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We consider the deformation of a bubble in a uniaxial extensional flow for Reynolds 

numbers in the range 0.1 < R < 100. The computations show that the bubble bursts 

a t  a relatively early stage of deformation for R 2 O(lO),  never reaching the highly 

elongated shapes observed and predicted at lower Reynolds numbers. We also 

compute the deformation of the bubble under the assumption of potential flow, and 

conclude that the potential-flow solution provides a good approximation to  the real 

flow in this case for R B O(l00).  

1. Introduction 

The present paper is the third in a series (see Ryskin & Leal 1984a, b ,  hereinafter 

denoted as Parts 1 and 2) in which we use numerical methods to study the 

deformation of a bubble in axisymmetric flow fields at finite Reynolds number. Here 

we consider uniaxial extensional flow. Previous theoretical studies of this problem 

have been restricted to either zero-Reynolds-number flows (Taylor 1934, 1964 ; 

Buckmaster 1972; Barthes-Biesel & Acrivos 1973; Youngren & Acrivos 1976) or 

potential flow (Miksis 1981), with the exception of the non-zero Reynolds-number, 
slender-body analysis of Acrivos & Lo (1978), which merely requires that the bubble 

be slender. Although laboratory studies have generally been restricted to highly 

viscous fluids (and to two-dimensional, rather than uniaxial, extension), many 

practical flows involve low-viscosity fluids such as water, and the Reynolds numbers 

in these systems easily attain values 0(102-lo3). For example, to achieve R = 100 

in water with a bubble of 1 em diameter requires a strain rate of only 0(1 s-l). The 

present study covers R ranging from 0.1 to 100, as well as potential-flow results, in 

all of which the deformation may become quite large. 
At low Reynolds number both experiments and theory (Taylor 1964) show that 

a bubble may become extremely elongated and develop pointed ends where the 

curvature tends locally to extremely large values. Such cases are not accessible with 
our present numerical technique, and the slender-body analysis of Taylor (1964), 

Buckmaster (1972) and Acrivos & Lo (1978) cannot be checked now. However, we 

can compare our results in the low-Reynolds-number range R = 0.1 and 1 with the 

predictions of Youngren & Acrivos (1976), who used the boundary-integral technique 

for creeping flow to consider large deformations of a bubble in extensional flow at 

t Present address: Department of Chemical Engineering, Northwestern University, Evanston, 
Illinois 60201. 
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zero Reynolds number. We can also compare our results in the potential-flow limit 

(R+co)  with the solution of Miksis (1981). 

Our results for intermediate Reynolds numbers R = 10 and 100 appear to  us to 

be of greater interest. These results indicate that  the presence of inertia leads to  

breakup of a bubble a t  a quite early stage of deformation. 

2. Statement of the problem 

We consider an incompressible gas bubble of volume $nu3 subjected to a steady 

uniaxial extensional flow of a fluid with constant density p and constant viscosity 

p. The density and viscosity of the gas inside the bubble are assumed to be negligible 

in comparison with those of the liquid. Furthermore, the surface of the bubble is 

assumed to be characterized completely by a uniform surface tension y .  Finally, we 

neglect all effects of gravity including the hydrostatic pressure variation in the fluid. 

The latter condition has been adopted in all previous studies of the problem, and is 

necessary in order that  the shape be axisymmetric and exhibit fore-aft symmetry. 

If the x-axis of cylindrical coordinates ( x , F , $ )  is directed along the axis of 

symmetry, the (dimensional) velocity field far from the bubble is given by 

u = E . r ,  E = E  (: 0 -1 y E > O ,  

where E is the principal strain rate. We use the equivalent radius a of the bubble 

as a characteristic lengthscale and the product Ea as a characteristic velocity scale. 

The numerical solution is computed on a boundary-fitted curvilinear orthogonal 

coordinate system ( c , ~ ,  $) obtained by the technique of orthogonal mapping using 

the algorithm described in Part 1. All necessary equations and boundary conditions 
were also given in Part I ,  with the exception of the expression for the pressure a t  

the bubble surface. I n  the present work, the latter was calculated using equation (3) 

of Part 2 ,  but with the hydrostatic pressure contribution set equal to zero. As in the 
case of Part 2 ,  all results reported here were obtained on a 4 0 x 4 0  grid in the 

(5, T)-coordinates. The relevant dimensionless parameters are the Reynolds number 

R = 2p(Ea) alp based on the equivalent diameter 2a of the bubble, and the Weber 

number W = 2 ~ ( E a ) ~  a/?. 

