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Abstract This article presents a numerical method for solving nonlinear two-dimensional
Volterra—Fredholm integro-differential equations of the second kind. Here, we use the so-
called two-dimensional triangular function, First, the two-dimensional triangular operational
matrix of integration and differentiation has been presented, then by using this matrices, the
nonlinear two-dimensional Volterra—Fredholm integro-differential equation has been reduced
to an algebraic system. Finally, some numerical examples are given to clarify the efficiency
and accuracy of the presented method.
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Introduction

The two-dimensional integral equations and integro-differential equations have a major role
the fields of science, mechanics, physics, engineering, and even biology [1-4], for example
it is usually required to solve two dimensional integral equations in the calculation of plasma
physics [5], but there are not many simple numerical method with high accuracy for solving
these equation.

The subject of the present paper is to apply the two-dimensional triangular function
for solving of two-dimensional linear and nonlinear Volterra—Fredholm integro-differential
equations. For this proposes we consider the two-dimensional Volterra—Fredholm integro-
differential equations of the form
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with given supplementary initial conditions, a1 (s, t), . . ., a4(s, t) are given continuous func-
tions, where u(s, t) is an unknown function which should be determined, The functions
Gi(s,t,x,y,u)and Go(s, t, x, y, u) are given functions defined on

W={Gt,x,y,u):0<x<s<T,0<y=<t<T}
For convenience, we put

Gi(s,t,x, y,u) = ki(s, ¢, x, lu(s, H17,
Go(s, t,x,y,u) = ka(s, t,x, y)[u(s, t)]Pz,

where p; and p, are positive integers. Moreover f (s, t) is a known function defined on D.
Since any finite interval [a, b] can be transformed to [0, 1] by linear maps, it is supposed that
[0, T}) = [0, T») = [0, 1). Without any loss of generality, also m, n € Z*.

Until to now, triangular functions have been developed for solving various types of differ-
ential and integral equations. For example in [6] Babolian et al. have been approximated
by using TFs for solving of nonlinear Volterra—Fredholm integro-differential equations.
Maleknejad in [7] have applied a triangular functions (TFs) method for solving the nonlinear
Volterra—Fredholm integral equations. Recently, Babolian et al, have applied two dimensional
triangular functions for solving nonlinear Volterra—Fredholm integral equations [8]. Also a
class of two-dimensional nonlinear Volterra integral equations solved by using Legendre
polynomials [9].

On the other hand, there are many numerical methods for solving one-dimensional integral
equations of the second kind, but in two-dimensional cases, few works have been done
[10-13].

In this paper, we use 2D-TFs to approximate solution of the Eq. (1). This paper is orga-
nized as follows: In “The Properties of Triangular Function” section, we introduce TFs and
their properties. In “Applying the Method” section, introduces application of the method.
Some numerical results has been presented in “Numerical Results” section to show accu-
racy and advantage of the proposed method. Finally, some concluding remarks are given in
“Conclusion” section.

The Properties of Triangular Function
In this section, we derive and present some new properties of triangular function that needed in

solving nonlinear two-dimensional Volterra Fredholm integro-differential equation of second
kind.
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One-dimensional Triangular Functions

In a m-set of one-dimensional triangular functions (1D-TFs) over interval [1,0) the ith left
hand and right hand functions are defined as

_ s—ih . .
Til(s): 1 s zh§s§(l+1)h,
0, otherwise,
s—ih . .
20y — | R th=s<(@+Dh,
T () [ 0, otherwise,
wherei =0,....m—1,h = % It is easy to show that

T () + T7 () = i (), 2
where ¢; is the i th block-pulse function defined as

[, ih<s <G+ Dh,
¢l(s)_[0, otherwise.

It is obvious that {7} ()}, and {T}* ()}, are disjoint. So
T1(s) - T17(s) =~ diag(T1(s)) = T 1(s),
T1(s) - T27 (s) =~ Opxcrm,
T2(s) - TlT(S) >~ Omxm,
T2(s) - T2T (s) =~ diag(T2(s)) = T1(s), 3)

where T'1 (s) and fZ(s) are m x m diagonal matrices [14]. Orthogonality of 1D-TFs is shown
in [15], that is,

