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1 Introduction

The purpose of this paper is to review some recently developed numerical methods for the

solution of nonlinear equations of mixed type. These methods have been used to calculate

transonic flows with shock waves, and the discussion will be restricted to this topic, although

some of the ideas could presumably be useful in other applications. Some typical transonic

flow patterns are sketched in Figure 1. The type changes from elliptic in the region of subsonic

flow to hyperbolic in the region of supersonic flow. If the flow is subsonic at infinity, the

supersonic flow is confined to one or more bubbles standing above the profile. If the flow is

supersonic at infinity, there is a subsonic pocket behind a detached bow wave, and oblique

shock waves appear at the trailing edge, sometimes forming a fishtail pattern. Any proposed

method should therefore be capable of handling a variety of complex flow patterns.

Three main elements can be recognized in the treatment of such a problem.

(1) The formulation of suitable mathematical model, such as a differential equation or

variational principle.

(2) The construction of a discrete approximation to the continuous problem.

(3) The solution of the resulting set of nonlinear equations for the undetermined parame-

ters (typically nodal values of the discrete model).

The first question will not be discussed at length in this paper. The emphasis will be on the

numerical methods for solving the two equations which have chiefly been used in transonic

flow calculations, the transonic potential flow equation and the transonic small disturbance

equation.

The potential flow equation can be derived from the Euler equations for inviscid

compressible flow by introducing the assumption that the flow is irrotational, so that we can

define a potential φ. Then we find that in smooth regions of two dimensional flow φ satisfies

the quasilinear equation

(a2 − u2)φxx + 2uvφxy + (a2 − v2)φyy = 0 (1.1)

where u and v are the velocity components

u = φx, v = φy (1.2)

and a is the local speed of sound. Given the ratio of specific heats γ and the stagnation
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speed of sound a0, a can be determined from the energy relation

a2 = a2
0 −

γ − 1

2
q2 (1.3)

where q is the speed
√

u2 + v2. Equation (1.1) is hyperbolic when the local Mach number

M = q/a > 1. On the profile the solution should satisfy the Neumann boundary condition

∂φ

∂n
= 0 (1.4)

where n is the normal direction. At infinity the flow approaches a uniform stream with a

Mach number M
∞

. The density ρ and pressure p can be determined by the relations

ργ−1 = M2
∞

a2 (1.5)

and

p =
ργ

γM2
∞

. (1.6)

Multiplied by ρ/a2, equation (1.1) is equivalent to the equation for conservation of mass

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0. (1.7)

Multiplied by ρu/a2, on the other hand, it is equivalent to the equation for conservation of

the x component of momentum

∂

∂x
(p + ρu2) +

∂

∂y
(ρuv) = 0. (1.8)

For a flow in a finite region Ω the conservation law (1.7) can be derived from the Bateman

variational principle that

I = −
∫∫

Ω

p dx dy

is stationary [1].

Smooth transonic flows are known to exist only in special cases [2]. In general shock

waves appear. Thus we must admit weak solutions with suitable discontinuities. Since an

irrotational flow is isentropic it is consistent to replace shock waves by jumps across which

entropy is conserved. In this case it is not possible to conserve both mass and momentum.

A fairly good approximation to shock waves of moderate strength is obtained by requiring

the mass to be conserved. The corresponding momentum deficiency then yields an approxi-
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mation to the wave drag [3]. Thus we seek a solution in which φ is continuous, and φx and

φy are piecewise continuous, satisfying the conservation law (1.7) and the jump condition

[ρφy] −
dy

dx
[ρφx] = 0 (1.9)

where [ ] denotes the jump condition, and dy/dx is the slope of the discontinuity.

If we construct a difference approximation in conservation form to the conservation

law (1.7), then we can expect the jump condition (1.9) to be satisfied in the limit as the

mesh width approaches zero [4]. Since the quasilinear form (1.1) does not distinguish between

the conservation laws (1.7) and (1.8), difference approximations to (1.1) will not necessarily

converge to a solution which satisfies the jump condition (1.9) unless a shock fitting procedure

is used.

A useful simplification is provided by the small disturbance theory. Suppose that the

profile is given in the form y = τf(x) and τ is small. If we expand the solution in powers of

τ under the assumption that 1−M2
∞

∼ τ 2/3, and retain only the leading term, we obtain the

transonic small disturbance equation [5]. Let K be the similarity constant (1 − M2
∞

)/τ2/3.

Then a typical form is

A φxx + φyy = 0 (1.10)

where

A = K − (γ + 1)φx (1.11)

In this equation the y coordinate has been scaled by the factor τ 1/3, and φ is the disturbance

potential, scaled by the factor τ−2/3. The Neumann boundary condition is now transferred

to the axis.

φy =
df

dx
at y = 0. (1.12)

If the small disturbance equation is written in the conservation form

∂

∂x

(

Kφx −
γ + 1

2
φ2

x

)

+ φyy = 0 (1.13)

then the corresponding jump condition

[φy] −
dy

dx

[

φx −
γ + 1

2
φ2

x

]

= 0 (1.14)

yields a consistent approximation to shock waves [5].
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2 Formulation of Finite Difference Methods

The methods proposed in this paper use finite difference approximations to the differential

equation. Their formulation is based on an idea introduced by Murman and Cole [6]. That

is to use central difference formulas in the subsonic zone, where the governing equation

is elliptic, and upwind differemce formulas in the supersonic zone, where it is hyperbolic.

