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Abstract: Numerical methods form an important part of the pricing of financial derivatives where there is no closed 

form analytical formula. Black-Scholes equation is a well known partial differential equation in financial mathematics. 

In this paper, we have studied the numerical solutions of the Black-Scholes equation for European options (Call and 

Put) as well as American options with dividends. We have used different approximate to discretize the partial 

differential equation in space and explicit (Forward Euler’s), fully implicit with projected Successive Over-Relaxation 

(SOR) algorithm and Crank-Nicolson scheme for time stepping. We have implemented and tested the methods in 

MATLAB. Finally, some numerical results have been presented and the effects of dividend payments on option pricing 

have also been considered. 
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INTRODUCTION 

The famous Black-Scholes equation is an effective model 

for option pricing. It was named after the pioneers Black, 

Scholes and Merton who suggested it 1973
1,3

 and received 

in 1997 the Nobel Prize in Economics for their 

discovery
2
. Mathematically, it is a final value problem for 

a second order parabolic equation. A concise derivation of 

the Black-Scholes equation can be found in
5
. 

Black and Scholes (1973) proposed a valuation model for 

an European option, a contract that allows the holder of 

the option to exercise the right to buy or sell stocks at the 

expiration date. Unlike European options, where the 

payoff is determined by the price of the underlying asset 

at the exercise date, another primary type of options 

called American options give the holder the right to early 

exercise the options at any time before the expiration date. 

The American option valuation problem can be viewed as 

a free-boundary problem, that is, there exists an unknown 

boundary dependent on time, that sets the line between 

early exercising and holding the option. Since an 

American option offers the holder greater rights than an 

European option, it usually has a larger value. The explicit 

formula for European options no longer works for 

American options. Our approach to obtain the result of the 

American option valuation problem is to rewrite the 

problem in a linear complementarity form. We then solve 

it using finite difference methods and the projected 

Successive Over-Relaxation (SOR) algorithm. The use of 

the linear complementarity form has a great advantage in 

that the free boundary points are implicitly included in a 

single constraint. Those points no longer need to be 

explicitly mentioned, which facilitates the computation of 

the option values. 

The Black-Scholes Equation  
We consider only American and European call option. 

Similar treatment can be done for the American and 

European put option. The value of a option is denoted 

by V and depends on the current market price of the 

underlying asset, S, and the remaining time t until the 

option expires: V = V (S,t). The Black-Scholes equation 

is a backward-in-time parabolic equation and posed on 

a time dependent domain. 

With dividend payments: 

 
for 

0 < S < Sf(t), 0 ≤ t < T, 

With no dividend payments: 

  (2) 

for 

0 < S, 0 ≤ t < T, 

where σ denotes the annual volatility of the asset price, r 

the risk-free interest rate and T is the expiry date (t = 0 

means today). We assume that dividends are paid with a 

continuous yields of constant level D0 > 0. Note that we 

have to include the payment of dividends. Otherwise,  

for D0 = 0 early exercise does not make sense and  

the American call would be equivalent to the European 

one
3
. 

European Option  

A European call (put) option gives the holder the right but 

not the obligation to buy (sell) the underlying asset with 

an initial price S; at a given maturity date T and for a fixed 

price E; called the strike price. Let the price of European 

call (put) option be denoted by C(P): These notations will 

be used throughout our work to denote the European call 

and put option. The payoff of a European call at maturity 

time T is, 

 C = max(ST − E,0). (3) 

If ST < E, the call will be worthless and the holder will not 

exercise the right. The payoff of a European put is, 
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 P = max(E − ST,0). (4) 

If ST > E, the put will be worthless and the holder will not 

exercise the right. The call - put parity is the relationship 

between a European call and put, given by, 

 C + Ee
−rt 

= P + S. (5) 

where r denotes the risk free interest rate and S the initial 

stock price. 