1
JREAC TR @
0
where §;; denotes the Kronecker delta function and
h
B =qeil,2
Ap,q:{Z p=acth? S
5§ P#a
If we define
T
Ti(s) = [T) ). T (). ... Ty ()]
T
To(s) = [T5(), TP (), o, Ty ()]
and
Ti(s)
T(s)= , (6)
T (s)
then T (s) is called the 1D-TF vector.
1 1 h
/ T1()T1 dr = / 720127 dr = 3 @)
0 0
1 1 h
/ T1()T2"dr = / T2(0)T17dr = & I )
0 0
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Expressing [, T1(t)dt and [ T2(t)d in terms of 1D-TFs follows
N
/ T1(t)dt = P1-T1(s) + P2-T2(s), )
0
N
/ Tl(zt)dt = P1-T1(s) + P2-T2(s), (10)
0

where the matrix P1l,,x, and P2, the operational matrix of integration in the 1D-TF
domain, can be represented as

0 1 1 1
A0 0 1 1
Pl=x|. . .
0 0 0 0
I 1 1 1
nl0 1 1 1
P2 =— .
2 :
0 0 0 1
Hence,
)
/ T(t)dt ~ P -T(s), (11)
0
where matrix P, the operational matrix of integration in the 1D-TF domain, can be represented
as
| PP
P_|:P1 Pz]’ (12)

Now, the integral of function f(7) can be approximated as

S S
/ f(v)dr :/ cl - T(mydr~cT-P-T(s). (13)
0 0
More details of 1D-TFs may be found in [15].

Two-dimensional Triangular Functions
An my x my-set of 2D-TFs on the region ([0, 1) x [0, 1)) is defined by

1_%)(1_%), ihy <s < @i+ Dh
jhy <t < (j+ Dha, (14
otherwise,

1,1 !

T (s, 1) =

S (S22), by = s < G+ Dhy
1

)

(
i
(

1,2
LjG60= jha <t < (j + Dha, (15)

otherwise,

’

s_,lilh ) (1 - 7t7h€h2), ih <s < @i+ Dh
jha <t < (j+ Dha, (16)
, otherwise,

2,1
T (s, 1) =
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(%1) (%) ihy <s < (i + Dh

2,2
Ty (s 1) = jha <1< (j+ Dha, an
0, otherwise,
wherei =0,1,2,...,m; —1,j =0,1,2,...,my — land hy = -, ha = 5, my and m,

are arbitrary positive integers. It is clear that
1,1 ol 1
HOBESAOR 0}
1,2 ol 2
17 6.0 = Ts) - TH0),
2,1 ) 1
77 65,0 = T2) - T} ),
2,2 ) 2
TV (s.1) = T2(s) - T,
Furthermore,
T s, 0 + T2 0 + T3 5,0 + T (5, 0) = i j (s, 1),

where ¢; (s, t) is the (i,j)th block-pulse function defined on iy < s < (i + 1)k and
Jho <t < (j+ Dhyas

1 ih) <s <+ Dh
@i j(s, 1) = Jjha <t < (j+ Dha, (18)
0 otherwise.

Similar to the 1D case, there are some properties for 2D-TFs, the most important properties
are disjointness and orthogonality.
Each set of {Tii.l(s, 1}, {Ti}.z(s, 1}, {le(s, t)} and {Tl?z(s, t)} are obviously:

1. Disjointness The two-dimensional triangular functions are disjoint with each other,
ie. P41
5060, pr=pLqg=q
P11 P22 ~ . C .
T G - T 7 (s, 1), = i =i, j1 = 2, 19)
0, otherwise,

for p;i,qi € {1,2},i1,ip=0,1,2,...,m; —1,and ji, jp=0,1,2,...,my — 1.
2. Orthogonality The 2D-TFs are orthogonal with each other, i.e.

1 1
/0 /o Tlf)ljlq1 (s, 1) - Tl§212q2 (s, Ddsdt = Ap, pySiyiy - Dgrg2dii.jo (20)

where § denotes the Kronecker delta function, and

h
fa=peil2)
Agp = [ ; 1)
% o 7+— ﬂ
On the other hand if
TN 1,1 1,1 T
Tii(s, 1) = [To’o (s, 1), TO,I (s,1)..., Tmlfl’mzfl(S, nl-,
1,2 1,2 1,2
Tia(s, 1) = [Ty (s, ), Typ (s, 0) o Ty (s, 07,
2,1 2,1 2,
Toi(s. 1) = [Ty (5.0, Ty (s.0) .. Ty (5.0
To(s. 1) = [Tyo (s, 0. Ty (s 0) . T2y (5.0