Thus the numerical scheme has a directional bias. This corresponds to the upwind region

of dependence of the flow in the supersonic zone, and also serves the purpose of enforcing

the entropy condition that discontinuous expansions must be excluded. If we consider the

transonic flow past a profile with fore and aft symmetry such as an ellipse, the desired solution

of the potential equation is not symmetric. Instead it exhibits a smooth acceleration over

the front half of the profile followed a discontinuous recompression through a shock wave.

In the absence of a directional bias in the numerical scheme the fore and aft symmetry

would be preserved in any solution which could be obtained, resulting in the appearance of

improper discontinuities. It is not so easy to introduce the desired bias in a finite element

formulation when there is no particular coordinate direction that can be treated separately

as the time-like direction. Thus the construction of a unified finite element method for the

subsonic and supersonic zones appears difficult.

The dominant term in the discretization error introduced by the upwind differencing

acts like an artificial viscosity. We can turn this idea around. Instead of using a switch

in the difference scheme to introduce a viscosity, we can explicitly add a viscosity which

produces an upwind bias in the difference scheme at supersonic points. This simplifies

the construction of difference schemes in conservation form. Suppose that we have a central

difference approximation in conservation form. Then the conservation form will be preserved

as long as the added viscosity has a divergence form. The effect of the viscosity is simply to

alter the conserved quantities by terms proportional to the mesh width ∆x, which vanish in

the limit as ∆x approaches zero. By including a switching function in the viscosity to make

it vanish in the subsonic zone we continue to obtain the sharp representation of shock waves

which results from switching the difference scheme.

The finite difference approximation produces a set of nonlinear difference equations.

There remains the problem of finding a convergent iterative scheme for solving these equa-

tions. Suppose that in the (n+1)st cycle the residual Rij at the point i∆x, j∆y is evaluated

by inserting the result φ
(n)
ij of the nth cycle in the difference approximation. Then the cor-

rection Cij = φ
(n+1)
ij − φ

(n)
ij is to be calculated by solving an equation of the form

NC + σR = 0 (2.1)
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where N is a discrete linear operator, and σ is a scaling function. In a relaxation method

N is restricted to a lower triangular or block triangular form so that the elements of C can

be determined sequentially. In the analysis of such a scheme it is helpful to introduce a

time dependent analogy. The vector R is an approximation to Lφ, where L is the operator

appearing in the differential equation. If we consider C as representing ∆t φt, where t is an

artificial time coordinate, and N is an approximation to a differential operator (1/∆x)F ,

then equation (2.1) is an approximation to

Fφt + σ
∆x

∆t
Lφ = 0 (2.2)

Thus we should choose N so that this is a convergent time dependent process.

With this approach the formulation of a relaxation method for solving an equation of

mixed type is reduced to three main steps:

(1) Construct a central difference approximation to the differential equation.

(2) Add a numerical viscosity to produce the desired directional bias in the hyperbolic

region.

(3) Add time dependent terms to embed the steady state equation in a convergent time

dependent process.

Methods constructed along these lines have proved extremely reliable. Their main short-

coming is a rather slow rate of convergence.

In order to speed up the convergence we can extend the permissible class of operators

N . In particular, if N is taken as the Laplacian, we can solve the resulting discrete Poisson

equation by a fast direct method at each iteration. This method converges rapidly in subsonic

flow but diverges for transonic flows. However, if we use several relaxation steps after each

Poisson step, the two methods in combination give fast convergence.

3 The Relaxation Method for the Small Disturbance

Equation

The treatment of the small disturbance equation is simplified by the fact that the character-

istics are locally symmetric about the x direction. Thus the desired directional bias can be

introduced simply by switching to upwind differencing in the x direction at all supersonic
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points. To preserve the conservation form some care must be exercised in the method of

switching. Let pij be a central difference approximation to the x derivatives at the point

i∆x, j∆y:

pij = K
(φi+1,j − φij) − (φij − φi−1,j)

∆x2
− (γ + 1)

(φi+1,j − φij)
2 − (φij − φi−1,j)

2

2∆x3

= Aij
φi+1,j − 2φij + φi−1,j

∆x2
(3.1)

where

Aij = K − (γ + 1)
φi+1,j − φi−1,j

2∆x
(3.2)

Also let qij be a central difference approximation to φyy

qij =
φi,j+1 − 2φij + φi,j−1

∆y2
. (3.3)

Define a switching function µ with the value unity at supersonic points and zero at subsonic

points

µij =







0 if Aij > 0

1 if Aij < 0
. (3.4)

Then we approximate equation (1.13) by

pij + qij − µij pij + µi−1,j pi−1,j = 0. (3.5)

This is equivalent to Murman’s conservative scheme [7]. In the supersonic zone pij is replaced

by the upwind formula pi−1,j . At points where the flow enters and leaves the supersonic zone

µij and µi−1,j have different values, giving special parabolic and shock point operators.

The added term −µij pij + µi−1,j pi−1,j are an approximation to ∂P/∂x where

P = µ ∆x
∂

∂x

(

Kφx −
γ + 1

2
φ2

x

)

.

This may be regarded as an artificial viscosity of order ∆x. The use of a divergence form

for the viscosity preserves the conservation form of the difference scheme, and it can be

shown that the difference approximation converges to a solution satisfying the correct jump

condition [7].

