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Abstract This article presents a numerical method for solving nonlinear two-dimensional
Volterra–Fredholm integro-differential equations of the second kind. Here, we use the so-
called two-dimensional triangular function, First, the two-dimensional triangular operational
matrix of integration and differentiation has been presented, then by using this matrices, the
nonlinear two-dimensionalVolterra–Fredholm integro-differential equation has been reduced
to an algebraic system. Finally, some numerical examples are given to clarify the efficiency
and accuracy of the presented method.
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Introduction

The two-dimensional integral equations and integro-differential equations have a major role
the fields of science, mechanics, physics, engineering, and even biology [1–4], for example
it is usually required to solve two dimensional integral equations in the calculation of plasma
physics [5], but there are not many simple numerical method with high accuracy for solving
these equation.

The subject of the present paper is to apply the two-dimensional triangular function
for solving of two-dimensional linear and nonlinear Volterra–Fredholm integro-differential
equations. For this proposes we consider the two-dimensional Volterra–Fredholm integro-
differential equations of the form
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a1(s, t)
∂nu(s, t)

∂sn
+ a2(s, t)

∂mu(s, t)

∂tm
+ a3(s, t)

∂n+mu(s, t)

∂ns∂mt
+ a4(s, t)u(s, t) = f (s, t)

+ λ1

∫ t

0

∫ s

0
G1(s, t, x, y, u(x, y))dxdy

+ λ2

∫ T1

0

∫ T2

0
G2(s, t, x, y, u(x, y))dxdy (x, y) ∈ D = ([0, T1) × [0, T2)), (1)

with given supplementary initial conditions, a1(s, t), . . . , a4(s, t) are given continuous func-
tions, where u(s, t) is an unknown function which should be determined, The functions
G1(s, t, x, y, u) and G2(s, t, x, y, u) are given functions defined on

W = {(s, t, x, y, u) : 0 ≤ x ≤ s < T1, 0 ≤ y ≤ t < T2}.

For convenience, we put

G1(s, t, x, y, u) = k1(s, t, x, y)[u(s, t)]P1 ,
G2(s, t, x, y, u) = k2(s, t, x, y)[u(s, t)]P2 ,

where p1 and p2 are positive integers. Moreover f (s, t) is a known function defined on D.
Since any finite interval [a, b] can be transformed to [0, 1] by linear maps, it is supposed that
[0, T1) = [0, T2) = [0, 1). Without any loss of generality, also m, n ∈ Z

+.

Until to now, triangular functions have been developed for solving various types of differ-
ential and integral equations. For example in [6] Babolian et al. have been approximated
by using TFs for solving of nonlinear Volterra–Fredholm integro-differential equations.
Maleknejad in [7] have applied a triangular functions (TFs) method for solving the nonlinear
Volterra–Fredholm integral equations. Recently, Babolian et al, have applied two dimensional
triangular functions for solving nonlinear Volterra–Fredholm integral equations [8]. Also a
class of two-dimensional nonlinear Volterra integral equations solved by using Legendre
polynomials [9].

On the other hand, there aremany numericalmethods for solving one-dimensional integral
equations of the second kind, but in two-dimensional cases, few works have been done
[10–13].

In this paper, we use 2D-TFs to approximate solution of the Eq. (1). This paper is orga-
nized as follows: In “The Properties of Triangular Function” section, we introduce TFs and
their properties. In “Applying the Method” section, introduces application of the method.
Some numerical results has been presented in “Numerical Results” section to show accu-
racy and advantage of the proposed method. Finally, some concluding remarks are given in
“Conclusion” section.

The Properties of Triangular Function

In this section,we derive and present some newproperties of triangular function that needed in
solving nonlinear two-dimensional Volterra Fredholm integro-differential equation of second
kind.
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One-dimensional Triangular Functions

In a m-set of one-dimensional triangular functions (1D-TFs) over interval [1,0) the i th left
hand and right hand functions are defined as

T 1
i (s) =

{
1 − s−ih

h , ih ≤ s < (i + 1)h,

0, otherwise,

T 2
i (s) =

{
s−ih
h , ih ≤ s < (i + 1)h,

0, otherwise,

where i = 0, . . . ,m − 1, h = 1
m . It is easy to show that

T 1
i (x) + T 2

i (x) = φi (x), (2)

where φi is the i th block-pulse function defined as

φi (s) =
{
1, ih ≤ s < (i + 1)h,

0, otherwise.

