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Abstract

Two efficient methods for solving generalized Tyapunov equations and their implementa-
tions in FORTRAN 77 are presented. The first one is a generalization of the Bartels Stewart
method and the second is an extension of Hammarling’s method to generalized TLyapunov
equations. Our LAPACK based snbroutines are implemented in a quite flexible way. They
can handle the transposed equations and provide scaling to avoid overflow in the solution.
Moreover, the Bartels Stewart snbroutine offers the optional estimation of the separation
and the reciprocal condition number. A brief description of both algorithms is given. The
performance of the software is demonstrated by numerical experiments.
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1 Basic Properties of Generalized Lyapunov Equations

Lyapunov equations play an essential role in control theory. In the past few years its generaliza-
tions, the generalized continuous time Lyapunov equation (GCLE)

ATXE4+ E"XA =Y (1)
and the generalized discrete time Lyapunov equation (GDLE) or generalized Stein equation
ATXA - FE"XE =V, (2)

have received a lot of interest. A, F/, and Y are given real n x n matrices. The right hand side Y
is symmetric and so 1s the solution matrix X if the equation has a unique solution.
We can consider the GCLE and the GDLE as special cases of the generalized Sylvester equation

R'XS+UTXV =Y, (3)

where in general, X and ¥ are n x m matrices. Since equation (3) is linear in the entries of X it
can be written as a system of linear equations. To this end, the entries of X are usually arranged
in a vector by stacking the columns of X = (#;;)nxm. This is done by the mapping wee, which is

defined as
vee(X) = (11, -y Bn1, T12, o, Tp2,y ooy T, - ..,mnm)T.
Tt can easily be shown that (3) is equivalent to
(ST oR"+V"® UT) vee(X) = —vee(Y), (4)

where @ denotes the Kronecker product of two matrices, e.g. [13]. The order of this system is nm.
Therefore, it 18 not practicable to find X by solving the corresponding system of linear equations
unless n and m are very small.
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The solvability of (3) depends on the generalized eigenstructure of the matrix pairs (R, ) and
(V,5). A matrix pencil @R — U is called regulariff there exists a pair of complex numbers (o, 3')
such that o' R— p'U is nonsingular. If Rz = BUx holds for a vector x # 0, the pair (o, 5) # (0,0)
is a generalized eigenvalue. Two generalized eigenvalues (v, 3) and (v, §) are considered to be equal
iff @6 = By. The set of all generalized eigenvalues of the pencil R — BU is designated by o(R, U).
The following theorem, e.g. [3], gives necessary and sufficient conditions for the existence and
uniqueness of the solution of (3).

Theorem 1 The matriz equation (3) has a unique solution if and only if
1. aR — BU and oV — 35 are regular pencils and
2. o(R,UYNao(—V,S) = 0.

Let (e, 3;) denote the generalized eigenvalues of the matrix pencil «A — BE. For simplicity,
we switch to the more conventional form of a matrix pencil A — AF, whose eigenvalues are given
by A; = Bi/a; with A; = co when «; = 0. Applying the ahove theorem to (1) and (2) gives the
following corollary.

Corvollary 1 et A — AF be a regular pencil. Then

1. the GCLE (1) has a unigue solution if and only if all eigenvalues of A — XE are finite and
Ai +A; £ 0 for any two eigenvalues A; and A; of A — AF,

2. the GDLFE (2) has a unique solution if and only if \;A; # 1 for any two eigenvalues X; and
Aj of A= AF (under the convention 0-0co =1).

As a consequence, singularity of one of the matrices A and F implies singularity of the GCLE
(1). T both A and F are singular, the GDLE (2) is singular too. Thus, for an investigation of the
unique solution of a generalized Lyapunov equation we may assume one of the matrices A and F
to be nonsingular. Since A and F play a symmetric role (up to a sign in the discrete time case),
we expect F to be invertible. Under this assumption equations (1) and (2) are equivalent to the
Lyapunov equations

(AEY' X+ X(AE )y =-FETyE™! (5)
and
(AEY'X(AEY - X =-FTYE ", (6)

respectively, and the classical result about the positive definite solution of the stable Lyapunov
equation [14] remains valid for the generalized equations.

Theorem 2 Let F be nonsingular and Y be positive definite (semidefinite).

1. If Re(X;) < 0 for all eigenvalues X; of A— XE, then the solution malriz X of the GCLFE (1)
is positive definile (semidefinite).

2. If |N] < 1 for all eigenvalues X; of A — XE, then the solution matriz X of the GDLFE (2) is
positive definite (semidefinite).

There may be a definite solution in the discrete time case even if F is singular. Tf |X;| < 1 for all
eigenvalues A; of £ — XA, then the solution matrix X is negative definite (semidefinite). But this,
of course, means nothing but reversing the roles of A and F.

Finally, it should be stressed that the reduction of a generalized equation (1) or (2) to a stan-
dard Lyapunov equation (5) or (6), respectively, is mainly of theoretical interest. Tf F is possibly
Il conditioned, this is not a numerically feasible approach to solve the generalized equation numer-
ically. Tn the sequel we present two methods which solve generalized Lyapunov equations without
nverting /.



2 Algorithms for Generalized Lyapunov Equations

2.1 A Generalization of the Bartels—Stewart Method

The algorithm described in this section is an extension of the Bartels Stewart method [2] to
generalized Lyapunov equations (see also [3], [6], [12]). We restrict ourself to the GCLE. The
derivation of the algorithm for the GDLE 1s straightforward.

First the pencil A — AF is reduced to real generalized Schur form A, — AF by means of
orthogonal matrices @ and 7 (Q7 algorithm [8]):

A, = QT AZ, (7)

E, = Q"Ez (8)
such that A, 1s upper quasitriangular and F is upper triangular. Defining

v, = 727vz,

Xy = QxQ" (9)
leads to the reduced Lyapunov equation

ATXGE + E] X Ay = =Y, (10)

which is equivalent to (1).

Let A, Fy, Vs, and X be partitioned into p by p blocks with respect to the subdiagonal structure
of the upper quasi-triangular matrix A;. Fspecially, the main diagonal blocks are 1 x 1 or 2 x 2
matrices according to real eigenvalues or conjugate complex eigenvalue pairs of the pencil A, —AF,

respectively.
A - Agp Fioooo Fip
A? = : bl ES = : bl
O App O Epp
Y1, Yip X Xip
Y = : : v N = :
Yo Yop Xpi Epp

Now (10) can be solved by a block forward substitution, which is more complicated to derive than
that utilized in the Bartels Stewart method for the standard Lyapunov equation. Since X 1s
symmetric, only p(p 4+ 1)/2 Sylvester equations

AT XuFu+ ELXuAn = —Vu (11)

of order at most 2 x 2 with right hand side matrices

k)
Vie=VYir+ D> (ALXy Ej+ ELX5 A7) (12)
R

need to be solved. According to (4) the solution X;; is found by solving the corresponding system
of linear equations

(E,T ® AZk + A;F, ® Eka) vee(Xg) = —vec(VM).

