
Numerical Solution of Generalized Lyapunov EquationsThilo Penzl�March 13, 1996AbstractTwo e�cient methods for solving generalized Lyapunov equations and their implementa-tions in FORTRAN 77 are presented. The �rst one is a generalization of the Bartels{Stewartmethod and the second is an extension of Hammarling's method to generalized Lyapunovequations. Our LAPACK based subroutines are implemented in a quite exible way. Theycan handle the transposed equations and provide scaling to avoid overow in the solution.Moreover, the Bartels{Stewart subroutine o�ers the optional estimation of the separationand the reciprocal condition number. A brief description of both algorithms is given. Theperformance of the software is demonstrated by numerical experiments.Key Words: Mathematical software, generalized Lyapunov equation, generalized Stein equation,condition estimation.AMS(MOS) subject classi�cations: 65F05, 65F15, 93B40, 93B511 Basic Properties of Generalized Lyapunov EquationsLyapunov equations play an essential role in control theory. In the past few years its generaliza-tions, the generalized continuous{time Lyapunov equation (GCLE)ATXE +ETXA = �Y (1)and the generalized discrete{time Lyapunov equation (GDLE) or generalized Stein equationATXA � ETXE = �Y; (2)have received a lot of interest. A, E, and Y are given real n� n matrices. The right hand side Yis symmetric and so is the solution matrix X if the equation has a unique solution.We can consider the GCLE and the GDLE as special cases of the generalized Sylvester equationRTXS + UTXV = �Y; (3)where in general, X and Y are n�m matrices. Since equation (3) is linear in the entries of X, itcan be written as a system of linear equations. To this end, the entries of X are usually arrangedin a vector by stacking the columns of X = (xij)n�m. This is done by the mapping vec, which isde�ned asvec(X) = (x11; : : : ; xn1; x12; : : : ; xn2; : : : ; x1m; : : : ; xnm)T :It can easily be shown that (3) is equivalent to�ST 
 RT + V T 
 UT � vec(X) = �vec(Y ); (4)where 
 denotes the Kronecker product of two matrices, e.g. [13]. The order of this system is nm.Therefore, it is not practicable to �nd X by solving the corresponding system of linear equationsunless n and m are very small.�Technische Universit�at Chemnitz{Zwickau, Fakult�at f�ur Mathematik, 09107 Chemnitz, FRG, E{mail:tpenzl@mathematik.tu-chemnitz.de. Supported by Deutsche Forschungsgemeinschaft, research grant Me 790/7{1Singul�are Steuerungsprobleme. 1



The solvability of (3) depends on the generalized eigenstructure of the matrix pairs (R;U ) and(V; S). A matrix pencil �R��U is called regular i� there exists a pair of complex numbers (�0; �0)such that �0R��0U is nonsingular. If �Rx = �Ux holds for a vector x 6= 0, the pair (�; �) 6= (0; 0)is a generalized eigenvalue. Two generalized eigenvalues (�; �) and (; �) are considered to be equali� �� = �. The set of all generalized eigenvalues of the pencil �R��U is designated by �(R;U ).The following theorem, e.g. [3], gives necessary and su�cient conditions for the existence anduniqueness of the solution of (3).Theorem 1 The matrix equation (3) has a unique solution if and only if1. �R� �U and �V � �S are regular pencils and2. �(R;U ) \ �(�V; S) = ;.Let (�i; �i) denote the generalized eigenvalues of the matrix pencil �A � �E. For simplicity,we switch to the more conventional form of a matrix pencil A � �E, whose eigenvalues are givenby �i = �i=�i with �i = 1 when �i = 0. Applying the above theorem to (1) and (2) gives thefollowing corollary.Corollary 1 Let A� �E be a regular pencil. Then1. the GCLE (1) has a unique solution if and only if all eigenvalues of A � �E are �nite and�i + �j 6= 0 for any two eigenvalues �i and �j of A� �E,2. the GDLE (2) has a unique solution if and only if �i�j 6= 1 for any two eigenvalues �i and�j of A� �E (under the convention 0 � 1 = 1).As a consequence, singularity of one of the matrices A and E implies singularity of the GCLE(1). If both A and E are singular, the GDLE (2) is singular too. Thus, for an investigation of theunique solution of a generalized Lyapunov equation we may assume one of the matrices A and Eto be nonsingular. Since A and E play a symmetric role (up to a sign in the discrete{time case),we expect E to be invertible. Under this assumption equations (1) and (2) are equivalent to theLyapunov equations(AE�1)TX +X(AE�1) = �E�TY E�1 (5)and (AE�1)TX(AE�1) �X = �E�TY E�1; (6)respectively, and the classical result about the positive de�nite solution of the stable Lyapunovequation [14] remains valid for the generalized equations.Theorem 2 Let E be nonsingular and Y be positive de�nite (semide�nite).1. If Re(�i) < 0 for all eigenvalues �i of A� �E, then the solution matrix X of the GCLE (1)is positive de�nite (semide�nite).2. If j�ij < 1 for all eigenvalues �i of A � �E, then the solution matrix X of the GDLE (2) ispositive de�nite (semide�nite).There may be a de�nite solution in the discrete{time case even if E is singular. If j�ij < 1 for alleigenvalues �i of E� �A, then the solution matrix X is negative de�nite (semide�nite). But this,of course, means nothing but reversing the roles of A and E.Finally, it should be stressed that the reduction of a generalized equation (1) or (2) to a stan-dard Lyapunov equation (5) or (6), respectively, is mainly of theoretical interest. If E is possiblyill{conditioned, this is not a numerically feasible approach to solve the generalized equation numer-ically. In the sequel we present two methods which solve generalized Lyapunov equations withoutinverting E. 2



