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Abstract: This paper is concerned with the numerical solution of the nonlinear Schrödinger (NLS)

equation with Neumann boundary conditions by quintic B-spline Galerkin finite element method

as the shape and weight functions over the finite domain. The Galerkin B-spline method is more

efficient and simpler than the general Galerkin finite element method. For the Galerkin B-spline

method, the Crank Nicolson and finite difference schemes are applied for nodal parameters and for

time integration. Two numerical problems are discussed to demonstrate the accuracy and feasibility

of the proposed method. The error norms L2, L∞ and conservation laws I1, I2 are calculated to check

the accuracy and feasibility of the method. The results of the scheme are compared with previously

obtained approximate solutions and are found to be in good agreement.

Keywords: non-linear Schrödinger equation; quintic B-spline; Galerkin finite element method

1. Introduction and Governing Equation

In this article, quintic B-spline Galerkin finite element method is applied to find the numerical

solution of nonlinear Schrödinger (NLS) equation:

iut = −uxx − α|u|2u (1)

Equation (1) is called a self- focusing NLS equation (α > 0) and allows for bright soliton solutions,

as well as the defocusing NLS equation (α < 0). u = u(x, t) is a complex-valued function over the real

line, α is a positive number and i =
√
−1. The initial and boundary conditions are as follows:

u(x, 0) = f (x), a ≤ x ≤ b, (2)

u(a, t) = u(b, t) = ux(a, t) = ux(b, t) = uxx(a, t) = uxx(b, t) = 0. (3)

Let

u(x, t) = r(x, t) + is(x, t) (4)

where r(x, t) and s(x, t) are real functions. Substituting Equation (4) into Equation (1), we obtain the

coupled partial differential equations















st − rxx = α
(

r2 + s2
)

r,

rt + sxx = −α
(

r2 + s2
)

s.
(5)

Symmetry 2019, 11, 469; doi:10.3390/sym11040469 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-5103-6092
http://dx.doi.org/10.3390/sym11040469
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/4/469?type=check_update&version=3


Symmetry 2019, 11, 469 2 of 14

Finite element method is a powerful and established method used to approximate the solution

of the partial differential equation. Besides finite element method, splines are also very useful to

approximate the solution of partial differential equation with piecewise polynomial approximation.

A finite element method with B-splines defines a new weighting approximate method and possesses

computational advantages of B-splines and finite elements. Spline functions have been applied to

develop numerical methods for the solution of nonlinear differential equations [1,2]. The analytical

solution of the NLS equation is solved by using the inverse scattering method by Zakharov and

Shabat [3]. In 1974, Zakharov and Manakov proved that the NLS equation is completely integrable [4].

Many researchers have worked on the solution of the partial differential equations by using collocation

finite element method based on splines.

Spline-based numerical methods have been proposed by many researchers to obtain the numerical

solution of nonlinear evolutionary problems. Mittal [5] obtained the numerical solutions of the

extended Fisher–Kolmogorov equation using the quintic B-spline collocation method. Saka and

Dag [6] presented the Galerkin finite element method based on quartic B-spline functions to obtain the

numerical solution of the regularized long-wave (RLW) equation. Gardner [7] proposed the Galerkin

finite element method based on cubic B-spline to find the numerical solution of the RLW equation.

Dogan [8] presented the Galerkin method based on linear space finite elements to the numerical solution

of the RLW equation. Kutluay and Ucar [9] and Saka and Dag [10] found the numerical solution of

the coupled Korteweg–de-Vries (KdV) and Korteweg–de-Vries–Burgers (KdVB) equations using the

Galerkin finite element method based on quadratic and quartic B-spline functions, respectively.

Gorgulu et al. [11] used exponential B-splines Galerkin finite element method for solving

the advection–diffusion equation. They developed a new algorithm by incorporating exponential

B-spline functions with the Galerkin finite element method. This method gives satisfactory results.

The exponential B-splines Galerkin method is also applied to solve the Burger’s equation and the

results are comparable with the quartic B-spline collocation method [2].

There are many non-spline numerical methods developed to solve the NLS equation; some of

them are discussed here. Wang et al. [12] proposed a finite difference method using an artificial

boundary conditions on an unbounded domain. In this scheme, extrapolation operator is applied

to deal with the nonlinear term. Moreover, Barletti et al. [13] presented energy-conserving methods

that can confer robustness on the numerical solution. Taleei and Dehghan [14] presented a

time-splitting pseudo-spectral domain decomposition method, whereby the original equation is

split into linear and nonlinear equations. The Chebyshev pseudo-spectral collocation method is used

to solve the linear equation in the spatial dimension and Crank–Nicolson scheme in the temporal

dimension. In this study, overlapping multi-domain scheme is chosen. Univariate multi-quadrics

(MQ) quasi-interpolation method is developed where the spatial derivatives are calculated from the

derivative of the quasi-interpolation.