We determine the blocks in the upper triangle of X in a row wise order, i.e., we compute succes-
sively X1, ..., Xqp, Xoa, ..., Xop, ..., X;p. Computing the matrices Vi by (12) would result in an
overall complexity O(n*). This can be avoided by a somewhat complicated updating technique
based upon the following expansion of equation (12)

k 1—1 1—1
Vie = Y+ > | AL Do Xu B | + BL D] Xii A
i=1 =1 =1
k—1
+Z(AZ;¢XHFJH+EZI;XHAH>-
=1



We determine VH in 2k — 1 sweeps

v = v,
' ' -1 -1
v = v Al SOXGEp |+ EL D XA, i=1 0k
ji=1 j=1
Vk(,%) = YkF12i71)+AZ;€XilEll+F]Z];XHAIM r=1,...,k—1,
Vi = v

Our implementation of the algorithm computes Vk(l%q) (k > i) right before solving (11) for X;;.
After X;; is known, Vk(l%’) (k > 4) can be computed. What decreases the complexity to O(n?) is

that Vi(?iq), - 8/1(127771) (the elements below the main diagonal are not of interest) can be updated

-1
i Xi; Ajr only once.

Note that the blocks of the strict lower triangle of X appearing in each of both sums are given by

simultaneously, where we have to compute the terms 22;11 Xi;Fyand

symmetry. Moreover, it 1s apparent that the updating technique described above can be realized
by operating on the array Y without the need for further workspace. Finally, the solution matrix
X is obtained from X by (9).

Lyapunov equations whose coefficient matrices A and F are replaced by its transposed matrices
can be solved in a similar fashion by block backward substitution.

2.2 Estimation of the Separation and the Condition Number

The software for the Bartels Stewart method provides optional estimates for both the separa-
tion and the condition number of the Lyapunov operator. Especially the latter is important for
estimating the accuracy of the computed solution.
In the continuous time case the separation is defined as
sep, = sep.(A, F) = min ||ATXE + ETXAHF )
1X1 =1

Due to the orthogonal invariance of the Frobenius norm, this quantity is not altered by the
transformations (7) and (8). Therefore, the estimate can be obtained from the reduced equation
(10) which lowers the computational cost significantly. According to (4),

1
sep, = ——
PR

i K, = ET ® A;F + A;F ® ET is invertible. The quantity ” K;1 || is estimated by an algorithm
due to Higham [11] based on Hager’s method [9]. Actually, this method yields an estimate for the
1 norm. This is a quite good approximation of ||f\’;1 ||27 since it deviates from || K. ||1 by no more
than a factor n. The algorithm, which is available as routine DLACON in LAPACK [1], requires
the solution of a few (say 4 or 5) generalized Lyapunov equations A;FXS K+ EZXSAS = Y, or
AXET + B X AT = v,

Finally, an estimate for the condition number of the generalized Lyapunov operator, which is
represented by the corresponding matrix K., is provided by

2 AR P

F
sep,,

cond(K.)

Again, note that |A| = |As|lp and |F|p = |As]p-
The separation of the discrete time Lyapunov operator is

sepy = sepy(A, F) = ")p”ﬁn_1 ||ATXA —FE"XE
o=

o
S Loy

with Kg = AT @ AT — ET @ ET. After approximating sep; by the reciprocal estimate for ” f\’(;1 ||1
an estimate for the condition number is gained from

2 2
A e + 17

F
sepy

cond(K )



2.3 A Generalization of Hammarling’s Method

The method due to Hammarling is an alternative to the Bartels Stewart method in case the
Lyapunov equation to be solved is stable and its right hand side is semidefinite. Tn [10] Hammarling
suggested that his method can be extended to generalized Lyapunov equations. We will present
such a generalization in the sequel.

We assume the pencil A — AF to be stable, i.e., its eigenvalues must lie in the open left half
plane in the continuous time case or inside the unit circle in the discrete time case. TIf these
conditions are met, the solutions X of the GCLE

ATXE4+E"XA=-B"R (13)
and the GDLE
ATXA-FE"XE=-B"B (14)

are positive semidefinite (see Theorem 2). Tn general, B is a real m x n matrix, while A, F, and
X are real square matrices of order n. The Cholesky factor I/ of the solution X = U7 can be
found without first computing X and without forming the matrix product B” B. We focus on the
continuous time equation (13) and give a note about the differences in the discrete time case.

Similar to the Bartels Stewart method, the algorithm consists of three parts. First the equa-
tion 1s transformed to a reduced form by means of the orthogonal matrices resulting from the
generalized Schur factorization. After solving the reduced equation, the solution is retrieved by
back transformation.

Applying the Q7 algorithm to the pencil A — AF yields orthogonal matrices 2 and 7 such
that A, = QT AZ is upper quasitriangular and E, = Q7 F7 is upper triangular. This leads to the
reduced equation

ATUTU B, + ETUTU, A, = — BT B,, (15)

where the n x n upper triangular matrix B; on the right hand side 1s formed as follows. If m > n,
the matrix B, is obtained from the rectangular QR factorization

BZ—QR( o )

where g 1s an orthogonal matrix of order m. Otherwise, we partition B/ as
BZ = (13’1 l?z) ,
where By is an m x m matrix with the QR factorization

Bi = QnBs.
Thus, B, is given by
By QB
B, = ‘ R )
’ ( 0 0

To solve the reduced equation (15), we partition the involved matrices as

A Age _{ Fii Fas
A‘( 0 Am)’ F( 0 Em)’
[ Bi1 B Ui Uje
BS< 0 822)’ U‘(o (]22)'

The upper left blocks are p x p matrices (p = 1,2), where p = 2 iff the pencil A1y — AFy; has a
pair of complex conjugate eigenvalues.
Provided that Uy is nonsingular, the above partitioning leads to the following formulas

AT ol my + ELUl U Ay = =B B, (16)
ALUL + ELULM, = =B, My — AT, UL — ETUT My, (17)
AL UL Uss By + EL UL U3y Agy = —BL, Boy — BT, Byy

— (AT U+ ALUTNU B + Urg Fa)
—(FLUL 4+ ELUIY (U Avs + Uiy Ass)
= BB —yy' (18)



with the auxiliary matrices

My = UnAnEL UYL, (19)
My = BinE; UL, (20)
y = B1T2 - (ETQUE + E2T2U1T2)M2T-

As mentioned in Section 1 the matrix F is nonsingular so that the inverse of Fiy exists. Moreover,
it can be proved that Uyq is nonsingular as well if By # 0.