2 Algorithms for Generalized Lyapunov Equations2.1 A Generalization of the Bartels{Stewart MethodThe algorithm described in this section is an extension of the Bartels{Stewart method [2] togeneralized Lyapunov equations (see also [3], [6], [12]). We restrict ourself to the GCLE. Thederivation of the algorithm for the GDLE is straightforward.First the pencil A � �E is reduced to real generalized Schur form As � �Es by means oforthogonal matrices Q and Z (QZ{algorithm [8]):As = QTAZ; (7)Es = QTEZ (8)such that As is upper quasitriangular and Es is upper triangular. De�ningYs = ZTY Z;Xs = QXQT (9)leads to the reduced Lyapunov equationATsXsEs +ETs XsAs = �Ys; (10)which is equivalent to (1).Let As, Es, Ys, and Xs be partitioned into p by p blocks with respect to the subdiagonal structureof the upper quasi-triangular matrix As. Especially, the main diagonal blocks are 1� 1 or 2 � 2matrices according to real eigenvalues or conjugate complex eigenvalue pairs of the pencil As��Es,respectively.As = 0B@ A11 � � � A1p. . . ...O App 1CA ; Es = 0B@ E11 � � � E1p. . . ...O Epp 1CA ;Ys = 0B@ Y11 � � � Y1p... . . . ...Yp1 � � � Ypp 1CA ; Xs = 0B@ X11 � � � X1p... . . . ...Xp1 � � � Epp 1CA :Now (10) can be solved by a block forward substitution, which is more complicated to derive thanthat utilized in the Bartels{Stewart method for the standard Lyapunov equation. Since Xs issymmetric, only p(p+ 1)=2 Sylvester equationsATkkXklEll + ETkkXklAll = �Ŷkl (11)of order at most 2� 2 with right hand side matricesŶkl = Ykl + k;lXi=1;j=1(i;j)6=(k;l) �ATikXijEjl +ETikXijAjl� (12)need to be solved. According to (4) the solution Xij is found by solving the corresponding systemof linear equations�ETll 
 ATkk +ATll 
ETkk� vec(Xkl) = �vec(Ŷkl):We determine the blocks in the upper triangle of Xs in a row{wise order, i.e., we compute succes-sively X11, ..., X1p, X22, ..., X2p, ..., Xpp. Computing the matrices Ŷkl by (12) would result in anoverall complexity O(n4). This can be avoided by a somewhat complicated updating techniquebased upon the following expansion of equation (12)Ŷkl = Ykl + kXi=10@ATik0@ l�1Xj=1XijEjl1A +ETik0@ l�1Xj=1XijAjl1A1A+ k�1Xi=1 �ATikXilEll +ETikXilAll� : 3



We determine Ŷkl in 2k � 1 sweepsY (0)kl = Ykl;Y (2i�1)kl = Y (2i�2)kl +ATik0@ l�1Xj=1XijEjl1A+ ETik0@ l�1Xj=1XijAjl1A ; i = 1; : : : ; k;Y (2i)kl = Y (2i�1)kl +ATikXilEll +ETikXilAll; i = 1; : : : ; k � 1;Ŷkl = Y (2k�1)kl :Our implementation of the algorithm computes Y (2i�1)kl (k � i) right before solving (11) for Xil.After Xil is known, Y (2i)kl (k > i) can be computed. What decreases the complexity to O(n3) isthat Y (2i�1)i;l , ..., Y (2i�1)l;l (the elements below the main diagonal are not of interest) can be updatedsimultaneously, where we have to compute the terms Pl�1j=1XijEjl and Pl�1j=1XijAjl only once.Note that the blocks of the strict lower triangle of Xs appearing in each of both sums are given bysymmetry. Moreover, it is apparent that the updating technique described above can be realizedby operating on the array Y without the need for further workspace. Finally, the solution matrixX is obtained from Xs by (9).Lyapunov equations whose coe�cient matrices A and E are replaced by its transposed matricescan be solved in a similar fashion by block backward substitution.2.2 Estimation of the Separation and the Condition NumberThe software for the Bartels{Stewart method provides optional estimates for both the separa-tion and the condition number of the Lyapunov operator. Especially the latter is important forestimating the accuracy of the computed solution.In the continuous{time case the separation is de�ned assepc = sepc(A;E) = minjjXjjF=1 ����ATXE + ETXA����F :Due to the orthogonal invariance of the Frobenius norm, this quantity is not altered by thetransformations (7) and (8). Therefore, the estimate can be obtained from the reduced equation(10) which lowers the computational cost signi�cantly. According to (4),sepc = 1����K�1c ����2 ;if Kc = ETs 
 ATs + ATs 
 ETs is invertible. The quantity ����K�1c ���� is estimated by an algorithmdue to Higham [11] based on Hager's method [9]. Actually, this method yields an estimate for the1{norm. This is a quite good approximation of ����K�1c ����2, since it deviates from ����K�1c ����1 by no morethan a factor n. The algorithm, which is available as routine DLACON in LAPACK [1], requiresthe solution of a few (say 4 or 5) generalized Lyapunov equations ATsXsEs + ETs XsAs = �Ys orAsXsETs + EsXsATs = �Ys.Finally, an estimate for the condition number of the generalized Lyapunov operator, which isrepresented by the corresponding matrix Kc, is provided bycond(Kc) � 2 jjAsjjF jjEsjjFsepc :Again, note that jjAjjF = jjAsjjF and jjEjjF = jjAsjjF .The separation of the discrete{time Lyapunov operator issepd = sepd(A;E) = minjjXjjF=1 ����ATXA � ETXE����F = 1����K�1d ����2with Kd = ATs 
ATs �ETs 
ETs . After approximating sepd by the reciprocal estimate for ����K�1d ����1an estimate for the condition number is gained fromcond(Kd) � jjAsjj2F + jjEsjj2Fsepd : 4



2.3 A Generalization of Hammarling's MethodThe method due to Hammarling is an alternative to the Bartels{Stewart method in case theLyapunov equation to be solved is stable and its right hand side is semide�nite. In [10] Hammarlingsuggested that his method can be extended to generalized Lyapunov equations. We will presentsuch a generalization in the sequel.We assume the pencil A � �E to be stable, i.e., its eigenvalues must lie in the open left halfplane in the continuous{time case or inside the unit circle in the discrete{time case. If theseconditions are met, the solutions X of the GCLEATXE +ETXA = �BTB (13)and the GDLEATXA � ETXE = �BTB (14)are positive semide�nite (see Theorem 2). In general, B is a real m � n matrix, while A, E, andX are real square matrices of order n. The Cholesky factor U of the solution X = UTU can befound without �rst computing X and without forming the matrix product BTB. We focus on thecontinuous{time equation (13) and give a note about the di�erences in the discrete{time case.Similar to the Bartels{Stewart method, the algorithm consists of three parts. First the equa-tion is transformed to a reduced form by means of the orthogonal matrices resulting from thegeneralized Schur factorization. After solving the reduced equation, the solution is retrieved byback transformation.Applying the QZ{algorithm to the pencil A � �E yields orthogonal matrices Q and Z suchthat As = QTAZ is upper quasitriangular and Es = QTEZ is upper triangular. This leads to thereduced equationATs UTs UsEs +ETs UTs UsAs = �BTs Bs; (15)where the n�n upper triangular matrix Bs on the right hand side is formed as follows. If m � n,the matrix Bs is obtained from the rectangular QR{factorizationBZ = QB � Bs0 � ;where QB is an orthogonal matrix of order m. Otherwise, we partition BZ asBZ = �B̂1 B̂2� ;where B̂1 is an m �m matrix with the QR{factorizationB̂1 = QBB̂3:Thus, Bs is given byBs = � B̂3 QTBB̂20 0 � :To solve the reduced equation (15), we partition the involved matrices asAs = � A11 A120 A22 � ; Es = � E11 E120 E22 � ;Bs = � B11 B120 B22 � ; Us = � U11 U120 U22 � :The upper left blocks are p � p matrices (p = 1; 2), where p = 2 i� the pencil A11 � �E11 has apair of complex conjugate eigenvalues.Provided that U11 is nonsingular, the above partitioning leads to the following formulasAT11UT11U11E11 + ET11UT11U11A11 = �BT11B11; (16)AT22UT12 + ET22UT12M1 = �BT12M2 � AT12UT11 �ET12UT11M1; (17)AT22UT22U22E22 + ET22UT22U22A22 = �BT22B22 �BT12B12�(AT12UT11 +AT22UT12)(U11E12 + U12E22)�(ET12UT11 + ET22UT12)(U11A12 + U12A22)= �BT22B22 � yyT (18)5