The nonlinear difference equations (3.1)−(3.5) may be solved by a generalization of

the line relaxation method for elliptic equations. At each point we calculate the coefficient

Aij and the residual Rij by substituting the result φ
(n)
ij of the previous cycle in the difference
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equations. Then we set φ
(n+1)
ij = φ

(n)
ij +Cij where the correction Cij is determined by solving

the linear equations

Ci,j+1 − 2Cij + Ci,j−1

∆y2
+ (1 − µij) Aij

− 2
ω

Cij + Ci−1,j

∆x2

+ µi−1,j Ai−1,j
Cij − 2Ci−1,j + Ci−2,j

∆x2
+ Rij = 0 (3.6)

on each sucessive vertical line. In these equations ω is the over-relaxation factor for subsonic

points with a value in the range 1 ≤ ω ≤ 2. In a typical line relaxation scheme for an elliptic

equation, provisional values φ̃ij are determined on the line x = i∆x by solving the difference

equations with the latest available values φ
(n+1)
i−1,j and φ

(n)
i+1,j inserted at points on the adjacent

lines. Then new values φ
(n+1)
ij are determined by the formula φ

(n+1)
ij = φ

(n)
ij + ω(φ̃ij − φ

(n)
ij ).

Equation (3.6) is derived by modifying this process. New values φ
(n+1)
ij are used instead of

provisional values φ̃ij to evaluate φyy at both supersonic and subsonic points. At supersonic

points φxx is also evaluated using new values. At subsonic points φxx is evaluated from

φ
(n+1)
i−1,j , φ

(n)
i+1,j and a linear combination of φ

(n+1)
ij and φ

(n)
ij equivalent to φ̃ij. In the subsonic

zone the scheme acts like a line relaxation scheme, with a comparable rate of convergence.

In the supersonic zone it is equivalent to a marching scheme, once the coefficients Aij have

been evaluated. Since the supersonic difference scheme is implicit, no limit is imposed on

the step length ∆x as Aij approaches zero near the sonic line. The transition at the sonic

line is effected smoothly because φyy is treated in the same manner throughout the flow.

If provisional values φ̃ij were used to evaluate φyy at subsonic points, there would be a

discontinuity at the sonic line in the treatment of φyy.

To illustrate the application of the Murman difference formulas consider uniform flow

in a parallel channel. Then φyy = 0, and with a suitable normalization K = 0, so that the

equation reduces to

− ∂

∂x

(

φ2
x

2

)

= 0

with φ and φx given at x = 0, and φ is given at φ = L. Since φ2
x is constant, φx simply

reverses sign at a jump. Provided we enforce the entropy condition that φx decreases through

a jump, there is a unique solution with a single jump whenever φx(0) > 0 and φ(0)+Lφx(0) ≥
φ(L) ≥ φ(0) − Lφx(0). Let ui+1/2 = (φi+1 − φi)/∆x and ui = (ui+1/2 + ui−1/2)/2. Then the
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difference equations can be written as

u2
i+1/2 = u2

i−1/2 when ui ≤ 0, ui−1 ≤ 0 (elliptic)

u2
i−1/2 = u2

i−3/2 when ui > 0, ui−1 > 0 (hyperbolic)

u2
i+1/2 = u2

i−3/2 when ui ≤ 0, ui−1 > 0 (shockpoint)

0 = 0 when ui > 0, ui−1 ≤ 0 (parabolic)

These admit the correct solution, illustrated in Figure 3a, with a constant slope on the two

sides of the shock. The shock point operator allows a single link with an intermediate slope,

corresponding to the shock lying in the middle of a mesh cell.

The difference equations also admit, however, various improper solutions. Figure 3b

illustrates a sawtooth solution with u2 constant everywhere except in one cell ahead of a

shock point. Figure 3c illustrates another improper solution in which the shock is too far

forward. At the last interior point there is then an expansion shock which is admitted by the

parabolic operator. Since the difference equations have more than one root we must depend

on the iterative scheme to find the desired root. The scheme should ideally be designed

so that the correct solution is stable under a small perturbation, and improper solutions

are unstable. Using a scheme similar to (3.6), the instability of the sawtooth solution has

been confirmed in numerical experiments. The solutions with an expansion shock at the

downstream boundary are stable, on the other hand, if the compression shock is more than

the width of a mesh cell too far forward. Thus there is a continuous range of stable improper

solutions, while the correct solution is an isolated stable equilibrium point.

4 Difference Schemes for the Potential Flow Equation

in Quasilinear Form

It is less easy to construct difference approximations to the potential flow equation with a

correct directional bias because the upwind direction is not known in advance. If, however,

the supersonic flow is confined to a bubble above the profile, it may be possible to use

a coordinate system in which the x coordinate is more or less aligned with the flow in

the supersonic zone. For this purpose we can use a conformal mapping to make the profile

coincide with an x coordinate line [8, 9]. A simple difference approximation to the quasilinear

form (1.1) can then be constructed in the following manner. The velocity components u and v
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are evaluated throughout the flow field by central difference formulas, and the speed of sound

is determined by equation (1.3). Then at subsonic points we use central difference formulas

for φxx, φxy and φyy, while at supersonic points we switch to upwind difference formulas

for φxx and φxy. The upwind difference formulas can be regarded as approximations to

φxx − ∆xφxxx and φxy − (∆x/2)φxxy. Thus they introduce an effective artificial viscosity

∆x
{

(u2 − a2)φxxx + uvφxxy

}

= ∆x
{

(u2 − a2)uxx + uvvxx

}

.

When the flow is not perfectly aligned with the x coordinate there exist supersonic

points at which u2 < a2 < u2 + v2. One characteristic lies ahead of the y coordinate line at

such a point, so that the difference scheme does not have the correct region of dependence.

Also the artificial viscosity ∆x(u2 − a2)φxxx is introduced by the upwind difference formula

for φxx is then negative. Despite this fact, schemes of this type have proved quite satisfactory

in practice for flows with supersonic zones of moderate size.