3. Numerical results and discussion 

We have done computations for R = O . I ,  I ,  10, 100 and 00 (potential flow), 
gradually increasing Win each case until a value was reached beyond which a solution 
could not be obtained. At low Reynolds numbers (R = 0.1 and 1) the tips of the bubble 

become increasingly pointed with increase of W ,  and the limit on W that  we could 

achieve is a consequence of our inability to  resolve these regions with a 40 x 40 grid 
in the (<, V)-plane. At the higher Reynolds numbers, on the other hand, we believe 

that our inability to obtain steady solutions beyond a certain W is a result of the 
fact that  steady axisymmetric solutions do not exist for larger values of W ,  i.e. for 

W > Wc(R), where Wc(R) denotes a ‘critical’ value for breakup. We shall discuss both 
cases in detail in the remainder of this section. The computed bubble shapes are shown 

in figure 1 .  

At low Reynolds numbers there is a trend, also predicted by the creeping-flow 
theory and observed in experiments (see Acrivos & Lo 1978, and references therein) 

for a bubble to elongate monotonically with increase in the capillary number 
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FIGURE 1 .  Shapes of a bubble in uniaxial extensional flow as a function of Reynolds 
and Weber numbers; R = co corresponds to the potential-flow solution. 

,uEa/y = W / R .  In  the process of elongation, the curvature of the surface becomes 
very large at the tips of the bubble. The largest values of W shown in figure 1 for 
R = 0.1 and 1 represent the limit of our ability to resolve this region of high curvature 
with the (t, 7)-coordinate system that was used and a 40 x 40 grid, given the necessity 
for reasonable rates of convergence. There is no reason to believe that steady 
axisymmetric solutions could not have been achieved a t  larger Weber numbers if more 
grid points were used, or possibly the ((,r,~)-coordinates redefined to concentrate a 

greater proportion of coordinate lines in the vicinity of the bubble tips. It is 
noteworthy that the slender-body theory at R = 0 due to Taylor (1964), Buckmaster 
(1972) and Acrivos & Lo (1978) predicts no breakup, while the low-Reynolds-number 
analysis of Acrivos & Lo (1978) predicts breakup a t  higher W than was achieved here. 
To demonstrate this latter point i t  is necessary to convert the breakup criterion of 
Acrivos & Lo (1978) from its original form 

in terms of the capillary number,uEa/y to one that is explicit in Weber number : either 

or 
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FIGURE 2.  Comparison of the present results for R = 0.1 (points) with the results of Youngren & 
Acrivos (1976) for R = 0 (solid line, plotted in terms of the deformation parameter D = (Z-b) / (Z+b)  
as a function of the capillary number ,uEu/y. Here 2 and b are respectively the half-lengths of the 
major and minor axes of the bubble profile. 

The latter is slightly preferable, because it gives a specific prediction for the critical 

W in terms solely of material (rather than dynamic) parameters. For R = 0.1, where 

Acrivos & Lo’s theory may be expected to apply, W, is predicted to be 0.044, which 

is considerably in excess of the value 0.025 that was reached numerically. At R = 1 
the Acrivos-Lo criterion gives Wc = 0.247, but the apparent agreement with the 

largest value 0.25 achieved numerically is almost certainly fortuitous since the 

analytic result is expected to hold only for Re 4 1.t 

Our steady-state solutions for R = 0.1 are in good agreement with the creeping-flow 

solutions of Youngren & Acrivos (1976), which were obtained using the boundary- 

integral technique. A comparison of the solutions in terms of D = (Z-b) / (Z+b) ,  where 

I is the bubble half-length and b its radius a t  the midsection, versus pEu/y is shown 

in figure 2. It can be seen that our solution predicts a slightly higher deformation 

for R = 0.1 than Youngren & Acrivos’ solution for R = 0. The difference is presumably 

due to the weak effect of inertia. The slender-body analysis of Acrivos & Lo also shows 

slightly increased deformation upon the inclusion of inertia. Our results for R = 1 

show the same general ‘low-Reynolds-number pattern ’ of deformation, with the 

bubble becoming strongly elongated prior to breakup. The degree of deformation for 

any pEa/y is increased relative to the solutions for R = 0 and 0.1. 
A qualitative change in the nature of the deformation takes place a t  some Reynolds 

number between 1 and 10. At R = 10 and 100 the bubble does not become elongated. 