with the auxiliary matricesM1 = U11A11E�111 U�111 ; (19)M2 = B11E�111 U�111 ; (20)y = BT12 � (ET12UT11 + ET22UT12)MT2 :As mentioned in Section 1 the matrix E is nonsingular so that the inverse of E11 exists. Moreover,it can be proved that U11 is nonsingular as well if B11 6= 0.The above equations enable the entries of Us to be determined recursively. The block U11is gained from the stable Lyapunov equation (16). Afterwards, the matrices M1 and M2 aredetermined. Solving (16) for the case p = 2 is described later in an extra paragraph.After computing U11, M1, and M2, the generalized Sylvester equation (17) is solved for UT12.If U11 is nonsingular, the existence of a unique solution UT12 is guaranteed by Theorem 1.It remains to �nd the Cholesky factor ~B22 of the right hand side matrix of equation (18)BT22B22 + yyT = ~BT22 ~B22:The upper triangular matrix ~B22 is cheaply obtained from the QR{factorization of� B22yT � = Q ~B � ~B220 � ;where Q ~B is an orthogonal matrix and 0 is the zero matrix which consists of p rows. The resultingequationAT22UT22U22E22 + ET22UT22U22A22 = �BT22B22has the same structure as (15) but its size is lowered by p. Hence, all entries of Us can bedetermined recursively.After the reduced equation (15) is solved, we �nd the upper triangular solution matrix U ofequation (13) by the QR{factorization ofUsQT = QUUwith the orthogonal matrix QU . Of course, the latter need not be accumulated.The next part of this section is addressed to the problems caused by the non{real eigenvaluesof the pencil A11��E11 when p = 2. The procedure for solving the 2� 2 Lyapunov equation (16)is similar to that described above for the equation of order n. For an explanation of the algorithmwe make use of complex computation. Nevertheless, in our implementation complex operationsare emulated by real ones. First the pencil A11 � �E11 is reduced to Schur form by means ofunitary matrices Q̂ and Ẑ such thatQ̂HA11Ẑ = Â11 = � a11 a120 a22 � ;Q̂HE11Ẑ = Ê11 = � e11 e120 e22 � :Let B11Ẑ = Q̂BB̂11 be the QR{factorization of B11Ẑ with an unitary matrix Q̂B, for which theentries on the main diagonal of the upper triangular matrix B̂11 are real and non{negative. Nowthe reduced form of (16) can be written asÂH11ÛH11Û11Ê11 + ÊH11ÛH11Û11Â11 = �B̂H11B̂11:After partitioning B̂11 and Û11 as followsB̂11 = � b11 b120 b22 � ; Û11 = � u11 u120 u22 � ;we �nd the entries of Û11 from�1 = p��a11e11 � �e11a11;u11 = b11�1 ; 6



u12 = �b12�1 + (�a11e12 + a12�e11)u11a22�e11 + e22�a11 ;�2 = p��a22e22 � �e22a22;y = �b12 � �1�e11 (�e12u11 + �e22�u12);u22 = 1�2qb222 + jyj2:Finally, the upper triangular solution U11 of (16) is obtained by the QR{factorizationÛ11Q̂ = QUU11;where QU is a unitary matrix.It should be stressed that if p = 2 care is needed when computing the auxiliary matrices M1and M2 since U11 may be ill conditioned. This is the case when the pair (E�T11 AT11; E�T11 BT11) isnear to an uncontrollable one. For a further discussion of this issue we refer to Section 6 in [10].In our implementation we followed the procedure proposed there.For the discrete{time equation (14) most of the algorithm is similar to that for the continuous{time equation. An essential di�erence is the solution of the reduced equationATs UTs UsAs � ETs UTs UsEs = �BTs Bs: (21)Here the recursion is based on the formulasAT11UT11U11A11 �ET11UT11U11E11 = �BT11B11 (22)AT22UT12M1 �ET22UT12 = �BT12M2 + ET12UT11 � AT12UT11M1AT22UT22U22A22 �ET22UT22U22E22 = �BT22B22 � yyT ;where M1 and M2 are de�ned as in (19) and (20), respectively. The matrix y is given byy = �BT12 AT12UT11 + AT22UT12�C;where C is a matrix which ful�lsM3 = I2p � � M2M1 � �� M2M1 �T = CCT :From (19), (20), and (22) we obtain MT2 M2 +MT1 M1 = Ip which leads to M23 = M3. Hence, thesymmetric matrix M3 is the orthogonal projector onto span((MT2 MT1 )T )?. Thus, the 2p � 2pmatrixM3 is actually positive semide�nite and has rank p. Consequently, the factor C is a 2p� pmatrix and the matrix y consists of only p columns.3 Software ImplementationOur routines for solving the generalized Lyapunov equation possess some new features that shouldbe mentioned here. Both Hammarling's method and the Bartels{Stewart method are implementedin a way that enables the transposed equations to be solved without transposing the involvedmatrices explicitly. Furthermore, our routines can bene�t from Schur factorizations of the pencilA��E, which have been computed prior to calling the routine. To keep storage requirements low,the input right hand side and the output solution share the same array. This, of course, results inthe loss of the right hand side matrix. An output parameter for scaling of the solution is providedto guard against overow.For the Bartels{Stewart method the symmetric right hand side matrix Y may be supplied asupper or lower triangle. In any case the full solution matrix is returned. Moreover, an optionalestimation of the separation and the reciprocal condition number is provided. Of course, whensolving the generalized Lyapunov equation via Hammarling's algorithm the condition estimatorin the Bartels{Stewart routine can be utilized to detect ill{conditioning in the equation.The number of ops required by the routines is given by the following table. It strongly dependson whether the generalized Schur factorization of the pencil A��E is supplied (FACT = .TRUE.)or not, when calling one of both main routines. The op estimate 66n3 for the QZ{algorithm, whichdelivers this factorization, is taken from [8]. We split up the op count for the Bartels{Stewart7