To treat more general flows it is necessary to derive a method of rotating the upwind

differencing to conform with the flow direction [10]. For this purpose suppose that s and n

are streamwise and normal Cartesian coordinates in a reference frame locally aligned with

the flow. Then equation (1.1) is equivalent to

(a2 − q2)φss + a2φnn = 0. (4.1)

Since u/q and v/q are the local direction cosines

φss =
1

q2

(

u2φxx + 2uvφxy + v2φyy

)

(4.2)

and

φnn =
1

q2

(

v2φxx − 2uvφxy + v2φyy

)

. (4.3)

Now we use central differencing at subsonic points as before, but at supersonic points we

switch to upwind differencing for φss. Thus if u > 0, v > 0, φss is approximated at a point

i∆x, j∆y in the supersonic zone by using the formulas (φij − 2φi−1,j + φi−2,j)/∆x2 and

(φij − φi−1,j − φi,j−1 + φi−1,j−1)/∆x∆y to represent φxx and φxy, and a similar formula to

represent φyy. This reduces exactly to the Murman scheme when either u = 0 or v = 0. Also

the upwind differencing introduces an effective artificial viscosity

(

1 − a2

q2

)

{

∆x
(

u2uxx + uvvxx

)

+ ∆y
(

uvuyy + v2vyy

)}
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which is symmetric in x and y.

5 Difference Schemes for the Potential Flow Equation

in Conservation Form

In the construction of a discrete approximation to the conservation form (1.7) of the potential

flow equation, it is convenient to accomplish the switch to upwind differencing by the explicit

addition of an artificial viscosity in the manner proposed in Section 2. Let Sij be a central

difference approximation to the left-hand side of equation (1.7)

Sij =
(ρu)i+1/2,j − (ρu)i−1/2,j

∆x
+

(ρv)i,j+1/2 − (ρv)i,j−1/2

∆y
. (5.1)

In forming Sij we have to evaluate the velocities at the midpoints of the mesh intervals,

using formulas such as ui+1/2,j = (φi+1,j −φij)/∆x and ui,j+1/2 = (φi+1,j +φi+1.j+1 −φi−1,j −
φi−1,j+1)/4∆x. The density is evaluated from equation (1.5). Then we shall solve an equation

of the form

Sij + Tij = 0 (5.2)

where Tij is the artificial viscosity. The viscosity will be constructed in the a divergence form

T =
∂P

∂x
+

∂Q

∂y

to preserve the conservation form of the equation (1.7).

Both simple and rotated schemes can be devised [11]. The term (∂/∂x)(ρu) can

be expanded in a smooth region as ρ(1 − u2/a2)φxx − ρ(uv/a2)φxy. In a simple scheme

Q = 0, and ∂P/∂x is constructed as an upwind approximation to −∆x(∂/∂x)µφxx, where

µ = min{0, ρ(1 − u2/a2)}. Thus at supersonic points the term ρ(1 − u2/a2)φxx is canceled

and replaced by its value at the adjacent upwind point.

The rotated scheme is designed to introduce viscosity terms similar to those intro-

duced by the rotated scheme for the quasilinear form. Let the switching function µ be defined

as

µ = max

{

0,

(

1 − a2

q2

)}

. (5.3)

Then P and Q are constructed as approximations to

−µ{(1 − ǫ)|u|∆xρx + ǫ∆x2uρxx}
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and

−µ{(1 − ǫ)|v|∆yρy + ǫ∆y2vρyy}

where ǫ is a parameter controlling the accuracy. If ǫ = 1 − λ∆x and λ is a constant the

scheme is second order accurate. If ǫ = 0 it is first order accurate, and at supersonic points

where u > 0, v > 0, P then approximates

∆x
ρ

a2

(

1 − a2

q2

)

(u2ux + uvvx).

In these expressions the derivatives of ρ are represented by upwind difference formulas. Thus

the formula for the viscosity becomes

Tij = −Pi+1/2,j − Pi−1/2,j

∆x
− Qi,j+1/2 − Qi,j−1/2

∆y
(5.4)

where if ui+1/2,j > 0

Pi+1/2,j = ui+1/2,j µij{ρi+1/2,j − ρi−1/2,j − ǫ(ρi−1/2,j − ρi−3/2,j)}

and if ui+1/2,j < 0

Pi+1/2,j = ui+1/2,j µi+1,j{ρi+1/2,j − ρi+3/2,j − ǫ(ρi+3/2,j − ρi+5/2,j)} (5.5)

while Qi,j+1/2 is defined by a similar formula.

6 Analysis of Relaxation Schemes by the Time Depen-

dent Analogy

As in the treatment of the small disturbance equation, relaxation methods can be used

to solve the nonlinear difference equations generated by the various approximations to the

potential flow equation. In the simplest case, when the equation is expressed in quasilinear

form and the upwind differencing is restricted to the x coordinate, this presents no particular

difficulty. In each cycle the coefficients a2 − u2, 2uv, and a2 − v2 are first calculated using

the result φ
(n)
ij of the previous cycle. Then new values φ

(n+1)
ij are determined by solving a

set of linear equations on each successive vertical line x = i∆x, with the latest available

values φ
(n+1)
i−2,j , φ

(n+1)
i−1,j and φ

(n)
i+1,j on the adjacent upstream and downstream lines substituted

in the difference formulas for φxx, and φxy and φyy. This gives a block triangular form to
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the matrix N in equation (2.1). If the coefficients of the second derivatives were frozen the

method would reduce to a marching scheme in the supersonic zone, since the values on each

vertical line would then depend only on the updated values just determined on the upstream

lines.