The above equations enable the entries of U, to be determined recursively. The block Uy
is gained from the stable Lyapunov equation (16). Afterwards, the matrices My and My are
determined. Solving (16) for the case p = 2 is described later in an extra paragraph.

After computing U1, My, and My, the generalized Sylvester equation (17) is solved for U},.
If /11 is nonsingular, the existence of a unique solution U/], is guaranteed by Theorem 1.

Tt remains to find the Cholesky factor Bas of the right. hand side matrix of equation (18)

By Bos 4 yy" = B, Bos.

The upper triangular matrix By is cheaply obtained from the QR factorization of

(7 )=an("7)

where () 5 is an orthogonal matrix and () is the zero matrix which consists of p rows. The resulting
equation

AU Uso By + EL U U2 Age = — Bl Bao

has the same structure as (15) but its size is lowered by p. Hence, all entries of Us can be
determined recursively.

After the reduced equation (15) is solved, we find the upper triangular solution matrix U of
equation (13) by the QR. factorization of

UsQ" = QuU

with the orthogonal matrix Q7. Of course, the latter need not be accumulated.

The next part of this section is addressed to the problems caused by the non real eigenvalues
of the pencil Ay; —AFE; when p = 2. The procedure for solving the 2 x 2 Lyapunov equation (16)
is similar to that described above for the equation of order n. For an explanation of the algorithm
we make use of complex computation. Nevertheless, in our implementation complex operations
are emulated by real ones. First the pencil Ay; — AF47 is reduced to Schur form by means of
unitary matrices Q and 7 such that

QHA117:_AH_<(I(1)1 (112)7

QHEH?: B = ( 661 €19 )

€992

Let B112 = QR F}H be the QR. factorization of B112 with an unitary matrix QR, for which the
entries on the main diagonal of the upper triangular matrix By are real and non negative. Now
the reduced form of (16) can be written as

ARUHU iy + EROUR 0, Ay = — B By,
After partitioning F}H and UH as follows

= b g o wi e

B11 — ( 0 b22 ’ (]11 — 0 U9 ;

we find the entries of UH from

0 = \/*011611*6110117
U —bﬂ
AR

&



bi261 + (arre12 + araery)uqy

Uiz = )
a92€11 + €990
0y = \/*022622 — €290d39,
1
y = bio— —(erqury + eanngs),

€11

1
Ugy = —\/b%2—|—|y|2.
P

Finally, the upper triangular solution Uy of (16) is obtained by the QR factorization

UnQ = Qulln,

where Q7 1s a unitary matrix.

Tt should be stressed that if p = 2 care is needed when computing the auxiliary matrices M,
and My since Uy may be ill conditioned. This is the case when the pair (/ICGTAT17 EGT BT) is
near to an uncontrollable one. For a further discussion of this issne we refer to Section 6 in [10].
In our implementation we followed the procedure proposed there.

For the discrete time equation (14) most of the algorithm is similar to that for the continuous
time equation. An essential difference 1s the solution of the reduced equation

Atoru A, — ETUTU B, = —B!'B,. (21)

Here the recursion is based on the formulas

ATulhon Ay - ELulion By = =Bl By (22)
AL ULM, — ELUL, = —BLMy+ ELUL — AT, U M,
A UL Uso Agy — EL UL U oy = — B, Boy —yy”

where My and My are defined as in (19) and (20), respectively. The matrix y is given by
y=(Bly ALUN + ALUL) C,

where (C' 1s a matrix which fulfils

T
_ Mo Mo _ T
M372p<M1)'<M1) =CC".

From (19), (20), and (22) we obtain MJ Ms + M{ My = I, which leads to My = M5. Hence, the
symmetric matrix Mz is the orthogonal projector onto span((M]  M[)")~. Thus, the 2p x 2p
matrix M3 is actually positive semidefinite and has rank p. Consequently, the factor C'is a 2p x p
matrix and the matrix y consists of only p columns.

3 Software Implementation

Our routines for solving the generalized Lyapunov equation possess some new features that should
be mentioned here. Both Hammarling’s method and the Bartels Stewart method are implemented
in a way that enables the transposed equations to be solved without transposing the involved
matrices explicitly. Furthermore, our routines can benefit from Schur factorizations of the pencil
A —AF, which have been computed prior to calling the routine. To keep storage requirements low,
the input right hand side and the output solution share the same array. This, of course, results in
the loss of the right hand side matrix. An output parameter for scaling of the solution is provided
to guard against overflow.

For the Bartels Stewart method the symmetric right hand side matrix Y may be supplied as
upper or lower triangle. Tn any case the full solution matrix is returned. Moreover, an optional
estimation of the separation and the reciprocal condition number is provided. Of course, when
solving the generalized Lyapunov equation via Hammarling’s algorithm the condition estimator
in the Bartels Stewart routine can be utilized to detect 11l conditioning in the equation.

The number of flops required by the routines is given by the following table. Tt strongly depends
on whether the generalized Schur factorization of the pencil A —AF is supplied (FACT = .TRUE.)
or not, when calling one of both main routines. The flop estimate 660 for the Q7 algorithm, which
delivers this factorization, is taken from [8]. We split up the flop count for the Bartels Stewart



method into the three possible cases, where the solution (JOB="X"), the separation (JOB="S"),
or hoth quantities (JOB="B’) are to be computed. Note that we count a single floating point
arithmetic operation as one flop. The quantity ¢ is an integer number of modest size (say 4 or 5).

| Method | FACT=TRUE.| FACT=FAISE. |

JOB="R’ (26 + 8¢)/3 - n? (224 +8¢)/3 - n?
Bartels Stewart | JOB="S’ 8¢/3-n? (198 +8¢)/3 - n?
JOB="X" 26/3 - n? 224/3 . n?
(]377,34— 6mn? (2]]n3+6mn2

m<n
Hammarling +6m?n — 2m3)/3 +6m?n — 2m3)/3
m>n (]]n3+]2mn2)/3 (209n3+]2mn2)/3

Number of flops required by the routines.