It is obvious that {T 1
i (s)}m−1

i=0 and {T 2
i (s)}m−1

i=0 are disjoint. So

T 1(s) · T 1T (s) � diag(T 1(s)) = T̃ 1(s),

T 1(s) · T 2T (s) � 0m×m,

T 2(s) · T 1T (s) � 0m×m,

T 2(s) · T 2T (s) � diag(T 2(s)) = T̃ 1(s), (3)

where T̃ 1(s) and T̃ 2(s) arem×m diagonal matrices [14]. Orthogonality of 1D-TFs is shown
in [15], that is, ∫ 1

0
T p
i (s)T q

j (s) = �p,qδi, j , (4)

where δi j denotes the Kronecker delta function and

�p,q =
{

h
3 , p = q ∈ {1, 2}
h
6 , p �= q.

(5)

If we define

T1(s) = [
T 1
0 (s), T 1

1 (s), . . . , T 1
m−1(s)

]T
,

T2(s) = [
T 2
0 (s), T 2

1 (s), . . . , T 2
m−1(s)

]T
,

and

T (s) =
[
T1(s)

T2(s)

]
, (6)

then T (s) is called the 1D-TF vector.
∫ 1

0
T 1(t)T 1T dt =

∫ 1

0
T 2(t)T 2T dt = h

3
Im×m, (7)

∫ 1

0
T 1(t)T 2T dt =

∫ 1

0
T 2(t)T 1T dt = h

6
Im×m . (8)
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Expressing
∫ s
0 T 1(τ )dτ and

∫ s
0 T 2(τ )dτ in terms of 1D-TFs follows

∫ s

0
T 1(τ )dτ = P1 · T 1(s) + P2 · T 2(s), (9)

∫ s

0
T 1(τ )dτ = P1 · T 1(s) + P2 · T 2(s), (10)

where the matrix P1m×m and P2m×m , the operational matrix of integration in the 1D-TF
domain, can be represented as

P1 = h

2

⎛
⎜⎜⎜⎝

0 1 1 . . . 1
0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎠

P2 = h

2

⎛
⎜⎜⎜⎝

1 1 1 . . . 1
0 1 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎠

Hence, ∫ s

0
T (τ )dτ � P · T (s), (11)

wherematrix P , the operationalmatrix of integration in the 1D-TFdomain, can be represented
as

P =
[
P1 P2
P1 P2

]
, (12)

Now, the integral of function f (τ ) can be approximated as
∫ s

0
f (τ )dτ �

∫ s

0
CT · T (τ )dτ � CT · P · T (s). (13)

More details of 1D-TFs may be found in [15].

Two-dimensional Triangular Functions

An m1 × m2-set of 2D-TFs on the region ([0, 1) × [0, 1)) is defined by

T 1,1
i, j (s, t) =

⎧⎪⎨
⎪⎩

(
1 − s−ih1

h1

) (
1 − t− jh2

h2

)
, ih1 ≤ s < (i + 1)h1

jh2 ≤ t < ( j + 1)h2,
0, otherwise,

(14)

T 1,2
i, j (s, t) =

⎧⎪⎨
⎪⎩

(
1 − s−ih1

h1

) (
t− jh2
h2

)
, ih1 ≤ s < (i + 1)h1

jh2 ≤ t < ( j + 1)h2,
0, otherwise,

(15)

T 2,1
i, j (s, t) =

⎧⎪⎨
⎪⎩

(
s−ih1
h1

) (
1 − t− jh2

h2

)
, ih1 ≤ s < (i + 1)h1

jh2 ≤ t < ( j + 1)h2,
0, otherwise,

(16)
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T 2,2
i, j (s, t) =

⎧⎪⎨
⎪⎩

(
s−ih1
h1

) (
t− jh2
h2

)
, ih1 ≤ s < (i + 1)h1

jh2 ≤ t < ( j + 1)h2,
0, otherwise,

(17)

where i = 0, 1, 2, . . . ,m1 − 1, j = 0, 1, 2, . . . ,m2 − 1 and h1 = 1
m1

, h2 = 1
m2

, m1 and m2

are arbitrary positive integers. It is clear that

T 1,1
i, j (s, t) = T 1

i (s) · T 1
j (t),

T 1,2
i, j (s, t) = T 1

i (s) · T 2
j (t),

T 2,1
i, j (s, t) = T 2

i (s) · T 1
j (t),

T 2,2
i, j (s, t) = T 2

i (s) · T 2
j (t).

Furthermore,

T 1,1
i, j (s, t) + T 1,2

i, j (s, t) + T 2,1
i, j (s, t) + T 2,2

i, j (s, t) = φi, j (s, t),

where φi, j (s, t) is the (i,j)th block-pulse function defined on ih1 ≤ s < (i + 1)h1 and
jh2 ≤ t < ( j + 1)h2 as

φi, j (s, t) =
⎧⎨
⎩
1 ih1 ≤ s < (i + 1)h1

jh2 ≤ t < ( j + 1)h2,
0 otherwise.

