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NUMERICAL SOLUTION OF ISOSPECTRAL FLOWS

MARI PAZ CALVO, ARIEH ISERLES, AND ANTONELLA ZANNA

Abstract. In this paper we are concerned with the problem of solving nu-
merically isospectral flows. These flows are characterized by the differential
equation

L′ = [B(L), L], L(0) = L0,

where L0 is a d × d symmetric matrix, B(L) is a skew-symmetric matrix
function of L and [B,L] is the Lie bracket operator.

We show that standard Runge–Kutta schemes fail in recovering the main
qualitative feature of these flows, that is isospectrality, since they cannot re-
cover arbitrary cubic conservation laws. This failure motivates us to introduce
an alternative approach and establish a framework for generation of isospectral
methods of arbitrarily high order.

1. Background and notation

1.1. Introduction. The interest in solving isospectral flows is motivated by their
relevance in a wide range of applications, from molecular dynamics to micromag-
netics to linear algebra. The general form of an isospectral flow is the differential
equation

L′ = [B(L), L], L(0) = L0,(1)

where L0 is a given d × d symmetric matrix, B(L) is a skew-symmetric matrix
function of L and [B(L), L] = B(L)L − LB(L) is the commutator of B(L) and L.

The choice of the matrix function B(L) characterizes the dynamics of the un-
derlying flow L(t). Important special cases are the Toda lattice equations, double-
bracket flows and KvM flows.

Toda lattice equations in the Lax formulation (1) were considered by Toda [T],
Flaschka [F] and Moser [Mo] and their relation with the QR algorithm for finding
eigenvalues by Symes [Sy] and then extensively by Deift, Nanda, Tomei et al.,
Lagarias, in [Na1], [Na2] [DNT], [L], [DRTW]. It has been finally generalized
to the nonsymmetric case by Chu, Watkins and Elsner in [Ch], [W], [WE]. The
double bracket flow was introduced by Brockett in [B1] and then investigated by
Brockett et al. in [BBR]. Its relation with the singular value decomposition (SVD)
was considered by Chu, Driessel, Moore, Mahony, Helmke, Watkins, and others
(cf. [ChD1], [D], [HM], [MMH], [WE]). Driessel and Chu in [ChD2] have also
investigated another isospectral flow of the form (1) in relation with the inverse
eigenvalue problem for Toeplitz symmetric matrices. Finally we mention the KvM
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1462 MARI PAZ CALVO, ARIEH ISERLES, AND ANTONELLA ZANNA

flows studied by Kac and von Moerbeke (cf. [KvM], [T]). We will return time and
again to these flows in the sequel.

It is important to point out that the aforementioned flows are obtained for very
special choices of the matrix B(L). In the most general case the dynamics of (1) is
still unknown or not yet fully understood.

The most important qualitative feature of (1) is the isospectrality of the solution
L(t). In other words the eigenvalues of the matrix L(t) are independent of time.
This has been shown by Flaschka for the Toda lattice equations (see [F], [T]) but
with greater generality his proof applies to all the flows that can be written in the
form (1). Therefore it is often of essence to require that a numerical method for
the initial value problem (1) retains isospectrality. So far, Moore–Mahony–Helmke
have proposed in [MMH] an algorithm which produces an isospectral solution. Their
algorithm is aimed to evaluate the eigenvalues of L0 rather than to approximate
the solution of (1) with any degree of precision, and it is applicable just to the
double-bracket flows. Instead we propose a considerably more general approach
which allows us to produce an isospectral solution for the initial value problem (1)
with an arbitrarily high order of accuracy. This new class of methods, which we call
modified Gauss–Legendre Runge–Kutta (MGLRK) schemes, is based on a rendition
of Flaschka’s theoretical approach in a computational form.

This different technique is strongly motivated by the failure of standard ODE
methods for the problem in hand. Isospectrality of (1) can be interpreted in the fol-
lowing way. The solution L(t) lies on an intersection of several manifolds, each one
corresponding to an integral for (1) that can be expressed in terms of a conservation
law. We show that the most likely candidates, Runge–Kutta (RK) methods which
retain quadratic conservation laws, fail since they cannot recover cubic integrals.

This paper is organized as follows. Section 1 introduces some basic concepts for
the problem in hand and describes the most ubiquitous isospectral flows. Section 2
is concerned with standard methods for ODEs. We derive the conditions that the
coefficients of the numerical method have to obey in order to recover conservation
laws. In particular, we prove that for Runge–Kutta schemes, conservation of qua-
dratic and cubic integrals are conflicting requirements, thereby concluding that for
d ≥ 3 no RK method can be isospectral. In Section 3 we introduce the modified
Gauss–Legendre RK methods and, finally, Section 4 is concerned with numerical
examples.

1.2. The QR flow and the Toda flow. Given a function f which is analytic on
the spectrum σ(L0) = {λ1, λ2, . . . , λd} of the matrix L0, we refer to (1) as a QR
flow when

B(L) = f(L)+ − f(L)−.(2)

The subscripts ‘±’ denote the (strictly) upper and lower triangular part of the
matrix f(L) respectively. The name QR flow (cf. [Sy], [Na1], [Na2], [DNT]) is due
to the fact that for symmetric and positive definite L0 and f(x) = log x at integer
time-steps the flow produces exactly the iterations of the familiar QR method for
finding eigenvalues. Reversing the order in (2) is equivalent to reversing integration
in time. Moser in [Mo] has shown that for t→ ±∞ the flow L(t) tends to a diagonal
matrix whose elements are the eigenvalues of L(t), while Deift, Nanda and Tomei
in [DNT] have shown that the convergence to the asymptotically stable equilibrium
point is exponential. For t → +∞, the eigenvalues of the flow (2) are arranged
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from the largest to the smallest, the other way around for reverse time integration.
The flow retains the bandwidth of the initial matrix L0. This is clear for the Toda
flow (see [T]) but, by virtue of the analyticity of f on σ(L0) it applies with greater
generality also to (2) (cf. [DNT]). For f(x) = x, the identity function, and for
tridiagonal L0, we obtain the Toda flow in a notation originally due to Lax (cf. [T]),
in which case we denote the matrix L(t) in the form

L(t) =



β1 α1 0 . . . 0

α1 β2 α2
. . .

...

0 α2
. . .

. . . 0
...

. . .
. . .

. . . αd−1

0 . . . 0 αd−1 βd


d×d

.(3)

Occasionally we refer directly to the differential equations for the Toda flow (cf.
[T]), namely

β′k = 2(α2
k − α2

k−1),
α′k = αk(βk+1 − βk),

k = 1, . . . , d,(4)

where here, as well as in the remaining part of this paper, we use the convention
that αk, βk = 0 whenever k 6∈ {1, 2, . . . , d− 1} and k 6∈ {1, . . . , d} respectively.