Our implementation of the Bartels Stewart algorithm is backward stable if the eigenvalues of
the pencil A — AF are real. Otherwise, linear systems of order at most 4 are involved into the
computation. These systems are solved by (Gauss elimination with complete pivoting. The loss
of stability in such eliminations is rarely encountered in practice. To our knowledge, there are no
backward stability results for Hammarling’s method for the standard Lyapunov equation.

The source code 1s implemented in FORTRAN 77 and it meets the programming standards
of the Working Group on Software [15]. Tt makes use of BLAS routines and routines available in
LAPACK 2.0 [1]. Although BLLAS routines of level 3 are used the algorithms are basically of level
1 and 2. The type COMPLEX 1is not used. Complex computation is avoided or emulated by real
operations.

The remainder of this section gives a brief survey of the subroutine organization. An interface
specification of both main routines is enclosed in the appendix.

Bartels—Stewart method

DGLP Main routine. To be called by the user.

DGLPRC Solves the reduced continuous time equation (10).
DGLPRD Solves the reduced discrete time equation.

DGELUF LU factorization of a square matrix with complete pivoting.

DGELUS Back substitution for linear systems whose coefficient matrix has been factorized by
DGELUF. Provides scaling.

DMTRA Transposes a matrix.

DZTAZ Computes Z7 AZ or ZAZT for a symmetric matrix A.

Hammarling’s method

DGLPHM Main routine. To be called by the user.

DGHRC Computes the Cholesky factor of the solution of the reduced continuous time equation
(15).

DGHRD Computes the Cholesky factor of the solution of the reduced discrete time equation
(21).

DGHNX2 Solves the matrix equation ATXO+ FETXD =Y or AXCT + EXDT =Y for the
n x m matrix X (m = 1,2). Provides scaling.

DGH2X2 Hammarling’s method for the 2 x 2 Lyapunov equation in case the matrix pencil has
complex conjugate eigenvalues. Provides scaling.

DCXGIV Computes parameters for the complex (Givens rotation.



DGELUF LU factorization of a square matrix with complete pivoting.

DGELUS Back substitution for linear systems whose coefficient matrix has been factorized by
DGELUF. Provides scaling.

Note that the subroutines DGELUF and DGELUS are contained in LAPACK 2.1 under the
names DGETC2 and DGESC2, respectively.

4 Numerical Experiments

In this section we demonstrate the performance of our software applied to two sample problems.
Both depend on a scale parameter ¢ which affects the condition number of the equation. We
compare the results obtained by the Bartels Stewart subroutine DGLP and the Hammarling
subroutine DGLPHM with those of the established subroutines SYLGC and SYLGD [7]. The
tests were carried out on a HP Apollo series 700 workstation under TEEE double precision and
machine precision € & 2.22- 1076,

Example 1 [7]: The matrices A and F are defined as
A = (27" = 1)I, +diag(1,2,3,...,n) + U
E o= I,+2"'U,

in the continuous time case and

A 27T, +diag(1,2,3,...,n)+ U
FE = IL,+27'U,

in the discrete time case, where I, 1s the n x n identity matrix and U,, is an n X n matrix with
unit entries below the diagonal and all other entries zero. These systems become increasingly
ill conditioned as the parameter # increases. In all cases Y is defined as the n x n matrix that
gives a true solution matrix X of all unit entries.

We generated the above problems for a medium size (n = 100) and various values of the
parameter t. The following table shows the relative errors |X — X|g/|X |z, where X is the
known true solution and X is the computed solution affected by roundoff. Since the pencil A —AF
is in general not stable, the Hammarling subroutine is not applied to this example.

Cont. time Fq. Discr. time Eq.
t DGLP | SYLGC DGLP | SYLGD

0 || 7.478E 13 | 2.304F 12 || 1.267TE 13 | 2.274E 13
10 || 4.042E 12 | 4.248F 12 || 1.304E 12 | 1.010E 11
20 || 1.113E 08 | 1.940E 09 || 2.172E 09 | 3.995FE 09
30 || 9.136F 07 | 4.947E 06 || 7.732FE 06 | 1.501F 06
40 || 1.460E 03 | 4.042E 03 || 7.613E 03

Example 1. n = 100. Relative error.

For t = 40 the subroutine SYLGD returned an error flag.

For problems of a smaller size (n = 10) we compare the estimates for the separation SEP and
the reciprocal condition number RCOND with the ’true’ values computed applying the singular
value decomposition (SVD) to the corresponding Kronecker product matrix. Note that SYLGC
and SYLGD do not return estimates for the separation.

Cont. time Fq. Discr. time Eq.
t DGLP | frue DGI.P | true

0 || 3.685E 01 | 1.481E 01 || 2.492E+00 | 1.149E400
10 || 1.952F 03 | 4.879F 04 || 3.909F 03 | 9.767F 04
20 || 1.907F 06 | 4.768F 07 || 3.8156FE 06 | 9.537F 07
30 || 1.863F 09 | 4.657F 10 || 3.725FE 09 | 9.313F 10
40 || 1.818E 12 | 4.547E 13 || 3.637E 12 | 9.095E 13

Example 1. n = 10. Estimates for the separation.



Cont. time Fq. Discr. time Eq.
SYLGC frue DGLP | SYLGD | true

083K 03 | 3.813E 03 || 4.119E 03 | 7.104E 03 | 1.987E 02
DITE 05 | 4.537E 05 || 8.882FE 06 | 2.852F 06 | 1.375F 05
D8I 08 | 44418 08 || 8.670F 09 | 2.817FE 09 | 1.339F 08
SH1TE 11 | 4.337E 11 || 8.467E 12 | 2.751E 12 | 1.308E 11
S13E 14 | 4.231E 14 || 8.266E 15 | 2.689E 15 | 1.286F 14

t DGLP

0 || T.198E 03
10 || 1.699F 05
20 || 1.660F 08
30 || 1.621E 11
40 || 1.582FK 14

—_ e e

Example 1. n = 10. Estimates for the reciprocal condition number.

Example 2: This example is generated in a way that enables setting the eigenvalues of the pencil
A—AF, which is advantageous for two reasons. In contrast to the previous example it is guaranteed
that the pencil has both real and conjugate complex eigenvalues. On the other hand stable pencils
can easily be constructed to include the Hammarling subroutine into the comparison. If n = 3¢
we choose the n X n matrices A and F as

S5 0 0
A = Vndia,g(A17...7Aq)Wn7 A7 = 0 f,i f,i
0 —t 1

o= VoW,

where V,, and W,, are n x n matrices containing only zeroes and ones. The unit entries of V,, are
on and below the anti diagonal, those of W, are on and below the diagonal. The parameters s;
and t; determining the eigenvalues of the pencil are chosen as s; = #; = " in the continuous time
case and 5, = 1 — ]/7‘,777 1, = —\/557;/2 in the discrete time case. The semidefinite right hand side
is formed as the normal matrix

y = B"B, B=(1,2,...,n).