Some spline-based numerical methods are proposed to solve the NLS equation. Quartic spline

approximation and semidiscretization were applied using finite difference method by Sheng et al. [15].

Zlotnik and Zlotnik [16] were the first to implement the finite element method using non-discrete

transparent boundary conditions. Naturally, higher-order finite element method is observed to

converge faster. The exponential B-spline with collocation method was presented by Ersoy et al. [17].

The Crank–Nicolson scheme is used for time integration and exponential cubic B spline functions

for the space integration. Dag [18] proposed a Galerkin finite element method based on quadratic

B-spline functions.

In this paper, numerical scheme for the Galerkin method with quintic B-spline is developed

to solve the NLS equation. Numerical results are generated and compared with some of the

afore-mentioned methods.

This paper is organized as follows. In Section 2, the fundamentals of quintic B-spline Galerkin

method are introduced. In Section 3, the initial parameters to find the solutions of the system are
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calculated. Numerical results and test problems are discussed in Section 4 followed by the conclusion

in Section 5.

2. Quintic B-spline Galerkin Method

We consider a mesh Π over the finite domain [a, b] divided uniformly by grid points xk with

h = xk − xk−1, k = 1, . . . , N. Quintic B-spline function is chosen as the weight and trial function.

The quintic B-splines, Bk(x), k = −2, . . . , N + 2 at the grid points xk forms a basis over the interval [a, b]

as follows [19]:

Bk(x) =
1

h5































































p1 = (x− xk−3)
5, x ∈ [xk−3, xk−2],

p2 = p1 − 6(x− xk−2)
5, x ∈ [xk−2, xk−1],

p3 = p2 + 15(x− xk−1)
5, x ∈ [xk−1, xk],

p4 = p3 − 20(x− xk)
5, x ∈ [xk, xk+1],

p5 = p4 + 15(x− xk+1)
5, x ∈ [xk+1, xk+2],

p6 = p5 − 6(x− xk+2)
5, x ∈ [xk+2, xk+3],

0 otherwise.

(6)

The global approximate solution, uN(x, t), for the NLS equation in Equation (1) is written in terms

of the quintic B-spline function as

uN(x, t) = sN(x, t) + rN(x, t) =
N+2
∑

k=−2

δk(t)Bk(x), (7)

where
δk(t) = ρk(t) +ψk(t)

=















sN(x, t) =
∑N+2

k=−2
ρk(t)Bk(x),

rN(x, t) =
∑N+2

j=−2
ψk(t)Bk(x).

(8)

The functions ρk(t) and ψk(t) are time-dependent parameters that are determined from the

boundary and residual conditions. We make use of a local coordinate transformation

η = x− xk, η ∈ [0, h],

The quintic B-spline shape functions in Equation (6) can be defined in term of η,

Bk =
1

h5



















































h5 − 5h4η+ 10h3η2 − 10hη4 − η5

26h5 − 50h4η+ 20h3η2 + 20h2η3 − 20hη4 + 5η5

66h5 − 60h3η2 + 30hη4 − 10η5

26h5 + 50h4η+ 20h3η2 − 20h2η3 − 20hη4 + 10η5

η5 + 5h4η+ 10h3η2 + 10h2η3 + 5hη4 − 5η5

η5

(9)

Since all other quintic B-spline functions are zero over the interval [xk, xk+1] except for

Bk−2, Bk−1, . . . , Bk+3, the approximation function in Equation (8) over the typical interval [xk, xk+1] can

be written as

sN(x, t) =
k+3
∑

j=k−2

ρ j(t)B j(x),

rN(x, t) =
k+3
∑

j=k−2

ψ j(t)B j(x).

(10)
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Applying the quintic B-splines definition in Equations (6)–(8), the nodal values of sk, rk, and its

first and second derivatives at the knots xk are found to be

sk = s(xk) = ρk−2 + 26ρk−1 + 66ρk + 26ρk+1 + ρk+2,

rk = r(xk) = ψk−2 + 26ψk−1 + 66ψk + 26ψk+1 +ψk+1,

hs′k = hs′(xk) = 5(ρk+2 + 10ρk+1 − 10ρk−1 − ρk−2),

hr′k = hr′(xk) = 5(ψk+2 + 10ψk+1 − 10ψk−1 −ψk−2),

h2s′′ k = h2s′′ (xk) = 20(ρk+2 + 2ρk+1 − 6ρk + 2ρk−1 + ρk−2),

h2r′′ k = h2r′′ (xk) = 20(ψk+1 + 2ψk − 6ψk + 2ψk−1 +ψk−2).