@ Springer



580 Int. J. Appl. Comput. Math (2016) 2:575-591

then T (s, t), the 2D-TFs vector, can be defined as

Tii(s, 1)
Ti2(s, 1)
Ty (s, t)
(s, 1)

T(s,t) = (22)

4m1m2><1

Itis possible to cancel the (s, t) termin T'(s, t), T11(s, t), T12(s, t), T21(s, t) and Tha (s, 1),
for convenience. From the above representation, it follows that

;' oo - 0
T
Lo 0 o
T - T =~ . . =diag(Ty,1),
o o ... Th!

mi—1,my—1
Ty -Th =0
11 - L12 = Ymimayxmimys
T ~
Tll . T2] — Omlmzxmlmzs

Tll . ng o Omlmzxmlmz-
These relations are also satisfied for T2 (s, ), T51 (s, t) and T3 (s, t), similarly. Hence

diag(T],l) Omlmzxmlmz Omlmzxmlmz Omlmzxmlmz
.77 ~ Om]mzxmlmz diag(Ty2) Omlmzxmlmz 0m1m2Xm1m2 (23)
Omlmzxmlmz Omlmzxmlmz diag(TZl) 0m1m2><m1m2
omlmzxmlmz Omlmzxmlmz Omlmzxmlmz diag(Tz,z)
or B
T(s,1)-TT (s, t) ~diag(T(s, 1)) = T (s, t). (24)

Also, ~
TG, t)-TT(s,t)- X~ X-T(s,1), (25)

where X is a 4mma-vector and X = diag(X).
The disjoint property of 771 (s, t) also implies that for every (m1my X mym>)-matrix B,

Tl (s, 1) - B-Tii(s, 1) = B - T11(s, 1), (26)

where B is an mmp-vector with elements equal to the diagonal entries of matrix B. Eq. (26)
is also satisfied for T12(s, 1), T21(s, t) and T2 (s, t), similarly.
Thus for every (4mimy x 4mmy)-matrix A

TT(s,0)-A-T(s,) ~A-T(s,1), (27)

in which A is a 4mmy-vector with elements equal to the diagonal entries of matrix A.
Finally, by the orthogonality of 771 (s, 1),
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hy

1 1
/ / T (s, O T11 (s, dtds =~ — Ly, xm;, ®
0o Jo 3

2

7Im2><m2»

2

7Im2><m2»

1 1 h
/ / T (s, ) Tia (s, t)dtds ~ ?lln,,xm, ®
0 JO

2

h
3
h
6
vt h hy
//Tll(s,t)Tzl(s,t)dtds_ 6Im]><m1®?1mzxmz»
0 JO
h
6

7Im2><m2»

1 ,l n
/ / T1€(S,t)T22(S,t)dtds =~ gllm]xm] ®
0 Jo

where ® denotes the Kronecker product defined for two arbitrary matrices P and Q as
P®Q=(P;0).

The same equations are implied for 712 (s, t), 721 (s, t) and T22 (s, t), by similar computations.
Hence, we can carry out double integration of T (s, 1) :

1 1
/ / T (s, )T (s, t)dtds ~ D (28)
0 0

in which D is the following (4m1m2 x 4m1m?2)-matrix:
Mne%n 4nefkn Wnekn Ynelkn
b 2’7111 ® ?Iz ;g—'h ® 27212 ?11 ® ?12 Zg'h ® ’?12 )
The3h FheZh FheFhL FLETZDh
%‘h@%lz %'h@%”z h%h@%lz %'h@%”z

where we put I1 = Iy, xm, and Io = Iy, xm, , for convenience.

2D-TFs Expansion

A function u(s, t) defined over ([0, 1) x [0, 1)) may be extended using 2D-TFs as

mi—1mpy—1 mi—1my—1 mi—1my—1 mi—1mpy—1
1,1 1,2 2,1
CEEDIDIT LI EOIDIT T EDIDW iy
i=0 i=0 i=0 i=0
=c! 'T11(S,t)+C2T : le(s,r>+c§-T21(s,r>+cZ~T22<s,t)
=cT . T(),

where C is a 4mmg-vector given by
T
c= [C{ crclcr ] : (30)

and 7 (s, t) is defined in Eq. (22).
The coefficients in vectors C1, C2, C3, and C4 can be computed by sampling the function
u(s, t) at grid points s; and ¢; such thats; = ihy andt; = jho, for various i and j. Therefore,
Ci = cij = u(si, tj),
Cox = di j = u(si, tj+1),
Cai = e;j = u(siy1,t)),
Cai = lij = u(sit1,tj41),
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inwhichk =imy+ jandi =0,1,...,m;—1,j=0,1,...,my — 1, the 4mm,-vector C
is called the 2D-TF coefficient vector. Also, the positive integer powers of a function u(s, t)
may be approximated using 2D-TFs as