The drawback of this example is that the true solution is not known. Therefore, the accuracy of the
computed solution X is measured by the relative residual defined as [AT X E+ET X A+Y |p/ |V |5
in the continuous time case and |[AT X A~ ET X E4+Y|r/[Y], in the discrete time case. But this,
of course, is a worse criterion compared to the relative error in case the equation is ill conditioned.
The following results were obtained for problems of size n = 99.

Cont. time Fq. Discr. time Eq.
t DGLP | DGLPHM |  SYLGC DGLP [ DGLPHM | SYLGD

1.0 || 2.982E 13 | 6.564E 14 | 3.681E 14 || 1.716E 13 | 1.720E 13 | 5.755E 15
1.2 || 1.661E 13 | 1.028E 13 | 7.749E 14 || 1.850E 11 | 1.844E 11 | 4.412E 12
1.4 || 8.829FE 12 | 3.285E 11 | 3.960E 12 || 2.857E 09 | 2.252E 09 | 9.921E-10
1.6 || 3.985E 10 | 4.047E 10 | 2.423E 10 || 3.328E 05 | 1.400E 07 | 4.732E 08
1.8 || 6.686F 09 | 5.6559F 09 | 9.351FE 09

Example 2. n = 99. Relative residual.

For ¢ = 1.8 in the discrete time case each of the subroutines returned an error flag.

Finally, the CPU times obtained by means of the LAPACK subroutine SECOND are com-
pared for the parameters n = 99 and ¢ = 1.2. They are split up into the times required for the
three main stages of the computation, the transformation of the equation to the reduced form (T),
the solution of the reduced equation (RE), and the back transformation of the solution (BT).

Cont. time Fq. Discr. time Eq.
DGLP | DGLPHM | SYLGC || DGLP | DGLPHM [ SYLGD
T 9.71 9.33 58.61 [ 10.30 9.63 67.64
RE 1.68 1.66 3.90 1.97 1.96 3.81
BT 0.42 0.24 4.83 0.45 0.23 4.84
Total || 11.81 11.23 67.34 || 12.72 11.82 76.29

Example 2. n = 99. ¢+ = 1.2. CPU times in seconds.

10



Concerning the accuracy of the computed solutions for both examples the involved subrou-
tines do not differ significantly. The estimates of the condition number obtained by DGI.P and
SYLGC/SYLGD are of comparable size as well. A distinct merit of our subroutines are the
shorter CPU times. This is mainly caused by the fact that SYLGC/SYTLGD make use of several
older LINPACK [4] and EISPACK [5] subroutines. Especially, the Q7 subroutine DGEGS from
LAPACK invoked by our subroutines is often faster than the modified EISPACK subroutines
QZHESG, QZITG, and QZVATLG utilized by SYLGC/SYLGD by a factor 6.

5 Acknowledgements

I wish to thank Andras Varga for providing his subroutines DMTRA and DZTA7Z and the sub-
routines DGELUF and DGELUS written by Bo Kagstrom and Peter Poromaa.
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A Subroutine Description

A.1 Bartels—Stewart Method
A.1.1 Purpose
To solve for X either the generalized continuous time Lyapunov equation
op(A) X op(F) + op(F)" X op(4) = —scale Y (23)
or the generalized discrete time Lyapunov equation
op(A)T X op(A) — op(E)T X op(F) = —scaleY (24)

where op(M) is either M or M7 for M = A, F and the right hand side Y is symmetric. A, .Y,
and the solution X are N by N matrices. scale 1s an output scale factor, set to avoid overflow in
X.

An estimation of the separation and the reciprocal condition number of the Lyapunov operator
is provided.

A.1.2 Specification

SUBROUTINE DGLP( JOB, DISCR, FACT, TRANS, N, A, LDA, E, LDE,
* UPPER, X, LDX, SCALE, Q, LDQ, Z, LDZ, IWORK,
RWORK, LRWORK, SEP, RCOND, IERR )

A.1.3 Argument List
Arguments In

N INTEGER.
The order of the matrix A.
N > 0.
A DOUBLE PRECISION array of DIMENSTON (T.DA N).

If FACT = .TRUE., then the leading N by N upper Hessenberg part of this array must contain
the generalized Schur factor A of the matrix A. A; must be an upper quasitriangular matrix.
The elements below the upper Hessenberg part of the array A are not referenced.

If FACT = .FALSE., then the leading N by N part of this array must contain the matrix A.
Note: this array is overwritten if FACT = .FALSE..
LDA  INTEGER.
The leading dimension of the array A as declared in the calling program.
IL.DA > N.
E  DOUBLE PRECISTON array of DIMENSION (I.LDE,N).

f FACT = .TRUE., then the leading N by N upper triangular part of this array must contain
the generalized Schur factor F; of the matrix F. The elements below the upper triangular
part of the array E are not referenced.

If FACT = .FALSE., then the leading N by N part of this array must contain the coefficient
matrix F of the equation.

Note: this array is overwritten if FACT = .FALSE..

ILDE INTEGER.
The leading dimension of the array F as declared in the calling program.
I.LDE > N.

X  DOUBLE PRECISTON array of DTIMENSION (LDX,N).

If JOB = "B’ or ’X’, then the leading N by N part of this array must contain the right hand
side matrix Y of the equation. On entry, either the lower or the upper triangular part of
this array is referenced (see mode parameter UPPER).
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If JOB = ’S’, X is not referenced.
Note: this array is overwritten if JOB = "B’ or "X".
LDX INTEGER.
The leading dimension of the array X as declared in the calling program.
I.DX > N.
Q DOUBLE PRECISTON array of DIMENSION (I.DQ,N).

If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonal
matrix @ from the generalized Schur factorization.

If FACT = .FALSE., Q need not be set on entry.

I.DQ INTEGER.
The leading dimension of the array Q as declared in the calling program.
.DQ > N.

7 DOUBLE PRECISION array of DIMENSTON (T.DZ,N).

If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonal
matrix 7 from the generalized Schur factorization.

If FACT = .FALSE., 7 need not be set on entry.
ILD7Z INTEGER.
The leading dimension of the array 7 as declared in the calling program.

LDZ > N.

Arguments Out

A DOUBLE PRECISION array of DIMENSTON (T.DA N).

The leading N by N part of this array contains the generalized Schur factor A of the matrix
A. (Ag is an upper quasitriangular matrix.)