1.3. The double-bracket flow. We refer to a double-bracket flow when

L′ = [L, [L,N ]],(5)

whereN is a given d×d symmetric matrix. Without loss of generality and observing
that [L, [L,N ]] = [[N,L], L], the flow can be written in the form (1), where

B(L) = [N,L] = NL− LN.

The flow was first introduced by Brockett in [B1], where the author shows that it
can be formulated as a gradient flow evolving in a Riemannian manifold. In the
same paper he has also proved that, for diagonal N and an initial matrix L0, both
of them with distinct eigenvalues, the matrix function L(t) tends exponentially to
a diagonal matrix as t → +∞ and the eigenvalues are then sorted accordingly to
the diagonal entries of N . If L0 or N have multiple eigenvalues, exponential (but
not asymptotical) convergence is lost. He also showed how this flow can be used to
diagonalize matrices, sort lists and solve linear programming problems. This flow
in general does not retain the bandwidth of the initial matrix L0 except in the case

N = κI ± diag{1, 2, . . . , d}.
In particular, when N = diag{1, 2, . . . , d}, the double-bracket flow (5) is a refor-
mulation of the Toda lattice.

When N is nondiagonal, the analysis of convergence is essentially the same (cf.
[B1]). To verify this, observe thatN is symmetric, therefore it can be diagonalized by
means of an orthogonal transformation. In other words, there exist an orthogonal
matrix Q and a diagonal matrix Λ such that

N = QΛQT , QQT = QTQ = I.

Next observe that, if Q is orthogonal and A,B are arbitrary d × d matrices, it is
true that

[QAQT , QBQT ] = Q[A,B]QT ,
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1464 MARI PAZ CALVO, ARIEH ISERLES, AND ANTONELLA ZANNA

from which, letting L̃ = QTLQ, we deduce that the problem (5) is equivalent to

L̃′ = [L̃, [L̃,Λ]],

with diagonal Λ. Thus, the previous analysis holds. Finally note that, when N is
nondiagonal, the equilibria of the flow need not be diagonal matrices. This can be
observed by transforming, by means of the orthogonal matrix Q, the equilibria of
the flow corresponding to the diagonal matrix Λ.

1.4. An isospectral flow for inverse eigenvalue problems. Chu and Dries-
sel have shown in [ChD2] that isospectral flows can also be used for the inverse
eigenvalue problem for symmetric Toeplitz matrices. Given a set of d arbitrary
real numbers, say {λ1, . . . , λd}, the problem consists of finding a symmetric d× d
Toeplitz matrix whose eigenvalues are exactly the given numbers. To this aim, they
formulate an isospectral flow whose equilibria are only Toeplitz symmetric matri-
ces. In more detail, assume that L is a given symmetric matrix. Then (cf. [ChD2])
it can be uniquely decomposed as

L = T (L) + P (L),

where T (L) is a symmetric Toeplitz matrix and P (L) is the projection of L on the
set P , namely

P :={X : X is d× d, symmetric, and ∀j = 1, . . . , d− 1,

X1,j +X2,j+1 = 0;X1,d = 0}.

Letting Z stand for the d× d shift matrix,

Z =



0 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . . 0 1 0
...

. . . 0 1
0 . . . . . . 0 0


,

the isospectral flow for the symmetric eigenvalue problem for Toeplitz matrices is

L′ = [L, [P (L), V ]], L0 = diag{λ1, . . . , λd}, V = Z + ZT .(6)

Unfortunately, Chu and Driessel have not yet proved the convergence of the flow.
This flow is closely related to the double-bracket flow. If we write

P (L) = L− T (L),

we find

L′ = [L, [L, V ]]− [L, [T (L), V ]],

whereby the first term is just a double-bracket flow with symmetric (nondiagonal)
matrix N = V .
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1.5. The Kac–von Moerbeke flow. Given

L(t) =



0 α1 0 . . . 0

α1 0 α2
. . .

...

0 α2
. . .

. . . 0
...

. . .
. . .

. . . αd−1

0 . . . 0 αd−1 0


,

the KvM flow corresponds to the choice

B(L) =



0 0 α1α2 0 · · · 0

0 0 0 α2α3
. . .

...

−α1α2 0 0
. . .

. . . 0

0
. . .

. . .
. . .

. . . αd−2αd−1

...
. . .

. . .
. . .

. . . 0
0 · · · 0 −αd−2αd−1 0 0


.(7)

Kac and von Moerbeke have shown that this flow remains tridiagonal with zero
diagonal entries. Moser (cf. [T], p. 72) has generalized this result to problems
whose matrix B(L) has up to the p-th off-diagonal element. For t→∞, L(t) tends
to a block diagonal matrix. Each block is 2×2 and the spectrum of L(t) is obtained
by evaluating the eigenvalues of each block. Kac and von Moerbeke have shown
(cf. [T], [KvM]) that this flow is related to the Toda flow since it can be interpreted
as two different motions of the same lattice. The equations for the αk’s are given
explicitly by

α′k = αk(α
2
k+1 − α2

k−1), k = 1, . . . , d− 1.(8)

2. Failure of conventional ODE methods

2.1. Conserved integrals. Following Toda [T], we associate with the matrix L(t)
the d-degree polynomial

p(λ) = det(λI − L) = λd − pd−1λ
d−1 + · · ·+ (−1)dp0,(9)

whereby the zeros of p(λ) are the eigenvalues of the matrix L. The coefficients
appearing in (9) can be expressed in terms of the matrix L and its principal minors,
or as elementary symmetric polynomials in its eigenvalues. Explicitly we have

pd−1 = λ1 + · · ·+ λd,(10)

pd−2 =
d∑

i=1

d∑
j=i+1

λiλj ,(11)

...

p0 = λ1λ2 · · ·λd.(12)

Since the flow is isospectral, the coefficients given by (10)–(12) are independent of
time. Therefore they constitute d integrals associated with the flow L(t). It is shown
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in [T] how these constants are related to Henon’s conserved quantities. However,
we observe that the conservation of (10)–(12) is equivalent to the conservation of

κj =

d∑
i=1

λji , j = 1, . . . , d.(13)

Since it is known from classical matrix theory (cf. [G]) that

d∑
i=1

λji = tr (Lj), j = 1, . . . , d,(14)

we use the latter integrals rather than (10)–(12) to carry out our theoretical analysis
for numerical methods and their retention of isospectrality.