(18)

Similar to the 1D case, there are some properties for 2D-TFs, the most important properties
are disjointness and orthogonality.
Each set of {T 11

i j (s, t)}, {T 12
i j (s, t)}, {T 21

i j (s, t)} and {T 22
i j (s, t)} are obviously:

1. Disjointness The two-dimensional triangular functions are disjoint with each other,
i.e.

T p1,q1
i1, j1

(s, t) · T p2,q2
i2, j2

(s, t),�
⎧⎨
⎩
T p1,q1
i1, j1

(s, t), p1 = p2, q1 = q2
i1 = i2, j1 = j2,

0, otherwise,
(19)

for pi , qi ∈ {1, 2}, i1, i2 = 0, 1, 2, . . . ,m1 − 1, and j1, j2 = 0, 1, 2, . . . ,m2 − 1.
2. Orthogonality The 2D-TFs are orthogonal with each other, i.e.

∫ 1

0

∫ 1

0
T p1,q1
i1, j1

(s, t) · T p2,q2
i2, j2

(s, t)dsdt = �p1,p2δi1,i2 · �q1,q2δ j1, j2 , (20)

where δ denotes the Kronecker delta function, and

�α,β =
{

h
3 α = β ∈ {1, 2},
h
6 α �= β.

(21)

On the other hand if

T11(s, t) = [T 1,1
0,0 (s, t), T 1,1

0,1 (s, t) . . . , T 1,1
m1−1,m2−1(s, t)]T ,

T12(s, t) = [T 1,2
0,0 (s, t), T 1,2

0,1 (s, t) . . . , T 1,2
m1−1,m2−1(s, t)]T ,

T21(s, t) = [T 2,1
0,0 (s, t), T 2,1

0,1 (s, t) . . . , T 2,1
m1−1,m2−1(s, t)]T ,

T22(s, t) = [T 2,2
0,0 (s, t), T 2,2

0,1 (s, t) . . . , T 2,2
m1−1,m2−1(s, t)]T ,
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then T (s, t), the 2D-TFs vector, can be defined as

T (s, t) =

⎡
⎢⎢⎣
T11(s, t)
T12(s, t)
T21(s, t)
T22(s, t)

⎤
⎥⎥⎦
4m1m2×1

. (22)

It is possible to cancel the (s, t) term in T (s, t), T11(s, t), T12(s, t), T21(s, t) and T22(s, t),
for convenience. From the above representation, it follows that

T11 · T T
11 �

⎡
⎢⎢⎢⎢⎣

T 1,1
11 0 · · · 0
0 T T

11 · · · 0
...

...
. . .

...

0 0 . . . T 1,1
m1−1,m2−1

⎤
⎥⎥⎥⎥⎦ = diag(T1,1),

T11 · T T
12 � 0m1m2×m1m2 ,

T11 · T T
21 � 0m1m2×m1m2 ,

T11 · T T
22 � 0m1m2×m1m2 .

These relations are also satisfied for T12(s, t), T21(s, t) and T22(s, t), similarly. Hence

T · T T �

⎡
⎢⎢⎢⎢⎣

diag(T1,1) 0m1m2×m1m2 0m1m2×m1m2 0m1m2×m1m2

0m1m2×m1m2 diag(T1,2) 0m1m2×m1m2 0m1m2×m1m2

0m1m2×m1m2 0m1m2×m1m2 diag(T2,1) 0m1m2×m1m2

0m1m2×m1m2 0m1m2×m1m2 0m1m2×m1m2 diag(T2,2)

⎤
⎥⎥⎥⎥⎦ (23)

or
T (s, t) · T T (s, t) � diag(T (s, t)) = T̃ (s, t). (24)

Also,
T (s, t) · T T (s, t) · X � X̃ · T (s, t), (25)

where X is a 4m1m2-vector and X̃ = diag(X).
The disjoint property of T11(s, t) also implies that for every (m1m2 × m1m2)-matrix B,

T T
11(s, t) · B · T11(s, t) � B̂ · T11(s, t), (26)

where B̂ is anm1m2-vector with elements equal to the diagonal entries of matrix B. Eq. (26)
is also satisfied for T12(s, t), T21(s, t) and T22(s, t), similarly.

