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Abstract

In this paper we consider time-dependent electromagnetic scattering problems from con-
ducting objects. We discretize the time-domain electric field integral equation using Runge-
Kutta convolution quadrature in time and a Galerkin method in space. We analyze the
involved operators in the Laplace domain and obtain convergence results for the fully dis-
crete scheme. Numerical experiments indicate the sharpness of the theoretical estimates.

AMS subject classifications: 78A45, 65N38, 65R20

Key words: Electromagnetic scattering, boundary integral equations, Runge-Kutta
convolution quadrature, boundary element methods.

1 Introduction

Electromagnetic scattering problems in three dimensions have a wide range of practical ap-
plications in physics and engineering, prominent examples being magnetic resonance imaging,
remote sensing systems or global positioning systems. The efficient and accurate numerical so-
lution of such wave propagation phenomena in the time-domain has gained growing attention in
the last years. Since such problems are typically formulated in unbounded domains the method
of integral equations is an elegant tool to transform the underlying set of partial differential
equations into time-domain boundary integral equations (TDBIEs) on the bounded surface of
the scatterer.

Although the numerical solution of TDBIEs has been pursued since the 1960s (cf. [15]),
their use was unpopular for a long time due to the need to deal with distributional fundamental
solutions and due to stability problems of the resulting implementations. More recent numer-
ical methods have overcome these stability issues. Important discretization techniques include
Galerkin methods based on space-time variational formulations (cf. [3, 30, 36, 2, 1, 16, 33]) and
methods based on bandlimited interpolation and extrapolation (cf. [41, 39, 40, 42]).

An alternative approach to solve TDBIEs numerically is based on convolution quadrature.
Developed more than 20 years ago (cf. [23, 24]), convolution quadrature based on linear multi-
step methods has been applied to numerous problems (cf. [25, 7, 35, 34, 38, 12]); fast numerical
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implementations were developed in [18, 17, 20] . For a review on convolution quadrature and
its applications we refer to [26, 8]. The advantages of this discretization scheme for TDBIEs
include its excellent stability properties and the fact that only the Laplace transform of the time-
domain fundamental solution is used and thus distributional kernels are avoided. An important
assumption for the stability of convolution quadrature is the A-stability of the underlying time-
discretization method. Since A-stable linear multistep methods cannot exceed a convergence
order of 2, convolution quadratures based on Runge-Kutta methods have recently been consid-
ered and analyzed in order to obtain high order schemes (cf. [27, 4, 5, 6]). Most related to our
work is [12] where multistep methods are considered for the time discretization and an error
analysis is presented. Some of the stability estimates could be improved in our paper so that
the regularity assumptions with respect to time are relaxed.

In this paper we are interested in the propagation of time-dependent electromagnetic fields
in a homogeneous medium arising from the scattering of incoming waves at a perfectly con-
ducting obstacle. In order to solve the resulting time-domain electric field integral equation
(EFIE) numerically we use Runge-Kutta convolution quadrature for the time discretization and
a Galerkin method for the discretization in space. The aim of this paper is, for the first time,
to fully analyze this numerical method. We do this by first analyzing the Laplace domain EFIE
operator V to show that the inverse operator can be polynomially bounded by

∥∥V−1 (s)
∥∥ ≤ C (σ0)

|s|
Re s

for Re s ≥ σ0 > 0 and some σ0 > 0. This allows us to use the analysis of Runge-Kutta
convolution quadrature in [6] to obtain convergence estimates for the semi-discrete scheme. For
the space discretization we use the classical Raviart-Thomas elements of lowest order. Using
the results of the semi-discrete case we finally obtain convergence results for the fully discrete
scheme. We perform numerical test with a spherical scatterer. The results indicate the sharpness
of the derived convergence estimates.

2 Sobolev Spaces and Trace Theorems

Let Ω− be an open bounded set in R3 with Lipschitz boundary Γ, unitary outer normal n, and
complement Ω+ := R3 \Ω−. The inner product of two vectors a,b ∈ C3 is denoted by a.b, a×b
is the usual vectorial product. Let Ω either be Ω− or Ω+. For u ∈ L2(Ω) or v ∈ L2(Γ) := L2(Ω)3,
let

‖u‖0,Ω =

(∫
Ω
|u(x)|2 dx

)1/2

resp. ‖v‖0,Ω =

(
3∑
i=1

‖vi‖20,Ω

)1/2

be the norms of u,v in these spaces. We define the following Hilbert spaces with their associated
graph norms:

H(curl,Ω) :=
{
v ∈ L2(Γ), curl v ∈ L2(Γ)

}
,

‖v‖curl,Ω =
(
‖v‖20,Ω + ‖curl v‖20,Ω

)1/2
and in a similar manner

H(div,Ω) :=
{
v ∈ L2(Γ), div v ∈ L2(Ω)

}
,

‖v‖div,Ω =
(
‖v‖20,Ω + ‖div v‖20,Ω

)1/2
.
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We will further require the L2(Γ) space of tangential fields,

L2
t (Γ) := {v ∈ L2(Γ)|n.v = 0 on Γ}

and the following trace operators Πτ and γτ mapping D(Ω) = {φ|Ω | φ ∈ C∞comp(R3)} to L2
t (Γ)

Πτ : u 7→ n× (u× n)|Γ and γτ : u 7→ u|Γ × n.

Adhering to [11], we define the following Hilbert spaces

V := H1/2(Γ), Vγ := γτ (V ), VΠ := Πτ (V ),

with norms that assure the continuity of the trace operators

‖λ‖Vγ = inf
u∈V
{‖u‖V | γτ (u) = λ}

and
‖λ‖VΠ

= inf
u∈V
{‖u‖V | Πτ (u) = λ}.

Further, we denote by V ′Π and V ′γ the respective dual spaces with L2
t (Γ) as the pivot space and

their natural norms. We are now ready, see [11], to introduce the following Hilbert spaces on Γ:

H−1/2(divΓ,Γ) := {v ∈ V ′γ | divΓ v ∈ H−1/2(Γ)},

H−1/2(curlΓ,Γ) := {v ∈ V ′Π | curlΓ v ∈ H−1/2(Γ)}

with norms defined as

‖v‖−1/2,divΓ
:=
{
‖v‖2V ′γ + ‖divΓ v‖2H−1/2(Γ)

}1/2
,

‖v‖−1/2,curlΓ
:=
{
‖v‖2V ′Π + ‖curlΓ v‖2H−1/2(Γ)

}1/2
.

(1)

The unknown densities which arise in the boundary integral equations for the Maxwell problem
are traces of vector fields in H(curl,Ω+). The following theorem shows that H−1/2(divΓ,Γ) and
H−1/2(curlΓ,Γ) are the correct spaces for these densities.

Theorem 2.1. Let Ω ∈ {Ω−,Ω+}. The trace mappings

ΠΩ
τ : H(curl,Ω) → H−1/2(curlΓ,Γ)

and
γΩ
τ : H(curl,Ω) → H−1/2(divΓ,Γ)

are continuous and surjective. Moreover, there exist continuous liftings for these trace operators
in H(curl,Ω).