2.2. General approximation of the eigenvalues and conservation of the
trace. Given an arbitrary numerical method for ODEs of order p, we expect the
eigenvalues of L to be approximated with the same precision as the entries of the
matrix. When an eigenvalue is multiple, in all likelihood its approximation will
be less precise. However this cannot happen for irreducible Toda flows, since in
this case the eigenvalues are all distinct. This is true since, expanding det(λI − L)
in the bottom row, we obtain a three-term recurrence relation. Provided that
L0 is irreducible, the Favard theorem implies that the recurrence relation generates
orthogonal polynomials (in λ). The eigenvalues of L0 are the zeros of the orthogonal
polynomial of degree d and they are all distinct by virtue of the separation theorem
for zeros of orthogonal polynomials (cf. [C]).

Insofar as the approximation of the trace is concerned, we first mention the
following trivial result.

Lemma 1. Given a skew-symmetric matrix B and a symmetric matrix C, it is
true that

tr [B,C] = 0.

It is worthwhile to introduce the notation that we use in the remaining part of
this paper. Given the autonomous differential system

y′ = f(y), y(0) = y0, t ≥ 0,(15)

with y0 ∈ Rq, f : Ω ⊆ Rq → Rq, an s-stage RK scheme, defined by the following
Butcher tableau

c A

bT
,(16)

produces the following time-stepping formula,

yn+1 = yn + h

s∑
i=1

biki,(17)

where

ki = f(φi), i = 1, . . . , s,(18)

and

φi = yn + h

s∑
j=1

Ai,jkj , i = 1, . . . , s,(19)
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are the internal stage vectors. The ki’s and φi’s depend on n even if it is not
explicitly stated in the latter formulae.

Similarly, a linear s-step method produces

s∑
i=0

aiyn+i = h

s∑
i=0

bif(yn+i), as = 1.(20)

This method can be characterized by the polynomials (ρ, σ), where

ρ(z) =

s∑
i=0

aiz
i, σ(z) =

s∑
i=0

biz
i,(21)

and z ∈ C. Both the RK scheme (16) and the linear multistep method (20) can be
applied to differential equations in matrix form.

For further details we suggest the reader to consult texts in computational dif-
ferential equations, for example [HNW], [Lb].

We have at this point all the necessary technical tools to introduce the following
results.

Theorem 2. Every s-stage RK method with Butcher tableau (16), when applied to
the isospectral problem (1), retains the trace of L0.

Proof. Consider an s-stage RK method defined by the Butcher tableau (16). Then,
at each step,

Ln+1 = Ln + h
s∑

i=1

biKi.

Taking into account that the trace is a linear operation on matrices and that the
Ki are of the form [B,C] with B skew-symmetric and C symmetric, it follows from
Lemma 1 that

tr (Ln+1) = tr (Ln),

and the trace is retained.

Theorem 3. Every consistent linear multistep method (20) when applied to the
problem (1), retains the trace of L0.

Proof. Assume that tr (Ln) = tr (Ln+1) = · · · = tr (Ln+s−1) = tr (L0). Then, from
Lemma 1 we have

tr (Ln+s) = −
(
s−1∑
i=0

ai

)
tr (L0).

The theorem follows since as = 1 and, by virtue of consistency, ρ(1) = 0.

It is evident that the conservation of the trace is shared by all standard numerical
ODE methods. This is because the conservation of the trace is a linear conservation
law, which is obeyed whenever we approximate the solution with linear combina-
tions of its derivative values.
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2.3. Quadratic conservation laws. Given the autonomous system of differential
equations

y′ = f(y), y(0) = y0 ∈ Rq,(22)

we say that the underlying flow y(t) obeys a quadratic conservation law if there
exists a symmetric matrix S 6= O such that

y(t)TSy(t) = const for all t ≥ 0.(23)

If Ω ⊆ Rq is the domain of definition of f , differentiation affirms that (23) is
equivalent to

ωTSf(ω) = 0 ∀ω ∈ Ω.(24)

Assume next that we are given the isospectral flow (1). Since the matrix L is
symmetric, it is true that

tr (L2) = ‖L‖2F ,(25)

where the latter is the Frobenius norm on matrices, ‖L‖2F =
∑d

i,j=1 L
2
i,j . Therefore,

this norm of L(t) is retained. Furthermore observe that the Frobenius norm is
equivalent to the Euclidean norm on vectors if we order the matrix L column-
wise, say. Let y be the vector obtained in this manner. The isospectral problem
(1) can be written in the autonomous form (22) where y(t) obeys the quadratic
conservation law (23) with S ≡ I, since

yTy = ‖y‖22 = const.

Hence, in order to have an isospectral method for (1), we require that it recovers
quadratic integrals when applied to the autonomous vector system (22).

In the sequel we restrict our attention to RK methods, since Eirola and Sanz-
Serna have shown in [ES] (cf. also [DRV]) that linear multistep methods that retain
quadratic integrals have poor stability features.

Suppose that we have an s-stage RK method defined by the tableau (16), with
which we associate the symmetric matrix M whose entries are

Mi,j = biAi,j + bjAj,i − bibj , i, j = 1, . . . , s.(26)

Then the following result holds.

Theorem 4. The nonconfluent RK method (16) recovers all the quadratic conser-
vation laws of the form (23) if and only if

M = O.(27)

Proof. The sufficiency has been essentially shown by Cooper in [Co] and follows
from algebraic stability type considerations. However, in reporting his result, we
prefer to follow Sanz-Serna (see [Sz], [SzC]). Recalling the time-stepping formula
(16) for an RK method, by virtue of (24), it is possible to show that

yTn+1Syn+1 = yTnSyn + h2
s∑

i,j=1

(bibj − biAi,j − bjAj,i)k
T
i Skj

= yTnSyn − h2
s∑

i,j=1

Mi,jk
T
i Skj .(28)
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If M = O it is clear that the method recovers the quadratic integral (23) since

yTn+1Syn+1 = yTnSyn,

and sufficiency follows. Insofar as necessity is concerned, Sanz-Serna and Verwer
in [SzV] (cf. the Appendix) have mentioned the condition M = O as sufficient and
necessary for conservation of all quadratic laws of the form (23). As far as we are
aware [Sanz-Serna, 1995, personal communication], the proof of necessity has not
been published yet. Our presentation of necessity proof is further motivated since
it applies to isospectral flows, as well as to higher order conservation laws. Thus,
we consider the differential equation[

y(1)

y(2)

]′
=

[
f (1)(y)

f (2)(y)

]
, y(0) =

[
β0

α0

]
,

where y = [y(1), y(2)]T ∈ R2. To avoid confusion with indices that stand for time-
stepping, we denote the vector components using superscripts. Assume that y
obeys the conservation law (23) with S ≡ I. Hence, by (24),

yTy′ = 0.