When the rotated difference scheme is used, the difference equation at a supersonic

point includes contributions to φnn from adjacent downward points. The time dependent

analogy suggested in Section 2 then provides a useful insight into the nature of the relaxation

process, which no longer resembles a marching scheme in the supersonic zone [10]. The

typical form of a central difference appximation to φxx at a point on the line x = i∆x is

φ
(n+1)
i−1,j − (1 + r∆x)φ

(n+1)
ij − (1 − r∆x)φ

(n)
ij + φ

(n)
i+1,j

∆x2

when an updated value is used at x = (i−1)∆x, an old value is used at x = (i+1)∆x because

the new value is not yet available, and a linear combination depending on a parameter r is

used at x = i∆x. Introducing the correction Cij = φ
(n+1)
ij − φ

(n)
ij , this is equivalent to

φ
(n)
i−1,j − 2φ

(n)
ij + φ

(n)
i+1,j

∆x2
− Cij − Ci−1,j

∆x2
− rCij

∆x
.

The structure of the operator N in equation (2.1) is thus determined by the particular

combination of new and old values used in the various difference formulas contributing to

φss and φnn.

If we write the equivalent time dependent equation (2.2) in a locally aligned s − n

coordinate system, we now find that its principal part can be expressed as

(M2 − 1)φss − φnn + 2αφst + 2βφnt = 0 (6.1)

where M is the local Mach number, and the coefficients α and β depend on the split between

new and old values of φ in the difference formulas. The substitution T = t−αs/(M2−1)+βn

reduces this equation to the diagonal form

(M2 − 1)φss − φnn −
(

α2

M2 − 1
− β2

)

φTT = 0.

If M > 1 either s or n is timelike, depending on the sign of the coefficient of φTT , while T is

spacelike. Since s is the timelike direction of the steady state equation, it ought also to be

the timelike direction when this equation is embedded in a time dependent process. Thus
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when M > 1 the coefficients α and β should satisfy the compatibility condition

α > β
√

M2 − 1 (6.2)

The characteristic cone of equation (6.1) touches the s−n plane. As long as condition

(6.2) holds it slants upstream in the reverse time direction, as illustrated in Figure 2. The

iterative scheme will then have a proper region of dependence as long as we sweep the flow

field in a direction such that the updated region always includes the upwind line of tangency

between the characteristic cone and the s − n plane. It can be seen from Figure 2 that

the region of dependence of a subsonic point contains the t axis, with the result that it is

important to include a damping term γφt to attenuate the influence of the initial guess.

The coefficient γ is controlled by the choice of an overrelaxation factor [12]. The situation

is different at a supersonic point. If the coefficients of equation (6.1) were constant with

M > 1, the region of dependence would cease to intersect the initial data after a sufficient

time interval. Instead it would intersect a surface containing the Cauchy data of the steady

state problem. Thus no damping due to φt is required in the supersonic zone for the process

to reach a steady state.

These considerations lead to the following method for deriving the operator N . We

substitute new values φ
(n+1)
ij whenever they are available in the central difference formulas at

subsonic points, and also in the central difference formulas contributing to φnn at supersonic

points. In order to satisfy the compatibility condition (6.2) at supersonic points, however,

we do not use new values in the upwind difference formulas contributing to φss. Instead, if

u > 0, φxx is represented by

2φ
(n+1)
ij − φ

(n)
ij − 2φ

(n+1)
i−1,j + φ

(n)
i−2,j

∆x2
.

This can be regarded as an approximation to φxx − 2(∆t/∆x)φxt. Similar formulas are used

for φxy and φyy with the result that the approximation to φss introduces a term 2(M2 −
1)((u/q)(∆t/∆x)+ (v/q)(∆t/∆y))φst in the equivalent time dependent equation. Finally to

make sure that (6.2) is satisfied when M is close to unity we add a term to augment further

the coefficient of φst. If u > 0 and v > 0 this term is

ωS

∆x

{

u

∆x
(Cij − Ci−1,j) +

v

∆y
(Cij − Ci,j−1)

}

where ωS is a relaxation factor with a value ≥ 0. The best rate of convergence is obtained

by using the smallest possible value of ωS. Often it is sufficient to take ωS = 0.
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Similar schemes are easily constructed for the difference approximations to the conser-

vation form (1.7). Since the conservation form is equivalent to the quasilinear form multiplied

by ρ/a2, we have only to multiply the operator N by ρ/a2 to produce a time dependent pro-

cess for the conservation form which converges at about the same rate as the process for the

quasilinear form [11]. An advantage of this procedure is that the iterative scheme does not

have to be modified to reflect every variation in the difference equations. We can use the

same operator N , for example, for all values of the viscosity parameter ǫ.

7 Accelerated Iterative Method

If we consider iterative schemes of the class defined by equation (2.1), we can expect to

improve the rate of convergence by choosing N as the closest possible approximation to the

operator used to evaluate the residual R. In this we are constrained by the need to limit the

number of operations required for each cycle. In recent years fast direct methods have been

developed for solving finite difference approximations to Poisson’s equation on a rectangle

[13, 14]. On an N ×N square these require a number of operations proportional to N2 log N .

The coefficient A in the small disturbance equation (1.10) is an approximation to 1 − M2,

where M is the local Mach number, so if M is small the Laplacian is a fair approximation

to the operator on the left-hand side of the equation. This suggests the use of the discrete

Laplacian for N in equation (2.1), with the scaling function σ replaced by a fixed relaxation

factor ω. An iteration of this kind was proposed by Martin and Lomax [15].

In order to estimate the rate of convergence which might be expected, consider the

Prandtl Glauert equation, which is obtained by replacing A by 1 − M2
∞

in equation (1.10).

