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ponents (on CD). It is a comprehensive presentation of modern shock-capturing methods,
including both finite volume and finite element methods, covering the theory of hyperbolic
conservation laws and the theory of the numerical methods.

Classical techniques for judging the qualitative performance of the schemes, such as
modified equation analysis and Fourier analysis, are used to motivate the development of
classical higher-order methods (the Lax–Wendroff process) and to prove results such as the
Lax Equivalence Theorem.

The range of applications (shallow water, compressible gas dynamics, magnetohydro-
dynamics, finite deformation in solids, plasticity, polymer flooding and water/gas injection
in oil recovery) is broad enough to engage most engineering disciplines and many areas of
applied mathematics.

The solution of the Riemann problems for these applications is developed, so that the
reader can use the theory to develop test problems for the methods, especially to mea-
sure errors for comparisions of accuracy and efficiency. The numerical methods involve
a variety of important approaches, such as MUSCL and PPM, TVD, wave propagation,
Lax–Friedrichs (aka central schemes), ENO and discontinuous Galerkin; all of these are
discussed in one and multiple spatial dimensions. Since many of these methods depend on
Riemann solvers, there is extensive discussion of the basic design principles of approximate
Riemann solvers, and several computationally useful techniques. The final chapter contains
a discussion of adaptive mesh refinement via structured grids.

The accompanying CD contains a hyperlinked version of the text which provides access
to computer codes for all of the text figures. Through this electronic text students can:

� See the codes and run them, choosing their own input parameters interactively

� View the online numerical results as movies

� Gain an appreciation for both the dynamics of the problem application, and the growth
of numerical errors

� Download and modify the code for use with other applications

� Study the code to learn how to structure their programs for modularity and ease of
debugging.
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Preface

Hyperbolic conservation laws describe a number of interesting physical problems
in diverse areas such as fluid dynamics, solid mechanics, and astrophysics. Our
emphasis in this book is on nonlinearities in these problems, especially those that
lead to the development of propagating discontinuities. These propagating disconti-
nuities can appear as the familiar shock waves in gases (the “boom” from explosions
or super-sonic airplanes), but share many mathematical properties with other waves
that do not appear to be so “shocking” (such as steep changes in oil saturations in
petroleum reservoirs). These nonlinearities require special treatment, usually by
methods that are themselves nonlinear. Of course, the numerical methods in this
book can be used to solve linear hyperbolic conservation laws, but our methods will
not be as fast or accurate as possible for these problems. If you are only interested
in linear hyperbolic conservation laws, you should read about spectral methods and
multipole expansions.

This book grew out of a one-semester course I have taught at Duke University
over the past decade. Quite frankly, it has taken me at least 10 years to develop the
material into a form that I like. I may tinker with the material more in the future,
because I expect that I will never be fully satisfied.

I have designed this book to describe both numerical methods and their applica-
tions. As a result, I have included substantial discussion about the analytical solution
of hyperbolic conservation laws, as well as discussion about numerical methods. In
this course, I have tried to cover the applications in such a way that the engineering
students can see the mathematical structure that is common to all of these problem
areas. With this information, I hope that they will be able to adapt new numerical
methods developed for other problem areas to their own applications. I try to get the
mathematics students to adopt one of the physical models for their computations
during the semester, so that the numerical experiments can help them to develop
physical intuition.

xvii
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xviii Preface

I also tried to discuss a variety of numerical methods in this text, so that students
could see a number of competing ideas. This book does not try to favor any one
particular numerical scheme, and it does not serve as a user manual to a software
package. It does have software available, to allow the reader to experiment with
the various ideas. But the software is not designed for easy application to new
problems. Instead, I hope that the readers will learn enough from this book to make
intelligent decisions on which scheme is best for their problems, as well as how to
implement that scheme efficiently.

There are a number of very good books on related topics. LeVeque’s Finite
Volume Methods for Hyperbolic Problems [97] is one that covers the mathematics
well, describes several important numerical methods, but emphasizes the wave
propagation scheme over all. Other books are specialized for particular problem
areas, such as Hirsch’s Numerical Computation of Internal and External Flows
[73], Peyret and Taylor’s Computational Methods for Fluid Flow [131], Roache’s
Computational Fluid Dynamics [137] and Toro’s Riemann Solvers and Numerical
Methods for Fluid Dynamics [159]. These books contain very interesting techniques
that are particular for fluid dynamics, and should not be ignored.

Because this text develops analytical solutions to several problems, it is possible
to measure the errors in the numerical methods on interesting test problem. This
relates to a point I try to emphasize in teaching the course, that it is essential in
numerical computation to perform mesh refinement studies in order to make sure
that the method is performing properly. Another topic in this text is that numerical
methods can be compared for accuracy (error for a given mesh size) and efficiency
(error for a given amount of computational time). Sometimes people have an inate
bias toward higher-order methods, but this may not be the most cost-effective
approach for many problem. Efficiency is tricky to measure, because subtle pro-
gramming issues can drive up computational time. I do not claim to have produced
the most efficient version of any of the schemes in this text, so the efficiency com-
parisons should be taken “with a grain of salt.”