American Options  

American call (put) option gives to its holder the right but 

not the obligation to buy (sell) the underlying asset at any 

time t (0 < t < T), up to maturity date T, for a strike price 

E. Let the price of the American call (put) option be 

denoted by C(P). These notations will be used throughout 

our work to denote the American call and put option. The 

payoff of an American call at maturity time T is, 

 C = max(ST − E,0) (6) 

The payoff of an American put is,  

 P = max(E − ST,0) (7) 

The price boundary and put-call parity for the American 

option is given by, 

 S − E ≤ C − P ≤ S − Ee
−rt 

(8) 

Free Boundary Problem  

At S = 0 the option is worthless. Note that we need two 

conditions at the free boundary S = Sf(t). One condition 

is necessary for the solution of (1) and other is needed 

for determining the position of the free boundary Sf(t) 

itself. The condition in V (Sf(t),t) = Sf(t) − E for 0 ≤ t ≤ 
T and VS(Sf(t),t) = 1 for 0 ≤ t ≤ T (’value matching’ 
condition) is the continuity of the mapping S  V (S,t) 

since V (S,t) = (S − E)
+ 

= S − E, in the exercise region S 

≥ Sf(t). At S = Sf(t) one requires additionally that V(S, t) 

touches the payoff function tangentially (’high contact 

condition’), i.e. the function S  ∂V (S,t)/∂S should be 

continuous at S = Sf(t). The conditions V (Sf(t),t) = 

Sf(t)−E for 0 ≤ t ≤ T and VS(Sf(t),t) = 1 for 0 ≤ t ≤ T are 

jointly referred as the ’smooth-pasting conditions’. 
Note that the later condition can be derived from an 

arbitrage argument
4,5

.  

Since American options can be exercised at any time, 

we have the a priori bound 

 V (S,t) ≥ (S − E)
+
, S ≥ 0, 0 ≤ t ≤ T. 

If V (S,t) < (S − E)
+ 

for one value S > E and t ≤ T then 

the purchase of a call for V and the immediate exercise 

of this option to buy the underlying asset for E 

(although its value is S) would lead to an instantaneous 

risk-free profit of S − V − E > 0, in violation to the no-

arbitrage principle. Of course, this reasoning ignores 

transaction costs. For American options, when V > S − 

E, meaning it is optimal to hold the option, the Black-

Scholes equation holds. Otherwise, V = S − E; it is 

optimal to exercise the option. The two relationships 

can be combined into one inequality for the Black-

Scholes equation. 

 

where V(S, t) is the value of a call option, t ∈ [0,T]. 

Another two constraints coming from no arbitrage 

assumption are that the option value has to be 

continuous since holders can profit from exercising 

when the asset price reaches the value of the 

discontinuity and that the change of the option value 

should also be continuous. 

Let x = ±1 be the end points of the string; u(x) be the 

string displacement; f(x) be the height of the obstacle. We 

do not have knowledge on the exact region of contact 

between the string and the obstacle. We only know the 

string must either be above or on the obstacle, and the 

string and the slope of the string have to be continuous. 

The free boundary is the set of points P(x = xp) and  

Q(x = xQ), the points that define the contact region. Since 

the contact region concaves down, u = f and u < 0, while 

u > f and u = 0 when the string is above the obstacle. We 

also assume that 

     f(±1) < 0,f(x) > 0 for some −1 < x < 1, f < 0 (10) 

to ensure there exists only one contact region.  

The obstacle problem is then equivalent to finding u(x) 

and the points P,Q such that 

u(−1) = 0,u(1) = 0  

u = 0,−1 < x < xP,xQ < x < 1  

u(xP) = f(xP),u (xP) = f (xP) (11) 

u(xQ) = f(xQ),u (xQ) = f (xQ)  

u(x) = f(x),xP < x < xQ. 

One approach to solve this problem is to first write it in 

the following linear complementarity form 

 u.(u − f) = 0,−u  ≥ 0,(u − f) ≥ 0, (12) 

where u(−1) = u(1) = 0, and u, u  
are continuous. This 

transformation does not explicitly include the free 

boundary points. Instead, the free boundary problem is 

implicitly incorporated in the constraint u ≥ f. We can 

then use numerical techniques such as iterative methods 

to solve (12). 

Transformed Linear Black-Scholes Equation  
Here we transform (1) problem from the original (S,t) 

variables to (x,τ) into a pure diffusion equation, where x 

and τ refer to the following transformation. Let  

 
and 

 
and 

 
Now 

, 
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x,τ
τ 

and 

, 

Substituting these all derivatives in (1) we have 

 

and a final multiplication by  then gives 

  (13) 

Let and  can be written as 

  (14) 

Now consider  to 

get β = −α2 − K, and then  

v(x,τ) = e
αx+βτ

u(x,τ) 

, 

and 

 , 

Substituting these into equation (14) and dividing by e
αx+βτ 

we get 

 
implies 

 
(α2 − β2 

+ α(K − 1) − K)u 

and finally we get, 

 uτ = uxx,−∞ < x < ∞,τ > 0, (15) 

which is a diffusion equation with initial condition 

 
Observe that with the transformation above, the dividend 

term does not appear explicitly in equation (15). 