As can be seen from figure 1, the bubble first assumes the shape of an oval, but with 

t The reformulation of Acrivos & Lo’s criterion for bubble breakup in terms of W would appear 
to be more natural than the original form in terms of capillary number because bubble breakup 
is solely inertial in origin, unlike bubble elongation, which depends (for R < O ( 1 ) )  on the balance 
between surface-tension and viscous forces, and is therefore determined by the capillary number. 
The only surprising fact is that We does not appear as a constant, as would be expected, but rather 
as a function of a. However, this is because W is based on the equivalent diameter 2u of the 
undeformed bubble, which does not represent a true characteristic lengthscale of the problem when 
the bubble is strongly elongated. A more appropriate definition of Weber number in this case is 
U‘* = 2p(EQ2/ (y /b ) ,  where the characteristic velocity El is proportional to the bubble half-length 
1,  and the capillary force is inversely proportional to b ,  the bubble midsection radius. At the point 
of breakup, Acrivos & Lo found for a strongly elongated bubble Z/a = 2.37a-1 and b / l  = 0.295af. 
Thus W,* = 0.636 at breakup. This form of Acrivos & Lo’s criterion shows most clearly the inertial 
nature of bubble breakup, even for R < O( 1). 
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further increase of W the side surface approaches a circular cylindrical shape. Our 
attempts to obtain a converged solution for R = 10 and W = 1 and for R = 100 and 

W = 2.2 invariably failed, resulting in fast divergence, even though solutions for the 

same Reynolds numbers and W less by only 0.1 were readily obtained (see figure 1) .  

In  these cases there are no surface points where the curvature is much higher than 

O ( l ) ,  and so i t  is unlikely that purely numerical difficulties could be a source of 

divergence. Monitoring the shape of the bubble during an attempt to compute these 

diverging solutions, we observed that after some number of iterations the side surface 
of the bubble became cylindrical a t  the equator (i.e. K ( ~ )  became zero there), then a 

‘waist ’ appeared and divergence followed. Though our numerical procedure in its 

present form does not simulate a real transient (unsteady) flow, i t  is intuitively clear 

from the sequence of shapes for R = 10 and 100 in figure 1 that further increase in 

Weber number would lead to  appearance of the ‘waist ’ in a real flow. Again intuition 

suggests that a bubble with a waist is unlikely to  be stable and should burst into two 

parts (indeed, such is the case for a slender bubble with a waist a t  R = 0, as shown 

by Hinch 1980). Accordingly, we conclude that bubble breakup (or, more accurately, 

the onset of transient elongation) occurs for 0.9 < W, < 1 at R = 10, and 

2.1 < W, < 2.2 a t  R = 100. Although a closer estimate of the critical Weber number 

could have been obtained by looking for solutions within the above intervals, this 
was not done in present work. Obviously, the bounds on W, that we have obtained 

are accurate within a few percent. 

We do not present the streamline plots corresponding to the shapes in figure 1 ,  since 

there is no flow separation, and accordingly the streamlines provide little additional 

insight. It is quite unlikely that separation will appear a t  higher Reynolds numbers 

since the only source of vorticity is boundary curvature, which seems to be 

approaching an O(1) limit as R is increased for any fixed W (see Part 2 for a discussion 

of the connection between vorticity production and separation). Also, the velocity 

and pressure fields in an extensional flow differ from those in the uniform flow in a 

way that makes flow separation much less likely, e.g. there is no separation in an 

extensional flow past a solid sphere at Reynolds numbers up to  0(103) (see Ryskin 

1980, $7) .  If separation does not occur, a solution under the assumption of irrotational 

flow should provide a good approximation to  the real flow for R +  CO. Such solutions 

have been computed by Miksis (1981) using the boundary-integral technique, and i t  

is of interest to compare his results with corresponding results from the very different 

approach taken here. Accordingly, we have computed inviscid irrotational solutions 

by setting the vorticity equal to zero everywhere and neglecting those terms that 

include a factor l / R  in the expression for normal stress, which thus becomes 

7“ = -pdyn = u;. 

Application of the present method becomes quite easy in this case, and takes only 

about 5-10 min of CPU time on the VAX-11/780. The results presented in figure 1 

show that the trend that is already apparent a t  R = 10 continues to  R-t CO. The 

Weber number W = 2.7 is the highest (in steps of 0.1) for which a converged solution 

could be obtained in the potential-flow limit; for W = 2.8 the ‘waist’ appears at some 

stage of the iteration process and then keeps contracting without converging to an 
equilibrium solution. We may therefore conclude that the critical Weber number for 

bubble breakup in the limit R+ m is between 2.7 and 2.8, i.e. 2.7 < W, < 2.8. Miksis 
(1981) predicts (in our notation) W, = 2.76. The agreement is good and supports our 

interpretation of the appearance of the ‘waist’ and subsequent divergence of our 

numerical scheme as signifying bubble breakup. 
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An approximate interpolation formula for the critical Weber number that fits the 
low-R asymptote of Acrivos & Lo (1978), as well as the approximate critical values 
W, = 0.95,2.15 and 2.76 from the present work (and Miksis 1981) at R = 10, 100 and 

03, is ( l ) ?  - - -  - ( 1 )?+( 1 )? 
w, 2.76 0.247H ‘ 

This empirical interpolation formula can also be expressed in an implicit form in terms 
that depend only on bubble size and liquid properties : 

@+ 10.9a-fi@-3.09 = 0. 