For a proof we refer to [11, Theorem 4.1]. As an important consequence of Theorem 2.1
we get the following Green’s formula. For this, we put H−1/2(curlΓ,Γ) and H−1/2(divΓ,Γ) in
duality when L2

t (Ω) is used as pivot space (cf. [11, Section 5]). More precisely, the usual L2
t (Γ)

scalar product can be continuously extended to a sesqui-linear duality pairing

(·, ·)Γ : H−1/2(divΓ,Γ)×H−1/2(curlΓ,Γ)→ C
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by means of Green’s formula: For all u,v ∈ H(curl,Ω)

sign (Ω)

∫
Ω

(u . curl v−curl u .v) dx =
(
γΩ
τ u,ΠΩ

τ v
)

Γ
with sign (Ω) :=

{
−1, Ω = Ω+,
+1, Ω = Ω−.

(2)

Note that the complex conjugation in (·, ·)Γ is on the first argument. This will be of importance
in Section 4.4.

For bounded, smooth domains, Green’s formula is proved in [28] and for Lipschitz domains
in [9, 11]. For exterior domains Ω+, this follows by employing a cutoff function and the dense
embedding {

u|Ω+
: u ∈ C∞comp(R3)

}
↪→ H (curl,Ω)

and applying Green’s formula for bounded domains.
Finally, as another consequence of the duality of the two trace spaces H−1/2(divΓ,Γ) and

H−1/2(curlΓ,Γ) with L2
t (Γ) as the pivot space (see (36) in [11]) we have the identities

‖u‖−1/2,div = sup
ϕ∈H−1/2(curlΓ,Γ)

|(u,ϕ)Γ|
‖ϕ‖−1/2,curl

(3a)

and

‖v‖−1/2,curl = sup
ϕ∈H−1/2(divΓ,Γ)

|(v,ϕ)Γ|
‖ϕ‖−1/2,div

. (3b)

Remark 2.2. In the remainder of the paper we may, in order to enhance readability, use both
the classical notation n × (· × n) and · × n and the notation Πτ and γτ , even though strictly
speaking only the latter should be used.

3 Integral Formulation for Exterior Scattering Problems

In the following we will be concerned with the propagation of time-dependent electromagnetic
fields near a perfectly conducting body. We consider three-dimensional exterior scattering prob-
lems in a homogeneous, isotropic medium with constant, positive electric permittivity ε and
constant, positive magnetic permeability µ. Furthermore we assume that there are no external
sources.

Let Ω− be a three-dimensional perfectly conducting object with bounded Lipschitz surface
Γ and let (Einc,Hinc) be an incident electromagnetic field. The scattered field (E,H) satisfies
the time dependent Maxwell equations:

−ε∂E

∂t
+ curl H = 0 in R+ × Ω+, (4)

µ
∂H

∂t
+ curl E = 0 in R+ × Ω+, (5)

div E = div H = 0 in R+ × Ω+, (6)

with boundary conditions
(E + Einc)× n = 0 on R+ × Γ (7)

and initial conditions

E(t,x) = H(t,x) = 0 for t ≤ 0 and x ∈ Ω+.
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Since our problem is formulated in unbounded domains we use the method of integral equations
to transform this set of partial differential equations to integral equations on the bounded surface
of the scatterer. These can be derived by inverse Laplace transformation of the more widely
known frequency domain integral representations, see (5.6.4–6) in [28], as we explain next. The
application of the Laplace transform, i.e., Ê := L E =

∫ t
0 e−st E(·, t)dt, to equations (4) and (5)

leads to

−εsÊ + curl Ĥ = 0 in Ω+,

µsĤ + curl Ê = 0 in Ω+,

with boundary condition
(Ê + Êinc)× n = 0 on Γ.

The boundary integral representation for the solution of the above Laplace domain boundary
value problem is given by

Ê(y) = −sµ
∫

Γ
K(s,x− y)j(x)dΓx +

1

ε
∇
∫

Γ
K(s,x− y)

1

s
divΓ j(x)dΓx, (8)

Ĥ(y) = curl

∫
Γ
K(s,x− y)j(x)dΓx, (9)

where the free space Green’s function for the Helmholtz operator is given by

K(s, z) :=
e−s
√
εµ‖z‖

4π‖z‖
. (10)

Taking the inverse Laplace transform of the above formulation gives the time-domain electric
field integral equation (EFIE):

E(t,y) = −µ
∫ t

0

∫
Γ
k(t− τ,x− y) ∂tj(τ,x) dΓx dτ

− 1

ε
∇
∫ t

0

∫
Γ
k(t− τ,x− y) q(τ,x) dΓx dτ (11)

H(t,y) = curl

∫ t

0

∫
Γ
k(t− τ,x− y) j(τ,x) dΓx dτ

for y ∈ Ω+ \ Γ, involving the electric surface current density j, the charge density q

q(t,x) = −
∫ t

0
divΓ j(τ,x)dτ, (12)

and the time domain free space Green’s function

k(t, z) := L −1{K(·, z)}(t) =
δ(t−√εµ‖z‖)

4π‖z‖
, (13)

where δ denotes the Dirac delta function. It can be easily checked that for any j and q satisfying
(12), E and H given by the representation formula (11) satisfy (4), (5), and (6). The initial
conditions are also satisfied since we assume that j(τ,y) = 0 and q(τ,y) = 0 for τ ≤ 0 and
y ∈ Ω+ \ Γ. The unknown density functions are now determined via the boundary condition
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(7). This requires the extension of E × n to the boundary Γ which can be done continuously
(cf. [28]). The resulting integral equation we have to solve reads

− µΠτ

∫ t

0

∫
Γ
k(t− τ,x− y)jt(τ,x) dΓxdτ

− 1

ε
∇Γ

∫ t

0

∫
Γ
k(t− τ,x− y)q(τ,x) dΓxdτ = n (y)× g (t,y) for (t,y) ∈ R× Γ, (14)

with
g := −Einc × n, (15)

jt = ∂tj, and ∇Γ the surface gradient.
In order to eliminate the unknown q and for further reasons that will become apparent in

the next section, see Remark 4.3, we differentiate both sides of the above equation with respect
to time to obtain

−µΠτ

∫ t

0

∫
Γ
k(t− τ,x− y)jtt(τ,x) dΓxdτ

+
1

ε
∇Γ

∫ t

0

∫
Γ
k(t− τ,x− y) divΓ j(τ,x) dΓxdτ = n (y)× gt (t,y)

(16)

which we have to solve for all (t,y) ∈ R× Γ. Note that this integral equation contains only the
unknown electric surface current density j.