(11)

When using the Galerkin method on Equation (5) with weight function W(x), the weak form of

Equation (5) over the finite interval [xk, xk+1] [xk, xk+1] is written as



































xk+1
∫

xk

[

Wst + Wxrx − α
(

r2 + s2
)

Wr
]

dx = 0,

xk+1
∫

xk

[

Wrt −Wxsx + α
(

r2 + s2
)

Ws
]

dx = 0,

(12)

where

zL = α(r2 + s2). (13)

By using the weight function W(x) as quintic B-spline shape functions Bk and inserting the

quantities rN(x, t) and sN(x, t) in Equation (10) into the integral Equation (12) instead of r(x, t)

and s(x, t)


































k+3
∑

j=k−2

























h
∫

0

BiBjdη













.
ρ j +













h
∫

0

B′iB
′
jdη













ψ j −












zL

h
∫

0

BiBjdη













ψ j













= 0,

k+3
∑

j=k−2

























h
∫

0

BiBjdη













.
ψ j −













h
∫

0

B′iB
′
jdη













ρ j +













zL

h
∫

0

BiBjdη













ρ j













= 0,

(14)

where i = j = k− 2, k− 1, k, k + 1, k + 2, k + 3 and the dot “·” represents the derivative with respect to

time t.

The finite element in Equation (14) can be written in matrix form as















Ae .
ρ j

e
+ Meψ j

e − zLCeψ j
e = 0,

Ae
.
ψ j

e
−Meρ j

e + zLCeρ j
e = 0,

(15)

where ρ j = (ρk−2,ρk−1,ρk,ρk+1,ρk+2, ρk+3)
T and ψ j = (ψk−2,ψk−1,ψk,ψk+1,ψk+2, ψk+3)

T are the

element parameters. The element matrices Ae
i j

, Me
i j

and Ce
i j

are given by integrals

Ae
i j =

h
∫

0

BiBjdη,

Me
i j =

h
∫

0

B′iB
′
jdη,

Ce
i j =

h
∫

0

BiBjdη,

(16)
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where i, j = k− 2, k− 1, k, k + 1, k + 2, k + 3. The element matrices in Equation (16) are calculated as

Ae
i j =

h

2772

















































5246 8937 −6588 −79168 −33258 −1077

8937 397416 1558706 1072186 121641 1018

−6588 1558706 7464456 6602476 1072186 15498

−79168 1072186 6602476 7464456 1558706 29558

−33258 121641 1072186 1558706 397416 9113

−1077 1018 15498 29558 9113 252

















































Me
i j =

1

126h

















































12140 9710 36590 −14840 −29735 −2030

9710 103190 98630 −151100 −54725 −1250

36590 98630 236240 −179420 −151100 −6650

−14840 −151100 −179420 236240 98630 2300

−29735 −54725 −151100 98630 103190 5255

−2030 −1250 −6650 2300 5255 350

















































Ce
i j =

h

2772

















































5246 8937 −6588 −79168 −33258 −1077

8937 397416 1558706 1072186 121641 1018

−6588 1558706 7464456 6602476 1072186 15498

−79168 1072186 6602476 7464456 1558706 29558

−33258 121641 1072186 1558706 397416 9113

−1077 1018 15498 29558 9113 252

















































The values of zL are obtained by writing s =
sk+sk+1

2 and r =
rk+rk+1

2 in Equation (13). Using the

values of sN and rN at the grid points xk, we obtain

zL =
α

4

[

(ρk−2 + 27ρk−1 + 92ρk + 92ρk+1 + 27ρk+2 + ρk+3)
2

+(ψk−2 + 27ψk−1 + 92ψk + 92ψk+1 + 27ψk+2 +ψk+3)
2
]

.
(17)

Assembling all the elements in Equation (15) leads to the following system:











A
.
ρ+ Mψ−C(zL)ψ = 0,

A
.
ψ−Mρ+ C(zL)ρ = 0,

(18)

where ρ = (ρ−2,ρ−1, . . . , ρk,ρk+1)
T and ψ = (ψ−2,ψ−1, . . . , ψk,ψk+1)

T are the global element

parameters, and A, M and C(zL) are the global matrices with generalized kth row given by:

A =
h

2772
(−1077, −32240, 57971, 2167342, 9737938, 15729242, 9737938, 2167342, 57971, −32240, −1077),

M =
1

126h
(−2030,−30985,−76215,−263310, 32805, 691350, 32805,−263310,−76215, −30985, −2030)

C(zL) =
h

2772 ( −1077z1L, −33258z1L + 1018z2L, −79168z1L + 121641z2L

+15498z3L, −6588z1L + 1072186z2L + 1072186z3L

+29558z4L, 8937z1L + 1558706z2L + 6602476z3L + 1558706z4L

+9113z5L, 5246z1L + 397416z2L + 7464456z3L + 7464456z4L

+397416z5L + 252z6L, 8937z2L + 1558706z3L + 6602476z4L

+1558706z5L + 9113z6L, −6588z3L + 1072186z4L + 1072186z5L

+29558z6L,−79168z4L + 121641z5L + 15498z6L, −33258z5L

+1018z6L, −1077 z6L),

(19)
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where

z1L =
α

4

[

(ρk−4 + 27ρk−3 + 92ρk−2 + 92ρk−1 + 27ρk + ρk+1)
2

+(ψk−4 + 27ψk−3 + 92ψk−2 + 92ψk−1 + 27ψk +ψk+1)
2
]

,

z2L =
α

4

[

(ρk−3 + 27ρk−2 + 92ρk−1 + 92ρk + 27ρk+1 + ρk+2)
2

+(ψk−3 + 27ψk−2 + 92ψk−1 + 92ψk + 27ψk+1 +ψk+2)
2
]

,

z3L =
α

4

[

(ρk−2 + 27ρk−1 + 92ρk + 92ρk+1 + 27ρk+2 + ρk+3)
2

+(ψk−2 + 27ψk−1 + 92ψk + 92ψk+1 + 27ψk+2 +ψk+3)
2
]

,

z4L =
α

4

[

(ρk−1 + 27ρk + 92ρk+1 + 92ρk+2 + 27ρk+3 + ρk+4)
2

+(ψk−1 + 27ψk + 92ψk+1 + 92ψk+2 + 27ψk+3 +ψk+4)
2
]

,

z5L =
α

4

[

(ρk + 27ρk+1 + 92ρk+2 + 92ρk+3 + 27ρk+4 + ρk+5)
2

+(ψk + 27ψk+1 + 92ψk+2 + 92ψk+3 + 27ψk+4 +ψk+5)
2
]

,

z6L =
α

4

[

(ρk+1 + 27ρk+2 + 92ρk+3 + 92ρk+4 + 27ρk+5 + ρk+6)
2

+(ψk+1 + 27ψk+2 + 92ψk+3 + 92ψk+4 + 27ψk+5 +ψk+6)
2
]

.

(20)

Substituting the time derivatives of the parameters
.
ρ and

.
ψ by the finite difference approximation,

.
ρ =

ρn+1−ρn

∆t and
.
ψ =

ψn+1−ψn

∆t and parameters ρ and ψ by the Crank–Nicolson method, ρ =
ρn+ρn+1

2

and ψ =
ψn+ψn+1

2 into Equation (18) yields Equation (21).

{

Aρn+1 + 0.5∆t(M−C(zL)) ψ
n+1 = Aρn − 0.5∆t(M−C(zL)) ψ

n

Aψn+1 − 0.5∆t(M−C(zL)) ρ
n+1 = Aψn + 0.5∆t(M−C(zL))ρ

n (21)

where ρn+1 = (ρ−2, ρ−1, . . . , ρN+2 )
T and ψn+1 = (ψ−2, ψ−1, . . . , ψN+2 )

T are unknown parameters.

This final system consists of (2N + 2) equations and (2N + 10) unknown’s parameters. To find the

unique solution of this system, we need to eliminate parameters ρ−2, ρ−1, ρN+1, ρN+2, ψ−2, ψ−1, ψN+1

and ψN+2. Using the following boundary conditions

ux(a, t) = ux(b, t) = uxx(a, t) = uxx(b, t) = 0,

we obtain

ρ−2 = −3

2
ρ2 − 5ρ1 +

15

2
ρ0,

ρ−1 =
ρ2

4
+

3

2
ρ1 −

3

4
ρ0,

ρN+1 =
1

4
ρN−2 −

3

2
ρN−1 −

3

4
ρN,

ρN+2 = −3

2
ρN−2 − 5ρN−1 +

15

2
ρN,

ψ−2 = −3

2
ψ2 − 5ψ1 +

15

2
ψ0,

ψ−1 =
ψ2

4
+

3

2
ψ21 −

3

4
ψ2,

ψN+1 =
1

4
ψN−2 −

3

2
ψN−1 −

3

4
ψN,

ψN+2 = −3

2
ψN−2 − 5ψN−1 +

15

2
ψN.