E  DOUBLE PRECISTON array of DIMENSION (I.LDE,N).

The leading N by N part of this array contains the generalized Schur factor F; of the matrix
FE. (F, is an upper triangular matrix.)

X  DOUBLE PRECISTON array of DTIMENSION (LDX,N).

If JOB = "B’ or ’X’, then the leading N by N part of this array contains the solution matrix
X of the equation.

If JOB = ’S’, X has not been referenced.
SCALE DOUBLE PRECISTON.

The scale factor set to avoid overflow in X (0 < SCATE < 1).
Q DOUBLE PRECISTON array of DIMENSION (I.DQ,N).

The leading N by N part of this array contains the orthogonal matrix ) from the generalized
Schur factorization.

7 DOUBLE PRECISION array of DIMENSTON (T.DZ,N).

The leading N by N part of this array contains the orthogonal matrix 7 from the generalized
Schur factorization.

SEP  DOUBLE PRECISION.

An estimate for the separation of the Lyapunov operator.

RCOND DOUBLE PRECISTON.

An estimate for the reciprocal condition number of the Lyapunov operator.
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Work Space
TWORK INTEGER. array at least of DTIMENSTON (Nxx2).
If JOB = "X, this array is not referenced.
RWORK DOURBRLE PRECISTON array at least of DIMENSTON (LRWORK).
On exit, if TERR = 0, RWORK(1) contains the optimal workspace.
LRWORK INTEGER.

The dimension of the array RWORK. The following table contains the minimal work space
requirements depending on the choice of JOB and FACT.

[JoB | FACT || LRWORK

X’ TRUE. || N

X’ FATSE. || 7N

'B’,’S’ | .TRUE. || 2N?

'B’,’S” | .FALSE. || max(2N” 7N)

Note: For good performance, LRWORK must generally be larger.

Tolerances

None.

Mode Parameters

JOB CHARACTERx*1.

Specifies if the solution is to be computed and if the separation (along with the reciprocal
condition number) is to be estimated.

JOB =’X’, (Compute the solution only);
JOB =S, (Estimate the separation only);
JOB = "B’, (Compute the solution and estimate the separation).

DISCR  TLOGICAT.
Specifies which type of equation is to be solved.

DISCR = .FALSE., (Continuous time equation (23));
DISCR = .TRUE., (Discrete time equation (24)).

FACT TLOGICAT.

Specifies whether the generalized real Schur factorization of the pencil A — AF is supplied
on entry or not.

FACT = .FALSE., (The generalized real Schur factorization is not supplied);
FACT = .TRUE., (The generalized real Schur factorization is supplied).

TRANS TLOGICAT.

Specifies whether the transposed equation is to be solved or not.

TRANS = .FALSE., (op(A)=A, op(F)=F);
TRANS = .TRUE., (op(A)=A" op(E)=FE").

UPPER TLOGICAT.
Specifies whether the lower or the upper triangle of the array X 1s referenced.

UPPER = .FALSE., (Only the lower triangle is referenced);
UPPER = .TRUE., (Only the upper triangle is referenced).
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Warning Indicator

None.

Error Indicator

TERR  INTEGER.

Unless the routine detects an error (see next section), TERR, contains 0 on exit.

A.1.4 Warnings and Errors detected by the Routine

TERR = 1:
On entry, N <0,
or LDA < N,
or LDE < N,
or L.DX < N,
or ILDQ < N,
or L.D7 < N,
or JO'R ¢ {7'R77 7b77 7S77 7S77 7X77 ,X7}.
TERR = 2:
LRWORK too small.
TERR = 3:

FACT = .TRUE. and the matrix contained in the upper Hessenberg part of the array A is
not in upper quasitriangular form.

TERR = 4:

FACT = .FALSE. and the pencil A — AF cannot be reduced to generalized Schur form.
LAPACK routine DGEGS has failed to converge.

TERR = 5:

DISCR = .TRUE. and the pencil A — AF has a pair of reciprocal eigenvalues. That 1s,
A; = 1/X; for some i and j, where A; and A; are eigenvalues of A — AF. Hence, equation
(24) is singular.

TERR = 6:

DISCR, = .FALSE. and the pencil A — AF has a degenerate pair of eigenvalues. That 1s,
A; = —A; for some i and j, where A; and X; are eigenvalues of A —AF. Hence, equation (23)
is singular.

A.2 Hammarling’s Method
A.2.1 Purpose

To compute the Cholesky factor I7 of the matrix X = op(/)"op(I/), which is the solution of either
the generalized ¢ stable continuous time Lyapunov equation

op(A)T X op(F) + op(E)T X op(A) = —scale’ op(B)T op(B) (25)
or the generalized d stable discrete time Lyapunov equation

op(A) X op(A) — op(E)" X op(E) = —scale? op(B)" op(B) (26)

without first finding X and without the need to form the matrix op(B)” op(B).

op(K) is either K or K7 for K = A, B, E,UU. A and F are N by N matrices, op(B) is an M
by N matrix. The resulting matrix [/ is an N by N upper triangular matrix with non negative
entries on its main diagonal. scale is an output scale factor set to avoid overflow in UU.

A.2.2 Specification

SUBROUTINE DGLPHM( DISCR, FACT, TRANS, N, M, A, LDA, E, LDE, B,
* LDB, SCALE, Q, LDQ, Z, LDZ, RWORK, LRWORK,
* IERR )



A.2.3 Argument List
Arguments In
N INTEGER.
The order of the matrix A.
N > 0.
M INTEGER.
The number of rows in the matrix op(B).
M > 1.
A DOUBLE PRECISION array of DIMENSTON (T.DA N).

If FACT = .TRUE., then the leading N by N upper Hessenberg part of this array must contain
the generalized Schur factor A of the matrix A. A; must be an upper quasitriangular matrix.
The elements below the upper Hessenberg part of the array A are not referenced.

If FACT = .FALSE., then the leading N by N part of this array must contain the matrix A.
Note: this array is overwritten if FACT = .FALSE..
LDA  INTEGER.
The leading dimension of the array A as declared in the calling program.
IL.DA > N.
E  DOUBLE PRECISTON array of DIMENSION (I.LDE,N).

f FACT = .TRUE., then the leading N by N upper triangular part of this array must contain
the generalized Schur factor F; of the matrix F. The elements below the upper triangular
part of the array E are not referenced.

If FACT = .FALSE., then the leading N by N part of this array must contain the coefficient
matrix F of the equation.

Note: this array is overwritten if FACT = .FALSE..

ILDE INTEGER.
The leading dimension of the array F as declared in the calling program.
I.LDE > N.