4 Numerical Discretization

4.1 Time Discretization

For the time discretization we will make use of convolution quadrature based on a Runge-Kutta
method. An m-stage Runge-Kutta method in the standard Butcher tableau notation can be
described by the matrix A = (aij)

m
i,j=1 ∈ Rm×m and the vectors b = (b1, b2, . . . , bm)T ∈ Rm and

c = (c1, c2, . . . , cm)T . The corresponding Runge-Kutta discretization of the initial value problem
y′ = f(t, y), y(0) = y0, is then given by

Yni = yn + ∆t
m∑
j=1

aijf(tn + cj∆t, Ynj), i = 1, . . . ,m,

yn+1 = yn + ∆t
m∑
j=1

bjf(tn + cj∆t, Ynj);

here ∆t > 0 is the time-step and tj = j∆t. The values Yni and yn are approximations to
y(tn + ci∆t) and y(tn), respectively. This Runge-Kutta method is said to be of (classical) order
p ≥ 1 and stage order q if for sufficiently smooth right-hand sides f ,

Y0i − y(ci∆t) = O(∆tq+1), for i = 1, . . . ,m, and y1 − y(t1) = O(∆tp+1), (17)

as ∆t→ 0. Using the notation
1 = (1, 1, . . . , 1)T ,

the Runge-Kutta method is said to be A-stable if I − zA is non-singular for Re z ≤ 0 and the
stability function

R(z) = 1 + zbT (I− zA)−1
1 (18)
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satisfies |R(z)| ≤ 1 for Re z ≤ 0. Note that if A−1 exists, then R(∞) = 1− bTA−1
1.

In order to use the convergence results proved in [6], we make the following assumptions on
the Runge-Kutta methods.

Assumption 4.1. a. The Runge-Kutta method is A-stable with (classical) order p ≥ 1 and
stage order q ≤ p.

b. The stability function satisfies |R(iy)| < 1 for all real y 6= 0.

c. R(∞) = 0.

d. The Runge-Kutta coefficient matrix A is invertible.

Radau IIA and Lobatto IIIC are examples of methods satisfying all of the above assumptions
with q = m and p = 2m − 1 for Radau IIA and q = m − 1 and p = 2m for Lobatto IIIC. For
possible relaxation of these conditions and deeper meaning of them see [6].

Convolution quadrature is a method for the discretization of continuous convolutions

u(t) = K(∂t)g :=

∫ t

0
k(t− τ)g(τ)dτ (19)

that uses only the Laplace transformed kernel K(s) = (L k) (s), the so-called transfer function.
The importance of the transfer function is highlighted by the operational notation K(∂t)g.

The Runge-Kutta based convolution quadrature approximation to u(tn+c`∆t), ` = 1, . . . ,m,
is given by  un1

...
unm

 =
(
K(∂t

∆t)g
)
n

:=

n∑
j=0

W∆t
n−j(K)

 g(tj + c1∆t)
...

g(tj + cm∆t)

 . (20)

Here, the matrix convolution weights W∆t
j (K) are defined implicitly through a generating func-

tion

K

(
χ (ζ)

∆t

)
=

∞∑
j=0

W∆t
j (K)ζj , (21)

with
χ (ζ) = A−1 − ζA−1

1bTA−1. (22)

The approximation at tn+1 is given simply by un+1 = bTA−1(un`)
m
`=1, i.e.,

un+1 := bTA−1
(
K(∂t

∆t)g
)
n
. (23)

Note that for stiffly accurate Runge-Kutta methods like Radau IIA or Lobatto IIIC we have
bTA−1 = (0, 0, . . . , 0, 1)T and therefore (23) simplifies to un+1 = unm in this case.

Applying this time-discretization to (16) we obtain the semi-discretized equations

−
n∑
j=0

µΠτ

∫
Γ

W
(2)
n−j(x− y)

 j(tj + c1∆t,x)
...

j(tj + cm∆t,x)

 dΓx

+

n∑
j=0

1

ε
∇Γ

∫
Γ

Wn−j(x− y)

divΓ j(tj + c1∆t,x)
...

divΓ j(tj + cm∆t,x)

 dΓx = (n× gt)n ,

(24)
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with

(n× gt)n (y) :=

n (y)× gt(tn + c1∆t,y)
...

n (y)× gt(tn + cm∆t,y)


and the weights Wj = (wj,k,`)1≤k,`≤m and W

(2)
j =

(
w

(2)
j,k,`

)
1≤k,`≤m

defined by

K(χ (ζ) /∆t, z) =
∞∑
j=0

Wj(z)ζj , (χ (ζ) /∆t)2K(χ (ζ) /∆t, z) =
∞∑
j=0

W
(2)
j (z)ζj , (25)

where K is again as in (10). The importance of using the differentiated formulation (16) instead
of (14) can be seen from the following proposition.

Proposition 4.2. Under the above assumptions on the Runge-Kutta method, there exists a
constant c > 0 such that for any ε > 0 and all z ∈ R3 with ‖z‖ < R it holds

‖Wj(z)‖ ≤ ε, for all j > max

(
cR

∆t
, log

1

ε

)
and

‖W(2)
j (z)‖ ≤ ε, for all j > max

(
cR

∆t
, log

1

ε
+ log

1

∆t

)
.

Proof. By Cauchy’s integral formula it holds

Wj(z) =
1

4π ‖z‖
1

2πi

∮
C

e−χ(ζ)‖z‖/∆t ζ−j−1dζ =
1

4π ‖z‖

∞∑
`=j

(‖z‖ /∆t)`

`!

1

2πi

∮
C

(−χ(ζ))` ζ−j−1dζ.

For the contour C we may use the unit circle and obtain the bound

‖Wj(z)‖ ≤ 1

4π ‖z‖

∞∑
`=j

(a ‖z‖ /∆t)`

`!
, with a = max

|ζ|=1
‖χ(ζ)‖.

Using Stirling’s approximation finally we obtain a crude bound

‖Wj(z)‖ ≤ 1

4π ‖z‖

∞∑
`=j

(
a e ‖z‖
`∆t

)`
≤ 1

4π ‖z‖

(
a e ‖z‖
j∆t

)j 1

1− (a e ‖z‖ /j∆t)

=
a e

4πj∆t

(
a e ‖z‖
j∆t

)j−1 1

1− (a e ‖z‖ /j∆t)
.

Assuming for example that j > 2a eR/∆t we obtain that

‖Wj(z)‖ ≤ C 1

R
2−j

from which the first bound follows directly. Similar reasoning gives the result for W
(2)
j .

Remark 4.3. The above proposition shows that for large enough j, the weights Wj and W
(2)
j

are exponentially close to zero. In order to eliminate q from (14) we could have simply substituted
for q the conservation law (12). This would, however, have introduced the integration operator
1/s and since (χ (ζ))−1 = A + ζ

1−ζ1bT it is not difficult to see that weights for this operator do
not converge to zero.
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4.2 Convergence of the semi-discrete scheme

Let us define the Laplace domain EFIE operator on the boundary V(s) : H−1/2(divΓ,Γ) →
H−1/2(curlΓ,Γ) by(

V(s)̂j
)

(y) : = −µΠτ

∫
Γ
s2K(s,x− y) ĵ(x) dΓx

+
1

ε
∇Γ

∫
Γ
K(s,x− y) divΓ ĵ(x) dΓx, y ∈ Γ.

(26)

Further denote by S(s) : H−1/2(divΓ,Γ)→ H(curl,Ω+) the operator(
S(s)̂j

)
(y) :=− µ

∫
Γ
sK(s,x− y)̂j(x) dΓx

+
1

ε
∇
∫

Γ

1

s
K(s,x− y) divΓ ĵ(x) dΓx, y ∈ Ω+.