[u(s, )P ~CJ - T(s.1), 31)

where C, is a column vector whose elements are pth powers of the elements of the vector C.
Letk(s, t, x, y) be a function of four variables on ([0, 1) x [0, 1) x [0, 1) x [0, 1)). It can
be approximated with respect to 2D-TFs as follows:

k(s,t,x,y) ~TT(s,t)- K -T(x,y), (32)

where T (s, t) and T (x, y) are 2D-TFs vectors of dimension 4m m> and 4m3my, respectively,
and K is a (4mmy) x (4m3my) 2D-TF coefficients matrix. This matrix can be represented
as

K1 Ki2 Kiz Kig
Ky K K3 Ky
K31 K3 K33 Kz |’
K4y Kgo Ka3 Ky

(33)

where each block of K is an (m1my x m3m4)-matrix that can be computed by sampling the
function k(s, ¢, x, y) at grid points (s;, ¢j,, Xi,, yj,) such that

1
Siy =ithy 1=0,1,....,m —1 h = —,
m

1

. ‘ 1
ty=jiha j1=0,1,....my—1 hy=—,

m

2

1

Xiy =i2h3 i =0,1,...,m3—1 hz=—,
m3

. . 1
Vo = joha jp=0,1,....m4—1 hy=—.
mq

Hence, let p = iymy + j; and ¢ = iom3 + j», then

Kii,, =k (siy tj, Xy, o)
K12pq = Sll’tjlvxiz’)’/z—&-l)v
Siys Ljys Xig+15 Yj2+1),
Siys Ljps Xig+1s }’j2+1) )
Sigs Lji+1s Xips yjz) ,

Szlalj1+1,xi27yj‘2+1)7

Siys Ljys Xig+1, yj2+1) ’
sip + 1,15, xiy, )’jz) >
Siv+1s Ly s Xigs Yipt1)
Sig+1s Ljis Xip+1, y./2+1) >

Sits tjl s Xig+1, yj2+1) s

k(
(
(s
(
(
(511 s Ljis Xig+1s yj2+1) )
(
(
(
(
(
(

=k
—k
=k
=k
—k
K24p , =k
=k
—k
=k
=k
—k

Sii+1, tj1+laxi21 yjz) s
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Ky, , =k (Siy410 i 415 Xig+ 1o Yjot1) »
Ka3,, =k (Si41. 1j 1. Xig 4 1. Yjotr1) »

Kad,, =k (Sii41: 1412 Xipr 12 Yjor1) -

More details may be found in [8].

The Operational Matrix of Integration

We now need to compute the double integral of each element of 71(s, 7):

t K _ — 7
/ / T (x. £)dveds —/ / (1 _Z ’h‘) (1 _¢ ]hz)drd;“,
0oJo °© s Jim ha

_ (T —ih)?\ s (DR
=\t T ) i C—T ha

= Q1(s) - Q2(1),

—ih)?
01(s) = ((s —ihy) - %) u(s — ihy)
—ihD?  h
- ((s —ihy) — % Zl)u(s — (i + Dhy),
— ihy)2
0,(t) = ((r — jhy) — %) u(t — jh)
t—jh h
—((t—jhz)—% 22) u(t — (j + Dhy),

. . . . o . —ihp)?
in which u denotes the unit step function. Now, by approximating ((S —ih)— % - hil)

and (0 = jha) = “SEE — 12 Y in Q1(5) and Q2(1) by B TA(s) and ‘2 T2(0), respectively,

we can express the result in terms of 711 (s, 1), T12(s, 1), T1 (s, t) and T2z (s, ) components:

/I/ e odede =12 (5 6+ S a0
T, tdf = —— s, t s, t
0 ‘ = 22 p=i+1g=i+1 p=i+l g=j
mi—1 mpy—1 mi—1moy—1
+ 0 D> TR+ DL > TR 1)
p=i g=j+I1 p=i q=j

Let P11, P12, P13 and Py4 be the operational matrix for double integration of 771 (s, t) with
respect to 2D-TF vectors. Moreover, suppose that Ps and Pt are the operational matrices for
integration with respect to s and ¢ in the 1D-TF domain, respectively. From Eq. (12).