method into the three possible cases, where the solution (JOB='X'), the separation (JOB='S'),or both quantities (JOB='B') are to be computed. Note that we count a single oating pointarithmetic operation as one op. The quantity c is an integer number of modest size (say 4 or 5).Method FACT=.TRUE. FACT=.FALSE.JOB='B' (26 + 8c)=3 � n3 (224 + 8c)=3 � n3Bartels{Stewart JOB='S' 8c=3 � n3 (198 + 8c)=3 � n3JOB='X' 26=3 � n3 224=3 � n3(13n3 + 6mn2 (211n3 + 6mn2Hammarling m � n +6m2n� 2m3)=3 +6m2n� 2m3)=3m > n (11n3 + 12mn2)=3 (209n3 + 12mn2)=3Number of ops required by the routines.Our implementation of the Bartels{Stewart algorithm is backward stable if the eigenvalues ofthe pencil A � �E are real. Otherwise, linear systems of order at most 4 are involved into thecomputation. These systems are solved by Gauss elimination with complete pivoting. The lossof stability in such eliminations is rarely encountered in practice. To our knowledge, there are nobackward stability results for Hammarling's method for the standard Lyapunov equation.The source code is implemented in FORTRAN 77 and it meets the programming standardsof the Working Group on Software [15]. It makes use of BLAS{routines and routines available inLAPACK 2.0 [1]. Although BLAS{routines of level 3 are used the algorithms are basically of level1 and 2. The type COMPLEX is not used. Complex computation is avoided or emulated by realoperations.The remainder of this section gives a brief survey of the subroutine organization. An interfacespeci�cation of both main routines is enclosed in the appendix.Bartels{Stewart methodDGLP Main routine. To be called by the user.DGLPRC Solves the reduced continuous{time equation (10).DGLPRD Solves the reduced discrete{time equation.DGELUF LU{factorization of a square matrix with complete pivoting.DGELUS Back substitution for linear systems whose coe�cient matrix has been factorized byDGELUF. Provides scaling.DMTRA Transposes a matrix.DZTAZ Computes ZTAZ or ZAZT for a symmetric matrix A.Hammarling's methodDGLPHM Main routine. To be called by the user.DGHRC Computes the Cholesky factor of the solution of the reduced continuous{time equation(15).DGHRD Computes the Cholesky factor of the solution of the reduced discrete{time equation(21).DGHNX2 Solves the matrix equation ATXC + ETXD = Y or AXCT + EXDT = Y for then�m matrix X (m = 1; 2). Provides scaling.DGH2X2 Hammarling's method for the 2 � 2 Lyapunov equation in case the matrix pencil hascomplex conjugate eigenvalues. Provides scaling.DCXGIV Computes parameters for the complex Givens rotation.8



DGELUF LU{factorization of a square matrix with complete pivoting.DGELUS Back substitution for linear systems whose coe�cient matrix has been factorized byDGELUF. Provides scaling.Note that the subroutines DGELUF and DGELUS are contained in LAPACK 2.1 under thenames DGETC2 and DGESC2, respectively.4 Numerical ExperimentsIn this section we demonstrate the performance of our software applied to two sample problems.Both depend on a scale parameter t which a�ects the condition number of the equation. Wecompare the results obtained by the Bartels{Stewart subroutine DGLP and the Hammarlingsubroutine DGLPHM with those of the established subroutines SYLGC and SYLGD [7]. Thetests were carried out on a HP Apollo series 700 workstation under IEEE double precision andmachine precision � � 2:22 � 10�16.Example 1 [7]: The matrices A and E are de�ned asA = (2�t � 1)In + diag(1; 2; 3; : : :; n) + UTnE = In + 2�tUnin the continuous{time case andA = 2�tIn + diag(1; 2; 3; : : :; n) + UTnE = In + 2�tUnin the discrete{time case, where In is the n � n identity matrix and Un is an n � n matrix withunit entries below the diagonal and all other entries zero. These systems become increasinglyill{conditioned as the parameter t increases. In all cases Y is de�ned as the n � n matrix thatgives a true solution matrix X of all unit entries.We generated the above problems for a medium size (n = 100) and various values of theparameter t. The following table shows the relative errors jjX̂ � XjjF = jjXjjF , where X is theknown true solution and X̂ is the computed solution a�ected by roundo�. Since the pencil A��Eis in general not stable, the Hammarling subroutine is not applied to this example.Cont.{time Eq. Discr.{time Eq.t DGLP SYLGC DGLP SYLGD0 7.478E{13 2.304E{12 1.267E{13 2.274E{1310 4.042E{12 4.248E{12 1.304E{12 1.010E{1120 1.113E{08 1.940E{09 2.172E{09 3.995E{0930 9.136E{07 4.947E{06 7.732E{06 1.501E{0640 1.460E{03 4.042E{03 7.613E{03 {Example 1. n = 100. Relative error.For t = 40 the subroutine SYLGD returned an error ag.For problems of a smaller size (n = 10) we compare the estimates for the separation SEP andthe reciprocal condition number RCOND with the 'true' values computed applying the singularvalue decomposition (SVD) to the corresponding Kronecker product matrix. Note that SYLGCand SYLGD do not return estimates for the separation.Cont.{time Eq. Discr.{time Eq.t DGLP true DGLP true0 3.685E{01 1.481E{01 2.492E+00 1.149E+0010 1.952E{03 4.879E{04 3.909E{03 9.767E{0420 1.907E{06 4.768E{07 3.815E{06 9.537E{0730 1.863E{09 4.657E{10 3.725E{09 9.313E{1040 1.818E{12 4.547E{13 3.637E{12 9.095E{13Example 1. n = 10. Estimates for the separation.9



