the lines (—oo, e±"f/<a+1)]) an(j w rite

1 f ea'aa 1

J)=w 1 + oa+x 2ni

where
1 f e"'aa

E±(t) = / da.
2ni Jc,(t±*/»+») l + a a + 1

Since Re ^±i7r/(«+|)^ < Q̂  j t j s c\ear that E±(t) is exponentially small as t —> oo,

and since

we see that

^ r / - T ^ T da = > ; ̂ ff- / fawwr-i do + £ j ( f ( O t

where

2TTI JCAO) 1 + cr°
EN(t) = ' . / rfa, for t > 0.

2 J 1 + °+l
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Finally,

ea'ain+l)(a+i)'lda
lizi

= - - sin[7r(n + l)o] T[(n + l)(a + 1)] r ( n

and

1 f°° e-*'x<.N+2Ka+1)-1
i /-o

,(0l < - f

giving the asymptotic expansion as claimed.

Using the functional identity r(z)F(l — z) = n/ sin(7rz), we can rewrite the
expansion in the form

W{t) ~ - V — — as t -*• oo,
^ r [ l n ( o + l)]

which compares with (5.17).
We are now ready to state and prove our regularity results for (5.1) with the

weakly singular kernel coa. We begin with the homogeneous equation.

THEOREM 5.5. Let fi = coa, with 0 < a < 1, and let r e R. Then

\E(t)v\r+2ll < Cr (o+1) / t |u| r f fort > OandO < fi < 1,

with C depending on a. When m > 1 we have

\E(m){t)v\r+2ll < Cr(a+X)ll-m\v\r, for t > 0 and - 1 < /x < 1, (5.19)

where C depends on a and m.

PROOF. By (5.17) and Lemma 5.2 we have

\W{t)\ < C m i n ( l , r ( o + I ) ) , f o r / > 0 ,

and hence, using (5.16),

\WX(01 < Cr^+^k-11, f o r O < / i < l
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which shows the first estimate of the theorem. To show the second we find
similarly that since W(m)(0 = 0(/"+1-m)forsmallf,and W(m)(f) = 0( / -"" ' -m )
for large t, we have

, for \fi\<l,

and hence by (5.16)

\W[m\t)\ < c r ( o + 1 " i - m A- ' \ for \ti\ < 1 and X > 0.

The solution of the homogeneous equation is thus smoother than the initial
data by two derivatives, for t > 0, with a bound which deteriorates faster
as t —> 0 the weaker the singularity. As a -> 0 we recognise formally the
smoothing property of the parabolic equation. We also note that although the
smoothing with respect to x is limited to two derivatives, the solution is infinitely
differentiable with respect to time. Here, the behaviour of the bound in (5.19)
may be chosen less singular than t ~m by sacrificing some of the spatial regularity.
This is useful in the following result which concerns the nonhomogeneous
equation with vanishing initial data. Here we concentrate on results which are
of interest for our numerical error estimates.

THEOREM 5.6. Let P = coa, with 0 < a < 1, and let m > 1 and T > 0. If
I £t/1 5 1/orO < I < m — 2, then we have for the solution of (5.1), with v = 0,

m-2

;=o

+||/o-1)(0)|| + f ||/c»)|| ds, t e (0, n
./o

Further, if 0 < e < 1,

J' \\f"\\ds\

and

\\u'(t)\\2 < c( | / (0) | 2 + ^(a+1)-a|/'(0)|2e + ||/"(0)|| + j f ||/'"|

fort€(0,T].
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PROOF. The estimate for | |M ("°(0 || follows at once from (5.9) using Theorem 5.5.

To estimate ||«(0ll2» w e write (5.1) as

coa * Au = f — « ' ,

and view this as an Abel integral equation for AM. By (5.15),

Au = (o>, * Au)1 = [*>,_„ * ( / - «')]' = <"i-« * ( / ' - "") , (5.20)

where in the last step we used the fact that / (0) — M'(0) = (coa * Aw)(0) = 0.
Of course, (5.20) is just the well-known Abel inversion formula. Thus, using
elliptic regularity, we have

IKOIb < C| |AM(/) | | <C f (t- s)-a\\f'(s) - u"(s)\\ds.
Jo

We have seen already that

) ' f \\f"\\ds, (5.21)f
Jo

so the bound for ||«(0ll2 now follows using (5.15).
Next, we differentiate (5.20) to obtain

Au' = co,_a * ( / " - « " ' ) ,

noting that / ' (0)-w"(0) = (wo * A«)'(0) = 0 because (o>a* Au)' = Au(0)a)a

coa* Au' and u(0) = v = 0. We know already that

so the bound for ||M'(0II2 follows by a simple calculation.