Therefore,

y(2)f (2)(y) = −y(1)f (1)(y),

or, in other words,

y′ = g(y)

[
y(2)

−y(1)

]
,

where g : R2 → R is an arbitrary function. For our purposes, it is sufficient to
consider one step of the method, from y0 to y1. We fix an index 1 ≤ ` ≤ s and
choose a smooth g (for example by Lagrangian interpolation) such that

g(φ`) = 1,

g(φi) = 0, i = 1, . . . , s, i 6= `.

This means, for (18), that

ki = f(φi) = g(φi)

[
φ

(2)
i

−φ(1)
i

]
=

{
[φ

(2)
i ,−φ(1)

i ]T , i = `,

0, i 6= `,

and consequently,

kTi kj = δi,`δj,`‖k`‖2, i, j = 1, . . . , s.

Furthermore, we recall (19), namely

φi = y0 + hAi,`k`, i = 1, . . . , s.

Since y0 = [β0, α0]
T , we use the `-th equation, φ` = y0 + hA`,`k`, to express the

components of φ` in terms of the initial condition,

φ
(1)
` =

β0 + hα0A`,`

1 + h2A2
`,`

,

φ
(2)
` =

α0 − hβ0A`,`

1 + h2A2
`,`

.
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These values can be used to find the remaining vectors φi. Specifically, for all i 6= `,
we find

φ
(1)
i =

β0 + hα0Ai,` + h2β0A`,`(A`,` −Ai,`)

1 + h2A2
`,`

,

φ
(2)
i =

α0 − hβ0Ai,` + h2α0A`,`(A`,` −Ai,`)

1 + h2A2
`,`

.

Hence, in correspondence with this initial condition and our function g, we deduce
that

s∑
i,j=1

Mi,jk
T
i kj = M`,`‖k`‖2.

Since α0, β0 can be chosen so that k` 6= 0, it is clear from (28) that M`,` must
vanish. Repeating the same construction for all ` = 1, 2, . . . , s, we obtain

M`,` = 0, ` = 1, 2, . . . , s,

and this proves the necessity of the condition for the diagonal entries of M . Next
we fix again 1 ≤ ` ≤ s− 1, and choose a function g such that

g(φ`) = g(φ`+1) = 1, and g(φi) = 0, i 6= `, `+ 1.

After the first step the method produces

φi = y0 + h(Ai,`k` +Ai,`+1k`+1), i = 1, . . . , s.

From the `-th and (`+ 1)-st equations we can find φ` and φ`+1 in terms of α0, β0,
1 0 −hA`,` −hA`,`+1

hA`,` hA`,`+1 1 0
0 1 −hA`+1,` −hA`+1,`+1

hA`+1,` hA`+1,`+1 0 1

[ φ`
φ`+1

]
=


β0

α0

β0

α0

 .
Exchanging the second and third row, we obtain

(
I + h

[
O −D
D O

])
φ

(1)
`

φ
(1)
`+1

φ
(2)
`

φ
(2)
`+1

 =


β0

β0

α0

α0

 ,
where

D =

[
A`,` A`,`+1

A`+1,` A`+1,`+1

]
,

and O is a zero 2 × 2 block. Hence, for sufficiently small h > 0, the system has a
solution, and it can be used to find the other φi’s. Thus, taking into account the
symmetry of M ,

s∑
i,j=1

Mi,jk
T
i kj = M`,`‖k`‖2 +M`+1,`+1‖k`+1‖2 + 2M`,`+1k

T
` k`+1

= 2M`,`+1k
T
` k`+1,(29)

since we have already proved that the diagonal elements of M do vanish. In order
for the contribution of the h2 terms in (28) to vanish, necessarily

M`,`+1 = 0,
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since, for h sufficiently small, kT` k`+1 ≈ ‖k`‖2 > 0. This procedure generalizes
for all the diagonals of M . For example, to prove that M`,`+2 = 0, we can take
g(φ`) = g(φ`+1) = g(φ`+2) = 1 and g(φi) = 0 otherwise and so on. This completes
the proof of our assertion that M = O is necessary for the recovery of all quadratic
conservation laws.

Theorem 4 ensures that the RK method recovers all quadratic integrals a priori,
that is to say regardless of the matrix S and of the function f . However, for
isospectral flows the condition M = O is necessary as well. The necessity is shown
in the following result.

Theorem 5. If a nonconfluent RK method is isospectral for all flows (1), then
necessarily M = O.

Proof. Consider the flow

L′ = g(L)[B̃(L), L],

where g : Rd×d → R, g 6= 0, is an arbitrary function. The flow is isospectral, since,
by letting

B(L) = g(L)B̃(L),

it can be written in the form (1), the matrix B(L) being skew-symmetric. The
proof follows similarly to Theorem 4, by virtue of the arbitrariness of the function
g.

Moreover, since for 2×2 systems the conservation of quadratic laws is a necessary
and sufficient condition for isospectrality (recall that, by Theorem 1, tr (L0) is
conserved by all RK schemes), we have the following result.

Corollary 5.1. All RK methods for which M = O are isospectral for 2 × 2 sys-
tems.

2.4. RK methods and higher order conservation laws. Quadratic conser-
vation laws for RK schemes have been widely investigated in the last few years,
mostly because the condition M = O is the same as the symplecticity condition (cf.
[SzC]). However no attention has been devoted to cubic conservation laws.

Consider the problem

y′ = f(y), y(0) = y0 ∈ Rq.

We say that y obeys a cubic conservation law if there exists a trilinear function

S(u,v,ω) : Rq × Rq × Rq → R, S 6≡ 0,

which is symmetric in u,v,ω, i.e. assumes the same value on all the permutations
of (u,v,ω), such that

S(y(t),y(t),y(t)) = const,(30)

for all t ≥ 0. Equivalently

S(ω,ω, f(ω)) = 0 ∀ω ∈ Ω.(31)

Isospectral flows in a vector formulation obey cubic conservation laws. We assume
in the remainder of this section that

M = O,
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a condition that guarantees that the RK method recovers quadratic integrals. Since
S is symmetric and linear in each of its variables, it is easy to verify that

S(yn+1,yn+1,yn+1)− S(yn,yn,yn) = S(yn+1 − yn,yn+1,yn+1)

+S(yn+1 − yn,yn,yn+1)

+S(yn+1 − yn,yn,yn),

therefore it follows that the numerical method obeys (30) if and only if the right
hand side vanishes. In other words, we require

I = S(yn+1 − yn,yn+1,yn+1) + S(yn+1 − yn,yn,yn+1) + S(yn+1 − yn,yn,yn)

(32)

to vanish. Because of the time-stepping formula (17), we can write

yn+1 − yn = h

s∑
i=1

biki,

hence substitution in (32) yields

I = h

s∑
i=1

bi {S(ki,yn+1,yn+1) + S(ki,yn+1,yn) + S(ki,yn,yn)} .