Thus for every (4m1m2 × 4m1m2)-matrix A

T T (s, t) · A · T (s, t) � Â · T (s, t), (27)

in which Â is a 4m1m2-vector with elements equal to the diagonal entries of matrix A.
Finally, by the orthogonality of T11(s, t),
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∫ 1

0

∫ 1

0
T T
11(s, t)T11(s, t)dtds � h1

3
Im1×m1 ⊗ h2

3
Im2×m2 ,

∫ 1

0

∫ 1

0
T T
11(s, t)T12(s, t)dtds � h1

3
Im1×m1 ⊗ h2

6
Im2×m2 ,

∫ 1

0

∫ 1

0
T T
11(s, t)T21(s, t)dtds � h1

6
Im1×m1 ⊗ h2

3
Im2×m2 ,

∫ 1

0

∫ 1

0
T T
11(s, t)T22(s, t)dtds � h1

6
Im1×m1 ⊗ h2

6
Im2×m2 ,

where ⊗ denotes the Kronecker product defined for two arbitrary matrices P and Q as

P ⊗ Q = (Pi j Q).

The same equations are implied for T12(s, t), T21(s, t) and T22(s, t), by similar computations.
Hence, we can carry out double integration of T (s, t) :

∫ 1

0

∫ 1

0
T T (s, t)T (s, t)dtds � D (28)

in which D is the following (4m1m2 × 4m1m2)-matrix:

D =

⎡
⎢⎢⎢⎢⎣

h1
3 I1 ⊗ h2

3 I2
h1
3 I1 ⊗ h2

6 I2
h1
6 I1 ⊗ h2

3 I2
h1
6 I1 ⊗ h2

6 I2
h1
3 I1 ⊗ h2

6 I2
h1
3 I1 ⊗ h2

3 I2
h1
6 I1 ⊗ h2

6 I2
h1
6 I1 ⊗ h2

3 I2
h1
6 I1 ⊗ h2

3 I2
h1
6 I1 ⊗ h2

6 I2
h1
3 I1 ⊗ h2

3 I2
h1
3 I1 ⊗ h2

6 I2
h1
6 I1 ⊗ h2

6 I2
h1
6 I1 ⊗ h2

3 I2
h1
3 I1 ⊗ h2

6 I2
h1
3 I1 ⊗ h2

3 I2

⎤
⎥⎥⎥⎥⎦ , (29)

where we put I1 = Im1×m1 and I2 = Im2×m2 , for convenience.

2D-TFs Expansion

A function u(s, t) defined over ([0, 1) × [0, 1)) may be extended using 2D-TFs as

u(s, t) �
m1−1∑
i=0

m2−1∑
i=0

ci, j T
1,1
i, j +

m1−1∑
i=0

m2−1∑
i=0

di, j T
1,2
i, j +

m1−1∑
i=0

m2−1∑
i=0

ei, j T
2,1
i, j +

m1−1∑
i=0

m2−1∑
i=0

li, j T
2,2
i, j

= CT
1 · T11(s, t) + CT

2 · T12(s, t) + CT
3 · T21(s, t) + CT

4 · T22(s, t)
= CT · T (s),

where C is a 4m1m2-vector given by

C =
[
CT
1 CT

2 CT
3 CT

4

]T
, (30)

and T (s, t) is defined in Eq. (22).
The coefficients in vectors C1,C2,C3, and C4 can be computed by sampling the function
u(s, t) at grid points si and t j such that si = ih1 and t j = jh2, for various i and j . Therefore,

C1k = ci, j = u(si , t j ),

C2k = di, j = u(si , t j+1),

C3k = ei, j = u(si+1, t j ),

C4k = li, j = u(si+1, t j+1),
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in which k = im2 + j and i = 0, 1, . . . ,m1 − 1, j = 0, 1, . . . ,m2 − 1, the 4m1m2-vector C
is called the 2D-TF coefficient vector. Also, the positive integer powers of a function u(s, t)
may be approximated using 2D-TFs as

[u(s, t)]p � CT
p · T (s, t), (31)

where Cp is a column vector whose elements are pth powers of the elements of the vector C.
Let k(s, t, x, y) be a function of four variables on ([0, 1)×[0, 1)×[0, 1)×[0, 1)). It can

be approximated with respect to 2D-TFs as follows:

k(s, t, x, y) � T T (s, t) · K · T (x, y), (32)

where T (s, t) and T (x, y) are 2D-TFs vectors of dimension 4m1m2 and 4m3m4, respectively,
and K is a (4m1m2) × (4m3m4) 2D-TF coefficients matrix. This matrix can be represented
as

K =

⎡
⎢⎢⎣
K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

⎤
⎥⎥⎦ , (33)

where each block of K is an (m1m2 ×m3m4)-matrix that can be computed by sampling the
function k(s, t, x, y) at grid points (si1 , t j1 , xi2 , y j2) such that

si1 = i1h1 i1 = 0, 1, . . . ,m1 − 1 h1 = 1

m1
,

t j1 = j1h2 j1 = 0, 1, . . . ,m2 − 1 h2 = 1

m2
,

xi2 = i2h3 i2 = 0, 1, . . . ,m3 − 1 h3 = 1

m3
,

y j2 = j2h4 j2 = 0, 1, . . . ,m4 − 1 h4 = 1

m4
.