(27)

Note that V(s) is the tangential trace of the differentiated domain operator S(s):

V(s) = sΠτS(s).

Therefore, using the operational notation (19), the continuous system (16) can be written in
short-hand as: Find j such that

V(∂t)j = n× gt, (28)

and its Runge-Kutta discretization as: Find j∆t such that(
V(∂t

∆t)j∆t
)
n

= (n× gt)n.

Using the composition rule

K2K1(∂t
∆t)g = K2(∂t

∆t)K1(∂t
∆t)g, (29)

see [5], we see that the unknown density is in fact given by

(j∆t)n =

 j∆t
n1
...

j∆t
nm

 =
(
V−1(∂t

∆t)n× gt
)
n

and
j∆t
n+1 := bTA−1

(
V−1(∂t

∆t)n× gt
)
n
.

Finally, using the definition of S(s) (recall that V(s) = sΠτS(s)) we have that

E = SV−1(∂t) n× gt

and the discrete approximation E∆t
n+1 ≈ E (tn+1, ·) of the electric field is given by

E∆t
n+1 = bTA−1

(
SV−1(∂t

∆t)n× gt
)
n
.

It is consequently possible to deduce convergence results just from properties of V−1(s) and
S(s) in the Laplace domain.
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Theorem 4.4. There exists σ0 > 0 such that the following statements hold.

(a) The inverse operator V−1(s) : H−1/2(curlΓ,Γ) → H−1/2(divΓ,Γ) is analytic for Re s > 0
and bounded in the operator norm as∥∥V−1 (s)

∥∥ ≤ C (σ0)
|s|

Re s
for Re s ≥ σ0 > 0. (30)

(b) An upper bound for the operator norm of V(s) : H−1/2(divΓ,Γ)→ H−1/2(curlΓ,Γ) is given
by

‖V(s)‖ ≤ C (σ0)
|s|3

Re s
. (31)

(c) For any y ∈ Ω+, the field point evaluation δyS(s) : H−1/2(divΓ,Γ) → C3 is analytic for
Re s > 0 and bounded as

‖δyS(s)‖ ≤ C(σ0,dist(y,Γ)) e−Re sdist(y,Γ) |s|2 for Re s ≥ σ0 > 0.

Proof. We follow the ideas of [3] and extend them from the acoustic case to the present case of
Maxwell operators. Similar arguments can be found in the master’s thesis of one of the authors
[37, Prop. 3.5], see also the PhD theses [29] and [36]. The definitions of the single layer operators
in these references differ slightly, for example V (s) = sR (s), where R (s) is as in [37, (3.10)]. In
our proof C will denote a generic constant which is allowed to change from one line to the next.

For ϕ ∈ H−1/2(divΓ,Γ), we define ψ := V(s)ϕ. Let h ∈ H(curl,Ω) denote a lifting of
ψ ∈ H−1/2(curlΓ,Γ), i.e., ψ = Πτh; a proof of the existence of a continuous lifting operator can
be found in [28, 36]. We relate this equation to the following exterior and interior, time-harmonic
Maxwell problem. Let Ω ∈ {Ω−,Ω+}. Find (EΩ,HΩ) ∈ H(curl,Ω)×H(curl,Ω) such that

−sεEΩ + curl HΩ = 0 in Ω,

sµHΩ+curl EΩ = 0 in Ω, (32)

EΩ × n =
1

s
h× n on Γ.

This problem admits a unique solution for all Re s > 0 as proved, e.g., in [36] and [37, Lemma
3.3]. In the following we will make use of the scaled norm

‖EΩ‖2curl,Ω,s :=

∫
Ω
|curl EΩ|2 + |√µεsEΩ|2 dx.

Then, we have, see [28, Theorem 5.5.1],

Πτh = sΠΩ
τ EΩ and ϕ = γΩ−

τ HΩ− − γΩ+
τ HΩ+ . (33)

Hence, by Green’s formula

Re (−sϕ,V(s)ϕ)Γ = Re (−sϕ,Πτh)Γ (34)

= Re
[(
−sγΩ−

τ HΩ− , sΠ
Ω−
τ EΩ−

)
Γ
−
(
−sγΩ+

τ HΩ+ , sΠ
Ω+
τ EΩ+

)
Γ

]
= −Re

∑
Ω∈{Ω−,Ω+}

|s|2
∫

Ω
(HΩ . curl EΩ − curl HΩ .EΩ) dx

=
∑

Ω∈{Ω−,Ω+}

Re

∫
Ω

s

µ
|curl EΩ|2 + s |s|2 ε |EΩ|2 dx

=
Re s

µ
‖E‖2curl,Ω−∪Ω+,s

. (35)
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To estimate ϕ in terms of E we pick any ζ ∈ H−1/2(curlΓ,Γ) and denote by uΩ− ∈ H(curl,Ω−),

resp. uΩ+ ∈ H(curl,Ω+) the interior and exterior lifting of ζ, i.e., ζ = Π
Ω−
τ uΩ− = Π

Ω+
τ uΩ+ .

The continuity of the lifting operator implies

‖uΩ±‖curl,Ω± ≤ C‖ζ‖−1/2,curl.

We employ Green’s identity to obtain

|(ϕ, ζ)Γ| =
∣∣(γΩ−

τ HΩ− ,Π
Ω−
τ uΩ−

)
Γ
−
(
γΩ+
τ HΩ+ ,Π

Ω+
τ uΩ+

)
Γ

∣∣
=

∣∣∣∣∣∣
∑

Ω∈{Ω−,Ω+}

∫
Ω

(HΩ . curl uΩ − curl HΩ .uΩ) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

Ω∈{Ω−,Ω+}

∫
Ω

(
1

s̄µ
curl EΩ . curluΩ + s̄εEΩ .uΩ

)
dx

∣∣∣∣∣∣
≤ 1

|s|µ
‖E‖curl,Ω−∪Ω+,s

‖u‖curl,Ω−∪Ω+,s

≤ 1

µ
max

(
√
εµ,

1

Re s

)
‖E‖curl,Ω−∪Ω+,s

‖u‖curl,Ω−∪Ω+

≤ C

µ
max

(
√
εµ,

1

Re s

)
‖E‖curl,Ω−∪Ω+,s

‖ζ‖−1/2,curl.

Hence, from (3a) we conclude that

‖ϕ‖−1/2,div ≤
C

µ
max

(
√
µε,

1

σ0

)
‖E‖curl,Ω−∪Ω+,s

holds. The combination with (35) finally leads to

Re (−sϕ,V (s)ϕ)Γ ≥ C min

(√
µ

ε
, µσ2

0

)
Re s ‖ϕ‖2−1/2,div . (36)

The Lax-Milgram lemma in the form [32, Lemma 2.1.51 with the definition of ellipiticty as in
(2.43)] gives ∥∥∥(sV (s))−1

∥∥∥ ≤ C max

(√
ε

µ
,

1

µσ2
0

)
1

Re s
.

Multiplying by |s| leads to the asserted bound of V−1 (s) in the operator norm.