The next step consists of expanding yn+1 in terms of yn using again the time-
stepping formula (17). We obtain

S(ki,yn+1,yn+1) = S(ki,yn,yn) + 2h

s∑
j=1

bjS(ki,kj ,yn)

+h2
s∑

j,m=1

bjbmS(ki,kj ,km),(33)

S(ki,yn+1,yn) = S(ki,yn,yn) + h

s∑
j=1

bjS(ki,kj ,yn),(34)

and substitution results in

I = h

s∑
i=1

bi{3S(ki,yn,yn) + 3h

s∑
j=1

bjS(ki,kj ,yn) + h2
s∑

j,m=1

bjbmS(ki,kj ,km)}.

Using (19) we can write yn in terms of the φi’s, since

yn = φi − h

s∑
m=1

Ai,mkm.
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Therefore,

S(ki,kj ,yn) = S(ki,kj ,φi)− h

s∑
m=1

Ai,mS(ki,kj ,km),(35)

S(ki,yn,yn) = S(ki,φi,φi)− 2h

s∑
j=1

Ai,jS(ki,kj ,φi)(36)

+h2
s∑

j,m=1

Ai,jAi,mS(ki,kj ,km)

= −2h
s∑

j=1

Ai,jS(ki,kj ,φi) + h2
s∑

j,m=1

Ai,jAi,mS(ki,kj ,km)(37)

since ki = f(φi) and (31) implies that the first term in (36) vanishes. Substitution
in I produces

I = 3h2(−2
s∑

i,j=1

biAi,jS(ki,kj ,φi) +
s∑

i,j=1

bibjS(ki,kj ,φi))(38)

+h3
s∑

i,j,m=1

{3biAi,jAi,m − 3bibjAi,m + bibjbm}S(ki,kj ,km).

Let us focus on S(ki,kj ,φi), observing that

S(ki,kj ,φi) = S(ki,kj ,φj) + h
s∑

m=1

(Ai,m −Aj,m)S(ki,kj ,km).

This allows us to write

2

s∑
i,j=1

biAi,jS(ki,kj ,φi) =

s∑
i,j=1

biAi,jS(ki,kj ,φi) +

s∑
i,j=1

biAi,jS(ki,kj ,φj)

+h

s∑
i,j,m=1

biAi,j(Ai,m −Aj,m)S(ki,kj ,km).

We find that the O(h2
)

term in I vanishes, since

3

s∑
i,j=1

(bibj − biAi,j − bjAj,i)S(ki,kj ,φi) = 0,
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because of the assumption M = O. Next we consider the O(h3
)

terms. We are left
with

I =− 3h3
s∑

i,j,m=1

biAi,j(Ai,m −Aj,m)S(ki,kj ,km)

+ 3h3
s∑

i,j,m=1

biAi,jAj,mS(ki,kj ,km)

− 3h3
s∑

i,j,m=1

bibjAi,mS(ki,kj ,km) + h3
s∑

i,j,m=1

bibjbmS(ki,kj ,km)

=h3
s∑

i,j,m=1

{3biAi,jAj,m − 3bibjAi,m + bibjbm}S(ki,kj ,km).

(39)

We use once more M = O to deduce that

bibj = biAi,j + bjAj,i,

so that

I = h3
s∑

i,j,m=1

{3biAi,jAj,m − 3biAi,jAi,m − 3bjAj,iAi,m + bibjbm}S(ki,kj ,km).

We observe that the first and the third term in the latter sum cancel since they
coincide, S being symmetric in its arguments. This, finally, leads to

I = −h3
s∑

i,j,m=1

Υi,j,mS(ki,kj ,km),(40)

where, by virtue of the symmetry of S,

Υi,j,m = biAi,jAi,m + bjAj,iAj,m + bmAm,jAm,i − bibjbm, i, j,m = 1, . . . , s.
(41)

Thus we deduce that

Υi,j,m = 0, i, j,m = 1, 2, . . . , s,(42)

is a sufficient condition for the conservation of all cubic integrals associated to the
given differential equation.

Necessity. First let us consider the case of the implicit midpoint rule. In the
sequel we generalize our analysis but the case study of the implicit midpoint rule
is a good preparation for this task. The implicit midpoint (IMR) is a one-stage
method (s = 1) and its Butcher tableau is

1
2

1
2

1
.

In other words

yn+1 = yn + hk1,

where

k1 = f(φ1),

φ1 = yn + 1
2hk1.
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A more popular form is

yn+1 = yn + hf

(
yn + yn+1

2

)
,

which can be easily obtained from the RK formalism.
So far, this method is a good candidate for isospectrality, since it is the only one-

stage method that satisfies the condition M = O, which is equivalent to isospec-
trality in the 2× 2 case. We find that I/h3 in (40) reduces to

(b31 − b1A
3
1,1)S(k1,k1,k1).

However first we have to find the tensor S in an explicit form. For a 3 × 3 Toda
flow the matrix L is

L =

 β1 α1 0
α1 β2 α2

0 α2 β3

 .
We order L as a vector, y, so that

y = [β1, β2, β3, α1, α2]
T .(43)

The differential system obtained in this way is
β1

β2

β3

α1

α2


′

=


2α2

1

2(α2
2 − α2

1)
−2α2

2

α1(β2 − β1)
α2(β3 − β2)

 ,(44)

which is equivalent to the formulation (4). The corresponding tensor S has 125
components Si1,i2,i3 , with i1, i2, i3 ∈ {1, . . . , 5}. To find them, recall that S is
symmetric and satisfies the condition

S(y,y,y) = tr (L3) =

3∑
`=1

β3
` + 3

2∑
`=1

α2
` (β` + β`+1).

Since

S(x,y, z) =

5∑
i1,i2,i3=1

Si1,i2,i3x
(i1)y(i2)z(i3),

it is clear that

Si,i,i = 1, i = 1, 2, 3,

and

S1,4,4 = S2,4,4 = S2,5,5 = S3,5,5 = 1,

where the latter formula extends to all the possible permutations of the same in-
dices. All the remaining components of S are zero. Then the vector k1 is given
by

k1 = [2α̃2
1, 2(α̃2

2 − α̃2
1),−2α̃2

2, α̃1(β̃2 − β̃1), α̃2(β̃3 − β̃2)]
T ,

where the tilde means that the functions βi, αi are evaluated at the point h/2. By
(40),

I
h3

= (b31 − 3b1A
2
1,1)S(k1,k1,k1),
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whereby explicit calculation yields

S(k1,k1,k1) = −6α̃2
1α̃

2
2{4(α̃2

2 − α̃2
1)− β̃2

1 + β̃2
3 + 2β̃1β̃2 − 2β̃2β̃3}.(45)