Ps1 Py P Py
p=| " =" (34)
Psl PsZ Ptl PZZ

Py = Pg1 ® Py,
Py = Ps1 ® P,

Therefore
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Pi3 = P ® Py,
Py = Py ® Py,

where ® denotes the Kronecker product defined in Eq. (3).
It is obvious that the double integral of T2 (s, 1), T21(s, t) and T2 (s, t) can be computed
in the same manner. Thus the operational matrix of integration in the 2D-TF domain, P, is

a (dmmo x 4mmo)-matrix as follows:
Py P Pi3 Py
Py P P13 Py
P = (35)
Py P P13 Pu
Py P Pi3 Py

Finally, the double integral of function u(z, {) can be approximated as

t s ! s
/ / u(t, )drde ~ / / CT.T(x,0)dtrdc ~CT.P.T(s, 1), (36)
0 Jo 0 Jo
where C is the 2D-TF coefficient vector of u(z, ¢). More details may be found in [8].
Operational Matrix of Differentiation

First, we attempt to compute the operational matrix of differentiation. For this, let

u(s, 1) =UTT(s, 1),

u(s,0) = ULT (s, 1),

u(0,1) = ULT(s, 1),

ui(s, 1) = U T (s, 1),

us(s, 1) = UI'T (s, 1),

ui(s,0) = UL T (s, 1),

un (s, 1) = UL T (s, 1),

ug(0,5) = UL, T(s, 1),

ugs(s, 1) = ULT (s, 1),

us (s, 1) = UL T (s,1). (37)

Now, we can write:
t
u(s,t) —u(s,0) = / us(s, tydr, (38)
0
from (37), we obtain
t
UlT(s,t) —ULT(s,1) = / Ul't s, v)de
0
t
= U,T/ T(s,t)dT
0

=UIPT(s,1). (39

So we get
vl —ul=ulp, (40)

N
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then
vl = (vT - uh) P
Similarly, we can write:
N
u(s,t) —u(0,1) :/ us(z, t)dr,
0
then from (37), we have
S
UlT(s,0) —ULT (s, 1) = / Ur'r(z, rydr,
0
N
= Uf/ T(z, t)dr,
0
=Ul'PT (s, 1),
so we get
vl —ul =ulp,
hence

vl = (uT - uf) P

(41)

(42)

(43)

(44)

(45)

Similarly, for the second-order partial differential equations, the following equation can be

written:
t
ur(s, t) — u(s,0) =/ uy (s, r)dr,
0

by using (37), we have
t
UI'T(s,t) — UL T (s, 1) = / ULT (s, )dr,
0

=ul /Ot T(s, 7)dr,
=UlPT(s,1),
SO we get
UtT - Uz€0 = U,{P )
then

T T T -1
Uy = (Ur - Uzso) P

(46)

(47)

(48)

(49)

In the similar way, the following equation has been obtained to approximate u; (s, ),

Us'{' = (UAT - U?(;t) Pil'

(50)
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And finally, to approximate u, (s, t), the following procedure can be applied:

t
ug(s, r) —us(s, 0) :/ us (s, t)dr, (51)
0
hence
t
Ur'rs, o) — Uk, T(s, 1) =/ Ul'r (s, vydr,
0
I3
= UST,/ T (s, r)dr,
0
=UlPT(s,1), (52)
so we get
UST - Ug(;t = U_\'YI‘P’ (53)
then we have
vl = (vl -uk,) P (54)

Applying the Method

In this section, we solve nonlinear two-dimensional mixed Volterra—Fredholm integro-
differential equations by using 2D-TFs. As we show before, we can write
u(s, 1) =UTT(s, 1),
[0 =F'T@s,0),
[u(s, D" =TT (s,)Cp,,
lu(s, D17 = T (s,)Cp,,
u(s, 1) = Ul T (s, 1),
ug(s, 1) = UI'T (s, 1),
un(s, 1) = UL T (s, 1),
ugs(s, 1) = ULT (s, 1),
g (s, 1) = UL T (s, 1),
ki(s,t,x,) =T (s, 0) - K1 - T(x,y),
ka(s,t,x,y) =TT (s,1)- K2 - T(x,y), (55)
where the mma-vectors U, F, Cp1, Cp2, Us, Uy, Uy, Uy, Uy and matrix K are the TFs
coefficients of u(s, 1), (s, 1), [u(s, )IPL, [u(s, )12, ur(s, 1), us(s, 1), ur (s, 1), ugs (s, 1),
ug (s, t) and K (s, t, x, y) respectively. Elements of Cj, and C > are a column vector whose

elements are pth power of the elements of the vector U. Now, consideer the following equa-
tion,