 

 

Figure. American Options 

For European Call  

The boundary condition for the European call option 

 

where 

 

 

Linear Complementarity Form for American Option  
The obstacle problem for American call options with 

dividends is equivalent to finding u(x,τ) and the unknown 

optimal exercise boundary xf(τ) such that 

uτ = uxx, for x ≤ xf(τ)  

u(x,τ) = g(x,τ) for x > xf(τ),  (18) 

with boundary conditions 

where 

 

We also have the constraint 

u = (x, τ) ≥ g(x, τ) (21) 

Since we will be focusing on numerical solutions using 

finite difference methods, we will restrict the problem to a 

finite interval. Therefore, we consider the problem only 

for x in the interval [x
–
, x

+
], where x

–
 is a large negative 

number and x
+
 is a large positive number. Hence, the 

boundary conditions are 

u(x
−,τ) = 0, u(x

+,τ) = g(x
+,τ). (22) 

Now, rewriting in a linear complementarity form, we 

obtain 

 . (23) 

with two constraints 

 , (24) 

with the initial condition v(x,0) = g(x,0) and the boundary 

conditions 
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u(x
−,τ) = g(x

−,τ) = 0, 

 u(x
+,τ) = g(x

+,τ). (25) 

The above transformation is helpful because the diffusion 

equation is more straightforward and less cluttered than 

the Black-Scholes equation. It is much easier to find 

numerical solutions of the diffusion equation and then to 

convert these into numerical solutions of the Black-

Scholes equation through a change of variables than to 

numerically solve the Black-Scholes equation directly. 

Thus to obtain the numerical result of American option 

value, our approach is to solve 

  (26) 

and make sure 

 u(x,τ) – g(x,τ) ≥ 0 (27) 

 

Finite Difference Methods  

The finite difference methods attempt to solve Black 

Scholes Partial differential equation by approximating the 

differential equation over the area of integration by a 

system of algebraic equations. They are a means of 

obtaining numerical solutions to Partial differential 

equations.They also constitute a very powerful and 

therefore flexible technique that is capable of generating 

accurate numerical solutions to PDEs arising in financial 

and other physical sciences. The most common finite 

difference methods for solving the Black Scholes Partial 

differential equation are the Explicit method, the Fully 

Implicit method and the Crank-Nicolson method. These 

are closely related but differ in stability, accuracy and 

execution speed. 

 

 

 

 

 

Figure 2: Finite Difference 

 

Discretization of the Equation  
We divide the (x,τ) plane into a regular finite mesh, and 

take finite-difference approximations of the linear 

complementarity form problem. We approximate the 

terms ∂u/∂τ − ∂2u/∂2
x by the finite differences on a regular 

mesh with step sizes δτand δx, and we truncate so that x 

lies between M
−δx and M

+δx, where M
− 

is a large negative 

number and M
+ 

is a large positive number. We divide the 

non-dimensional time to expiry of the option, , into 

N equal time-steps so that . 

The idea of finite difference methods is to replace the 

partial derivatives in the equation by their difference-

quotient approximations based on Taylor series 

expansions of functions near the points of interest, and 

then let the computer solve the resulting differential 

equation. We divide the x- axis into equally spaced nodes 

a distance δx apart, and the τ-axis into equally spaced 

nodes a distance δt apart. This divides the (x,τ) plane into 

a mesh, where the mesh points have the form (mδx,nδτ), 
M

– ≤ x ≤ M
+ 

and 0 < n ≤ N. We write 

 as the value of u(x,τ) at the mesh 

point (mδx,nδτ), and gm
n 
= g(mδx,nδτ). 

Explicit Method  
Given that we know the value of an option at the maturity 

time, it is possible to give an expression that gives us the 

next value  Explicit in terms of the given values 

. 

Using a forward difference to approximate ∂u/∂τ, and a 

second-order central difference for ∂2u/∂x2
, we can rewrite 

the diffusion equation (26) as 

 

If we ignore terms of O(δx) and , we can rearrange 

(28) to give the difference equation 

  (29) 
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iscretization of the Equation 
x,τ

∂u/∂τ − ∂ u/∂
δτ δx

−δx δx −

δx τ
δt x,τ

mδx,nδτ
– ≤ ≤ ≤ 

x,τ
mδx,nδτ mδx,nδτ

xplicit Method 

∂u/∂τ
∂ u/∂x

δx

where α = δτ/(δx)
2
. At time step n + 1, we already know 

the values of  for all n so we can explicitly calculate 

. After we calculate 
 
using (29), we also need 

the equation to satisfy the constraint u(x,τ) − g(x,τ) ≥ 0. 