It is evident that we can choose an initial condition such that this quantity is
nonzero. For example, choosing α1(0), β1(0) sufficiently large and the other quanti-
ties, including the stepsize h, sufficiently small, S(k1,k1,k1) in (45) remains strictly
positive. Therefore, in order for I to vanish, we must require that

Υ1,1,1 = 3b1A
2
1,1 − b31 = 0,

but this is impossible, since b1 = 1 and A1,1 = 1/2. Let us consider next a generic
s-stage method. To prove necessity we start from the Toda lattice equations. Con-
sider the problem (44) that we generalize in the following way

β1

β2

β3

α1

α2


′

= g(y)


2α2

1

2(α2
2 − α2

1)
−2α2

2

α1(β2 − β1)
α2(β3 − β2)

 ,(46)

where y is the vector in (43) and g : R5 → R is an arbitrary Lipschitz function. In
the first time step the method produces

y1 = y0 + h
s∑

i=1

biki,

φi = y0 + h

s∑
j=1

Ai,jkj , i = 1, . . . , s,(47)

kj = g(φj)ψj , j = 1, . . . , s,(48)

where

ψj =



2φ
(4)
j

2

2(φ
(5)
j

2 − φ
(4)
j

2
)

−2φ
(5)
j

2

φ
(4)
j (φ

(2)
j − φ

(1)
j )

φ
(5)
j (φ

(3)
j − φ

(2)
j )


, j = 1, . . . , s.

We fix an index ` ∈ {1, 2, . . . , s} and choose a smooth function g such that

g(φ`) = 1,

g(φi) = 0, i = 1, . . . , s, i 6= `.

Then, from (48) we find

ki = 0, i 6= `,

and (47) reduces to

φi = y0 + hAi,`ψ`, i = 1, . . . , s.(49)
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Let y0 = [β1(0), β2(0), β3(0), α1(0), α2(0)]T . Then, for i = `, the equality (49)
produces

φ
(1)
` − β1(0)− 2hA`,`φ

(4)
`

2
= 0,

φ
(2)
` − β2(0)− 2hA`,`(φ

(5)
`

2 − φ
(4)
`

2
) = 0,

φ
(3)
` − β3(0) + 2hA`,`φ

(5)
`

2
= 0,

φ
(4)
` − α1(0)− 2hA`,`φ

(4)
` (φ

(2)
` − φ

(1)
` ) = 0,

φ
(5)
` − α2(0)− 2hA`,`φ

(5)
` (φ

(3)
` − φ

(2)
` ) = 0,

that can be written in the compact form as

F(φ`) = 0.

We can easily evaluate the Jacobian matrix ∂F/∂φ` of F to find

∂F

∂φ`
= I + hA`,`

[
O −4D
DT G

]
,(50)

where

G = −
[

(φ
(2)
` − φ

(1)
` ) 0

0 (φ
(3)
` − φ

(2)
` )

]
, D =

 φ
(4)
` 0

φ
(4)
` φ

(5)
`

0 φ
(5)
`

 ,
and O is a zero 3 × 3 block. For sufficiently small h, the matrix (50) is invertible,
hence, the implicit function theorem affirms that it is possible to find φ` in terms of
y0. Then, by substitution in (48), we derive all the remaining φi’s. Note moreover
that

ki = 0 for i 6= ` =⇒ S(ki,kj ,km) = 0 for (i, j,m) 6= (`, `, `).

Hence I/h3 = 0 in (40) reduces to

−Υ`,`,`S(k`,k`,k`) = 0,(51)

whereby S(k`,k`,k`) is given, as for the implicit midpoint rule, by (45), the tilde
meaning that the underlying functions are evaluated at t = c`h. As we have seen for
the IMR, the initial condition y0 can be chosen in order to have S(k`,k`,k`) 6= 0.
Thus, we conclude that

Υ`,`,` = 0.(52)

Here the index ` is arbitrary in {1, . . . , s}, therefore (52) must be true for all `.
We do not intend to prove the necessity for the other components of Υ. In fact,

even though Υ = O is consistent with the order conditions, since, summing up the
indices i, j,m we find

s∑
i,j,m=1

(3biAi,jAi,m − bibjbm) = 3
s∑

i=1

bic
2
i − 1,

hence consistency with order 2, unfortunately Υ`,`,` = 0, ` = 1, . . . , s, is contradic-
tory with the assumption M = O. To verify this assertion, we consider an index
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m ∈ {1, 2, . . . , s} such that bm 6= 0 (it exists because of the consistency condition∑s
i=1 bi = 1). Letting i = j = m, Υm,m,m = 0 implies

Am,m =
bm√

3
,

while Mm,m = 0 yields

Am,m =
bm
2
.

Since bm 6= 0 this leads to a contradiction. This concludes the proof of the main
results of the current section.

Theorem 6. No nonconfluent RK method can recover all cubic conservation
laws.

Corollary 6.1. No RK method can be isospectral for all flows (1) when d ≥ 3.

Proof. The proof follows by considering that, in order to have isospectrality for
d ≥ 3, the method must recover cubic integrals.

Apart from its importance to future analysis of isospectral integration, the latter
results provide us also with a better insight into general conservative systems. Not
only have we proved that quadratic and cubic conservation laws are conflicting
requirements for RK schemes, but also we expect, in numerical integration, that
even if the method obeys M = O, the error corresponding to the cubic integral
will be of order O(hp+1

)
. Note finally that we have used the condition M = O

to conclude that the O(h2
)

term in I vanishes, hence, in a matter of fact, an RK
method cannot conserve cubic laws even if we do not insist that the quadratic
conservation laws are retained as well.

3. A family of isospectral methods: modified Gauss–Legendre

Runge–Kutta schemes

3.1. Isospectral methods via Flaschka’s formalism. Flaschka has shown (cf.
[F], [T]) that the problem (1) is equivalent to solving

U ′ = B(L(t))U, U(0) = I, t ≥ 0,(53)

in tandem with

L(t) = U(t)L0U(t)T , t ≥ 0.(54)

As a consequence of skew-symmetry of B(L), the matrix U(t) in (53) remains
unitary for all t ≥ 0. Hence the main idea of this section is to use (53)–(54) and
render them in a computational form. In particular we are interested in solving

U ′ = B(L)U, U(tn) = I, tn ≤ t ≤ tn+1,(55)

and then obtaining

L(tn+1) = U(tn+1)L(tn)U(tn+1)
T .(56)

In the sequel we denote the numerical approximants using subscripts, that is Un+1 ≈
U(tn+1), Ln ≈ L(tn), Ln+1 ≈ L(tn+1). As long as (55) is solved with a unitary
method, the substitution in (56) produces an approximation Ln+1 which is orthog-
onally similar to Ln, hence isospectrality is retained.