Hence, let p = i1m2 + j1 and q = i2m3 + j2, then

K11p,q = k
(
si1 , t j1 , xi2 , y j2

)
,

K12p,q = k
(
si1 , t j1 , xi2 , y j2+1

)
,

K13p,q = k
(
si1 , t j1 , xi2+1, y j2+1

)
,

K14p,q = k
(
si1 , t j1 , xi2+1, y j2+1

)
,

K21p,q = k
(
si1 , t j1+1, xi2 , y j2

)
,

K22p,q = k
(
si1 , t j1+1, xi2 , y j2+1

)
,

K23p,q = k
(
si1 , t j1 , xi2+1, y j2+1

)
,

K24p,q = k
(
si1 , t j1 , xi2+1, y j2+1

)
,

K31p,q = k
(
si1 + 1, t j1 , xi2 , y j2

)
,

K32p,q = k
(
si1+1, t j1 , xi2 , y j2+1

)
,

K33p,q = k
(
si1+1, t j1 , xi2+1, y j2+1

)
,

K34p,q = k
(
si1 , t j1 , xi2+1, y j2+1

)
,

K41p,q = k
(
si1+1, t j1+1, xi2 , y j2

)
,
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K42p,q = k
(
si1+1, t j1+1, xi2+1, y j2+1

)
,

K43p,q = k
(
si1+1, t j1+1, xi2+1, y j2+1

)
,

K44p,q = k
(
si1+1, t j1+1, xi2+1, y j2+1

)
.

More details may be found in [8].

The Operational Matrix of Integration

We now need to compute the double integral of each element of T11(s, t):
∫ t

0

∫ s

0
T 1,1
i, j (τ, ζ )dτdζ =

∫ t

jh2

∫ s

ih1

(
1 − τ − ih1

h1

)(
1 − ζ − jh2

h2

)
dτdζ,

=
(

τ − (τ − ih1)2

2h1

)
|sih1 ·

(
ζ − (ζ − jh2)2

2h2

)
|tjh2

= Q1(s) · Q2(t),

Q1(s) =
(

(s − ih1) − (s − ih1)2

2h1

)
u(s − ih1)

−
(

(s − ih1) − (s − ih1)2

2h1
− h1

2

)
u(s − (i + 1)h1),

Q2(t) =
(

(t − jh2) − (t − jh2)2

2h2

)
u(t − jh2)

−
(

(t − jh2) − (t − jh2)2

2h2
− h2

2

)
u(t − ( j + 1)h2),

in which u denotes the unit step function. Now, by approximating
(
(s−ih1)− (s−ih1)2

2h1
− h1

2

)

and
(
(t − jh2) − (t− jh2)2

2h2
− h2

2

)
in Q1(s) and Q2(t) by

h1
2 T 2

i (s) and h2
2 T 2

j (t), respectively,

we can express the result in terms of T11(s, t), T12(s, t), T21(s, t) and T22(s, t) components:

∫ t

0

∫ s

0
T 11
i, j (τ, ζ )dτdζ = h1

2

h2
2

⎛
⎝ m1−1∑

p=i+1

m2−1∑
q=i+1

T 1,1
p,q (s, t) +

m1−1∑
p=i+1

m2−1∑
q= j

T 1,2
p,q (s, t)

+
m1−1∑
p=i

m2−1∑
q= j+1

T 2,1
p,q (s, t) +

m1−1∑
p=i

m2−1∑
q= j

T 2,2
p,q (s, t)

⎞
⎠ .

Let P11, P12, P13 and P14 be the operational matrix for double integration of T11(s, t) with
respect to 2D-TF vectors. Moreover, suppose that Ps and Pt are the operational matrices for
integration with respect to s and t in the 1D-TF domain, respectively. From Eq. (12).

Ps =
[
Ps1 Ps2

Ps1 Ps2

]
, Pt =

[
Pt1 Pt2

Pt1 Pt2

]
. (34)

Therefore

P11 = Ps1 ⊗ Pt1,

P12 = Ps1 ⊗ Pt2,
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P13 = Ps2 ⊗ Pt1,

P14 = Ps2 ⊗ Pt2,

where ⊗ denotes the Kronecker product defined in Eq. (3).
It is obvious that the double integral of T12(s, t), T21(s, t) and T22(s, t) can be computed

in the same manner. Thus the operational matrix of integration in the 2D-TF domain, P , is
a (4m1m2 × 4m1m2)-matrix as follows:

P =

⎡
⎢⎢⎢⎢⎣

P11 P12 P13 P14

P11 P12 P13 P14

P11 P12 P13 P14

P11 P12 P13 P14

⎤
⎥⎥⎥⎥⎦ (35)

Finally, the double integral of function u(τ, ζ ) can be approximated as∫ t

0

∫ s

0
u(τ, ζ )dτdζ �

∫ t

0

∫ s

0
CT .T (τ, ζ )dτdζ � CT .P.T (s, t), (36)

where C is the 2D-TF coefficient vector of u(τ, ζ ). More details may be found in [8].