Now, for any ψ ∈ H−1/2(curlΓ,Γ) we set ϕ := V−1 (s)ψ. Let (EΩ,HΩ) denote the solution
of (32) for this choice of ψ and corresponding lifting h. Note that the relations (33) also hold for
this case. Again by Green’s formula and the continuity of the trace mapping ΠΩ

τ : H(curl,Ω) →
H−1/2(curlΓ,Γ) we get the estimate

Re
(
−sV−1 (s)ψ,ψ

)
Γ

=
Re s

µ
‖E‖2curl,Ω−∪Ω+,s

≥ C min

(
1

µ
, εσ2

0

)
Re s ‖E‖2curl,Ω−∪Ω+

≥ C min

(
1

µ
, εσ2

0

)
Re s ‖ΠτE‖2−1/2,curl

= C min

(
1

µ
, εσ2

0

)
Re s

|s|2
‖ψ‖2−1/2,curl. (37)
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Similarly as for V−1(s), this now gives the required estimate for ‖V(s)‖.

To prove the third bound we can proceed as in the acoustic case discussed in [6, Lemma 5.1]:

|S(s)v(y)| ≤ µ|s|

∥∥∥∥∥ e−s‖·−y‖

4π‖ · −y‖

∥∥∥∥∥
H1/2(Γ)

‖v‖H−1/2(Γ) +
1

|s|ε

∥∥∥∥∥∇ e−s‖·−y‖

4π‖ · −y‖

∥∥∥∥∥
H1/2(Γ)

‖ divΓ v‖H−1/2(Γ)

≤

µ2|s|2
∥∥∥∥∥ e−s‖·−y‖

4π‖ · −y‖

∥∥∥∥∥
2

H1/2(Γ)

+
1

|s|2ε2

∥∥∥∥∥∇ e−s‖·−y‖

4π‖ · −y‖

∥∥∥∥∥
2

H1/2(Γ)

1/2

‖v‖−1/2,divΓ
.

It is not difficult to show that, see [6, Lemma 5.1],∥∥∥∥∥ e−s‖·−y‖

4π‖ · −y‖

∥∥∥∥∥
H1/2(Γ)

≤ C(σ0,dist(y,Γ))|s| e−Re sdist(y,Γ)

and hence ∥∥∥∥∥∇ e−s‖·−y‖

4π‖ · −y‖

∥∥∥∥∥
H1/2(Γ)

≤ C(σ0,dist(y,Γ))|s|2 e−Re s dist(y,Γ) .

Combining the three estimates gives the required result.

In the following we will derive error estimates for the Runge-Kutta convolution quadrature
approximation of the computation of the electric surface current density

j = V−1(∂t) (n× gt) (38)

and the corresponding field point evaluation

E (y) = δySV−1(∂t)n× gt (39)

where g = −Einc × n. The transfer function for problem (38) is given (and estimated) by

‖V−1(s)‖ ≤ C (σ0)
|s|

Re s
,

where for (39) it is

∥∥δyS (s)V−1(s)
∥∥ ≤ C(σ0,dist(y,Γ)) e−Re sdist(y,Γ) |s|3

Re s
.

In [6] it has been proved that the Runge-Kutta convolution quadrature for a transfer function
that is bounded by C|s|µ/ (Re s)ν for some real µ and ν ≥ 0 converges at the rate O(∆tq+1−µ+ν).
Hence, these estimates imply the following result.

Definition 4.5. Let W r,1
0 (0, T ;X) denote the space of functions g on (0, T ) with values in

the Banach space X and the r-th weak derivative in L1 (0, T ) and with g (0) = g′ (0) = . . . =
g(r−1) (0) = 0 equipped with the norm∥∥∥g(r)

∥∥∥
L1(0,T )

=

∫ T

0
‖g(r)(t)‖Xdt.

12



Theorem 4.6.

(a) Let r > p + 3 and g ∈ W r+1,1
0 ([0, T ]; H−1/2(curlΓ,Γ)). Then, under the above conditions

on the Runge-Kutta method there exists t̄ ≥ 0 such that for 0 < ∆t < t̄ and t ∈ [0, T ],∥∥j∆t
n (·)− j(tn, ·)

∥∥
−1/2,divΓ

≤ C∆tmin(p,q+1)

∫ t

0
‖∂r+1

t g(τ, ·)‖−1/2,curlΓdτ.

(b) Let r > p + 5 and assume further that g ∈ W r+1,1
0 ([0, T ]; H−1/2(curlΓ,Γ)). Then for any

y ∈ Ω+ ∥∥E∆t
n (y)−E(tn,y)

∥∥ ≤ C∆tp
∫ t

0
‖∂r+1

t g(τ, ·)‖−1/2,curlΓdτ.

Remark 4.7. The statement of the theorem on convergence of Runge-Kutta based convolution
quadrature as given in [6], requires the data g to be in the space Cr([0, T ]) of r-times continuously
differentiable functions. The proof is, however, easily seen to hold also for data g in spaces
W r,1

0 ([0, T ]).

4.3 Spatial Discretization

For the rest of the paper we we assume Ω− to be a bounded polyhedron. In this case the spaces
VΠ and Vγ can be explicitly characterized, see [9, 10]. We equip the boundary Γ of Ω− with a
surface boundary element mesh Gh (in the sense of, e.g., [32]), where h denotes the mesh width.
We assume that the surface mesh is aligned with edges of Γ, i.e. the edges of Γ are covered by
a subset of triangle edges. Let

Gh := {τ`}M̃`=1

be such a triangulation with Γ =
⋃M̃
`=1 τ`. The set of triangle edges is denoted by

Eh := {ei}Mi=1 .

The triangulation is assumed to be conforming i.e. two panels τ` and τk either coincide, they
share a common edge, a common vertex or they are disjoint. In order to discretize our problem
we have to define a suitable finite dimensional boundary element space

Vh ⊂ H−1/2(divΓ,Γ).

We use here the classical Raviart-Thomas elements of lowest order, which we denote byRT 0(Gh),
see [31].

Let a basis of RT 0(Gh) be given by {b1,b2, . . . ,bM}. We define the block matrices W
k
∈

CmM×mM for 1 ≤ i, j ≤ m by(
W

k

)
i,j

:=

(
µ

∫
Γ

∫
Γ

(
W

(2)
k (x− y)

)
i,j

(be(x) , bf (y)) dΓxdΓy

+
1

ε

∫
Γ

∫
Γ

(Wk(x− y))i,j divΓ be(x)divΓ bf (y)dΓxdΓy

)M
e,f=1

∈ CM×M ,

where (·, ·) refers to the standard inner product in C3. For 1 ≤ i ≤ m, we define the right-hand
sides rk,i ∈ CM by

rk,i :=

(∫
Γ

(
bf ,E

inc
t (tk + ci∆t,y)

)
dΓy

)M
f=1
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and form the block vectors Rk := (rk,i)
m
i=1 ∈ CmM . Then, the Galerkin discretization of (24) is

given by seeking, for 0 ≤ k ≤ N , the block vectors Jk = (jk,i)
m
i=1 with jk,i = (jk,i,e)

M
e=1 ∈ CM

such that
n∑
j=0

W
n−jJj = Rn ∀0 ≤ n ≤ N.