Let H and V be positive definite operators representing −∂2/∂x2 and −∂2/∂y2 with the

appropriate boundary conditions. Also let φ be the solution, and let e(n) = φ(n) − φ be the

error after n cycles. With ω = 1 the iteration then gives

(H + V )e(n+1) = M2
∞

He(n).

Thus
∥

∥H1/2e(n+1)
∥

∥ ≤ M2
∞
‖K‖

∥

∥H1/2e(n)
∥

∥

where K is the symmetric operator H1/2(H + V )−1H1/2. If we use a Euclidean norm then

‖K‖ = max
(x, Kx)

(x, x)
= max

(y, Hy)

(y, Hy) + (y, V y)
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where H1/2y = K1/2x. Thus ‖K‖ < 1. This estimate serves to indicate that for subsonic

flows the scheme should converge at a rate independent of the mesh size.

If we consider the case of linearized supersonic flow, with A replaced by 1−M2
∞

and

M
∞

> 1, on the other hand, it can be shown that the iteration would diverge. In this case,

if E is a shifting operator which replaces φij by φi−1,j, the iteration gives

(H + V )e(n+1) = {I + (M2
∞
− 1)E}He(n)

and H + V does not dominate {I + (M2
∞
− 1)E}H .

Thus we cannot expect the Poisson iteration to converge when it is used to calculate

a transonic flow with a supersonic zone of appreciable size. If, however, it could be supple-

mented with another method which gives fast convergence in the supersonic zone, the two

in combination might produce an effective iterative scheme. In fact the usual line relaxation

scheme for the small disturbance equation is just such a method, since it acts like a marching

scheme in the supersonic zone. Thus it would give the solution in the supersonic zone in a

single sweep, if it were not for the change from cycle to cycle in the nonlinear coefficients

Aij and the data at the sonic line. This leads to the idea of using a two stage iteration [16],

in which the first stage is a Poisson step, and the second stage consists of p relaxation steps

to sweep the errors from the supersonic zone. The best value of p is most easily determined

by numerical experiments. These have confirmed that in calculations using the small dis-

turbance equation, a single relaxation step after each Poisson step is sufficient to give fast

convergence. An alternative approach is to use a desymmetrized operator N of a form which

still permits the use of a fast direct method. Good results have been reported by Martin,

using a scheme of this type formulated for an equivalent system of first order equations [17].

The two stage iteration has the advantage that it is easily extended to treat the

potential flow equation. This can be scaled so that the Laplacian represents its linear part

by dividing the quasilinear form (1.1) by a2 or the conservation form (1.7) by ρ. Thus we

define the Poisson iteration by letting N be the Laplacian in equation (2.1), and setting

σ = ω/a2 for the quasilinear form, or ω/ρ for the conservation form, where ω is a relaxation

factor with a value in the range 1 ≤ ω ≤ 2. This gives rapid convergence for subsonic

flows. For transonic flows we again use p relaxation steps after each Poisson step. The

method has proved particularly effective when it is used with the simple difference scheme

in quasilinear form, with the upwind differencing restricted to one coordinate. The best rate

of convergence is then usually obtained with one or two relaxation steps after each Poisson

step. The rotated difference schemes require a larger number of relaxation steps because the

relaxation method no longer acts like a marching scheme in the supersonic zone. Typically
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the best rate of convergence is then obtained with p ∼ 5 − 8.

8 Three Dimensional Calculations

A similar approach can be used for three dimensional transonic flow calculations [18, 19].

The three dimensional small disturbance equation

∂

∂x

(

Kφx −
γ + 1

2
φ2

x

)

+ φyy + φzz = 0 (8.1)

can be approximated by the obvious generalization of the scheme proposed in Section 3.

Let pijk be a central difference approximation to the first term and qijk a central difference

approximation to φyy + φzz. Then we evaluate the residual as

Rijk = pijk + qijk − µijkpijk + µi−1,j,kpi−1,j,k (8.2)

where the switching function µijk is unity at supersonic points and zero at subsonic points.

The time dependent analogy is again helpful in devising a relaxation method for

solving the difference equations. If we solve on vertical lines, for example, the use of mixed

new and old values in the approximation to φzz introduces a term containing φzt in the

equivalent time dependent equation. In order to make sure that we obtain a wave equation in

which x is timelike at supersonic points, as it is in the steady state equation, a compensating

term αφxt should then be added, with α > 0.

An alternative method is to relax the equations on successive longitudinal lines with

the following scheme. Let the residual Rijk and the coefficient

Aijk = K − (γ − 1)
φi+1,j,k − φi−1,j,k

2∆x
(8.3)

be evaluated using the result φ
(n)
ijk of the nth cycle. Then the correction Cijk = φ

(n+1)
ijk − φ

(n)
ijk

is determined by solving the equation

(1 − µijk)Aijk
Ci+1,j,k − 2Cijk + Ci−1,j,k

∆x2
− (α − 2µi−1,j,kAi−1,j,k)

Cijk − Ci−1,j,k

∆x2

− Cijk − Ci,j−1,k

∆y2
− Cijk − Ci,j,k−1

∆z2
− (1 − µijk)

(

2

ω
− 1

) (

1

∆y2
+

1

∆z2

)

Cijk + Rijk = 0

(8.4)

where ω is the subsonic over-relaxation factor, and α is a parameter controlling the coefficient
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of φxt in the equivalent time dependent equation.

A rotated difference scheme for the three dimensional transonic potential flow equa-

tion can be devised by writing it locally as

(a2 − q2)φss + a2(∆φ − φss) = 0.