Once again, consider as an example the regularity requirements for applying
Theorem 3.1 with r = 2, this time for the case of the singular kernel coa, 0 <
a < 1, and using the piecewise-constant, product-integration rule (4.10), (4.11).
The latter is first-order accurate by Lemma 4.7, and we obtain the same error
estimate (5.11) as before in the case of a smooth kernel. By Theorem 5.5,

\\E'\t)v\\ < Cta~l\v\2, \\E\t)v\\2 <
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and combining these estimates with (5.21) and the last estimate of Theorem 5.6,
we find that

IMI2+ I (H«,,ll + l|K,ll2)<fr
JO

< c\\v\2+2€ + |/(0)|2 + |/'(0)|26 + \\f"(O)\\+j \\f'"(s)\\ds\

for 0 < € < 1. If e < 1/4 then the boundary conditions which need to be
satisfied for the right-hand side to be finite are that v = / (0) = 0 on 3 £2, which
may be compared with the more restrictive conditions (5.12) found earlier for
the case when fi is smooth.

We close with a remark on the application of Theorem 3.2, concerning second-
order methods, in the case of the singular kernel coa, 0 < a < 1, and using the
piecewise-linear, product-integration rule (4.14). In view of Lemma 4.7, we
have the error estimate

1,2 f\\Un-u(tn)\\<Ch2\\\v\\2 + j ^ \\ut\\2ds

+Ck[ (||H,,|| + \\u,h) ds + Ck2l (||«H/|| + ||w,,||2) ds,

provided vh = Rhv. For simplicity, we restrict ourselves to the homogenous
equation, and obtain from Theorem 5.5, with r — 2(1 + 2a)/( l + a),

ll«»ll + ll«,ll2<C/"-1 |i;|r and ||M,M|| + ||«,,||2 < Cta'2\v\r,

which means that

\\U"-u(tn)\\ <C(h2 + k]+a)\v\r.

Thus, even though the regularity of the solution is not high enough to take
full advantage of the second-order method, an improvement over a first-order
method is manifest, more so the less singular the kernel.

6. Numerical experiments

In this section, we describe the results of some computations using the first-
order accurate, backward Euler method (3.2), and the second-order accurate
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scheme (3.7), together with appropriate quadrature rules. Some results for the
Crank-Nicolson scheme (4.9) are also given. For simplicity, we deal with only
one space dimension, choosing Q = (0, 1) and A = —(d/dxj1. Thus, the
eigenvalues and (normalised) eigenfunctions of A are

Xj = {jit)2 and tPj(.x) — V2 sin(jnx) for j > 1.

The discretisation in space is effected using piecewise-linear finite elements on
a uniform mesh with m subintervals, so that

r = 2, h = l/m,

in the notation of Section 2. We remark that the Ritz projection Rh, defined
by (2.3), is particularly simple in our case: Rhu is just the piecewise-linear
interpolantto w, i.e.,

Rhu(xr) = u(xr), for r — 0 , . . . , m, where xr — rh.

This follows at once from the fact that

/

I m

u'(x)X'(x)dx = Y)[u(Xr) ~ «<(*,_,)][*(*,) - X(Xr-l)l
whenever x is piecewise-linear.

The numerical methods were applied to the following two problems.

PROBLEM 1. Let fl be the smooth kernel

= e~2', for t > 0.