Cont.{time Eq. Discr.{time Eq.t DGLP SYLGC true DGLP SYLGD true0 1.198E{03 1.083E{03 3.813E{03 4.119E{03 7.104E{03 1.987E{0210 1.699E{05 1.597E{05 4.537E{05 8.882E{06 2.852E{06 1.375E{0520 1.660E{08 1.589E{08 4.441E{08 8.670E{09 2.817E{09 1.339E{0830 1.621E{11 1.551E{11 4.337E{11 8.467E{12 2.751E{12 1.308E{1140 1.582E{14 1.513E{14 4.231E{14 8.266E{15 2.689E{15 1.286E{14Example 1. n = 10. Estimates for the reciprocal condition number.Example 2: This example is generated in a way that enables setting the eigenvalues of the pencilA��E, which is advantageous for two reasons. In contrast to the previous example it is guaranteedthat the pencil has both real and conjugate complex eigenvalues. On the other hand stable pencilscan easily be constructed to include the Hammarling subroutine into the comparison. If n = 3qwe choose the n� n matrices A and E asA = Vndiag(A1; : : : ; Aq)Wn; Ai = 0@ si 0 00 ti ti0 �ti ti 1AE = VnWn;where Vn and Wn are n � n matrices containing only zeroes and ones. The unit entries of Vn areon and below the anti{diagonal, those of Wn are on and below the diagonal. The parameters siand ti determining the eigenvalues of the pencil are chosen as si = ti = ti in the continuous{timecase and si = 1� 1=ti, ti = �p2si=2 in the discrete{time case. The semide�nite right hand sideis formed as the normal matrixY = BTB; B = (1; 2; : : : ; n):The drawback of this example is that the true solution is not known. Therefore, the accuracy of thecomputed solution X̂ is measured by the relative residual de�ned as jjATX̂E+ET X̂A+Y jjF= jjY jjFin the continuous{time case and jjAT X̂A�ET X̂E+Y jjF= jjY jjF in the discrete{time case. But this,of course, is a worse criterion compared to the relative error in case the equation is ill{conditioned.The following results were obtained for problems of size n = 99.Cont.{time Eq. Discr.{time Eq.t DGLP DGLPHM SYLGC DGLP DGLPHM SYLGD1.0 2.982E{13 6.564E{14 3.681E{14 1.716E{13 1.720E{13 5.755E{151.2 1.661E{13 1.028E{13 7.749E{14 1.850E{11 1.844E{11 4.412E{121.4 8.829E{12 3.285E{11 3.960E{12 2.857E{09 2.252E{09 9.921E-101.6 3.985E{10 4.047E{10 2.423E{10 3.328E{05 1.400E{07 4.732E{081.8 6.686E{09 5.559E{09 9.351E{09 { { {Example 2. n = 99. Relative residual.For t = 1:8 in the discrete{time case each of the subroutines returned an error ag.Finally, the CPU{times obtained by means of the LAPACK{subroutine SECOND are com-pared for the parameters n = 99 and t = 1:2. They are split up into the times required for thethree main stages of the computation, the transformation of the equation to the reduced form (T),the solution of the reduced equation (RE), and the back transformation of the solution (BT).Cont.{time Eq. Discr.{time Eq.DGLP DGLPHM SYLGC DGLP DGLPHM SYLGDT 9.71 9.33 58.61 10.30 9.63 67.64RE 1.68 1.66 3.90 1.97 1.96 3.81BT 0.42 0.24 4.83 0.45 0.23 4.84Total 11.81 11.23 67.34 12.72 11.82 76.29Example 2. n = 99. t = 1:2. CPU{times in seconds.10



Concerning the accuracy of the computed solutions for both examples the involved subrou-tines do not di�er signi�cantly. The estimates of the condition number obtained by DGLP andSYLGC/SYLGD are of comparable size as well. A distinct merit of our subroutines are theshorter CPU{times. This is mainly caused by the fact that SYLGC/SYLGD make use of severalolder LINPACK [4] and EISPACK [5] subroutines. Especially, the QZ{subroutine DGEGS fromLAPACK invoked by our subroutines is often faster than the modi�ed EISPACK subroutinesQZHESG, QZITG, and QZVALG utilized by SYLGC/SYLGD by a factor 6.5 AcknowledgementsI wish to thank Andras Varga for providing his subroutines DMTRA and DZTAZ and the sub-routines DGELUF and DGELUS written by Bo K�agstr�om and Peter Poromaa.
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A Subroutine DescriptionA.1 Bartels{Stewart MethodA.1.1 PurposeTo solve for X either the generalized continuous{time Lyapunov equationop(A)T X op(E) + op(E)T X op(A) = �scale Y (23)or the generalized discrete{time Lyapunov equationop(A)T X op(A) � op(E)T X op(E) = �scale Y (24)where op(M ) is either M or MT for M = A;E and the right hand side Y is symmetric. A, E, Y ,and the solution X are N by N matrices. scale is an output scale factor, set to avoid overow inX. An estimation of the separation and the reciprocal condition number of the Lyapunov operatoris provided.A.1.2 Speci�cationSUBROUTINE DGLP( JOB, DISCR, FACT, TRANS, N, A, LDA, E, LDE,* UPPER, X, LDX, SCALE, Q, LDQ, Z, LDZ, IWORK,* RWORK, LRWORK, SEP, RCOND, IERR )A.1.3 Argument ListArguments InN { INTEGER.The order of the matrix A.N � 0.A { DOUBLE PRECISION array of DIMENSION (LDA,N).If FACT= .TRUE., then the leading N by N upper Hessenberg part of this array must containthe generalized Schur factor As of the matrixA. As must be an upper quasitriangular matrix.The elements below the upper Hessenberg part of the array A are not referenced.If FACT = .FALSE., then the leading N by N part of this array must contain the matrix A.Note: this array is overwritten if FACT = .FALSE..LDA { INTEGER.The leading dimension of the array A as declared in the calling program.LDA � N.E { DOUBLE PRECISION array of DIMENSION (LDE,N).If FACT = .TRUE., then the leading N by N upper triangular part of this array must containthe generalized Schur factor Es of the matrix E. The elements below the upper triangularpart of the array E are not referenced.If FACT = .FALSE., then the leading N by N part of this array must contain the coe�cientmatrix E of the equation.Note: this array is overwritten if FACT = .FALSE..LDE { INTEGER.The leading dimension of the array E as declared in the calling program.LDE � N.X { DOUBLE PRECISION array of DIMENSION (LDX,N).If JOB = 'B' or 'X', then the leading N by N part of this array must contain the right handside matrix Y of the equation. On entry, either the lower or the upper triangular part ofthis array is referenced (see mode parameter UPPER).12