Essentially, there are two ways of solving (55) preserving unitarity of U (see
[DRV]). The first one is to use structural unitary integrators, the second is to
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use projected unitary methods. Briefly (we recommend that the reader who is in-
terested on this point consults [DRV]), structural unitary integrators are schemes
which preserve unitarity whenever the underlying flow is unitary, while projected
unitary methods consist of projecting (by means of a QR factorization) the nu-
merical solution produced by an arbitrary method for ODEs, into the manifold
of orthogonal matrices. The latter approach produces orthogonal matrices even
when applied to nonunitary flows and might destroy time-reversibility, therefore
we regard it as unsatisfactory in the present context. For this reason we prefer
to consider structural unitary integrators. Insofar as standard ODE methods are
concerned, the following result holds.

Theorem 7. Given a general d× d linear system of the form

U ′ = S(t, U)U, U(0) = U0, UT
0 U0 = I,(57)

where S(t, U) is skew-symmetric, let {Un}∞n=0 be the numerical approximation pro-
duced by an RK scheme. If M = O, then Un is orthogonal for all n ≥ 0.

Proof. Recall that

Un+1 = Un + h
s∑

i=1

biKi,

where, having denoted S(tn + c`h,Φ`) by S`,

K` = S`Φ`, ` = 1, . . . , s,

Φ` = Un + h

s∑
j=1

A`,jKj.

Hence

UT
n+1Un+1 = UT

n Un + h

s∑
`=1

b`{UT
nK` +KT

` Un}(58)

+h2
s∑

`=1

s∑
j=1

b`bjK
T
` Kj .

But

UT
nK` = ΦT

` K` − h

s∑
j=1

A`,jK
T
j K`,

KT
` Un = KT

` Φ` − h

s∑
j=1

A`,jK
T
` Kj .

However,

ΦT
` K` +KT

` Φ` = ΦT
` S`Φ` + ΦT

` S
T
` Φ` = ΦT

` (S` + ST
` )Φ`

= O,

since S` is a skew-symmetric matrix. Hence, (58) reduces to

UT
n+1Un+1 = UT

n Un + h2
s∑

`=1

s∑
j=1

{b`bj − b`A`,j − bjAj,`}KT
j K`.
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Assuming that UT
n Un = I, it is clear that if M = O, then

UT
n+1Un+1 = I.

Moreover, since the same holds when considering Un+1U
T
n+1, the scheme retains

unitarity while stepping from tn to tn+1. The proof then follows by induction on
n.

Dieci, Russell and van Vleck have proved in [DRV] that M = O and b ≥ 0 are
sufficient conditions to retain unitarity for (57). Their result follows from stability
type considerations, requiring that the RK scheme is B-stable for t→ +∞ as well
as for t→ −∞. Our result shows that the condition on the vector of weights is not
necessary and that unitarity is determined solely in terms of the matrix M .

Gauss–Legendre RK (GLRK) are examples of structural unitary integrators.
However, there is a major problem in solving (55) even with GLRK schemes: the
function B(L) depends on L(t). We need to know not only Ln and eventually Ln+1

(and this can be done implicitly or using numerical approximation), but also the
values of L at the Gauss–Legendre nodes tn + c`h, ` = 1, . . . , s, the c`’s being the
zeros of the Legendre polynomials linearly transformed to [0, 1]. This information is
not available in the standard formulation of a Runge–Kutta method. To overcome
this difficulty, the theoretical problem (55) is hence replaced by an approximate

one by introducing a polynomial L̃(t) which interpolates the exact flow L(t) at the
points tn and tn+1. Assume that we use an s-stage GLRK scheme (order 2s) and
that the function B(L) is sufficiently smooth with respect to the variable L. Let

L̃(j)(tn+i) = L(j)(tn+i), i = 0, 1, j = 0, 1, . . . , s− 1,

be the Hermite interpolant of L of degree 2s−1 at {tn, tn+1}. Then the interpolation
error is given by

L̃(t)− L(t) =
1

(2s)!
(t− tn)s(t− tn+1)

sL(2s)(θt)

for some θt ∈ (tn, tn+1). If we replace B(L) with B(L̃), the leading error term is

E(t) =
1

(2s)!
(t− tn)s(t− tn+1)

sL(2s)(θt)B
′(L̃).(59)

Therefore it is clear that E(t) = O(h2s
)
. Next we show that this kind of interpo-

lation does not affect the order of the GLRK method used.

3.2. Effects of the interpolation on the theoretical problem. Let L̃(t) be the
polynomial of degree 2s− 1 in t which interpolates L(j)(t), for j = 0, 1, . . . , s− 1,
at tn and tn+1 (order 2s-interpolant). Moreover, we consider the following two
differential equations, namely

U ′ = B(L(t))U, U(tn) = I,(60)

V ′ = B(L̃(t))V, V (tn) = I.(61)

Obviously the latter can be regarded as a perturbation of (60). Denoting by ΨB(t)
the fundamental solution of (60), as a consequence of the Alekseev–Gröbner lemma
we deduce

V (t)− U(t) =

∫ t

tn

ΨB(t− τ){V ′(τ)−BV (τ)} dτ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NUMERICAL SOLUTION OF ISOSPECTRAL FLOWS 1481

therefore, ΨB(t) being unitary for all t, we have in the 2-norm

‖V (t)− U(t)‖ ≤ (t− tn) max
t∈[tn,tn+1]

‖V ′ −B(t)V ‖

≤ h ‖B(L̃(t))−B(L(t))‖∞ × ‖V ‖
= h ‖B(L̃(t))−B(L(t))‖∞ = h ‖E(t)‖∞.

(62)

Bearing in mind that, as we have formerly seen in (59), ‖E(t)‖∞ is of order O(h2s
)
,

we deduce that the error in V (t) is of order O(h2s+1
)
, provided that we can bound

B′ and the higher derivatives of L appearing in the leading error term. Hence
letting

Ln+1 = V (tn+1)L(tn)V (tn+1)
T ,

we are committing at most an error of O(h2s+1
)
, which is subsumed in the error

of a numerical method of order 2s.

3.3. Modified Gauss–Legendre RK methods. In the sequel we refer to a
modified Gauss–Legendre RK method of order 2s whenever we apply the clas-
sical Gauss–Legendre RK method of order 2s to (61) in tandem with Ln+1 =
V (tn+1)L(tn)V (tn+1)

T . The underlying equations are implicit, since we need Ln+1

and in general up to the (s− 1)-st derivative at the point tn+1 to derive the inter-

polating polynomial L̃(t). Thus, we need to iterate and our choice is the simplest,
namely the Picard iteration. We set (as an initial guess)

L
(j)
n+1

[0]
= L(j)

n , j = 0, 1, . . . , s− 1,(63)

then we can use L
(j)
n , L

(j)
n+1

[k]
, for k = 0, 1, . . . , to solve

V [k]′ = B(L̃
[k]
n+1)V

[k], V [k](tn) = I,(64)

where B(L̃
[k]
n+1) denotes the function B evaluated with the Hermite interpolant, in

tandem with

L
[k+1]
n+1 = V

[k]
n+1LnV

[k]
n+1

T
.(65)

A forthcoming paper will debate the convergence of the modified Gauss–Legendre
RK methods for various isospectral flows.