B  DOUBLE PRECISION array of DIMENSTON (T.DB,N1).

If TRANS = .TRUE., the leading N by M part of this array must contain the matrix B and
N1 > MAX(M,N).

If TRANS = .FALSE., the leading M by N part of this array must contain the matrix B and
N1 > N.

Note: this array is overwritten.
ILDB INTEGER.
The leading dimension of the array B as declared in the calling program.
If TRANS = . TRUE., then I.LDB > N.
If TRANS = .FALSE., then L.DB > MAX(M N).
Q DOUBLE PRECISTON array of DIMENSION (I.DQ,N).

If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonal
matrix @ from the generalized Schur factorization.

If FACT = .FALSE., Q need not be set on entry.
I.DQ INTEGER.
The leading dimension of the array Q as declared in the calling program.

LDQ > N.
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7 DOUBLE PRECISION array of DIMENSTON (T.DZ,N).

If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonal
matrix 7 from the generalized Schur factorization.

If FACT = .FALSE., 7 need not be set on entry.
ILD7Z INTEGER.
The leading dimension of the array 7 as declared in the calling program.

LDZ > N.

Arguments Out

A DOUBLE PRECISION array of DIMENSTON (T.DA N).

The leading N by N part of this array contains the generalized Schur factor A of the matrix
A. (Ag is an upper quasitriangular matrix.)

E  DOUBLE PRECISTON array of DIMENSION (I.LDE,N).

The leading N by N part of this array contains the generalized Schur factor F; of the matrix
FE. (F, is an upper triangular matrix.)

B  DOUBLE PRECISION array of DIMENSTON (T.DB,N1).

The leading N by N part of this array contains the Cholesky factor U of the solution matrix
X of the problem.

SCALE DOUBLE PRECISTON.
The scale factor set to avoid overflow in U (0 < SCALE < 1).
Q DOUBLE PRECISTON array of DIMENSION (I.DQ,N).

The leading N by N part of this array contains the orthogonal matrix ) from the generalized
Schur factorization.

7 DOUBLE PRECISION array of DIMENSTON (T.DZ,N).

The leading N by N part of this array contains the orthogonal matrix 7 from the generalized
Schur factorization.

Work Space
RWORK DOURBRLE PRECISTON array at least of DIMENSTON (LRWORK).
On exit, if TERR = 0, RWORK(1) contains the optimal workspace.
LRWORK INTEGER.
The dimension of the array RWORK.
If FACT = .TRUE., then LRWORK > MAX(6«N-6,1).
If FACT = .FALSE., then LRWORK > MAX(7«N,1).
Note: For good performance, LRWORK must generally be larger.

Tolerances

None.

Mode Parameters

DISCR. LOGICAT.

Specifies which type of equation is to be solved.

DISCR = .FALSE., (Continuous time equation (25));
DISCR = .TRUE., (Discrete time equation (26)).
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FACT TLOGICAT.

Specifies whether the generalized real Schur factorization of the pencil A — AF is supplied
on entry or not.

FACT = .FALSE., (The generalized real Schur factorization is not supplied);
FACT = .TRUE., (The generalized real Schur factorization is supplied).

TRANS TLOGICAT.

Specifies whether the transposed equation is to be solved or not.
TRANS = .FALSE., (op(K)=K, K = A, B, E,U);
TRANS = TRUE., (op(K)=K", K = A, B,E,U).

Warning Indicator

None.

Error Indicator

TERR  INTEGER.

Unless the routine detects an error (see next section), TERR, contains 0 on exit.

A.2.4 Warnings and Errors detected by the Routine

TERR = 1:
On entry, N <0,
or M <1,
or LDA < N,
or LDE < N,
or LDB < N,
or ILDQ < N,
or L.D7 < N,
or (TRANS = .FALSE. and L.DB < M).
TERR = 2:
LRWORK too small.
TERR = 3:

FACT = .TRUE. and the matrix contained in the upper Hessenberg part of the array A is
not in upper quasitriangular form.

TERR = 4:

FACT = .FALSE. and the pencil A — AF cannot be reduced to generalized Schur form.
LAPACK routine DGEGS has failed to converge.

TERR = 5:

FACT = . TRUE. and there 1s a 2 by 2 block on the main diagonal of the pencil A; — AF
with real eigenvalues.

TERR = 6:

DISCR, = .FALSE. and the pencil A — AF is not ¢ stable.
TERR = T:

DISCR = .TRUE. and the pencil A — AF is not d stable.
TERR = 8:

DISCR = .TRUE. and the LAPACK routine DSYEVX has failed to converge during the

solution of the reduced equation. This error is unlikely to occur.
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B Example Programs

Two sample programs are enclosed to demonstrate the usage of the routines DGLP and DGILPHM.

B.1 Bartels—Stewart Method
Example
To find the solution matrix X, the separation, and the reciprocal condition number of the equation

ATXE+ETX A=V,

where
3.0 1.0 1.0 1.0 3.0 0.0 64.0 73.0 28.0
A= 1.0 3.0 0.0 , B = 3.0 2.0 1.0 ,and Y = 73.0 70.0 25.0
1.0 0.0 2.0 1.0 0.0 1.0 28.0 25.0 18.0

Program Text

* DGLP EXAMPLE PROGRAM TEXT
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=8)
INTEGER NMAX
PARAMETER (WUMAX=20)
INTEGER LDA, LDE, LDQ, LDX, LDZ
PARAMETER (LDA=NMAX, LDE=NMAX, LDQ=NMAX, LDX=NMAX,
+ LDZ=NMAX)
INTEGER LIWORK, LRWORK
PARAMETER (LIWORK=NMAX**2, LRWORK=MAX (2*NMAX**2 6 7+NMAX))
* .. Local Scalars ..
CHARACTER JOB
DOUBLE PRECISION RCOND, SCALE, SEP
INTEGER I, TERR, J, N
LOGICAL DISCR, FACT, TRANS, UPPER
* .. Local Arrays ..
INTEGER IWORK (LIWORK)
DOUBLE PRECISION A(LDA,NMAX), E(LDE,NMAX), Q(LDQ,NMAX),
+ RWORK (LRWORK), X(LDX,NMAX), Z(LDZ,NMAX)
* .. External Subroutines
EXTERNAL DGLP
* .. Executable Statements