If JOB = 'S', X is not referenced.Note: this array is overwritten if JOB = 'B' or 'X'.LDX { INTEGER.The leading dimension of the array X as declared in the calling program.LDX � N.Q { DOUBLE PRECISION array of DIMENSION (LDQ,N).If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonalmatrix Q from the generalized Schur factorization.If FACT = .FALSE., Q need not be set on entry.LDQ { INTEGER.The leading dimension of the array Q as declared in the calling program.LDQ � N.Z { DOUBLE PRECISION array of DIMENSION (LDZ,N).If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonalmatrix Z from the generalized Schur factorization.If FACT = .FALSE., Z need not be set on entry.LDZ { INTEGER.The leading dimension of the array Z as declared in the calling program.LDZ � N.Arguments OutA { DOUBLE PRECISION array of DIMENSION (LDA,N).The leading N by N part of this array contains the generalized Schur factor As of the matrixA. (As is an upper quasitriangular matrix.)E { DOUBLE PRECISION array of DIMENSION (LDE,N).The leading N by N part of this array contains the generalized Schur factor Es of the matrixE. (Es is an upper triangular matrix.)X { DOUBLE PRECISION array of DIMENSION (LDX,N).If JOB = 'B' or 'X', then the leading N by N part of this array contains the solution matrixX of the equation.If JOB = 'S', X has not been referenced.SCALE { DOUBLE PRECISION.The scale factor set to avoid overow in X (0 < SCALE � 1).Q { DOUBLE PRECISION array of DIMENSION (LDQ,N).The leading N by N part of this array contains the orthogonal matrix Q from the generalizedSchur factorization.Z { DOUBLE PRECISION array of DIMENSION (LDZ,N).The leading N by N part of this array contains the orthogonal matrix Z from the generalizedSchur factorization.SEP { DOUBLE PRECISION.An estimate for the separation of the Lyapunov operator.RCOND { DOUBLE PRECISION.An estimate for the reciprocal condition number of the Lyapunov operator.13



Work SpaceIWORK { INTEGER array at least of DIMENSION (N��2).If JOB = 'X', this array is not referenced.RWORK { DOUBLE PRECISION array at least of DIMENSION (LRWORK).On exit, if IERR = 0, RWORK(1) contains the optimal workspace.LRWORK { INTEGER.The dimension of the array RWORK. The following table contains the minimal work spacerequirements depending on the choice of JOB and FACT.JOB FACT LRWORK'X' .TRUE. N'X' .FALSE. 7N'B', 'S' .TRUE. 2N2'B', 'S' .FALSE. max(2N2; 7N)Note: For good performance, LRWORK must generally be larger.TolerancesNone.Mode ParametersJOB { CHARACTER�1.Speci�es if the solution is to be computed and if the separation (along with the reciprocalcondition number) is to be estimated.JOB = 'X', (Compute the solution only);JOB = 'S', (Estimate the separation only);JOB = 'B', (Compute the solution and estimate the separation).DISCR { LOGICAL.Speci�es which type of equation is to be solved.DISCR = .FALSE., (Continuous{time equation (23));DISCR = .TRUE., (Discrete{time equation (24)).FACT { LOGICAL.Speci�es whether the generalized real Schur factorization of the pencil A � �E is suppliedon entry or not.FACT = .FALSE., (The generalized real Schur factorization is not supplied);FACT = .TRUE., (The generalized real Schur factorization is supplied).TRANS { LOGICAL.Speci�es whether the transposed equation is to be solved or not.TRANS = .FALSE., (op(A)=A, op(E)=E);TRANS = .TRUE., (op(A)=AT , op(E)=ET ).UPPER { LOGICAL.Speci�es whether the lower or the upper triangle of the array X is referenced.UPPER = .FALSE., (Only the lower triangle is referenced);UPPER = .TRUE., (Only the upper triangle is referenced).14



Warning IndicatorNone.Error IndicatorIERR { INTEGER.Unless the routine detects an error (see next section), IERR contains 0 on exit.A.1.4 Warnings and Errors detected by the RoutineIERR = 1:On entry, N < 0,or LDA < N,or LDE < N,or LDX < N,or LDQ < N,or LDZ < N,or JOB 62 f'B', 'b', 'S', 's', 'X', 'x'g.IERR = 2:LRWORK too small.IERR = 3:FACT = .TRUE. and the matrix contained in the upper Hessenberg part of the array A isnot in upper quasitriangular form.IERR = 4:FACT = .FALSE. and the pencil A � �E cannot be reduced to generalized Schur form.LAPACK routine DGEGS has failed to converge.IERR = 5:DISCR = .TRUE. and the pencil A � �E has a pair of reciprocal eigenvalues. That is,�i = 1=�j for some i and j, where �i and �j are eigenvalues of A � �E. Hence, equation(24) is singular.IERR = 6:DISCR = .FALSE. and the pencil A � �E has a degenerate pair of eigenvalues. That is,�i = ��j for some i and j, where �i and �j are eigenvalues of A��E. Hence, equation (23)is singular.A.2 Hammarling's MethodA.2.1 PurposeTo compute the Cholesky factor U of the matrixX = op(U )Top(U ), which is the solution of eitherthe generalized c{stable continuous{time Lyapunov equationop(A)T X op(E) + op(E)T X op(A) = �scale2 op(B)T op(B) (25)or the generalized d{stable discrete{time Lyapunov equationop(A)T X op(A) � op(E)T X op(E) = �scale2 op(B)T op(B) (26)without �rst �nding X and without the need to form the matrix op(B)T op(B).op(K) is either K or KT for K = A;B;E; U . A and E are N by N matrices, op(B) is an Mby N matrix. The resulting matrix U is an N by N upper triangular matrix with non{negativeentries on its main diagonal. scale is an output scale factor set to avoid overow in U .A.2.2 Speci�cationSUBROUTINE DGLPHM( DISCR, FACT, TRANS, N, M, A, LDA, E, LDE, B,* LDB, SCALE, Q, LDQ, Z, LDZ, RWORK, LRWORK,* IERR ) 15