Thus the scheme for this explicit method can be expressed 

as: 

; 

  (30) 

With this approach, the stability question arises. The 

system (29) is stable if 0 < α ≤ 1/2 and unstable if α > 
1/2

6
, which puts severe constraints on the size of time 

steps. Hence there is need to consider a more stable 

method, such as the fully-implicit method. The implicit 

finite-difference method is stable for any α > 0, which 

suggests that we can solve the diffusion equation with 

larger time-steps using an implicit algorithm than we can 

using an explicit algorithm. 

 

Fully-Implicit Method  

Given that we know the value of an option at the maturity 

time, it is possible to give an expression that gives us the 

next value  implicit in terms of the given values 

. 

Using a backward difference to approximate ∂u/∂τ, and a 

second-order central difference for ∂2u/∂x2
, we can rewrite 

the diffusion equation (26) as 

 

If we ignore terms of O(δx) and , we can 

rearrange (31) to give the difference equation 

          (32) 

The new values cannot be separated out immediately and 

solved for explicitly in terms of the old values. This is the 

reason it is called the implicit scheme. The linear 

complementarity problem (23) is then approximated by 

  (33) 

at time step n + 1. 

Let 

  (34) 

 

and the coefficient matrix 

 

We want to solve the following constrained matrix 

problem 

 Cun+1 = bn+1 (37) 

and check if the u ≥ g constraint is satisfied. To solve 

equation (37), observe that C is an invertible matrix due 

to the Gerschgorin theorem. Therefore, equation (37) has 

a solution. 

Theorem (GERSCHGORIN) 
Let A = (ai,j)be an arbitrary m × m complex matrix, and let 

  (38) 

Then, all the eigenvalues λ of A lie in the union of the 

disks 

 |z − ai,j| ≤ Λi, 1 ≤ i ≤ m. (39) 

Observe that the matrix C is symmetric so all of the 

eigenvalues are real. Then, let ai,j = 1 + 2α. For i = 1 and 

m, Λi = α.. Then z ≥ ai,j − Λi = 1 + α so for α ≥ 0, z is 

always positive. For 2 ≤ i ≤ m−1,Λ1 = (α)+(α) = 2α. Then 

z ≥ ai,j − Λi = 1. Thus, for α ≥ 0, all the eigenvalues of C 

are positive real numbers, suggesting C is invertible and 

we can rewrite equation (37) as 

 u
n+1

 = C
−1

b
n+1

. (40) 

We can first form b
n+1 

from u
n 

and the boundary 

conditions. Using the known initial condition u
0
, we can 

obtain u
n+1 

sequentially using an iterative method such as 

Projected SOR. 

 

Projected SOR Algorithm  
Projected SOR is a minor modification of the SOR 

method, Successive Over-Relaxation. The SOR method is 

used to speed up convergence of iterations. The projected 

SOR algorithm involves five steps. The first step is to 

rewrite equation (32) as: 

 , (41) 

where M
− + 1 ≤ m ≤ M+ − 1. 

Let  be the k-th iterate for . Let us denote the 

initial guess by . As k ∞, we expect . 

We update the values as soon as they are available and 

add a correction term  to the original 

. We also incorporate an over-correction or over-

relaxation parameter ω, which has optimal values 

between 1 and 2, and finally, we take the maximum 

between the estimated  and the payoff . The 

fully-implicit scheme is thus expressed as, 
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Until the difference between  and is small 

enough to be ignored, we set . 

 

The Crank-Nicolson Method  

The Crank Nicolson finite difference method is the 

average of the implicit and explicit methods and hence 

may improve accuracy. In this method, six neighboring 

option values are interrelated in the following way: 

One improvement the Crank-Nicolson Method has over 

the fully-implicit method is that it increases the temporal 

convergence rate from . The equation 

of the scheme is 

 

There remains the problem of finding the  

and M
− 

< m < M
+ 

from (44). We can write the problem as 

a linear system 

 Cu
n+1

 = b- (45) 

Define a new matrix by 

 

 

The tri-diagonal symmetric matrix C becomes 

 

 

 

and the coefficient matrix 

 

Using Theorem (Gerschgorin), we see that the matrix C is 

invertible. Similar to the fully-implicit method, we adopt 

the projected SOR algorithm and obtain 

 

(49) 

Until the difference between  and is small 

enough to be ignored, we set . 