In this equation ∆ is the Laplacian and

φss =
1

q2
{u2φxx + v2φyy + w2φzz + 2uvφxy + 2vwφyz + 2uwφxz}

where u, v and w are the velocity components φx, φy and φz and q is the speed
√

u2 + v2 + w2.

Now upwind differencing is used for φss in the supersonic zone as before. Horizontal or

vertical line relaxation schemes can be devised in the same manner as in the two dimensional

case.

9 Typical Results

Methods contructed along these lines have been quite widely used in the last few years. They

have proved particularly effective for calculating two dimensional and axially symmetric flows

[5−10, 20−21]. Some typical results are presented here.

As a check on the accuracy attainable with these methods some results are first given

for the Tricomi equation

yφxx + φyy = 0

for which exact polynomial solutions can easily be constructed. The basic scheme described

in Section 3 was applied to this equation in the rectangle −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, with

Dirichlet boundary conditions on the sides y = ±1 and x = ±1 with y ≥ 0, Cauchy data on

the side x = −1 with y < 0, and no data on the side x = 1 with y < 0. Central difference

formulas were used for φyy everywhere and for φxx when y > 0. When y < 0, φxx was

approximated by the upwind formula

1

∆x2
{φij − 2φi−1,j + φi−2,j + ǫ (φij − 3φi−1,j + 3φi−2,j − φi−3,j)}

which is first order accurate if ǫ = 0 and second order accurate if ǫ = 1. An equal mesh

spacing ∆x = ∆y = h was used in each coordinate direction, and exact values of φ were

provided on the boundaries carrying Dirichlet data, and also at x = (−1+h), x = −(1+2h)
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on the boundary carrying Cauchy data. The solution φ̄(h) of the difference equations was

obtained on three grids with h = 1/16, 1/32 and 1/64 by the iterative method described

in Section 3. On each grid the iterations were continued until the residual, normalized by

multiplying by h2, was < 10−12 at every interior point. This generally required about 300

cycles on the fine mesh. The results were then compared with the exact solution. A typical

polynomial solution is

φ = x4y − x2y4 +
y7

21
.

Table 1 shows the error ||φ−φ̄(h)|| and ||φx−φ̄x(h)|| for this case, where φ̄x(h) was estimated

by a central difference formula. The norm was defined as ||a|| =
(

1
N

∑

i

∑

j a2
ij

)1/2

, where

the sum is over the interior mesh points, and N is the number of these points. For the error

in φx points on the line x = 1 − h were excluded from the sum to avoid estimating φx by

differencing between interior points and points on the boundary x = 1.

The errors can be seen to decrease in the expected manner as the mesh width is

decreased. For either ǫ = 0 or 1 they are roughly consistent with the estimate

φ = φ̄(h) + Ahǫ+1 + O
(

hǫ+2
)

(9.1)

where the function A(x, y) determines the distribution of the dominant error. Assuming this

to be the case Richardson extrapolation was used to give the estimate φ = φ̃(h) + O (hǫ+2)

where

φ̃(h) = φ̄(y) +
1

2ǫ+1 − 1

(

φ̄(h) − φ̄(2h)
)

.

The derivative was also extrapolated by a similar formula. The results are shown in Table 2.

The success of the extrapolation provides further confirmation of the error estimate (9.1).

Figures 4−6 show typical solutions of the transonic potential flow equation for flows

past airfoils. Curvilinear coordinates were used for these calculations. These were generated

Errors for ǫ = 0 Errors for ǫ = 1
Mesh Width ||φ − φ̄(h)|| ||φx − φ̄x(h)|| ||φ − φ̄(h)|| ||φx − φ̄x(h)||

1
16

.428 × 10−1 .111 .429 × 10−2 .937 × 10−2

1
32

.242 × 10−1 .631 × 10−1 .107 × 10−2 .259 × 10−2

1
64

.130 × 10−1 .350 × 10−1 .218 × 10−3 .675 × 10−3

Table 1: Errors in solution of the Tricomi equation
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Mesh Width of Errors for ǫ = 0 Errors for ǫ = 1

Finer Mesh ||φ − φ̃(h)|| ||φx − φ̃x(h)|| ||φ − φ̃(h)|| ||φx − φ̃x(h)||
1
32

.673 × 10−2 .210 × 10−1 .117 × 10−3 .544 × 10−3

1
64

.211 × 10−2 .719 × 10−2 .123 × 10−4 .804 × 10−4

Table 2: Result of Richardson Extrapolation

by mapping the exterior of the profile conformally onto the interior of a unit circle, and

introducing polar coordinates r and θ in the circle [8−11]. This simplifies the representation

of the Neumann boundary condition. It also provides a regular and finite mesh suitable

for the application of a fast Poisson solver to accelerate the iterative scheme. To check the

influence of the mesh width on the result each calculation was performed on three grids, first

with 64 cells in the θ direction and 16 cells in the r direction, then with 128 × 32 cells and

finally with 256× 64 cells. On the second two grids the interpolated solution of the previous

grid was used to provide the initial guess. A convenient measure of the local flow condition

is the pressure coefficient Cp = (p − p
∞

) /1
2
ρ
∞

q2
∞

, where the subscript ∞ denotes free stream

values. Each figure shows the calculated pressure coefficient over the surface of the profile.

The pressure critical pressure coefficient at which the flow has sonic velocity is marked by

a horizontal line on the axis. Lift and drag coefficients CL and CD are also shown. These

were obtained by integrating the surface pressure.