(22)
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3. The Initial Vectors

The initial parameters ρ0 and ψ0 can be determined using initial and boundary conditions to solve

the system in Equation (21). The approximation can be re-written over the interval [a, b] at t = 0 as

sN(x, 0) =
∑N+2

j=−2
Bj(x)ρ

o
j and rN(x, 0) =

∑N+2

j=−2
Bj(x)ψ

o
j , (23)

where all parameters ρ0 and ψ0 are determined. The functions sN and rN are required to satisfy the

following relations at the nodal points xk:

sN(xk, 0) = s(xk, 0), and rN(xk, 0) = r(xk, 0), k = 0, 1, . . . , N. (24)

A pentadiagonal matrix system is obtained using the conditions in Equation (24). The initial

vectors ρ0 and ψ0 can be calculated from the following matrix equations:































































54.00 60.00 6.00

25.25 67.50 26.25 1.00

1.00 26.00 66.00 26.00 1.00
. . .

. . .
. . .

. . .

1.00 26.00 66.00 26.00 1.00

1.00 26.25 67.50 25.25

6.00 60.00 54.00



















































































































ρ0
0

ρ0
1

ρ0
2

...

ρ0
N−1

ρ0
N





















































=































































s0
0

s0
1

s0
2

...

s0
N−2

s0
N−1

s0
N































































(25)































































54.00 60.00 6.00

25.25 67.50 26.25 1.00

1.00 26.00 66.00 26.00 1.00
. . .

. . .
. . .

. . .

1.00 26.00 66.00 26.00 1.00

1.00 26.25 67.50 25.25

6.00 60.00 54.00



















































































































ψ0
0

ψ0
1

ψ0
2

...

ψ0
N−1

ψ0
N





















































=































































r0
0

r0
1

r0
2

...

r0
N−2

r0
N−1

r0
N































































(26)

The above system can be solved by inverting the matrices in MATLAB. The approximate solution

of sN(x, t) and rN(x, t) can be calculated from ρn and ψn using Equation (21).

4. Numerical Experiments and Results

Two physical problems, single solitary wave and interaction of two solitary waves, were considered

to assess the performance of the proposed method summarized in Equation (22). The performance and

accuracy of the approach were tested using the L2 and L∞ norms defined as

L2 = ‖uexact − uN‖2 =

√

√

√

h

N
∑

k=0

∣

∣

∣uk
exact − (uN)k

∣

∣

∣

2
, (27)

and

L∞ = ‖uexact − uN‖∞ = max
0≤k≤N

∣

∣

∣uk
exact − (uN)k

∣

∣

∣, (28)

where uexact and uN denote the exact and numerical solutions, respectively. Moreover, Equation (1)

must satisfy the two conservation laws,



Symmetry 2019, 11, 469 8 of 14

I1 =

b
∫

a

|u|2dx,

I2 =

b
∫

a

(

|ux|2 −
1

2
α|u|4

)

dx.

4.1. Problem 4.1 (Single Solitary Wave Solution)

A single solitary wave solution to the NLS equation is given as in [20]:

u(x, t) = β













√

2

α













expi
[

1

2
Sx− 1

4

(

S2 − β2
)

t
]

sechβ(x− St). (29)

The initial and boundary conditions are taken as u(−20, 0) = u(20, 0) = ux(−20, 0) =

ux(20, 0) = uxx(−20, 0) = uxx(20, 0) = 0.

The values of the initial parameters from Equations (25) and (26) are calculated by using the initial

and boundary conditions. The values of all parameters were chosen to be α = 2, S = 4, β = 1, h = 0.05,

and ∆t = 0.002, 0.001. The parameter S represents the speed of the solitary wave whose magnitude

depends on the real parameter β. The L2 and L∞ norms and conservation laws I1 and I2 are tabulated

in Table 1 for ∆t = 0.002 and Table 2 for ∆t = 0.001. It is observed that the norms remain very small.

The numerical results obtained by the present scheme are more accurate than the explicit, implicit, and

split-step Fourier and other methods [19,21,22].