Ugs (S, 1) + ug (s, 1) + 1y (s, t) +uls, t)

t s
= f(s, t)+k1/ / ki(s,t, x, y)u(x, y)1P'dxdy
0 Jo

1l
+A2/ / ki(s,t, x, y)[u(x, y)1P?dxdy. (56)
0 JO
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By using the proposed equations, we have

t N t N
//kl(s,t,x,y)[u(x,y)]pldxdy:// T (s, 1) - Ky -T(x,y)-TT(x,y) - Cp dxdy
0 JOo 0 JOo
t s
=TT(s,r)~1<-// TG, y) - T7(x, ) - Cprdxdy
0 JO

t s
~TT(s, 1) - K, -C,,l/ / T(x, y)dxdy,
0 Jo

~ T (s,t)- K1 -Cp1 - P-T(s,1)

—

~ T
~ (KiCouP) - T(s,1)

=17(s.1) (Kl/CZP),

—

where (K C;,l P) is a 4mmy-vector with components equal to the diagonal of the matrix
(K C;,l P). Since Cp; is a diagonal matrix, we get

(KiCpP) =11y (57)

in which IT is a (4m1my x 4mmj)-matrix with components
;= kyij- Pji, i,j=1,2,...,4mmy (58)

1 1 1 1
// kz(s,r,x,y>[u<x,y)1mdxdy:// TT(s.1)- Kz - T(x.y) - T7 (x.y) - Cpadicdy

0 Jo 0 JO
~TT(s,1)-Ka-D-Cpp (59)

with D defined in Eq. (29).
Substituting Egs. (55), (57) and (59) in Eq. (56), and replacing ~ with = leads to

T (s, 0)Uss + Ugt + Uy +U) = T (s,8) - F+ M T (s,1) - T1- Cpy
+ 22T (s,1) - Ko - D - Cpa,

hence we have
Ugs + Uy + Uy + U =F + 7 - I1-Cp1 +22- K2 - D - G2 (60)

Eq. (60) is a nonlinear system of 4mm, algebraic equations. 4mm, components of C
are unknown, and can be obtained by solving this system using Newton’s or other iterative
methods. Hence, an approximate solution

u(s, ) ~Cl T, 0 (61)

can be computed for Eq. (56).

Numerical Results

In this section, three example are given to show the accuracy of the proposed method. For the
all examples, we consider the initial condition from the exact solution. The method presented
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in this paper is used to find numerical solutions of three illustrative examples. Our results are
compared with the exact solutions by calculating the following error function:

@(S, [) :| M(S, [) - Izml,mz(s’ t) |7

where u(s, t) and it m, (s, t) are the exact and approximate solutions of the integral equation,
respectively. The values of e(s, t) over the set

Dgrigs = {(0.0,0.0), (0.1,0.1), (0.2,0.2)...,(0.9,0.9)}, (62)

are computed for different values of m and m», and collected in Tables 1, 2.

Example 1 For the first example, consider the following equation,

3%u(s, 1) Lo 5
— 5 tuls. ) —/ / (¥ +cos(z))u(y, 2)dydz
at 0 Jo

1 1
+/ / w(y, 2)dydz = g(s, 1), s,t€[0,1],
0 0
where

Loy : Ly [
g(s,t) = —s~ cos(¢) sin(t) — gs r— §s sin(t)

18
T 15 in() cos®) + £ — £ cos(l) — = cos(1)’
—s° sin(t) cos — — —cos(l) — —cos
9 6 4 12
with subject to the initial conditions:
d
u(s, 0) = 0, a—‘:(s,O) —s. 63)
The exact solution of this problem is u(s,#) = ssin(z). The numerical solution of this

problem is shown in Table 1.