Figure 4 shows an airfoil designed by Garabedian to produce shock free flow [22, page

44]. The quasilinear form (1.1) was treated using the simple difference scheme described in

Section 4, with upwind differencing restricted to the θ direction. The accelerated iterative

method described in Section 7 was used, with 2 relaxation sweeps after each Poisson step.

The Poisson solution was calculated using the Buneman algorithm [13] in the θ direction.

The largest residual Rij at any point of the field, normalized by multiplying by ∆θ2, was

used as a measure of convergence. It requires 24 cycles to reduce the largest residual from

.89 × 10−2 to .91 × 10−9 on the 64 × 16 grid, 21 cycles to reduce it from .16 × 10−2 to

.84× 10−9 on the 128× 32 grid, and 25 cycles to reduce it from .38× 10−3 to .81 × 10−9 on

the 256 × 64 grid. The entire calculation took 262 seconds on a CDC 6600. A Poisson step

takes about the same amount of time as 2 relaxation sweeps, so in this case the calculation

on the 128× 32 grid was equivalent to about 84 relaxation sweeps. Typically it takes about

4000 sweeps to reduce the largest residual to 10−9 on a 128 × 32 grid by relaxation alone.

It has been found that the jump at a normal shock wave is consistently underesti-
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mated by calculations which do not use conservation form [7, 11]. The Mach number behind

the shock wave is generally too close to unity. This can be corrected by using conservation

form. The schemes described in Section 5 have proved less accurate than the nonconser-

vation schemes of Section 4, however, in the treatment of shock free flows, particularly on

coarse grids. They also have the disadvantage of requiring more computer time. Two exam-

ples of results obtained with the rotated difference scheme in conservation form, equations

(5.1)−(5.4), are shown in Figures 5 and 6. The NACA 64A410, shown in Figure 5, is a

typical example of an airfoil which produces a shock wave at quite a low Mach number. The

accelerated iterative scheme was used in this calculation, with 8 relaxation steps after each

Poisson step. 49 cycles were required to reduce the largest residual to 10−9 on the 256 × 64

grid. Figure 6 shows a symmetric airfoil (suitable for a vertical tail) designed by Hicks and

Murman to give a low wave drag at Mach .80 [23]. The degeneration to a flow containing

two shock waves is typical of an airfoil designed to operate efficiently at transonic speeds

when either the Mach number or (in the case of a lifting airfoil) the lift coefficient is slightly

reduced. The forward shock can be seen to be completely eliminated on the 64 × 16 grid.

This calculation was performed by relaxation alone. 2000 cycles were used to reduce the

largest residual to .22× 10−6 on the 256× 64 grid. In both calculations the viscosity param-

eter ǫ was zero, giving the first order accuracy. The accuracy can generally be improved by

using values of ǫ between 0 and 1. In the easier cases it is possible to set ǫ = 1. This may,

however, lead to divergence for the more sensitive flows, such as the flow past a shock free

airfoil near its design point.

Figure 7 shows an example of a three dimensional calculation for a wing with a roughly

elliptic plan form. In this case a curvilinear coordinate system was generated in two stages

[19]. First parabolic coordinates were introduced in planes containing the wing section by

the square root transformation

X1 + i Y1 = (x − x0(z) + i (y − y0(z)))1/2 , Z1 = z.

The singular line x0(z)+ i y0(z) was located just behind the leading edge in order to unwrap

the wing to form a shallow bump Y1 = S (X1, Z1). Then a shearing transformation

X = X1, Y = Y1 − S (X1, Z1) , Z = Z1

was used to map the wing surface to a coordinate surface. The calculation was performed

on a mesh with 192 × 16 × 32 cells in the X, Y and Z directions. After a preliminary

calculation on a mesh with 96×8×16 cells, 100 relaxation cycles were used on the fine mesh

to reduce the largest residual (multiplied by ∆X2) to ∼ 10−5. The figure shows the wing
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configuration, and the upper and lower surface pressure distributions in separate plots. On

the upper surface there is a single shock wave near the center of the wing, but two shock

waves near each tip where less lift is produced.

When solutions of the transonic potential flow equation are compared with experi-

mental data it is important to allow for viscous effects, which are dominant in the boundary

layer adjacent to the surface. It has been found that remarkably good agreement can fre-

quently be obtained simply by correcting the profile to allow for the displacement effect of

the boundary layer [22]. This procedure, which is effective in the regime where the shock

waves are not strong enough to cause a separated flow, often proves more successful with

the quasilinear form than with the conservation form. The shock jumps observed in practice

in the presence of a boundary layer are weaker than the jumps predicted by the Rankine

Hugoniot theory for normal shock waves. The attenuation of the shock jumps which results

from the use of the quasilinear form provides a partial simulation of this effect even when

no correction is made for the boundary layer.

10 Conclusion

Finite difference methods with an upwind bias in the hyperbolic region are now quite well

established as practical tools for transonic flow calculations. Three dimensional calculations

are presently restricted by limitations of computer memory capacity and time.

Much work remains to be done to improve these methods. In particular no estimates

of global error bounds have been obtained. As long as the difference scheme is in conservation

form, the solution of the difference equations should satisfy the proper jump conditions in

the limit as the mesh width approaches zero. With the mesh widths realizable in practice,

however, there is not enough resolution to provide a good representation of an oblique shock

wave. If a reliable shock fitting scheme could be devised the results should be improved. If

such a technique could be combined with the use of higher order accurate difference formulas

it should be possible to use relatively coarse grids. This would open the way to more extensive

three dimensional applications. Relaxation has proved a reliable but slow method for solving

the nonlinear difference equations. Faster iterative methods are now in hand for treating

two dimensional flows. Methods of comparable efficiency are needed for three dimensional

calculations.
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