Table 1. Norms and conservation laws for Problem 4.1. with ∆t = 0.002, α = 2, S = 4 and β = 1.

t L∞ L2 I1 I2

0.5 1.9568× 10−4 2.7670× 10−4 1.99983872 7.33354808

1.0 1.9568× 10−4 2.7670× 10−4 1.99983872 7.33354808

1.5 1.9568× 10−4 2.7670× 10−4 1.99983872 7.33354808

2.0 1.9568× 10−4 2.7670× 10−4 1.99983872 7.33354808

2.5 1.9568× 10−4 2.7725× 10−4 1.99983871 7.33354806

3.0 6.4457× 10−4 3.0534× 10−4 1.99983850. 7.33354709

3.5 4.7627× 10−3 9.9330× 10−4 1.99982692 7.33349360

Table 2. Norms and conservation laws for Problem 4.1 with ∆t = 0.001, α = 2, S = 4 and β = 1.

t L∞ L2 I1 I2

0.5 9.78400× 10−5 1.3835× 10−4 1.99991936 7.33344071

1.0 9.78400× 10−5 1.3835× 10−4 1.99991936 7.33344071

1.5 9.78400× 10−5 1.3835× 10−4 1.99991936 7.33344071

2.0 9.78400× 10−5 1.3837× 10−4 1.99991936 7.33344071

2.5 9.78400× 10−5 1.3945× 10−4 1.99991935 7.33344069

3.0 6.44590× 10−4 1.8914× 10−4 1.99991914 7.33343971

3.5 4.76289× 10−3 9.6293× 10−4 1.99990755 7.33338623

The norms naturally decrease with the increase in number of partitions. We found a good result

even for large step size, as displayed in Table 3. The L∞ and L2 norms converge to zero as the number

of nodes increases. The numerical simulations are shown at different times over the region [−20, 20] in

Figure 1.
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Table 3. Norms and conservation laws for Problem 4.1. with ∆t = 0.005, α = 2, S = 4 and β =

1 and t = 1.

h L∞ L2 I1 I2

0.4000 3.15055× 10−3 4.36807× 10−3 1.99889027 7.32694758

0.3000 1.93900× 10−3 2.70993× 10−3 1.99828775 7.32875439

0.2667 1.62336× 10−3 2.28584× 10−3 1.99826101 7.32850737

0.2500 1.48026× 10−3 2.09864× 10−3 1.99827987 7.32841934

0.2000 1.11080× 10−3 1.60406× 10−3 1.99845175 7.32849099

0.1600 8.72850× 10−4 1.27057× 10−3 1.99869795 7.32900596

0.1333 7.38540× 10−4 1.07534× 10−3 1.99890569 7.32957727

0.1000 5.95490× 10−4 8.59430× 10−4 1.99920350 7.33051338

0.0800 5.19280× 10−4 7.42820× 10−4 1.99939758 7.33117069

0.0667 4.69970× 10−4 6.68230× 10−4 1.99953162 7.33163940

0.0500 4.04610× 10−4 5.72190× 10−4 1.99970290 7.33225097

0.0400 3.58160× 10−4 5.05630× 10−4 1.99980701 7.33262780

 

∆𝑡 = 0.002.∆𝑡
Order of convergence 𝑙𝑜𝑔 𝐸(2ℎ, 2∆𝑡)𝐸(ℎ, ∆𝑡) ,𝐸(2ℎ, 2∆𝑡)  𝐿   𝐿 𝐿 ,  𝐿 𝑡 = 1

𝑡 = 1 ℎ = ∆𝑡, 𝛼 = 2, 𝑆 = 4 and 𝛽 = 1.𝒉 𝑳 𝑳𝟐3.02045 × 10 3.0881 × 107.61510 × 10 1.989 7.7753 × 10 1.98971.90750 × 10 1.997 1.9473 × 10 1.99744.77100 × 10 1.999 4.8700 × 10 1.9994

Figure 1. Single solitary wave solution with amplitude 1 and ∆t = 0.002.

Furthermore, numerical results for different values of ∆t were generated to calculate the rate of

convergence using the following formula [23]:

Order of convergence ≈ log2
E(2h, 2∆t)

E(h, ∆t)
,

where E(2h, 2∆t) is either the L∞ error norm or the L2 error norm in spatial and temporal directions.

The error norms L∞, L2 and order of convergence rate at time t = 1 is shown in Table 4. In Table 4, we

see that this method is nearly of second-order convergence.
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Table 4. Norms and order of convergence at t = 1 with h = ∆t, α = 2, S = 4 and β = 1.

h L∞ Order L2 Order

0.040 3.02045× 10−3 - 3.0881× 10−3 -

0.020 7.61510× 10−4 1.989 7.7753× 10−4 1.9897

0.010 1.90750× 10−4 1.997 1.9473× 10−4 1.9974

0.005 4.77100× 10−5 1.999 4.8700× 10−5 1.9994

Table 5 presents comparison between our proposed method with other methods. The proposed

scheme gave satisfactory results.