The temporal Runge-Kutta convolution quadrature, spatial Galerkin approximation to the elec-
tric surface current densities j

k
(x) := (j (tk + ci∆t,x))mi=1 at time points tk + ci∆t, 1 ≤ i ≤ m,

then is given by

j
k
(x) ≈ j∆t,h

k
(x) :=

(
M∑
e=1

jk,i,ebe(x)

)m
i=1

. (40)

In order to obtain approximations at tk+1 and not only at stage values, under the assumption
R(∞) = 0 on the Runge-Kutta method, note that

j (tk+1,x) ≈ j∆t,h
k+1 (x) := bTA−1j∆t,h

k
(x)

due to (23). For stiffly stable RK methods, such as the Radau IIA method, bTA−1 = (0, 0, . . . , 0, 1)T

and cm = 1, so that
j∆t,h
k+1 = j∆t,h

km .

4.4 Convergence of the fully discrete scheme

The Galerkin discretization of the variational problem (28) in the Laplace domain is given by
finding ĵh = ĵh (s) ∈ RT 0(Gh) such that(

ζ,V(s)̂jh
)

Γ
= (ζ, sn× ĝ)Γ ∀ζ ∈ RT 0(Gh). (41)

Let P0,h : L2
t (Γ) → RT 0(Gh) and Pdiv,h : H−1/2(divΓ,Γ) → RT 0(Gh) denote the orthogonal

projections. Then, the semi-discrete Galerkin discretization in the time domain can be written
as

Vh (∂t) jh = P0,hn× gt,

where
Vh (s) := P0,hV (s)P ?0,h : RT 0(Gh)→ RT 0(Gh).

The operator Vh (s) is invertible as we state in the next result.

Lemma 4.8. For s ∈ C with Re s ≥ σ0 > 0, the discrete Laplace domain Galerkin variational
problem (41) has a unique solution ĵh (s) ∈ RT 0(Gh) with the stability estimate in the operator
norm ∥∥V−1

h (s)
∥∥ ≤ C (σ0)

|s|
Re s

. (42)

Proof. Since V(s) is coercive, (36), the same estimate holds for ‖V−1
h (s)‖ as for ‖V−1(s)‖.

Hence,

Vh (∂t)
(
jh − Pdiv,hj

)
= P0,hV (∂t) (I − Pdiv,h) j

and the composition rule K2(∂t)K1(∂t)g = K2K1(∂t)g gives us

jh − Pdiv,hj = V−1
h (∂t)P0,hV (∂t) (I − Pdiv,h) j. (43)

The representation (43) along with the discrete stability estimate (42) allow to employ Parseval’s
formula in the following form.
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Lemma 4.9. Let K (s) be analytic and bounded by |K (s)| ≤ M |s|µ for all s ∈ C with Re s ≥
σ0 > 0. Then, for r > µ the convolution operator K (∂t) is a bounded linear operator

K (∂t) : W r,1
0 (0, T )→W r−µ,1

0 (0, T ) .

Further for any r > µ+ 1
K (∂t) : W r,1

0 (0, T )→ C ([0, T ])

is also a bounded operator.

Proof. The first statement is a direct consequence of the definition of the spaces W r,1
0 , whereas

the second statement is proved in [25, Lemma 2.2].

In combination with both continuous stability estimates (30), (31), we obtain for r > 5∥∥∥jh (t)− Pdiv,hj (t)
∥∥∥
−1/2,divΓ

≤ C (σ0, T ) ‖(I − Pdiv,h) j‖
Wr,1

0 ([0,T ];H−1/2(divΓ,Γ)) , (44)

i.e., quasi-optimality with respect to the space discretization. Now, we can formulate the fol-
lowing theorem.

Theorem 4.10. Let a Runge-Kutta based convolution quadrature be applied in time and a
Galerkin method with lowest order Raviart-Thomas elements be applied in space to the equation
V(∂t)j = n × gt. Under the conditions on the Runge-Kutta method stated in Assumption 4.1,
the following hold:

(a) Let g ∈ W r,1
0 ((0, T ); H−1/2(curlΓ)) with r > p + 4, where p is the (classical) order of the

Runge-Kutta method. Then, the fully discrete method converges with∥∥∥j (tk)− j∆t,h
k

∥∥∥
−1/2,div

≤ C (∆t)min{p,q+1}
∫ t

0
‖∂r+1

t g(τ, ·)‖−1/2,curlΓdτ

+ C (σ0, T ) ‖(I − Pdiv,h) j‖
Wr,1

0 ([0,T ];H−1/2(divΓ,Γ)) .

(b) Let g ∈ W r,1
0 ((0, T ); H−1/2(curlΓ)) with r > p + 5, where p is the (classical) order of

the Runge-Kutta method. Further, let ŵS,i be the solution of the problem: Find ŵS,i ∈
H−1/2(divΓ,Γ) such that

(ŵS,i,V(s)ζ)Γ = `(ζ) ∀ζ ∈ H−1/2(divΓ,Γ),

where `(·) is the linear functional defined by

`(ζ) = δySi(s)(ζ).

If for some −1/2 ≤ κ ≤ 1, ŵS,i ∈ Hκ(divΓ,Γ) and ‖ŵS,i‖κ,divΓ
≤ C|s|ακ for Re s > σ0

and j ∈Wακ+8,1
0 ([0, T ]; H−1/2(divΓ,Γ)), then for any y ∈ Ω+ and i = 1, 2, 3, it holds∣∣∣Ei(tk,y)−E∆t,h

k,i (y)
∣∣∣ ≤ C∆tp

∫ t

0
‖∂r+1

t g(τ, ·)‖−1/2,curlΓdτ

+ C (σ0, T ) ‖(I − Pdiv,h) j‖
Wακ+8,1

0 ([0,T ];H−1/2(divΓ,Γ))×

‖I − Pdiv,h‖Hκ(divΓ)←H−1/2(divΓ)
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Proof. Let us first remark that assumptions on g in both (a) and (b) together with Lemma 4.9
imply j ∈W r,1

0 ([0, T ]; H−1/2(curlΓ,Γ)), where r > p+ 4 ≥ 5 so that (44) can be applied.
We employ a triangle inequality to obtain∥∥∥j (tk)− j∆t,h

k

∥∥∥
−1/2,divΓ

≤
∥∥∥j (tk)− jh (tk)

∥∥∥
−1/2,divΓ

+
∥∥∥jh (tk)− j∆t,h

k

∥∥∥
−1/2,divΓ

.

The first term can be estimated by a best-approximation estimate in space by using (44):∥∥∥j (tk)− jh (tk)
∥∥∥
−1/2,divΓ

≤ ‖j (tk)− Pdiv,hj (tk)‖−1/2,divΓ
+
∥∥∥Pdiv,hj (tk)− jh (tk)

∥∥∥
−1/2,divΓ

≤ (1 + C (σ0, T )) ‖(I − Pdiv,h) j‖
Wr,1

0 ([0,T ];H−1/2(divΓ,Γ)) .