Operational Matrix of Differentiation

First, we attempt to compute the operational matrix of differentiation. For this, let

u(s, t) = UT T (s, t),

u(s, 0) = UT
s0T (s, t),

u(0, t) = UT
0t T (s, t),

ut (s, t) = UT
t T (s, t),

us(s, t) = UT
s T (s, t),

ut (s, 0) = UT
ts0T (s, t),

utt (s, t) = UT
tt T (s, t),

us(0, s) = UT
s0t T (s, t),

uss(s, t) = UT
ssT (s, t),

ust (s, t) = UT
st T (s, t). (37)

Now, we can write:

u(s, t) − u(s, 0) =
∫ t

0
ut (s, τ )dτ, (38)

from (37), we obtain

UT T (s, t) −UT
s0T (s, t) =

∫ t

0
UT
t T (s, τ )dτ

= UT
t

∫ t

0
T (s, τ )dτ

= UT
t PT (s, t). (39)

So we get

UT −UT
s0 = UT

t P, (40)
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then

UT
t =

(
UT −UT

s0

)
P−1. (41)

Similarly, we can write:

u(s, t) − u(0, t) =
∫ s

0
us(τ, t)dτ, (42)

then from (37), we have

UT T (s, t) −UT
0t T (s, t) =

∫ s

0
UT
s T (τ, t)dτ,

= UT
s

∫ s

0
T (τ, t)dτ,

= UT
s PT (s, t), (43)

so we get

UT −UT
0t = UT

s P, (44)

hence

UT
s =

(
UT −UT

0t

)
P−1. (45)

Similarly, for the second-order partial differential equations, the following equation can be
written:

ut (s, t) − ut (s, 0) =
∫ t

0
utt (s, τ )dτ, (46)

by using (37), we have

UT
t T (s, t) −UT

ts0T (s, t) =
∫ t

0
UT
tt T (s, τ )dτ,

= UT
tt

∫ t

0
T (s, τ )dτ,

= UT
tt PT (s, t), (47)

so we get

UT
t −UT

ts0 = UT
tt P, (48)

then

UT
tt =

(
UT
t −UT

ts0

)
P−1. (49)

In the similar way, the following equation has been obtained to approximate uss(s, t),

UT
ss =

(
UT
s −UT

s0t

)
P−1. (50)
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And finally, to approximate ust (s, t), the following procedure can be applied:

us(s, t) − us(s, 0) =
∫ t

0
ust (s, τ )dτ, (51)

hence

UT
s T (s, t) −UT

s0t T (s, t) =
∫ t

0
UT
st T (s, τ )dτ,

= UT
st

∫ t

0
T (s, τ )dτ,

= UT
st PT (s, t), (52)

so we get

UT
s −UT

s0t = UT
st P, (53)

then we have

UT
st =

(
UT
s −UT

s0t

)
P−1. (54)

Applying the Method

In this section, we solve nonlinear two-dimensional mixed Volterra–Fredholm integro-
differential equations by using 2D-TFs. As we show before, we can write

u(s, t) = UT T (s, t),

f (s, t) = FT T (s, t),

[u(s, t)]p1 = T T (s, t)Cp1 ,

[u(s, t)]p2 = T T (s, t)Cp2 ,

ut (s, t) = UT
t T (s, t),

us(s, t) = UT
s T (s, t),

utt (s, t) = UT
tt T (s, t),

uss(s, t) = UT
ssT (s, t),

ust (s, t) = UT
st T (s, t),

k1(s, t, x, y) = T T (s, t) · K1 · T (x, y),

k2(s, t, x, y) = T T (s, t) · K2 · T (x, y), (55)

where the m1m2-vectors U, F,Cp1,Cp2,Ut ,Us,Utt ,Uss,Ust and matrix K are the TFs
coefficients of u(s, t), f (s, t), [u(s, t)]p1, [u(s, t)]p2, ut (s, t), us(s, t), utt (s, t), uss(s, t),
ust (s, t) and K (s, t, x, y) respectively. Elements of Cp1 and Cp2 are a column vector whose
elements are pth power of the elements of the vectorU . Now, consideer the following equa-
tion,

uss(s, t) + ust (s, t) + utt (s, t) + u(s, t)