WRITE (NOUT,FMT=99999)
* Skip the heading in the data file and read the data.
READ (NIN,FMT=>()’)
READ (NIN,FMT=%) N, JOB, DISCR, FACT, TRANS, UPPER
IF (N.LE.O .OR. N.GT.NMAX) THEN
WRITE (NOUT,FMT=99993) N
ELSE
READ (NIN,FMT=%) ((A(I,J),J=1,N),I=1,N)
READ (NIN,FMT=%) ((E(I,J),J=1,N),I=1,N)
IF (FACT) THEN
READ (NIN,FMT=+#) ((Q(I,J),J=1,N),I=1,N)
READ (NIN,FMT=+#) ((Z(I,J),J=1,N),I=1,N)

END IF
READ (NIN,FMT=%*) ((X(I,J),J=1,N),I=1,N)
* Find the solution matrix X and the scalars RCOND and SEP.
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CALL DGLP(JOB,DISCR,FACT,TRANS,N,A,LDA,E,LDE,UPPER,X,LDX,SCALE,
+ Q,LDQ,Z,LDZ, IWORK,RWORK , LRWORK , SEP, RCOND, IERR)

IF (IERR.NE.O) THEN
WRITE (NOUT,FMT=99998) IERR
ELSE
IF (JOB.EQ.’B’.0R.JOB.EQ.’S’) THEN
WRITE (NOUT,FMT=99997) SEP
WRITE (NOUT,FMT=99996) RCOND
END IF
IF (JOB.EQ.’B’.0R.JOB.EQ.’X’) THEN
WRITE (NOUT,FMT=99995) SCALE
DO20T =1, N
WRITE (NOUT,FMT=99994) (X(I,J),J=1,N)
20 CONTINUE
END IF
END IF
END IF
STOP

99999 FORMAT (° DGLP EXAMPLE PROGRAM RESULTS’,/1X)

99998 FORMAT (° IERR on exit from DGLP = ’,I2)
99997 FORMAT (° SEP = ' F8.4)
99996 FORMAT (’ RCOND = ’,F8.4)
99995 FORMAT (° SCALE = ’,F8.4,//’ The solution matrix X is ’)
99994 FORMAT (20(1X,F8.4))
99993 FORMAT (/’ N is out of range.’,/’ N = ’,I5)
END

Program Data

DGLP EXAMPLE PROGRAM DATA

3 B F F F T
3.0 1.0 1.0

1.0 3.0 0.0

1.0 0.0 2.0

1.0 3.0 0.0

3.0 2.0 1.0

1.0 0.0 1.0
64.0 73.0 28.0

0.0 70.0 25.0

0.0 0.0 18.0

Program Results

DGLP EXAMPLE PROGRAM RESULTS

SEP = .2867
RCOND = .00556
SCALE = 1.0000

The solution matrix X is
-2.0000 -1.0000 .0000
-1.0000 -3.0000 -1.0000

.0000 -1.0000 -3.0000
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B.2 Hammarling’s Method
Example
To find the Cholesky factor I/ of the solution X = UTU of the equation

ATXE+E"XA=-B"B,

where
—1.0 3.0 —40 20 1.0 3.0
A= 0.0 50 =20 |,F=1] 20 00 1.0 |,and B=(20 —1.0 7.0).
—4.0 40 1.0 40 50 1.0

Program Text

* DGLPHM EXAMPLE PROGRAM TEXT
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=8)
INTEGER NMAX
PARAMETER (WUMAX=20)
INTEGER LDA, LDB, LDE, LDQ, LDZ
PARAMETER (LDA=NMAX, LDB=NMAX, LDE=NMAX, LDQ=NMAX,
+ LDZ=NMAX)
INTEGER LRWORK
PARAMETER (LRWORK=MAX (7*NMAX, 6*NMAX-6,1))
* .. Local Scalars ..
DOUBLE PRECISION SCALE
INTEGER I, TERR, J, N, M
LOGICAL DISCR, FACT, TRANS
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,NMAX), E(LDE,NMAX),
+ Q(LDQ,NMAX), RWORK(LRWORK), Z(LDZ,NMAX)
* .. External Subroutines
EXTERNAL DGLPHM
* .. Executable Statements

WRITE (NOUT,FMT=99999)
* Skip the heading in the data file and read the data.
READ (NIN,FMT=>()’)
READ (NIN,FMT=%) N, M, DISCR, FACT, TRANS
IF (N.LT.0 .OR. N.GT.NMAX) THEN
WRITE (NOUT,FMT=99995) N
ELSEIF (M.LT.1 .OR. M.GT.NMAX) THEN
WRITE (NOUT,FMT=99994) M
ELSE
READ (NIN,FMT=%) ((A(I,J),J=1,N),I=1,N)
READ (NIN,FMT=%) ((E(I,J),J=1,N),I=1,N)
IF (FACT) THEN
READ (NIN,FMT=+#) ((Q(I,J),J=1,N),I=1,N)
READ (NIN,FMT=+#) ((Z(I,J),J=1,N),I=1,N)
END IF
IF (TRANS) THEN
READ (NIN,FMT=+#) ((B(I,J]),J=1,M),I=1,N)

ELSE
READ (NIN,FMT=#) ((B(I,J),J=1,N),I=1,M)
END IF
* Find the Cholesky factor U of the solution matrix.

CALL DGLPHM(DISCR,FACT,TRANS,N,M,A,LDA,E,LDE,B,LDB,SCALE,Q,LDQ,
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+ Z,1DZ,RWORK, LRWORK, TERR)

IF (IERR.NE.O) THEN
WRITE (NOUT,FMT=99998) IERR
ELSE
WRITE (NOUT,FMT=99997) SCALE
PO20I =1, N
WRITE (NOUT,FMT=99996) (B(I,J),J=1,N)
20 CONTINUE
END IF
END IF
STOP
%k
99999 FORMAT (° DGLPHM EXAMPLE PROGRAM RESULTS’,/1X)
99998 FORMAT (° IERR on exit from DGLPHM = ’,I2)
99997 FORMAT (° SCALE = ’,F8.4,//’ The Cholesky factor U of the solution
+ matrix is’)
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/’ N is out of range.’,/’ N ’ IB)
99994 FORMAT (/’ M is out of range.’,/’ M = ’,I5)
END

Program Data

DGLPHM EXAMPLE PROGRAM DATA

3 1 F F F
-1.0 3.0 -4.0
0.0 5.0 -2.0
-4.0 4.0 1.0
2.0 1.0 3.0
2.0 0.0 1.0
4.0 5.0 1.0
2.0 -1.0 7.0

Program Results

DGLPHM EXAMPLE PROGRAM RESULTS
SCALE = 1.0000

The Cholesky factor U of the solution matrix is

1.6003 -.4418 -.1523
.0000 .6795 —.2499
.0000 .0000 .2041
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