A.2.3 Argument ListArguments InN { INTEGER.The order of the matrix A.N � 0.M { INTEGER.The number of rows in the matrix op(B).M � 1.A { DOUBLE PRECISION array of DIMENSION (LDA,N).If FACT= .TRUE., then the leading N by N upper Hessenberg part of this array must containthe generalized Schur factor As of the matrixA. As must be an upper quasitriangular matrix.The elements below the upper Hessenberg part of the array A are not referenced.If FACT = .FALSE., then the leading N by N part of this array must contain the matrix A.Note: this array is overwritten if FACT = .FALSE..LDA { INTEGER.The leading dimension of the array A as declared in the calling program.LDA � N.E { DOUBLE PRECISION array of DIMENSION (LDE,N).If FACT = .TRUE., then the leading N by N upper triangular part of this array must containthe generalized Schur factor Es of the matrix E. The elements below the upper triangularpart of the array E are not referenced.If FACT = .FALSE., then the leading N by N part of this array must contain the coe�cientmatrix E of the equation.Note: this array is overwritten if FACT = .FALSE..LDE { INTEGER.The leading dimension of the array E as declared in the calling program.LDE � N.B { DOUBLE PRECISION array of DIMENSION (LDB,N1).If TRANS = .TRUE., the leading N by M part of this array must contain the matrix B andN1 � MAX(M,N).If TRANS = .FALSE., the leading M by N part of this array must contain the matrix B andN1 � N.Note: this array is overwritten.LDB { INTEGER.The leading dimension of the array B as declared in the calling program.If TRANS = .TRUE., then LDB � N.If TRANS = .FALSE., then LDB � MAX(M,N).Q { DOUBLE PRECISION array of DIMENSION (LDQ,N).If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonalmatrix Q from the generalized Schur factorization.If FACT = .FALSE., Q need not be set on entry.LDQ { INTEGER.The leading dimension of the array Q as declared in the calling program.LDQ � N. 16



Z { DOUBLE PRECISION array of DIMENSION (LDZ,N).If FACT = .TRUE., then the leading N by N part of this array must contain the orthogonalmatrix Z from the generalized Schur factorization.If FACT = .FALSE., Z need not be set on entry.LDZ { INTEGER.The leading dimension of the array Z as declared in the calling program.LDZ � N.Arguments OutA { DOUBLE PRECISION array of DIMENSION (LDA,N).The leading N by N part of this array contains the generalized Schur factor As of the matrixA. (As is an upper quasitriangular matrix.)E { DOUBLE PRECISION array of DIMENSION (LDE,N).The leading N by N part of this array contains the generalized Schur factor Es of the matrixE. (Es is an upper triangular matrix.)B { DOUBLE PRECISION array of DIMENSION (LDB,N1).The leading N by N part of this array contains the Cholesky factor U of the solution matrixX of the problem.SCALE { DOUBLE PRECISION.The scale factor set to avoid overow in U (0 < SCALE � 1).Q { DOUBLE PRECISION array of DIMENSION (LDQ,N).The leading N by N part of this array contains the orthogonal matrix Q from the generalizedSchur factorization.Z { DOUBLE PRECISION array of DIMENSION (LDZ,N).The leading N by N part of this array contains the orthogonal matrix Z from the generalizedSchur factorization.Work SpaceRWORK { DOUBLE PRECISION array at least of DIMENSION (LRWORK).On exit, if IERR = 0, RWORK(1) contains the optimal workspace.LRWORK { INTEGER.The dimension of the array RWORK.If FACT = .TRUE., then LRWORK � MAX(6�N-6,1).If FACT = .FALSE., then LRWORK � MAX(7�N,1).Note: For good performance, LRWORK must generally be larger.TolerancesNone.Mode ParametersDISCR { LOGICAL.Speci�es which type of equation is to be solved.DISCR = .FALSE., (Continuous{time equation (25));DISCR = .TRUE., (Discrete{time equation (26)).17



FACT { LOGICAL.Speci�es whether the generalized real Schur factorization of the pencil A � �E is suppliedon entry or not.FACT = .FALSE., (The generalized real Schur factorization is not supplied);FACT = .TRUE., (The generalized real Schur factorization is supplied).TRANS { LOGICAL.Speci�es whether the transposed equation is to be solved or not.TRANS = .FALSE., (op(K)=K, K = A;B;E; U );TRANS = .TRUE., (op(K)=KT , K = A;B;E; U ).Warning IndicatorNone.Error IndicatorIERR { INTEGER.Unless the routine detects an error (see next section), IERR contains 0 on exit.A.2.4 Warnings and Errors detected by the RoutineIERR = 1:On entry, N < 0,or M < 1,or LDA < N,or LDE < N,or LDB < N,or LDQ < N,or LDZ < N,or (TRANS = .FALSE. and LDB < M).IERR = 2:LRWORK too small.IERR = 3:FACT = .TRUE. and the matrix contained in the upper Hessenberg part of the array A isnot in upper quasitriangular form.IERR = 4:FACT = .FALSE. and the pencil A � �E cannot be reduced to generalized Schur form.LAPACK routine DGEGS has failed to converge.IERR = 5:FACT = .TRUE. and there is a 2 by 2 block on the main diagonal of the pencil As � �Eswith real eigenvalues.IERR = 6:DISCR = .FALSE. and the pencil A� �E is not c{stable.IERR = 7:DISCR = .TRUE. and the pencil A� �E is not d{stable.IERR = 8:DISCR = .TRUE. and the LAPACK routine DSYEVX has failed to converge during thesolution of the reduced equation. This error is unlikely to occur.18



B Example ProgramsTwo sample programs are enclosed to demonstrate the usage of the routines DGLP and DGLPHM.B.1 Bartels{Stewart MethodExampleTo �nd the solution matrixX, the separation, and the reciprocal condition number of the equationATXE +ETXA = �Y;whereA = 0@ 3:0 1:0 1:01:0 3:0 0:01:0 0:0 2:0 1A ; E = 0@ 1:0 3:0 0:03:0 2:0 1:01:0 0:0 1:0 1A ; and Y = 0@ 64:0 73:0 28:073:0 70:0 25:028:0 25:0 18:0 1A :Program Text* DGLP EXAMPLE PROGRAM TEXT** .. Parameters ..INTEGER NIN, NOUTPARAMETER (NIN=5, NOUT=6)INTEGER NMAXPARAMETER (NMAX=20)INTEGER LDA, LDE, LDQ, LDX, LDZPARAMETER (LDA=NMAX, LDE=NMAX, LDQ=NMAX, LDX=NMAX,+ LDZ=NMAX)INTEGER LIWORK, LRWORKPARAMETER (LIWORK=NMAX**2, LRWORK=MAX(2*NMAX**2,7*NMAX))* .. Local Scalars ..CHARACTER JOBDOUBLE PRECISION RCOND, SCALE, SEPINTEGER I, IERR, J, NLOGICAL DISCR, FACT, TRANS, UPPER* .. Local Arrays ..INTEGER IWORK(LIWORK)DOUBLE PRECISION A(LDA,NMAX), E(LDE,NMAX), Q(LDQ,NMAX),+ RWORK(LRWORK), X(LDX,NMAX), Z(LDZ,NMAX)* .. External Subroutines ..EXTERNAL DGLP* .. Executable Statements ..* WRITE (NOUT,FMT=99999)* Skip the heading in the data file and read the data.READ (NIN,FMT='()')READ (NIN,FMT=*) N, JOB, DISCR, FACT, TRANS, UPPERIF (N.LE.0 .OR. N.GT.NMAX) THENWRITE (NOUT,FMT=99993) NELSEREAD (NIN,FMT=*) ((A(I,J),J=1,N),I=1,N)READ (NIN,FMT=*) ((E(I,J),J=1,N),I=1,N)IF (FACT) THENREAD (NIN,FMT=*) ((Q(I,J),J=1,N),I=1,N)READ (NIN,FMT=*) ((Z(I,J),J=1,N),I=1,N)END IFREAD (NIN,FMT=*) ((X(I,J),J=1,N),I=1,N)* Find the solution matrix X and the scalars RCOND and SEP.19