Table 5. Comparison of present results for Problem 4.1 with different methods (α = 2, S = 4, β = 1,

t = 1).

h ∆t L∞(Galerkin Quintic B-spline Method) L∞ [17–19,21,22]

0.0300 0.0050 4.80× 10−4 3.00× 10−4

0.0500 0.0010 1.00× 10−4 5.77× 10−3

0.0500 0.0050 5.10× 10−4 3.00× 10−4

0.0600 0.0165 1.74× 10−3 1.50× 10−3

0.3125 0.0200 8.23× 10−3 2.00× 10−3

0.3125 0.0026 1.07× 10−3 5.13× 10−3

Table 6 displays numerical results of present method compared to those of Taha et al. [21].

In general, the present method generated more accurate results for the specific values of parameters.

The simulation of the single soliton with amplitude equal to 2 is presented in Figure 2.

Table 6. Comparison of present results for Problem 4.1 with those of Taha et al. [21] (α = 2, S = 4, β = 2,

t = 1).

h ∆t L∞(Galerkin Quintic B-spline Method) L∞ [21]

0.0300 0.00022 4.00× 10−5 7.59× 10−3

0.1563 0.00480 1.62× 10−3 4.64× 10−3

0.0700 0.01200 2.31× 10−3 9.37× 10−3

0.0600 0.03000 5.70× 10−3 6.95× 10−3

0.0200 0.00040 7.00× 10−5 9.63× 10−3

0.0200 0.00010 2.00× 10−5 9.31× 10−3

 

𝛼 = 2, 𝑆 = 4, 𝛽 =1  𝑡 = 1).𝒉 ∆𝒕 𝑳 𝑳4.80 × 10 3.00 × 101.00 × 10 5.77 × 105.10 × 10 3.00 × 101.74 × 10 1.50 × 108.23 × 10 2.00 × 101.07 × 10 5.13 × 10

(𝛼 = 2, 𝑆 = 4, 𝛽 =2  𝑡 = 1).𝒉 ∆𝒕 𝑳 𝑳0.0300 0.00022 4.00 × 10 7.59 × 100.1563 0.00480 1.62 × 10 4.64 × 100.0700 0.01200 2.31 × 10 9.37 × 100.0600 0.03000 5.70 × 10 6.95 × 100.0200 0.00040 7.00 × 10 9.63 × 100.0200 0.00010 2.00 × 10 9.31 × 10

∆𝑡 = 0.0002.

Figure 2. Cont.
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𝛼 = 2, 𝑆 = 4, 𝛽 =1  𝑡 = 1).𝒉 ∆𝒕 𝑳 𝑳4.80 × 10 3.00 × 101.00 × 10 5.77 × 105.10 × 10 3.00 × 101.74 × 10 1.50 × 108.23 × 10 2.00 × 101.07 × 10 5.13 × 10

(𝛼 = 2, 𝑆 = 4, 𝛽 =2  𝑡 = 1).𝒉 ∆𝒕 𝑳 𝑳0.0300 0.00022 4.00 × 10 7.59 × 100.1563 0.00480 1.62 × 10 4.64 × 100.0700 0.01200 2.31 × 10 9.37 × 100.0600 0.03000 5.70 × 10 6.95 × 100.0200 0.00040 7.00 × 10 9.63 × 100.0200 0.00010 2.00 × 10 9.31 × 10

∆𝑡 = 0.0002.Figure 2. Single solitary wave solution with amplitude 2 and ∆t = 0.0002.

4.2. Problem 4.2 (The Interaction of Two Solitary Waves)

In this problem we considered the behavior of two solitons moving in opposite directions using

the following initial conditions [18,20,21]:

u(x, 0) =
2
∑

k=1

uk(x, 0),

uk(x, 0) = βk













√

2

α













exp
(

i
[

1

2
S(x− xk)

])

sech(βk(x− xk)).

(30)

where βk, α and xk are constants.

The values of all parameters were chosen to be x1 = 10, x2 = −10, α = 2, β1 = 1, β2 = 1,

S1 = −4, S2 = 4, h = 0.05 and ∆t = 0.05. Two solitary waves were traveling in opposite direction

with the same magnitude 1 and speed 10. One of the solitary waves placed at x = 10 was traveling to

the left side with speed 4 and the second wave on the other side placed at x = −10 was traveling to the

right side with speed 4. As we know, solitons move in opposite direction and they collide and separate.