Since fi' = —2fi, it is easy to see that the initial-value problem (5.3) is equivalent
to

W[ + 2W[ + XWk = 0, f o r r > 0 ,

Wk(0) = \, W{(0)=0,

which has the solution

Wx(t) = e-'[cos(fxt) + At"1 sin(ixt)],

where fx = y/X — 1. As the initial data and inhomogeneous term, we choose
simply

v(x) = sin(7rjc), f(t, x) = sin(2;r;c).
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By (5.4), the exact solution of (1.1) is

u(t, x) = e~' [cos(fjLit) + ju,j~' sin()Lti/)] sin(7r;t)

+ {2 - e" [2cos(fx2t) - (fi2 - /n-')sin(/i2O]} sin(2;rx),

(6.1)

where /xi = y/n2 — 1 and (M2 = \/4iz2 — 1.

PROBLEM 2. We choose the weakly-singular kernel (5.12) with a = 1/2, i.e.,

P(t) = (ntYm, for t > 0. (6.2)

By (5.16) and (5.17),

so, with v(x) = sin(7rjc) and f(t, x) = sin(7r;c), the exact solution is

We used this series representation when computing the errors in our numerical
solutions. Roundoff was not a serious problem because we only considered
0 < t < 2. (For large?, the series in (6.3) are subject to catastrophic cancellation,
in much the same way as occurs with the Taylor series of e~'.)

Some computed values of the error \\Un — u(tn)\\ are set out in Tables 1-8,
with the numbers written in Fortran E-format. We used a composite four-
point Gauss-Legendre rule to evaluate the L2-norms, an approximation which
is accurate to O(/i4) if u is a smooth function of x. The same quadrature
formula was used to evaluate the L2 inner products (/„, x), in (3.2) and (3.7),
and (/n-i/2, x)-> m (4-9), with x a piecewise-linear basis function.

For the approximate initial data vh, we chose in every case the piecewise-
linear interpolant to the exact initial data v. In view of our earlier remarks
concerning the Ritz projection, this meant that

(6.4)
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t =0.0

0.5

1.0

1.5

2.0

m = 4

.216E+0

.717E-1

.245E+0

.737E-1

.124E+0

8

.557E-1

.393E-1

.161E+0

.585E-1

.876E-1

16

.140E-1

.287E-1

.934E-1

.414E-1

.553E-1

32

.352E-2

.182E-1

.5O3E-1

.256E-1

.315E-1

64

.88OE-3

.103E-1

.261E-1

.145E-1

.169E-1

128

.220E-3

.551E-2

.133E-1

.777E-2

.879E-2

TABLE 1: Backward Euler method; Problem 1; k = h.

r = 0.0

0.5

1.0

1.5

2.0

m = 4

.216E+0

.271E+0

.636E-1

.551E-1

.612E-2

8

.557E-1

.173E+0

.248E-1

.467E-1

.350E-2

16

.140E-1

.104E+0

.779E-2

.314E-1

.550E-2

32

.352E-2

.590E-1

.171E-2

.185E-1

.472E-2

64

.880E-3

.319E-1

.541E-4

.101E-1

.310E-2

128

.220E-3

.167E-1

.280E-3

.529E-2

.179E-2

T A B L E 2 : B a c k w a r d E u l e r m e t h o d ; P r o b l e m 2;k = h .

Tables 1-4 list some results for the backward Euler method (3.2) applied to
Problems 1 and 2. For Problem 1, the integration rule qn was the right-hand
rectangle rule (4.5), whereas for Problem 2, the right-hand, piecewise-constant,
product-integration rule (4.10) was used, in order to handle the singular ker-
nel (6.2). From the error estimate (5.11) and the discussion following The-
orem 5.6, we see that for both problems,

\\Un-u(tn)\\ = 2

The results in Tables 1 and 2 arose from taking k = h, and as expected the
errors behave as O(m~l), except at t = 0 where we see simply the interpolation
error || vh — v || = O (m~2). In some cases, the error does not enter the asymptotic
regime until m is quite large, and there are irregularities in Table 2 because of
sign changes that occur in the pointwise errors around t = 1 and t = 2. Choosing
the much smaller time step k = h2 reduces the error to O{m~2) for all tn, as
confirmed in Tables 3 and 4.