 

NUMERICAL RESULTS  
The following results are obtained through implementing 

the three finite difference algorithms described in the 

previous sections in MATLAB. Table 1 and Table 3 show 

that the three finite difference methods provide us similar 

result. One limitation for the explicit scheme is stable 

only when the ratio of the time step to the square of the 

space step is not greater than 1/2, which imposes 

restrictions on the number of necessary time steps. 

Though the explicit method is relatively easy to 

implement, the fully-implicit and the Crank Nicolson 

methods have better stability properties. Besides 

comparing the results of the three methods, we are also 

interested in the effects of dividend payments on option 

pricing. Table 2 and Table 4 suggests that as dividend rate 

increases, call option value decreases. A firm’s dividend 

payout policy affects option values because a high 

dividend payment decreases the rate of growth of the asset 

price. Thus there is a lower expected rate of capital gain, 

leading to a lower potential payoff. In addition, since the 

cash dividend is received by whoever owns the stock until 

the ex-dividend date, holders might exercise the option 

just prior to the ex-dividend date. Exercising prior to the 

ex-dividend date is always optimal when the dividend 

payment is large. Early exercise will be likely to happen 

only if the asset is expected to pay a dividend prior the 

expiration date. 

 

European Option  

Table 1 

S Explicit Fully-Implicit Crank-Nicolson 

3 0.0047 0.0048 0.0048 

5 0.1490 0.1486 0.1492 

7 0.7409 0.7389 0.7404 

9 1.8383 1.8362 1.8377 

11 3.2914 3.2902 3.2912 

A comparison of the option values of the three methods at 

E = 8, d=0.08, r = 0.1, σ = 0.4 and T = 1. 
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Table 2 

S d=0.03 d=0.05 d=0.08 d=0.11 d=0.13 

3 0.0072 0.0061 0.0.0048 0.0.0034 0.0029 

5 0.1946 0.1749 0.1486 0.1220 0.1089 

7 0.9017 0.8336 0.7389 0.6466 0.5945 

9 2.1458 2.0180 1.8362 1.6606 1.5548 

11 3.7409 3.5562 3.2902 3.0336 2.8737 

A comparison of the option values of the three methods at 

E = 8, d=0.08, r = 0.1, σ = 0.4 and T = 1. 
 

American Option  

Table 3 

S Explicit Fully-Implicit Crank-Nicolson 

3 0.0047 0.0049 0.0048 

5 0.1496 0.1492 0.1492 

7 0.7473 0.7402 0.7404 

9 1.8664 1.8389 1.8378 

11 3.3707 3.2975 3.2923 

A comparison of the option values of the three methods at 

E = 8, d=0.08, r = 0.1, σ = 0.4 and T = 1. 
 

Table 4 

S d=0.03 d=0.05 d=0.08 d=0.11 d=0.13 

3 0.0073 0.0063 0.0047 0.0039 0.0033 

5 0.1956 0.1758 0.1492 0.1263 0.1128 

7 0.9031 0.8348 0.7402 0.6550 0.6048 

9 2.1473 2.0193 1.8389 1.6789 1.5915 

11 3.7425 3.5577 3.2975 3.0911 2.9990 

A comparison of the option values of the three methods at 

E = 8, d=0.08, r = 0.1, σ = 0.4 and T = 1. 

 

CONCLUSION 

Option pricing has been an increasingly popular field to 

study. Options provide investors limited downside in 

speculative trading and enable investors to hedge and to 

minimize risk. The  value of options depends on a number  

of variables such as stock price S, exercise price E, 

Volatility σ, time to expiration T, interest rate r and 

dividend payments D0. The study of European (American) 

call options with dividends with transformations to a 

usual (linear complementarity) form. With three finite 

difference methods to solve the option valuation problem 

of European (American) call with dividends and 

implements the methods in MATLAB to obtain numerical 

results that gauge the potential for computing based on 

the usual (linear complementarity) form. Through the 

numerical simulations of the model problem, we also 

verify that the explicit method suffers from the limitation 

on the  number of  time steps  size and  the both fully- 

implicit and Crank-Nicolson method are unconditionally 

stable and Crank Nicolson method converge faster than 

the explicit and implicit method. We see from the 

numerical values and financial theories that there is a 

negative relationship between dividend payouts and call 

option values. Option holders must take into consideration 

the effect of dividend when deciding if the option should 

be early exercised. 
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