We noticed that the shape of the solitons did not change after the collision of both solitons as expected.

The two solitary waves collided at times t = 1, 2, 3 and then separated at t = 4, 5, 6. We see that the

solitons preserved the original shapes after the collision. The interactions of two solitons at different

times t = 0, 1, 2, 2.8, 3, 4, 5 and 6 can be seen in Figure 3.

The L∞ and L2 norms and I1 conservation law were calculated at various times with

∆t = 0.005, 0.002, as shown in Tables 7 and 8.

Table 7. Norms and conservation laws for Problem 4.2 with h = 0.05 and ∆t = 0.005.

t L∞ L2 I1

0.5 4.7310× 10−4 6.8455× 10−4 4.00001440

1.0 4.7310× 10−4 6.8455× 10−4 4.00058985

1.5 4.7277× 10−4 6.8398× 10−4 4.02146973

2.0 4.5716× 10−4 6.5569× 10−4 4.58630524

2.5 9.4000× 10−7 8.5000× 10−7 7.99999602

3.0 4.5739× 10−4 6.5569× 10−4 4.58628884

3.5 4.7280× 10−4 6.8398× 10−4 4.02146948

4.0 4.7310× 10−4 6.8454× 10−4 4.00058984

4.5 4.7310× 10−4 6.8455× 10−4 4.00001440

5.0 4.7310× 10−4 6.8455× 10−4 4.00000032
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Table 8. Norms and conservation laws for Problem 4.2 with h = 0.05 and ∆t = 0.002.

t L∞ L2 I1

0.5 1.8921× 10−4 2.7382× 10−4 4.00001440

1.0 1.8921× 10−4 2.7382× 10−4 4.00058985

1.5 1.8908× 10−4 2.7359× 10−4 4.02146966

2.0 1.8289× 10−4 2.6227× 10−4 4.58630039

2.5 1.5000× 10−7 1.4000× 10−4 7.99999936

3.0 1.8293× 10−4 2.6227× 10−4 4.58629383

3.5 1.8909× 10−4 2.7359× 10−4 4.02146956

4.0 1.8921× 10−4 2.7382× 10−4 4.00058984

4.5 1.8921× 10−4 2.7382× 10−4 4.00001440

5.0 1.8921× 10−4 2.7382× 10−4 4.00000032

 

𝛼 = 2 ∆𝑡 = 0.005.Figure 3. Interaction of two-solitons at different times with amplitude = 1, α = 2 and ∆t = 0.0005.
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Furthermore, Table 9 presents numerical results of our proposed method compared with previous

methods (e.g., [21]). The present method gives accurate results for the specific values of parameters.

Table 9. Comparison of present results for Problem 4.2 with those of Taha et al. [21]. (amplitude = 1).

t h ∆t L∞(Galerkin Quintic B-spline Method) L∞ [21]

1.0 0.0500 0.0025 2.36520× 10−4 9.60× 10−4

1.0 0.0500 0.0010 9.46000× 10−5 1.41× 10−3

1.0 0.6250 0.0071 3.85612× 10−3 1.22× 10−3

1.0 0.1300 0.0036 8.44010× 10−4 1.41× 10−3

1.6 0.0500 0.0010 9.4460× 10−5 1.73× 10−4

1.8 0.0700 0.0700 9.15408× 10−3 1.58× 10−3

5. Conclusions

In this paper, the numerical solution of the NLS equation with Neumann boundary conditions is

obtained by the Galerkin finite element method with quintic B-spline shape function. The accuracy

and feasibility of the method was evaluated by two test problems related to single solitary wave and

interaction of two solitary waves. The accuracy of numerical method was examined by showing

reasonably small error norms L2 and L∞. The interaction of two solitary waves was investigated and

observed that the shape of the solitons did not change after the collision of both solitons as expected.

The proposed method successfully simulated the soliton picture by choosing different parameters in

the case of motion of single soliton and interaction of two soliton. The obtained results were compared

with published results [17,19,21,22] and it was observed that the all results are acceptable and reflect

the analytical solution. The rate of convergence was calculated and found to be almost of second-order

convergence. In conclusion, the present Galerkin finite element scheme with quintic B-spline presents

an acceptable soliton solution method for solving NLS equation. The simplicity of the quintic B-spline

Galerkin finite element method is an advantage over the general Galerkin finite element method to

obtain the numerical solution of NLS equation. The proposed scheme can easily be applied to solve

various nonlinear differential equations.
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