3.4. The modified implicit midpoint rule. Consider the case s = 1, the im-
plicit midpoint rule. Denoting

Bn+ 1
2

= B
(

1
2 (Ln + Ln+1)

)
,(66)

the scheme yields

Vn+1 = (I − 1
2hBn+ 1

2
)−1(I + 1

2hBn+ 1
2
).(67)

Hence we let

Ln+1 = Vn+1LnV
T
n+1.(68)

Theorem 8. The algorithm (66)–(68) is a second order isospectral modification of
the implicit midpoint rule when applied to (1).
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Proof. Since V is unitary, it follows that the algorithm (66)–(68) is isospectral.
Moreover we can use (67) to eliminate Vn+1 in (68). This leads to

Ln+1 =
(
I − 1

2hBn+ 1
2

)−1 (
I + 1

2hBn+ 1
2

)
Ln

(
I − 1

2hBn+ 1
2

)(
I + 1

2hBn+ 1
2

)−1

,

and, multiplying both sides of the latter equation by
(
I − 1

2hBn+ 1
2

)
on the left

and by
(
I + 1

2hBn+ 1
2

)
on the right, we obtain(

I − 1
2hBn+ 1

2

)
Ln+1

(
I + 1

2hBn+ 1
2

)
=
(
I + 1

2hBn+ 1
2

)
Ln

(
I − 1

2hBn+ 1
2

)
.

Thus

Ln+1 − 1
2hBn+ 1

2
Ln+1 + 1

2hLn+1Bn+ 1
2
− 1

4h
2Bn+ 1

2
Ln+1Bn+ 1

2

= Ln + 1
2hBn+ 1

2
Ln − 1

2hLnBn+ 1
2
− 1

4h
2Bn+ 1

2
LnBn+ 1

2

and, bearing in mind the definition of the commutator operator,

Ln+1 − 1
2h[Bn+ 1

2
, Ln+1]− 1

4h
2Bn+ 1

2
Ln+1Bn+ 1

2

= Ln + 1
2h[Bn+ 1

2
, Ln]− 1

4h
2Bn+ 1

2
LnBn+ 1

2
.

Furthermore,

Ln+1 = Ln + h

[
Bn+ 1

2
,
Ln + Ln+1

2

]
+ 1

4h
2Bn+ 1

2
(Ln+1 − Ln)Bn+ 1

2
.(69)

It is clear from (69) that the method (66)–(68) adds to the implicit midpoint rule
an extra term, namely

1
4h

2Bn+ 1
2
(Ln+1 − Ln)Bn+ 1

2
.

This extra term retains the second order of the method since it is O(h3), while
rendering the scheme isospectral. This is very important because, as we have proved
in the previous section, the implicit midpoint rule is not isospectral, except in the
2× 2 case.

4. Numerical results

In order to illustrate some of the results in this paper, let us consider as a test
problem the Toda lattice equations [F], [T]. This Hamiltonian system models the
motion of a finite number of particles on the line with exponential interactions of
nearest neighbours. We are interested in the nonperiodic case with d particles. The
Hamiltonian function is

H(p,q) =
1

2

d∑
k=1

p2
k +

d−1∑
k=1

{exp (2(qk − qk+1))− 1},

where qk is the position of the k-th particle and pk is its momentum, 1 ≤ k ≤ d.
The equations of motion are

q′k = pk,
p′k = 2 (exp (2(qk−1 − qk))− exp (2(qk − qk+1))) ,

k = 1, . . . , d,(70)

where it should be understood that q0 = qd+1 = 0.
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After introducing the new variables [F]

βk = −pk, 1 ≤ k ≤ d,
αk = exp (qk − qk+1), 1 ≤ k ≤ d− 1,

(71)

the differential system may be rewritten as (4), or as the matrix equation (1) with
B(L) = L+ − L− and L0 a symmetric tridiagonal matrix. As it was mentioned
in Section 2, there is a set of d integrals of motion [T] which are related to the
eigenvalues of the symmetric matrix L0. These d integrals are in involution and
then the differential system (70) is a completely integrable Hamiltonian system.

In the experiments reported here we integrate a lattice with three particles in
the interval 0 ≤ t ≤ 640 with initial conditions

q(0) = [0, 0, 0]T , p(0) = [1,−0.5,−0.5]T .

Note that three is the minimum number of particles we must consider in order to see
the different behaviour of isospectral methods and conventional ODE integrators
which preserve quadratic invariants.

In the numerical experiments the integration has been performed using two dif-
ferent methods of order two. The first method is just the implicit midpoint rule
(IMR) applied to the differential equation (1), implemented with fixed point itera-
tion for solving the implicit equations. The second method is the modified implicit
midpoint rule (MIMR) introduced in §3.4 implemented as explained in §3.3. Both
methods have been implemented using the same stepsizes and the same tolerances
in order to solve the implicit equations.

In order to make a comparison between both methods, we have measured the
errors in the variables αk and βk at t = 5, 10, 20, 40, . . . , 640, using the Euclidean
norm of R5. This is equivalent to measuring the Frobenius norm of the error in the
numerical approximation to the matrix L(t) at the same time levels.

Figure 1 gives error against time for the methods being considered, with step-
sizes 1/8 and 1/32. The stars joined by a solid line correspond to the implicit
midpoint rule while the circles joined by the dotted line represent the errors for the
isospectral method. We see that the errors for the implicit midpoint rule are almost
constant but the errors for the modified method decay with time. In fact, the main
contribution to the errors corresponding to the IMR comes from the error in the
diagonal elements of the solution, i.e. in the βk’s. The error in the off-diagonal
elements becomes almost negligible with time.

In Figure 2 we have plotted the Euclidean norm of the off-diagonal elements of
the numerical solutions with stepsize 1/8 against time. In order to represent the
data generated with both methods we use the same symbols as in Figure 1. In
fact, IMR and MIMR display very similar behaviour. For both methods we observe
convergence of the numerical solution to a diagonal matrix as t increases. This fact
is also true for the exact solution as it was proved by Moser in [Mo]. However, the
almost constant errors for the implicit midpoint rule indicates that the limit matrix
for IMR is not the right diagonal matrix of the eigenvalues of L0 as it should be.
Recall that although both methods preserve the trace and the quadratic invariants
of the solution, only the modified implicit midpoint rule recovers the third integral
of motion.
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