We currently know of no experimental data that could be used to corroborate this 
result. 

It should be emphasized that the above results are valid only for bubbles (whose 
density is negligible) but not for inviscid drops. These two cases are identical only 
if the Reynolds number is zero or if the shape is fixed (spherical). Otherwise, one must 
take into account the variation of pressure inside the inviscid drop. In  particular, 
if the drop is neutrally buoyant, the ui term in the expression for normal stress (see 
Part 2, equation (3)) will be exactly cancelled by a similar term inside the drop. This 
ui term is the dominant contribution to the normal stress, and thus to the shapes of 
bubbles, at high R. In particular, the strong deformation at .the equator of the bubble 

for R > O(10) (and, eventually, the development of the ‘waist’ and subsequent 
bursting of the bubble) is apparently due to the high stagnation pressure at this point. 
The complete cancellation of the u; term in the case of a neutrally buoyant (viscous 
or inviscid) drop is certain to have a profound effect on the deformation. We note 
in passing that the above remarks are also applicable to Acrivos & Lo’s (1978) solution 
at  non-zero Reynolds number in the slender-body regime, and to Miksis’ (1981) 

solution at  R-t co . These solutions are valid only for a bubble, and not for an inviscid 
drop as suggested by the authors. 

4. Comparison with rising bubble 

In  a certain sense, the deformation of a bubble in an extensional flow is a much 
simpler phenomenon than the deformation of a rising bubble in a quiescent fluid. In 
particular, the surface values of the normal stress, the hydrostatic pressure and the 
dynamic pressure balance exactly in an integral sense in the case of a rising bubble 
(see Part 2) since the resultant force on the bubble is zero. Thus deformation in this 
case is a consequence of local diflerences in stress and pressure distributions, which are 
extremely difficult to anticipate, balanced against capillary forces. On the other hand, 
the balance of forces to achieve zero net force in the extensional flow is satisfied owing 
entirely to the fore-aft symmetry of the bubble. Thus one or the other of the pressure 
and normal-stress contributions can become dominant over the others, and then 
deformation occurs as a result of this one distribution balanced against capillary 
forces. Because of this, the qualitative mode of deformation is much more accessible 
to intuition in the latter case. For example, the tendency for a bubble in extensional 
flow at low Reynolds number to extend in the direction of the principal axis of strain 
is easily anticipated from the viscous-stress and pressure distribution at the surface 
of a spherical bubble in the same flow. Similarly, a t  high Reynolds number, the 
dynamic pressure is the dominant contribution to the stress balance at the bubble 
surface, and it is evident that the bubble should be pushed inward at  all stagnation 
ponts owing to the higher pressure there, as was indeed observed in the computations. 
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The above discussion also clarifies the difference between the two problems in terms 
of the importance of the dimensionless groups for estimating the degree of deformation. 
In  the most general sense (i.e. not referring to any particular problem), one would 
expect the degree of deformation a t  low Reynolds number to  depend upon the 
capillary number WIR, which is a measure of the magnitude of viscous stresses 
relative to capillary forces. For example, when W/R = O(1) one should normally 
expect large deformation (and possibly even breakup) on the basis of the order- 
of-magnitude estimate of viscous ‘ deforming ’ forces relative to the surface-tension 
‘restoring’ forces that is inherent in W/R. The Weber number would be expected to  
play a similar role a t  higher R, since it is a measure of the order of magnitude of 

dynamic pressure forces relative to capillary forces. These expectations are generally 
borne out in the case of an extensional flow, as can be seen from the results of figure 1 .  

However, in the case of a rising bubble, these expectations prove completely wrong. 
The capillary number does not play a role at all. Furthermore, though the Weber 
number does determine the deformation at non-zero Reynolds numbers, the deform- 
ation is rather small at W = O( l ) ,  and, indeed, extremely high Weber numbers can 
be reached experimentally for spherical-cap bubbles without breakup, the shape of 

a bubble becoming essentially independent of W above some value of order 15-20 
(see Part 2). Unlike the extensional-flow problem where .W/R and W do provide a 
direct measure of the strength of the dominant deforming forces relative to the 
restoring tendency of surface tension, the overall ‘integral ’ balance between static 

and dynamic pressures and the viscous normal stress in the case of a rising bubble 
means that no single one of these deforming forces can become dominant at any W/R 
or W. 
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