The numerical comparisons produced some surprises for me. For example, I
was surprised that approximate Riemann problem solvers often produce better
numerical results in Godunov methods than “exact” Riemann solvers. Another
surprise is that there is no clear best scheme or worst scheme in this text (although
I have omitted discussions of schemes that have fallen out of favor in the literature
for good reasons). There are some schemes that generally work better than most
and some that often are less efficient than most, but all schemes have their niche
in which they perform well. The journal literature, of course, is full of examples
of the latter behavior, since the authors get to choose computational examples that
benefit their method.
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Preface xix

During the past ten years, I have watched numerical methods evolve, computers
gain amazing speed, and students struggle harder with programming. The evolution
of the methods lead me to develop the course material into a form that students
could access online. In that way, I could insert additional text for ready access by
the students. The speed of current desktop machines allows us to make some rea-
sonably interesting computations during the semester, seeing in a few minutes what
used to require overnight runs on supercomputers. During that time, however, the
new operating systems have separated the students ever farther from programming
details.

As I gained experience with online text generation, I started to ask if it would
be possible to develop an interactive text. First, I wanted students to be able to
view the example programs while they were reading the text online. Next, I wanted
students to be able to examine links to information available on the web. Then, I
decided that it would be really nice if students could perform “what if” experiments
within the text, by running numerical methods with different parameters and seeing
the results immediately. Because I continue to think that only “real” programming
languages (i.e., C, C++ and Fortran) should be used for the material such as this, I
rejected suggestions that I rewrite the programs in Matlab or Java. Eventually, our
department systems programmer, Andrew Schretter, found a way to make things
work for me, provided that I arrange for all parameter entry through graphical
user interfaces. Our senior systems programmer, Yunliang Yu, did a lot of the
development of the early form of the graphical user interface. One of my former
graduate students, Wenjun Ying, programmed carefully the many cases for the
marching cubes algorithm for visualizing level surfaces in three dimensions. I am
greatly indebted to Andrew, Wenjun and Yunliang for their help.

This text is being published in two forms: traditional paper copy and a PDF file on
a companion CD. The electronic form of the text contains links between equation or
theorem references and the original statements. Similar links lead to bibliography
citations or to occurrences of key words in the index. There are electronic links
in the online text to source code and executables on the CD. This allows students
to view computer implementations of the algorithms developed in the book, and
to perform “what if” experiments with program and model parameters. However,
since the text is the same for both versions of the book, this means that the paper
text contains instructions to click on electronic links.

The graphical user interface (GUI) makes it easy for students to change param-
eters (and, in fact, to see all of the input parameters). The GUI also complicates
the online programs. There is a danger that students may think that they have to
program GUI’s in order to solve these problems. That is not my intent. I have pro-
vided several example programs in the online version of chapter 2 to show students
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xx Preface

how they can write simple programs (that produce data sets for post processing)
or slightly more complex programs (that display numerical results during the com-
putation to look like movies), or very sophisticated programs (that use GUI’s for
input parameters). I would be happy if all students could program successfully in
the first style. After all, CLAWPACK is a very successful example of that simple
and direct style of programming.

It is common that students in this class are taking it in order to learn programming
in Fortran or C++, as much as they want to learn about the numerical methods. Both
of these languages have advantages and disadvantages. Fortran is very good with
arrays (subscripts can start at arbitrary values, which is useful for “ghost cells” in
many methods) and has a very large set of intrinsic functions (for example, max
and min with more than two arguments for slope limiters). Fortran is not very
good with memory allocation, or with pointers in general. I use C++ to perform all
memory allocation, and for all interactive graphics, including GUIs. When users
select numerical methods through a GUI, then I set values for function pointers and
pass those as arguments to Fortran routines. I do not recommend such practices
for novice programmers. On the other hand, students who want to expand their
programming skills can find several interesting techniques in the codes.

I do try to emphasize defensive programming when I teach courses that involve
scientific computing. By this term, I mean the use of programming practices that
make it easier to prevent or identify programming errors. It is often difficult to
catch the use of uninitialized variables, the access of memory out of bounds, or
memory leaks. The mixed-language programs all use the following defensive steps.
First, floating-point traps are enabled in unoptimized code. Second, floating-point
array values are initialized to IEEE infinity. Third, a memory debugger handles all
memory allocation by overloading operator new in C++. When the program
makes an allocation request, the memory debugger gets even more space from the
heap, and puts special bit patterns into the space before and after the user memory. As
a result, the programmer can ask the memory debugger to check individual pointers
or all pointers for writes out of bounds. This memory debugger is very fast, and does
not add significantly to the overal memory requirements. The memory debugger
also informs the programmer about memory leaks, providing information about
where the unfreed pointer was allocated.

Unfortunately, mixing Fortran and C++ allows the possibility of truly bizarre
programming errors. For example, declaring a Fortran subroutine to have a return
value in a C++ extern “C” block can lead to stack corruption. I don’t have a
good defensive programming technique for that error.

But this book is really about numerical methods, not programming. I became
interested in hyperbolic conservation laws well after graduate school, and I am
indebted to several people for helping me to develop that interest. John Bell and
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Gregory Shubin were particularly helpful when we worked together at Exxon
Production Research. At Lawrence Livermore National Laboratory, I learned much
about Godunov methods from both John Bell and Phil Colella, and about object
oriented programming from Bill Crutchfield and Mike Welcome. I want to thank
all of them for their kind assistance during our years together.

Finally, emotional support throughout a project of this sort is essential. I want
to thank my wife, Becky, for all her love and understanding throughout our years
together. I could not have written this book without her.
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