Note that
jh − j∆t,h =

(
V−1
h (∂t)− V−1

h (∂t
∆t)
)
P0,h (ny × ∂tg) .

Since V−1
h (s) has the same analyticity and growth behaviour as V−1 (s) with respect to s ∈ C

with Re s ≥ σ0 > 0 we can apply Theorem 4.6 verbatim for the operator V−1
h (s) to obtain∥∥∥jh (tk)− j∆t,h

k

∥∥∥
−1/2,divΓ

≤ C (∆t)min{p,q+1}
∫ t

0
‖∂r+1

t g(τ, ·)‖−1/2,curlΓdτ.

For the estimate in b) we start again with a triangle inequality and denote∣∣∣Ei(tk,y)−E∆t,h
k,i (y)

∣∣∣ ≤ ∣∣∣Ei(tk,y)−Eh
i (tk,y)

∣∣∣+
∣∣∣Eh

i (tk,y)−E∆t,h
k,i (y)

∣∣∣ . (45)

The second difference can be written as

Eh
i (tk,y)−E∆t,h

k,i (y) =
(
δySiV−1

h (∂t)− δySiV−1
h

(
∂t

∆t
))
P0,h (ny × gt) .

From Theorem 4.6 we deduce∣∣∣Eh
i (tk,y)−E∆t,h

k,i (y)
∣∣∣ ≤ C∆tp

∫ t

0
‖∂r+1

t g(τ, ·)‖−1/2,curlΓdτ.

For the first term in the right-hand side of (45) we employ an Aubin-Nitsche type argument
as, e.g., described in [32, Theorem 4.2.14]. We consider δySi (s) as a linear functional on
H−1/2(divΓ,Γ). With the definition of ŵS,i ∈ H−1/2(divΓ,Γ) above we have

δySi (s)
(̂
j− ĵh

)
=
(
ŵS,i,V(s)

(̂
j− ĵh

))
Γ
.

By using Galerkin orthogonality and the assumptions ŵS,i ∈ Hκ(divΓ,Γ) and ‖ŵS,i‖κ,divΓ
≤

C|s|ακ we obtain∣∣∣δySi (s)
(̂
j− ĵh

)∣∣∣ =
∣∣∣((I − Pdiv,h) ŵS,i,V(s)

(̂
j− ĵh

))
Γ

∣∣∣
≤ C|s|ακ

∥∥∥V (s)
(̂
j− ĵh

)∥∥∥
−1/2,curlΓ

‖I − Pdiv,h‖Hκ(divΓ)←H−1/2(divΓ)

≤ C|s|ακ+3
∥∥∥̂j− ĵh

∥∥∥
−1/2,divΓ

‖I − Pdiv,h‖Hκ(divΓ)←H−1/2(divΓ) .

Taking into account that Ê (s,y) = δyS (s) ĵ holds, we obtain∣∣∣Ei(tk,y)−Eh
i (tk,y)

∣∣∣ ≤ C (σ0, T )
∥∥∥j− jh

∥∥∥
Wακ+4,1

0 ([0,T ];H−1/2(divΓ,Γ))
×

‖I − Pdiv,h‖Hκ(divΓ)←H−1/2(divΓ).
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Finally ∥∥∥j− jh
∥∥∥
Wακ+4,1

0 ([0,T ];H−1/2(divΓ,Γ))
≤
∥∥∥jh − Pdiv,hj

∥∥∥
Wακ+4,1

0 ([0,T ];H−1/2(divΓ,Γ))

+ ‖(I − Pdiv,h)j‖
Wακ+4,1

0 ([0,T ];H−1/2(divΓ,Γ))

and using (43)∥∥∥jh − Pdiv,hj
∥∥∥
Wακ+4,1

0 ([0,T ];H−1/2(divΓ,Γ))
≤ C ‖(I − Pdiv,h)j‖

Wακ+8,1
0 ([0,T ];H−1/2(divΓ,Γ)) .

Remark 4.11. In the case of full regularity, the term ‖(I − Pdiv,h) j‖
Wr,1

0 ([0,T ];H−1/2(divΓ,Γ)) can

be estimated by O
(
h3/2

)
. However, in the considered case of polyhedral surfaces, the regularity

of the solution is typically reduced (cf. [11], [19]).
From Theorem 4.4, it follows that the assumption on the growth behaviour of ŵS,i is satisfied

with ακ = 3 for κ = −1/2. For 0 ≤ κ ≤ 1, the growth estimate requires a shifted version of
Theorem 4.4. We skipped this analysis in order not to overload this paper.

5 Numerical Experiments

In all of the numerical experiments, we will consider scattering by a perfect conductor when the
incident wave is given by

Einc(t,x) = p̂ cos
(

2πf0

[
t− x · k̂/c

])
exp

[
−(t− x · k̂/c− tp)2

2σ2

]
.

Here f0 is the center frequency, k̂ the direction of travel, p̂ polarization, σ = 6/(2πfbw), and
tp = 6σ. In all of the examples the scatterer will be the unit sphere. For a number of numerical
experiments with the convolution quadrature applied to EFIE and CFIE on different scatterers,
we refer the reader to [38].

5.1 Scattering by a spherical conductor

In the first example, we consider a spherical scatterer of radius 1m and centered at the origin.
The center frequency is chosen as f0 = 200 MHz, bandwidth fbw = 150 MHz, polarization
p̂ = (1, 0, 0), direction of travel k̂ = (0, 0, 1), and the length of time computation T = 6×10−8s.
Due to the spherical shape of the scatterer, the problem can be approximated accurately and
cheaply by Fourier transformation of frequency domain solutions obtained by Mie series [14].
Thus obtained numerical solution will play the role of the exact solution in the calculation of
errors.

For the time discretization we have used the 3-stage Radau IIA convolution quadrature. In
space, the lowest order Raviart-Thomas elements were used. The computation of the resulting
matrices and their storage in H-matrix format were done using a modification of the HLIBpro
library written by Ronald Kriemann; see [21, 22] and the website www.hlibpro.org. The spatial
discretization was chosen sufficiently fine so that no significant change in the error could be
observed, the largest calculation had M = 12288 spatial degrees of freedom. Since the operator
V(s) satisfies the coercivity result (cf. (36)), an equivalent norm to ‖ · ‖−1/2,div is given by

‖ϕ‖2−1/2,div ∼ (ϕ,−V(1)ϕ)L2(Γ) .
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The latter can then be estimated via a Galerkin discretization of the operator V(1). Finally, the
error in time and space is computed as

eN,Γ :=

∆t
N∑
j=0

‖ϕe(·, tj)−ϕN (·, tj)‖2−1/2,div

1/2

,

where ϕe denotes the solution obtained by Mie series. The results thereby obtained are given
in Table 1.

N 5 10 20 30 40 50

eN,Γ 9.9 1.4 1.4× 10−1 3.4× 10−2 1.2× 10−2 5.0× 10−3

order – 2.8 3.4 3.4 3.7 3.8

Table 1: Convergence of the 3-stage Radau IIA based convolution quadrature for the EFIE formulation
of scattering by a spherical conductor.