= f (s, t) + λ1

∫ t

0

∫ s

0
k1(s, t, x, y)[u(x, y)]p1dxdy

+ λ2

∫ 1

0

∫ 1

0
k1(s, t, x, y)[u(x, y)]p2dxdy. (56)
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By using the proposed equations, we have∫ t

0

∫ s

0
k1(s, t, x, y)[u(x, y)]p1dxdy =

∫ t

0

∫ s

0
T T (s, t) · K1 · T (x, y) · T T (x, y) · Cp1dxdy

= T T (s, t) · K ·
∫ t

0

∫ s

0
T (x, y) · T T (x, y) · Cp1dxdy

� T T (s, t) · K1 · ˜Cp1

∫ t

0

∫ s

0
T (x, y)dxdy,

� T T (s, t) · K1 · ˜Cp1 · P · T (s, t)

� ̂(
K1 ˜Cp1P

)T · T (s, t)

= T T (s, t) · ̂
(
K1 ˜Cp1P

)
,

where ̂
(K1 ˜Cp1P) is a 4m1m2-vector with components equal to the diagonal of the matrix

(K1 ˜Cp1P). Since ˜Cp1 is a diagonal matrix, we get

̂
(
K1 ˜Cp1P

)
= � · Cp1 (57)

in which � is a (4m1m2 × 4m1m2)-matrix with components

�i, j = (k1)i, j · Pj,i , i, j = 1, 2, . . . , 4m1m2 (58)∫ 1

0

∫ 1

0
k2(s, t, x, y)[u(x, y)]p2dxdy �

∫ 1

0

∫ 1

0
T T (s, t) · K2 · T (x, y) · T T (x, y) · Cp2dxdy

� T T (s, t) · K2 · D · Cp2 (59)

with D defined in Eq. (29).
Substituting Eqs. (55), (57) and (59) in Eq. (56), and replacing � with = leads to

T T (s, t)(Uss +Ust +Utt +U ) = T T (s, t) · F + λ1T
T (s, t) · � · Cp1

+ λ2T
T (s, t) · K2 · D · Cp2,

hence we have

Uss +Ust +Utt +U = F + λ1 · � · Cp1 + λ2 · K2 · D · Gp2 (60)

Eq. (60) is a nonlinear system of 4m1m2 algebraic equations. 4m1m2 components of C
are unknown, and can be obtained by solving this system using Newton’s or other iterative
methods. Hence, an approximate solution

u(s, t) � CT · T (s, t) (61)

can be computed for Eq. (56).

Numerical Results

In this section, three example are given to show the accuracy of the proposed method. For the
all examples, we consider the initial condition from the exact solution. The method presented
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in this paper is used to find numerical solutions of three illustrative examples. Our results are
compared with the exact solutions by calculating the following error function:

e(s, t) =| u(s, t) − ūm1,m2(s, t) |,
whereu(s, t) and ūm1,m2(s, t) are the exact and approximate solutions of the integral equation,
respectively. The values of e(s, t) over the set

Dgrids = {(0.0, 0.0), (0.1, 0.1), (0.2, 0.2) . . . , (0.9, 0.9)}, (62)

are computed for different values of m1 and m2, and collected in Tables 1, 2.

Example 1 For the first example, consider the following equation,

∂2u(s, t)

∂t2
+ u(s, t) −

∫ t

0

∫ s

0
(y + cos(z))u2(y, z)dydz

+
∫ 1

0

∫ 1

0
u3(y, z)dydz = g(s, t), s, t ∈ [0, 1],

where

g(s, t) = 1

18
s4 cos(t) sin(t) − 1

8
s4t − 1

9
s3 sin(t)

+ 1

9
s3 sin(t) cos(t2) + 1

6
− 1

4
cos(1) − 1

12
cos(1)3

with subject to the initial conditions:

u(s, 0) = 0,
∂u

∂t
(s, 0) = s. (63)

The exact solution of this problem is u(s, t) = s sin(t). The numerical solution of this
problem is shown in Table 1.

Example 2 In this example, we consider a two-dimensional mixed Volterra–Fredholm
integro-differential equation as follows:

∂2u(s, t)

∂s2
+ ∂2u(s, t)

∂s∂t
+ u3(s, t) +

∫ 1

0

∫ 1

0

(
st + yz2

)
u(y, z)dydz

+
∫ t

0

∫ s

0
(s + t + y + z)[u(y, z)]2dxdy = g(s, t), s, t ∈ [0, 1],

where

g(s, t) = −1

2
st − 2

3
+ 1

2
est + 1

3
e − 7

24
s4 − 1

6
s3t + 1

12
s3

+ 7

24
s4e2t + 1

3
s3e2t t − 1

12
s3e2t + et + s3e3t .

with subject to the initial conditions:

u(0, t) = 0,
du

ds
(0, t) = et . (64)

The exact solution of this problem is u(s, t) = set . In Table 2, the numerical solutions are
presented.