CALL DGLP(JOB,DISCR,FACT,TRANS,N,A,LDA,E,LDE,UPPER,X,LDX,SCALE,+ Q,LDQ,Z,LDZ,IWORK,RWORK,LRWORK,SEP,RCOND,IERR)* IF (IERR.NE.0) THENWRITE (NOUT,FMT=99998) IERRELSEIF (JOB.EQ.'B'.OR.JOB.EQ.'S') THENWRITE (NOUT,FMT=99997) SEPWRITE (NOUT,FMT=99996) RCONDEND IFIF (JOB.EQ.'B'.OR.JOB.EQ.'X') THENWRITE (NOUT,FMT=99995) SCALEDO 20 I = 1, NWRITE (NOUT,FMT=99994) (X(I,J),J=1,N)20 CONTINUEEND IFEND IFEND IFSTOP*99999 FORMAT (' DGLP EXAMPLE PROGRAM RESULTS',/1X)99998 FORMAT (' IERR on exit from DGLP = ',I2)99997 FORMAT (' SEP = ',F8.4)99996 FORMAT (' RCOND = ',F8.4)99995 FORMAT (' SCALE = ',F8.4,//' The solution matrix X is ')99994 FORMAT (20(1X,F8.4))99993 FORMAT (/' N is out of range.',/' N = ',I5)ENDProgram DataDGLP EXAMPLE PROGRAM DATA3 B F F F T3.0 1.0 1.01.0 3.0 0.01.0 0.0 2.01.0 3.0 0.03.0 2.0 1.01.0 0.0 1.064.0 73.0 28.00.0 70.0 25.00.0 0.0 18.0Program ResultsDGLP EXAMPLE PROGRAM RESULTSSEP = .2867RCOND = .0055SCALE = 1.0000The solution matrix X is-2.0000 -1.0000 .0000-1.0000 -3.0000 -1.0000.0000 -1.0000 -3.0000 20



B.2 Hammarling's MethodExampleTo �nd the Cholesky factor U of the solution X = UTU of the equationATXE +ETXA = �BTB;whereA = 0@ �1:0 3:0 �4:00:0 5:0 �2:0�4:0 4:0 1:0 1A ; E = 0@ 2:0 1:0 3:02:0 0:0 1:04:0 5:0 1:0 1A ; and B = � 2:0 �1:0 7:0 � :Program Text* DGLPHM EXAMPLE PROGRAM TEXT** .. Parameters ..INTEGER NIN, NOUTPARAMETER (NIN=5, NOUT=6)INTEGER NMAXPARAMETER (NMAX=20)INTEGER LDA, LDB, LDE, LDQ, LDZPARAMETER (LDA=NMAX, LDB=NMAX, LDE=NMAX, LDQ=NMAX,+ LDZ=NMAX)INTEGER LRWORKPARAMETER (LRWORK=MAX(7*NMAX,6*NMAX-6,1))* .. Local Scalars ..DOUBLE PRECISION SCALEINTEGER I, IERR, J, N, MLOGICAL DISCR, FACT, TRANS* .. Local Arrays ..DOUBLE PRECISION A(LDA,NMAX), B(LDB,NMAX), E(LDE,NMAX),+ Q(LDQ,NMAX), RWORK(LRWORK), Z(LDZ,NMAX)* .. External Subroutines ..EXTERNAL DGLPHM* .. Executable Statements ..* WRITE (NOUT,FMT=99999)* Skip the heading in the data file and read the data.READ (NIN,FMT='()')READ (NIN,FMT=*) N, M, DISCR, FACT, TRANSIF (N.LT.0 .OR. N.GT.NMAX) THENWRITE (NOUT,FMT=99995) NELSEIF (M.LT.1 .OR. M.GT.NMAX) THENWRITE (NOUT,FMT=99994) MELSEREAD (NIN,FMT=*) ((A(I,J),J=1,N),I=1,N)READ (NIN,FMT=*) ((E(I,J),J=1,N),I=1,N)IF (FACT) THENREAD (NIN,FMT=*) ((Q(I,J),J=1,N),I=1,N)READ (NIN,FMT=*) ((Z(I,J),J=1,N),I=1,N)END IFIF (TRANS) THENREAD (NIN,FMT=*) ((B(I,J),J=1,M),I=1,N)ELSEREAD (NIN,FMT=*) ((B(I,J),J=1,N),I=1,M)END IF* Find the Cholesky factor U of the solution matrix.CALL DGLPHM(DISCR,FACT,TRANS,N,M,A,LDA,E,LDE,B,LDB,SCALE,Q,LDQ,21



+ Z,LDZ,RWORK,LRWORK,IERR)* IF (IERR.NE.0) THENWRITE (NOUT,FMT=99998) IERRELSEWRITE (NOUT,FMT=99997) SCALEDO 20 I = 1, NWRITE (NOUT,FMT=99996) (B(I,J),J=1,N)20 CONTINUEEND IFEND IFSTOP*99999 FORMAT (' DGLPHM EXAMPLE PROGRAM RESULTS',/1X)99998 FORMAT (' IERR on exit from DGLPHM = ',I2)99997 FORMAT (' SCALE = ',F8.4,//' The Cholesky factor U of the solution+ matrix is')99996 FORMAT (20(1X,F8.4))99995 FORMAT (/' N is out of range.',/' N = ',I5)99994 FORMAT (/' M is out of range.',/' M = ',I5)ENDProgram DataDGLPHM EXAMPLE PROGRAM DATA3 1 F F F-1.0 3.0 -4.00.0 5.0 -2.0-4.0 4.0 1.02.0 1.0 3.02.0 0.0 1.04.0 5.0 1.02.0 -1.0 7.0Program ResultsDGLPHM EXAMPLE PROGRAM RESULTSSCALE = 1.0000The Cholesky factor U of the solution matrix is1.6003 -.4418 -.1523.0000 .6795 -.2499.0000 .0000 .2041
22
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