The 3-stage Radau IIA method has stage order q = 3, therefore the theory stated in preceding
sections predicts the order of convergence to be O(∆t4). The results in Table 1 indeed suggest
that this convergence order is obtained in the limit in this example.

Finally, let us note that the parameters defining the incident wave have been chosen so that
interior resonances of the unit sphere can be excited, see [13]. Still, no adverse effect could be
seen in using the EFIE instead of the CFIE.
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Figure 1: Magnitude of the current at a point on the perfectly conducting sphere induced by an incident
wave with center frequency f0 = 200MHz.

5.2 Scattering by a spherical conductor: low frequency instability

In the previous example, the incident wave contained very little near low frequencies. In order to
investigate possible instability induced by low-frequency breakdown, for the next computation
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we change the center frequency to f0 = 0. With a spatial discretization of 6348 degrees of
freedom, computational time interval increased to 1.8× 10−7, and 400 times steps of the three
stage Radau IIA convolution quadrature, the magnitude of the current at a point on the sphere
is shown in Figure 2. For reference we also show the current for the previous example in Figure 1.
In Figure 1 we see that after t ≈ 0.8× 10−7 the current magnitude seems to stagnate. In reality
the current should go to zero, but when implementing convolution quadrature as described in
[24, 4], there is a limit in the accuracy that can be obtained. Therefore we do not expect
the numerical current to go to zero, but in the second example the current increases. The
convergence analysis allows for such an increase to happen since all the constants in the error
estimates depend on the length of the computational time interval T , see [6]. Still, such increase
has not been observed in the acoustic case, therefore we expect that the infinite dimensional
kernel of the curl curl operator is guilty for this instability.
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Figure 2: Magnitude of the current at a point on the perfectly conducting sphere induced by an incident
wave with center frequency f0 = 0.

6 Conclusion

We described and analysed a numerical method for solving time-domain boundary integral equa-
tions arising in electromagnetic scattering which is based on Runge-Kutta convolution quadra-
ture in time and Galerkin BEM for the spatial discretization. We obtained error estimates for the
semi-discrete scheme by exploiting that the transfer function in the Laplace domain is bounded
by C|s|/(Re s) and therefore the error analysis in [6] can be applied. For the spatial discretiza-
tion we used the classical Raviart-Thomas elements of lowest order. Using the properties of the
involved operators in the Laplace domain we derived convergence estimates for the fully discrete
scheme. We performed numerical experiments in the case of a perfectly conducting spherical
scatterer. The observed convergence behaviour of the method indicates that the derived error
estimates are sharp. The numerical results also showed a possible instability developing if the
incident wave excites low frequency modes. The current analysis does not fully describe this
phenomenon.
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par Potientiel Retardé de la Diffraction d’une Onde Acoustique. Math. Meth. in the Appl.
Sci., 8:405–435, 1986.

[4] L. Banjai. Multistep and multistage convolution quadrature for the wave equation: Algo-
rithms and experiments. SIAM J. Sci. Comput., 32(5):2964–2994, 2010.

[5] L. Banjai and C. Lubich. An error analysis of Runge-Kutta convolution quadrature. BIT,
51(3):483–496, 2011.

[6] L. Banjai, C. Lubich, and J. M. Melenk. A refined convergence analysis of Runge-Kutta
convolution quadrature. Numer. Math., 119(1):1–20, 2011.

[7] L. Banjai and S. Sauter. Rapid solution of the wave equation in unbounded domains. SIAM
Journal on Numerical Analysis, 47:227–249, 2008.

[8] L. Banjai and M. Schanz. Wave Propagation Problems treated with Convolution Quadra-
ture and BEM. accepted for publication, 2011.

[9] A. Buffa and P. Ciarlet. On traces for functional spaces related to Maxwell’s equations.
part I: an integration by parts formula in Lipschitz polyhedra. Mathematical Methods in
the Applied Sciences, 24:9–30, 2001.

[10] A. Buffa and P. Ciarlet, Jr. On traces for functional spaces related to Maxwell’s equations.
II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math.
Methods Appl. Sci., 24(1):31–48, 2001.

[11] A. Buffa, M. Costabel, and D. Sheen. On traces for H (curl,Ω) in Lipschitz domains. J.
Math. Anal. Appl., 276:845–867, 2002.

[12] Q. Chen, P. Monk, X. Wang, and D. Weile. Analysis of Convolution Quadrature Applied
to the Time-Domain Electric Field Integral Equation. Submitted.

[13] W. C. Chew, J.-M. Jin, E. Michielssen, and J. M. Song. Fast and Efficient Algorithms in
Computational Electromagnetics. Artech House, Boston, London, 2001.

20



[14] V. A. Erma. Exact solution for the scattering of electromagnetic waves from conductors of
arbitrary shape. II. General case. Phys. Rev. (2), 176:1544–1553, 1968.

[15] M. Friedman and R. Shaw. Diffraction of pulses by cylindrical obstacles of arbitrary cross
section. J. Appl. Mech, 29:4046, 1962.

[16] T. Ha-Duong. On retarded potential boundary integral equations and their discretisation.
In Topics in Computational Wave Propagation: Direct and Iverse Problems, volume 31 of
Lect. Notes Comput. Sci. Eng., pages 301–336. Springer, Berlin, 2003.

[17] W. Hackbusch, W. Kress, and S. Sauter. Sparse convolution quadrature for time domain
boundary integral formulations of the wave equation by cutoff and panel-clustering. In
M. Schanz and O. Steinbach, editors, Boundary Element Analysis, pages 113–134. Springer,
2007.

[18] W. Hackbusch, W. Kress, and S. Sauter. Sparse convolution quadrature for time domain
boundary integral formulations of the wave equation. IMA, J. Numer. Anal., 29:158–179,
2009.

[19] R. Hiptmair and C. Schwab. Natural Boundary Element Methods for the Electric Field
Integral Equation on Polyhedra. SIAM Journal on Numerical Analysis, 40:66–86, 2002.

[20] W. Kress and S. Sauter. Numerical treatment of retarded boundary integral equations by
sparse panel clustering. IMA J. Numer. Anal., 28(1):162–185, 2008.

[21] R. Kriemann. HLIBpro C language interface. Technical Report 10/2008, MPI for Mathe-
matics in the Sciences, Leipzig, 2008.

[22] R. Kriemann. HLIBpro user manual. Technical Report 9/2008, MPI for Mathematics in
the Sciences, Leipzig, 2008.

[23] C. Lubich. Convolution Quadrature and Discretized Operational Calculus I. Numerische
Mathematik, 52:129–145, 1988.

[24] C. Lubich. Convolution Quadrature and Discretized Operational Calculus II. Numerische
Mathematik, 52:413–425, 1988.

[25] C. Lubich. On the multistep time discretization of linear initial-boundary value problems
and their boundary integral equations. Numerische Mathematik, 67(3):365–389, 1994.

[26] C. Lubich. Convolution quadrature revisited. BIT Numerical Mathematics, 44:503–514,
2004.

[27] C. Lubich and A. Ostermann. Runge-Kutta methods for parabolic equations and convolu-
tion quadrature. Math. Comp., 60(201):105131, 1993.
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