123



Int. J. Appl. Comput. Math (2016) 2:575–591 589

Table 1 Numerical results for
Example 1

s = t e(s, t) e(s, t) e(s, t)
m1 = m2 = 4 m1 = m2 = 8 m1 = m2 = 32

0 2.2512 × 10−2 5.1215 × 10−3 1.1905 × 10−5

0.1 4.1941 × 10−2 4.2589 × 10−3 2.6508 × 10−5

0.2 3.2154 × 10−2 2.3692 × 10−3 1.2548 × 10−5

0.3 1.2541 × 10−2 6.2314 × 10−3 2.2884 × 10−4

0.4 1.1522 × 10−2 8.2547 × 10−3 1.1524 × 10−4

0.5 3.2589 × 10−2 7.2514 × 10−3 6.8459 × 10−4

0.7 6.2541 × 10−2 5.2542 × 10−3 2.9518 × 10−4

0.8 9.2514 × 10−2 8.2458 × 10−2 9.1215 × 10−4

0.9 7.1254 × 10−2 2.9872 × 10−2 1.2547 × 10−3

Table 2 Numerical results for
Example 2

s = t e(s, t) e(s, t) e(s, t)
m1 = m2 = 4 m1 = m2 = 8 m1 = m2 = 32

0 2.0352 × 10−2 7.1215 × 10−3 5.1963 × 10−5

0.1 1.5322 × 10−2 4.2509 × 10−3 1.6598 × 10−5

0.2 8.4454 × 10−2 1.2145 × 10−3 1.2548 × 10−5

0.3 7.2840 × 10−2 1.2547 × 10−3 2.2524 × 10−4

0.4 5.9522 × 10−2 2.5804 × 10−3 2.2524 × 10−4

0.5 8.7589 × 10−2 3.2154 × 10−3 3.1063 × 10−4

0.6 1.1850 × 10−2 2.2152 × 10−3 3.2562 × 10−4

0.7 2.3698 × 10−2 3.1002 × 10−2 2.5098 × 10−4

0.8 2.5874 × 10−2 7.2425 × 10−2 7.5214 × 10−3

0.9 3.4512 × 10−2 1.9272 × 10−2 5.5215 × 10−3

Example 3 Consider the third example in the form

∂2u(s, t)

∂s2
− ∂u(s, t)

∂t
+ ∂u(s, t)

∂s
+ u(s, t)

−
∫ t

0

∫ s

0
(s cos(y − z))u(y, z)dydz = g(s, t), s, t ∈ [0, 1],

where

g(s, t) = 2 cos(s + t) − s cos(s + t) − 1 + t − 1

8
s3 + s sin s − s sin t

+ st cos t − 1

8
st sin(2s) + 1

4
s2t cos(2s) + 1

8
s3 cos(2t)

− s sin(s − t) − st cos(s − t), s, t ∈ [0, 1]
with the supplementary conditions

u(0, t) = t,
du

ds
(1, t) = sin(1 + t) + cos(1 + t).

∂u

∂s
(s, 0) = s cos(s) + 1 (65)
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Table 3 Numerical results for
Example 3

e(s, t) Tau TFs
s = t m1 = m2 = 10 m1 = m2 = 32

(0.6, 0.8) 0.3902 × 10−6 0.2154 × 10−5

(0.7, 0.8) 0.5530 × 10−3 0.2547 × 10−5

(0.9, 0.9) 0.4275 × 10−3 0.3651 × 10−5

(0.9, 1) 0.1300 × 10−3 0.2154 × 10−4

(1, 0.9) 0.5100 × 10−3 0.3218 × 10−4

(1, 1) 0.1528 × 10−4 0.1063 × 10−4

The exact solution of this problem is u(s, t) = s sin(s + t) + t . In Table 3, the numerical
solutions are presented.

Conclusion

In this paper, we have investigated application of triangular function for solving the nonlin-
ear two-dimensional Volterra–Fredholm integro-differential equations. The benefits of this
method are the lower costs of setting up the system of equations without applying any projec-
tion method such as the Galerkin, collocation, etc, and, the computational cost of operations
is very low. This is an advantage of the method which making it very simple and cheap as
computational point of view. Its accuracy and applicability were checked on some examples.
The numerical results show that the accuracy of the obtained solutions is good. Furthermore,
the current method can be run with increasing m1 and m2 until the results settle down to an
appropriate accuracy.
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