Example 2 In this example, we consider a two-dimensional mixed Volterra—Fredholm
integro-differential equation as follows:

2u(s, 1) %u(s, 1)
9s2 dsot

t S
+//(s+z+y+z)[u<y,z>]2dxdy=g(s,z>, s e, 1],
0 0

1l
+u3@s, ) +/ / (st + yzz) u(y, z)dydz
o Jo

where
= —ssi—2qteqp e T Loy 1o
R T R S Ve U TN
7 1 1
+ﬁs4e2’+§s3e2tt—Es3e2’+e’+s3e3’.
with subject to the initial conditions:
d
u(0,1) =0, d—Z(O,t):e’. (64)

The exact solution of this problem is u(s, t) = se’. In Table 2, the numerical solutions are
presented.
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gi::;plle ll\Iumerical results for [ e(s. 1) e(s. 1) e(s. 1)

m|p=mpy =4 mp =mpy =38 myp =my =32

0 22512 x 1072 5.1215 x 1073 1.1905 x 1075

0.1 4.1941 x 1072 42589 x 1073 2.6508 x 107

0.2 3.2154 x 1072 23692 x 1073 1.2548 x 1075

0.3 1.2541 x 1072 6.2314 x 1073 2.2884 x 10~*

0.4 1.1522 x 1072 8.2547 x 1073 1.1524 x 10~4

0.5 3.2589 x 1072 7.2514 x 1073 6.8459 x 10~4

0.7 6.2541 x 1072 5.2542 x 1073 2.9518 x 10~4

0.8 9.2514 x 1072 8.2458 x 1072 9.1215 x 1074

0.9 7.1254 x 1072 2.9872 x 1072 1.2547 x 1073
I’{:‘:::EPZIG 2Numerical results for —; e(s, 1) e(s, 1) e(s, 1)

my=mp =4 my=mp =28 my =my =32

0 2.0352 x 1072 7.1215 x 1073 5.1963 x 1079

0.1 1.5322 x 1072 4.2509 x 1073 1.6598 x 1073

0.2 8.4454 x 1072 1.2145 x 1073 1.2548 x 107

0.3 7.2840 x 1072 1.2547 x 1073 2.2524 x 1074

0.4 5.9522 x 1072 2.5804 x 1073 2.2524 x 1074

0.5 8.7589 x 1072 3.2154 x 1073 3.1063 x 10~4

0.6 1.1850 x 1072 22152 x 1073 3.2562 x 1074

0.7 2.3698 x 1072 3.1002 x 1072 2.5098 x 10~4

0.8 2.5874 x 1072 7.2425 x 1072 7.5214 x 1073

0.9 3.4512 x 1072 1.9272 x 1072 5.5215 x 1073

Example 3 Consider the third example in the form

9%u(s,t du(s,t
u(s.0) duls.0)

ou(s, 1)

952 ot

t s
—/ / (scos(y —2)u(y, 2)dydz = g(s, 1), s,t€[0,1],
0 JO

where

a

+u(s, 1)
)

1
g(s,t) =2cos(s+1t) —scos(s +1) — 1+t — §s3+ssins —ssint

1 1 1
+ stcost — gst sin(2s) + Zszt cos(2s) + §s3 cos(2t)

—ssin(s —t) —stcos(s —t), s,te€]0,1]

with the supplementary conditions

u,1) =t, Z—M(l, t) = sin(l 4+ t) 4+ cos(1 + 1). g—u(s, 0) =scos(s) + 1 (65)
s s
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Table 3 Numerical results for

Example 3 f(i ;) ;alu —my =10 ;FIS: my =32
(0.6,0.8) 0.3902 x 1076 0.2154 x 1075
(0.7,0.8) 0.5530 x 1073 0.2547 x 107
(0.9,0.9) 0.4275 x 1073 0.3651 x 1075
0.9, 1) 0.1300 x 1073 0.2154 x 10~*
(1,0.9) 0.5100 x 1073 0.3218 x 1074
) 0.1528 x 10~4 0.1063 x 10~4

The exact solution of this problem is u(s, ) = ssin(s + t) + t. In Table 3, the numerical
solutions are presented.

Conclusion

In this paper, we have investigated application of triangular function for solving the nonlin-
ear two-dimensional Volterra—Fredholm integro-differential equations. The benefits of this
method are the lower costs of setting up the system of equations without applying any projec-
tion method such as the Galerkin, collocation, etc, and, the computational cost of operations
is very low. This is an advantage of the method which making it very simple and cheap as
computational point of view. Its accuracy and applicability were checked on some examples.
The numerical results show that the accuracy of the obtained solutions is good. Furthermore,
the current method can be run with increasing m| and m» until the results settle down to an
appropriate accuracy.
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