/=0.0

0.5

1.0

1.5

2.0

m = 2

.763E+0

.174E+0

.248E+0

.972E-1

.131E+0

4

.216E+0

.817E-1

.864E-1

.570E-1

.669E-1

8

.557E-1

.236E-1

.256E-1

.208E-1

.202E-1

16

.140E-1

.612E-2

.690E-2

.593E-2

.541E-2

32

.352E-2

.153E-2

.177E-2

.153E-2

.136E-2

T A B L E 3 : B a c k w a r d E u l e r m e t h o d ; P r o b l e m l;k = h 2 .
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t =0.0

0.5

1.0

1.5

2.0

m = 2

.763E+O

.271E+0

.700E-1

.484E-1

.229E-1

4

.216E+0

.946E-1

.171E-1

.269E-1

.102E-1

8

.557E-1

.270E-1

.401E-2

.883E-2

.374E-2

16

.140E-1

.716E-2

.957E-3

.238E-2

.108E-2

32

.352E-2

.184E-2

.236E-3

.600E-3

.287E-3

TABLE 4: Backward Euler method; Problem 2; k = h2.

[46]

In Table 5 are listed the errors when the second-order, backward differencing
scheme (3.7) was used to solve Problem 1. In this case, qn was the trapezoidal
rule (4.7), which means, in view of (6.4) and the remark following Lemma 4.5,
that

\\U"-u(tn)\\ = O(h2 + k2),

so even with the time step k — h the error is O(m~2). For comparison, we also
solved Problem 1 using the Crank-Nicolson scheme (4.9), (4.10) with the same
time step k = h. The results are shown in Table 6, and indicate that the errors
are O(m~2).

t = 0.0

0.5

1.0

1.5

2.0

m = 4

.216E+0

.117E+0

.866E-1

.567E-1

.720E-1

8

.557E-1

.372E-1

.372E-1

.265E-1

.194E-1

16

.140E-1

.106E-1

.117E-1

.100E-1

.622E-2

32

.352E-2

.284E-2

.310E-2

.283E-2

.174E-2

64

.880E-3

.731E-3

.779E-3

.729E-3

.443E-3

TABLE 5: Second order scheme; Problem 1; k = h.

t =0.0

0.5

1.0

1.5

2.0

m = 4

.216E+0

.118E+0

.793E-1

.852E-1

.319E-1

8

.557E-1

.302E-1

.204E-1

.222E-1

.933E-2

16

.140E-1

.763E-2

.505E-2

.555E-2

.246E-2

32

.352E-2

.192E-2

.125E-2

.139E-2

.625E-3

64

.88OE-3

.482E-3

.312E-3

.348E-3

.157E-3

T A B L E 6 : C r a n k - N i c o l s o n s c h e m e ; P r o b l e m l ; k = h .

Finally, Problem 2 was solved using the second-order scheme (3.7), and the
resulting errors are given in Tables 7 and 8. We used the piecewise-linear,
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product-integration rule (4.14), so that by Theorem 3.2 and Lemma 4.8,

cf. the concluding remarks to Section 5. We first chose k = h, and as shown
in Table 7 the errors were consistent with the projected O(m~3/2) behaviour.
After this, we chose k such that \/k was the smallest even number for which
£3/2 < ^ a n (j -T/abie 8 accordingly shows errors of order O(m~2).

f =0.0

0.5

1.0

1.5

2.0

m — 4

.216E+0

.420E-1

.497E-1

.143E-1

.340E-1

8

.557E-1

.333E-1

.118E-1

.783E-2

.751E-2

16

.140E-1

.165E-1

.250E-2

.255E-2

.161E-2

32

.352E-2

.592E-2

.256E-3

.622E-3

.419E-3

64

.880E-3

.198E-2

.167E-3

.132E-3

.127E-3

T A B L E 7 : S e c o n d o r d e r s c h e m e ; P r o b l e m 2;k = h .

t =0.0

0.5

1.0

1.5

2.0

m = 4

.216E+0

.212E-1

.134E-1

.191E-1

.928E-2

8

.557E-1

.126E-1

.336E-2

.507E-2

.222E-2

16

.140E-1

.267E-2

.109E-2

.108E-2

.475E-3

32

.352E-2

.626E-3

.369E-3

.249E-3

.118E-3

64

.88OE-3

.140E-3

.119E-3

.633E-4

.316E-4

TABLE 8: Second order scheme; Problem 2; k?12 « h2.
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